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Abstract

It is shown by example how a cumulative link mixed model is fitted with the clmm2

function in package ordinal. Model interpretation and inference is briefly discussed. A

tutorial for the more recent clmm function is work in progress.

We will consider the data on the bitterness of wine from Randall (1989) presented in Table 1
and available as the object wine in package ordinal. The data were also analyzed with mixed
effects models by Tutz and Hennevogl (1996). The following gives an impression of the wine
data object:

R> data(wine)

R> head(wine)

response rating temp contact bottle judge

1 36 2 cold no 1 1

2 48 3 cold no 2 1

3 47 3 cold yes 3 1

4 67 4 cold yes 4 1

5 77 4 warm no 5 1

6 60 4 warm no 6 1

R> str(wine)

'data.frame': 72 obs. of 6 variables:

$ response: num 36 48 47 67 77 60 83 90 17 22 ...

$ rating : Ord.factor w/ 5 levels "1"<"2"<"3"<"4"<..: 2 3 3 4 4 4 5 5 1 2 ...

$ temp : Factor w/ 2 levels "cold","warm": 1 1 1 1 2 2 2 2 1 1 ...

$ contact : Factor w/ 2 levels "no","yes": 1 1 2 2 1 1 2 2 1 1 ...

$ bottle : Factor w/ 8 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 1 2 ...

$ judge : Factor w/ 9 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 2 2 ...

The data represent a factorial experiment on factors determining the bitterness of wine with
1 = “least bitter” and 5 = “most bitter”. Two treatment factors (temperature and contact)
each have two levels. Temperature and contact between juice and skins can be controlled
when crushing grapes during wine production. Nine judges each assessed wine from two
bottles from each of the four treatment conditions, hence there are 72 observations in all.
For more information see the manual entry for the wine data: help(wine).

We will fit the following cumulative link mixed model to the wine data:

logit(P (Yi ≤ j)) = θj − β1(tempi)− β2(contacti)− u(judgei)
i = 1, . . . , n, j = 1, . . . , J − 1

(1)

1



Table 1: Ratings of the bitterness of some white wines. Data are adopted from Randall
(1989).

Judge
Temperature Contact Bottle 1 2 3 4 5 6 7 8 9
cold no 1 2 1 2 3 2 3 1 2 1
cold no 2 3 2 3 2 3 2 1 2 2
cold yes 3 3 1 3 3 4 3 2 2 3
cold yes 4 4 3 2 2 3 2 2 3 2
warm no 5 4 2 5 3 3 2 2 3 3
warm no 6 4 3 5 2 3 4 3 3 2
warm yes 7 5 5 4 5 3 5 2 3 4
warm yes 8 5 4 4 3 3 4 3 4 4

This is a model for the cumulative probability of the ith rating falling in the jth category
or below, where i index all observations and j = 1, . . . , J index the response categories
(J = 5). {θj} are known as threshold parameters or cut-points. We take the judge effects
to be random, and assume that the judge effects are IID normal: u(judgei) ∼ N(0, σ2

u).

We fit this model with the clmm2 function in package ordinal. Here we save the fitted clmm2

model in the object fm1 (short for fitted model 1) and print the model by simply typing
its name:

R> fm1 <- clmm2(rating ~ temp + contact, random=judge, data=wine)

R> fm1

Cumulative Link Mixed Model fitted with the Laplace approximation

Call:

clmm2(location = rating ~ temp + contact, random = judge, data = wine)

Random effects:

Var Std.Dev

judge 1.279455 1.13113

Location coefficients:

tempwarm contactyes

3.062993 1.834883

No Scale coefficients

Threshold coefficients:

1|2 2|3 3|4 4|5

-1.623664 1.513364 4.228525 6.088770

log-likelihood: -81.56541

AIC: 177.1308

Maximum likelihood estimates of the parameters are provided using the Laplace approxi-
mation to compute the likelihood function. A more accurate approximation is provided by
the adaptive Gauss-Hermite quadrature method. Here we use 10 quadrature nodes and use
the summary method to display additional information:

R> fm2 <- clmm2(rating ~ temp + contact, random=judge, data=wine,
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Hess=TRUE, nAGQ=10)

R> summary(fm2)

Cumulative Link Mixed Model fitted with the adaptive Gauss-Hermite

quadrature approximation with 10 quadrature points

Call:

clmm2(location = rating ~ temp + contact, random = judge, data = wine,

Hess = TRUE, nAGQ = 10)

Random effects:

Var Std.Dev

judge 1.287741 1.134787

Location coefficients:

Estimate Std. Error z value Pr(>|z|)

tempwarm 3.0619 0.5951 5.1454 2.6697e-07

contactyes 1.8334 0.5122 3.5797 0.00034396

No scale coefficients

Threshold coefficients:

Estimate Std. Error z value

1|2 -1.6235 0.6834 -2.3757

2|3 1.5128 0.6044 2.5028

3|4 4.2271 0.8090 5.2252

4|5 6.0862 0.9719 6.2619

log-likelihood: -81.53246

AIC: 177.0649

Condition number of Hessian: 27.62083

The small changes in the parameter estimates show that the Laplace approximation was
in fact rather accurate in this case. Observe that we set the option Hess = TRUE. This
is needed if we want to use the summary method since the Hessian is needed to compute
standard errors of the model coefficients.

The results contain the maximum likelihood estimates of the parameters:

β̂1 = 3.06, β̂2 = 1.83, σ̂2

u = 1.29 = 1.132, {θ̂j} = [−1.62, 1.51, 4.23, 6.09]. (2)

Observe the number under Std.Dev for the random effect is not the standard error of the
random effects variance, Var. Rather, it is the standard deviation of the random effects, i.e.,
it is the square root of the variance. In our example

√
1.29 ≃ 1.13.

The condition number of the Hessian measures the empirical identifiability of the model.
High numbers, say larger than 104 or 106 indicate that the model is ill defined. This would
indicate that the model can be simplified, that possibly some parameters are not identifiable,
and that optimization of the model can be difficult. In this case the condition number of
the Hessian does not indicate a problem with the model.

The coefficients for temp and contact are positive indicating that higher temperature and
more contact increase the bitterness of wine, i.e., rating in higher categories is more likely.
The odds ratio of the event Y ≥ j is exp(βtreatment), thus the odds ratio of bitterness being
rated in category j or above at warm relative to cold temperatures is
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R> exp(coef(fm2)[5])

tempwarm

21.36805

The p-values for the location coefficients provided by the summary method are based on the
so-called Wald statistic. More accurate test are provided by likelihood ratio tests. These
can be obtained with the anova method, for example, the likelihood ratio test of contact

is

R> fm3 <- clmm2(rating ~ temp, random=judge, data=wine, nAGQ=10)

R> anova(fm3, fm2)

Likelihood ratio tests of cumulative link models

Response: rating

Model Resid. df -2logLik Test Df LR stat.

1 temp | | 66 177.4090

2 temp + contact | | 65 163.0649 1 vs 2 1 14.34409

Pr(Chi)

1

2 0.0001522572

which in this case is slightly more significant. The Wald test is not reliable for variance
parameters, so the summary method does not provide a test of σu, but a likelihood ratio test
can be obtained with anova:

R> fm4 <- clm2(rating ~ temp + contact, data=wine)

R> anova(fm4, fm2)

Likelihood ratio tests of cumulative link models

Response: rating

Model Resid. df -2logLik Test Df LR stat.

1 temp + contact | | 66 172.9838

2 temp + contact | | 65 163.0649 1 vs 2 1 9.918925

Pr(Chi)

1

2 0.001635879

showing that the judge term is significant. Since this test of σu = 0 is on the boundary of
the parameter space (a variance cannot be negative), it is often argued that a more correct
p-value is obtained by halving the p-value produced by the conventional likelihood ratio test.
In this case halving the p-value is of little relevance.

A profile likelihood confidence interval of σu is obtained with:

R> pr2 <- profile(fm2, range=c(.1, 4), nSteps=30, trace=0)

R> confint(pr2)

2.5 % 97.5 %

stDev 0.5048597 2.272327

The profile likelihood can also be plotted:

R> plot(pr2)

The result is shown in Fig. 1 where horizontal lines indicate 95% and 99% confindence
bounds. Clearly the profile likelihood function is asymmetric and symmetric confidence
intervals would be inaccurate.
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Figure 1: Profile likelihood of σu.

The judge effects, u(judgei) are not parameters, so they cannot be estimated in the con-
ventional sense, but a “best guess” is provided by the conditional modes. Similarly the
conditional variance provides an uncertainty measure of the conditional modes. These quan-
tities are included in clmm2 objects as the ranef and condVar components. The following
code generates the plot in Fig. 2 illustrating judge effects via conditional modes with 95%
confidence intervals based on the conditional variance:

R> ci <- fm2$ranef + qnorm(0.975) * sqrt(fm2$condVar) %o% c(-1, 1)

R> ord.re <- order(fm2$ranef)

R> ci <- ci[order(fm2$ranef),]

R> plot(1:9, fm2$ranef[ord.re], axes=FALSE, ylim=range(ci),

xlab="Judge", ylab="Judge effect")

R> axis(1, at=1:9, labels = ord.re)

R> axis(2)

R> for(i in 1:9) segments(i, ci[i,1], i, ci[i, 2])

R> abline(h = 0, lty=2)

The seventh judge gave the lowest ratings of bitterness while the first judge gave the highest
ratings of bitterness. The significant judge effect indicate that judges perceived the bitterness
of the wines differently. Two natural interpretations are that either a bitterness of, say, 3
means different things to different judges, or the judges actually perceived the bitterness of
the wines differently. Possibly both effects play their part.

The fitted or predicted probabilites can be obtained with the judge effects at their conditional
modes or for an average judge (u = 0). The former are available with fitted(fm) or with
predict(fm), where fm is a fitted model object. In our example we get

R> head(cbind(wine, fitted(fm2)))

response rating temp contact bottle judge fitted(fm2)

1 36 2 cold no 1 1 0.4188998

2 48 3 cold no 2 1 0.4723982

3 47 3 cold yes 3 1 0.5499191

4 67 4 cold yes 4 1 0.2607227
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Figure 2: Judge effects given by conditional modes with 95% confidence intervals based on
the conditional variance.

5 77 4 warm no 5 1 0.4203948

6 60 4 warm no 6 1 0.4203948

Predicted probabilities for an average judge can be obtained by including the data used to
fit the model in the newdata argument of predict:

R> head(cbind(wine, pred=predict(fm2, newdata=wine)))

response rating temp contact bottle judge pred

1 36 2 cold no 1 1 0.6547512

2 48 3 cold no 2 1 0.1661397

3 47 3 cold yes 3 1 0.4958192

4 67 4 cold yes 4 1 0.0696343

5 77 4 warm no 5 1 0.1913894

6 60 4 warm no 6 1 0.1913894

Model (1) says that for an average judge at cold temperature the cumulative probability of
a bitterness rating in category j or below is

P (Yi ≤ j) = logit−1[θj − β2(contacti)]

since u is set to zero and β1(tempi) = 0 at cold conditions. Further, logit−1(η) = 1/[1 +
exp(η)] is the cumulative distribution function of the logistic distribution available as the
plogis function. The (non-cumulative) probability of a bitterness rating in category j is
πj = P (Yi ≤ j) − P (Yi ≤ j − 1), for instance the probability of a bitterness rating in the
third category at these conditions can be computed as

R> plogis(fm2$Theta[3] - fm2$beta[2]) -

plogis(fm2$Theta[2] - fm2$beta[2])

3|4

0.4958192

This corresponds to the third entry of predict(fm2, newdata=wine) given above.
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Judge effects are random and normally distributed, so an average judge effect is 0. Extreme
judge effects, say 5th and 95th percentile judge effects are given by

R> qnorm(0.95) * c(-1, 1) * fm2$stDev

[1] -1.866558 1.866558

At the baseline experimental conditions (cold and no contact) the probabilites of bitterness
ratings in the five categories for a 5th percentile judge is

R> pred <-

function(eta, theta, cat = 1:(length(theta)+1), inv.link = plogis)

{

Theta <- c(-1e3, theta, 1e3)

sapply(cat, function(j)

inv.link(Theta[j+1] - eta) - inv.link(Theta[j] - eta) )

}

R> pred(qnorm(0.05) * fm2$stDev, fm2$Theta)

1|2 2|3 3|4 4|5

0.5604689940 0.4065839995 0.0306948522 0.0019005715 0.0003515829

We can compute these probabilities for average, 5th and 95th percentile judges at the four
experimental conditions. The following code plots these probabilities and the results are
shown in Fig. 3.

R> mat <- expand.grid(judge = qnorm(0.95) * c(-1, 0, 1) * fm2$stDev,

contact = c(0, fm2$beta[2]),

temp = c(0, fm2$beta[1]))

R> pred.mat <- pred(eta=rowSums(mat), theta=fm2$Theta)

R> lab <- paste("contact=", rep(levels(wine$contact), 2), ", ",

"temp=", rep(levels(wine$temp), each=2), sep="")

R> par(mfrow=c(2, 2))

R> for(k in c(1, 4, 7, 10)) {

plot(1:5, pred.mat[k,], lty=2, type = "l", ylim=c(0,1),

xlab="Bitterness rating scale", axes=FALSE,

ylab="Probability", main=lab[ceiling(k/3)], las=1)

axis(1); axis(2)

lines(1:5, pred.mat[k+1, ], lty=1)

lines(1:5, pred.mat[k+2, ], lty=3)

legend("topright",

c("avg. judge", "5th %-tile judge", "95th %-tile judge"),

lty=1:3, bty="n")

}

At constant experimental conditions the odds ratio for a bitterness rating in category j or
above for a 95th percentile judge relative to a 5th percentile judge is

R> exp(2*qnorm(0.95) * fm2$stDev)

judge

41.80921

The differences between judges can also be expressed in terms of the interquartile range: the
odds ratio for a bitterness rating in category j or above for a third quartile judge relative
to a first quartile judge is

R> exp(2*qnorm(0.75) * fm2$stDev)

judge
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Figure 3: Rating probabilities for average and extreme judges at different experimental
conditions.
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