
Package ‘parsnip’
January 11, 2026

Title A Common API to Modeling and Analysis Functions

Version 1.4.1

Maintainer Max Kuhn <max@posit.co>

Description A common interface is provided to allow users to specify a
model without having to remember the different argument names across
different functions or computational engines (e.g. 'R', 'Spark',
'Stan', 'H2O', etc).

License MIT + file LICENSE

URL https://github.com/tidymodels/parsnip,

https://parsnip.tidymodels.org/

BugReports https://github.com/tidymodels/parsnip/issues

Depends R (>= 4.1)

Imports cli, dplyr (>= 1.1.0), generics (>= 0.1.2), ggplot2, globals,
glue, hardhat (>= 1.4.1), lifecycle, magrittr, pillar,
prettyunits, purrr (>= 1.0.0), rlang (>= 1.1.0), sparsevctrs
(>= 0.2.0), stats, tibble (>= 2.1.1), tidyr (>= 1.3.0), utils,
vctrs (>= 0.6.0), withr

Suggests bench, C50, covr, dials (>= 1.1.0), earth, ggrepel, keras,
kernlab, kknn, knitr, LiblineaR, MASS, Matrix, methods, mgcv,
modeldata, nlme, prodlim, ranger (>= 0.12.0), remotes,
rmarkdown, rpart, sparklyr (>= 1.0.0), survival, tensorflow,
testthat (>= 3.0.0), xgboost (>= 1.5.0.1)

VignetteBuilder knitr

ByteCompile true

Config/Needs/website brulee, C50, dbarts, earth, glmnet, grf, keras,
kernlab, kknn, LiblineaR, mgcv, nnet, parsnip, quantreg,
randomForest, ranger, rpart, rstanarm, tidymodels/tidymodels,
tidyverse/tidytemplate, rstudio/reticulate, xgboost, rmarkdown

Config/rcmdcheck/ignore-inconsequential-notes true

Config/testthat/edition 3

1

https://github.com/tidymodels/parsnip
https://parsnip.tidymodels.org/
https://github.com/tidymodels/parsnip/issues

2 Contents

Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

NeedsCompilation no

Author Max Kuhn [cre, aut] (ORCID: <https://orcid.org/0000-0003-2402-136X>),
Davis Vaughan [aut],
Emil Hvitfeldt [ctb],
Posit Software, PBC [cph, fnd] (ROR: <https://ror.org/03wc8by49>)

Repository CRAN

Date/Publication 2026-01-11 06:10:46 UTC

Contents
.extract_surv_status . 3
.extract_surv_time . 4
.get_prediction_column_names . 4
add_rowindex . 5
augment.model_fit . 5
autoplot.model_fit . 7
auto_ml . 8
bag_mars . 9
bag_mlp . 10
bag_tree . 12
bart . 13
boost_tree . 15
C5_rules . 17
case_weights . 18
case_weights_allowed . 19
control_parsnip . 20
ctree_train . 20
cubist_rules . 22
decision_tree . 24
descriptors . 26
discrim_flexible . 27
discrim_linear . 29
discrim_quad . 30
discrim_regularized . 31
extract-parsnip . 33
fit.model_spec . 34
gen_additive_mod . 37
glance.model_fit . 38
glm_grouped . 39
linear_reg . 40
logistic_reg . 42
mars . 44
max_mtry_formula . 45

https://orcid.org/0000-0003-2402-136X
https://ror.org/03wc8by49

.extract_surv_status 3

maybe_matrix . 46
min_cols . 47
mlp . 48
model_fit . 49
model_formula . 50
model_spec . 52
multinom_reg . 54
multi_predict . 56
naive_Bayes . 57
nearest_neighbor . 59
null_model . 60
parsnip_addin . 62
pls . 62
poisson_reg . 63
rand_forest . 65
repair_call . 66
required_pkgs.model_spec . 67
req_pkgs . 68
rule_fit . 69
set_args . 71
set_engine . 72
show_engines . 73
sparse_data . 74
svm_linear . 74
svm_poly . 75
svm_rbf . 77
tidy.model_fit . 78
translate . 79
update.bag_mars . 80

Index 91

.extract_surv_status Extract survival status

Description

Extract the status from a survival::Surv() object.

Arguments

surv A single survival::Surv() object.

Value

A numeric vector.

4 .get_prediction_column_names

.extract_surv_time Extract survival time

Description

Extract the time component(s) from a survival::Surv() object.

Arguments

surv A single survival::Surv() object.

Value

A vector when the type is "right" or "left" and a tibble otherwise.

.get_prediction_column_names

Obtain names of prediction columns for a fitted model or workflow

Description

.get_prediction_column_names() returns a list that has the names of the columns for the primary
prediction types for a model.

Usage

.get_prediction_column_names(x, syms = FALSE)

Arguments

x A fitted parsnip model (class "model_fit") or a fitted workflow.
syms Should the column names be converted to symbols? Defaults to FALSE.

Value

A list with elements "estimate" and "probabilities".

Examples

library(dplyr)
library(modeldata)
data("two_class_dat")

levels(two_class_dat$Class)
lr_fit <- logistic_reg() |> fit(Class ~ ., data = two_class_dat)

.get_prediction_column_names(lr_fit)

.get_prediction_column_names(lr_fit, syms = TRUE)

add_rowindex 5

add_rowindex Add a column of row numbers to a data frame

Description

Add a column of row numbers to a data frame

Usage

add_rowindex(x)

Arguments

x A data frame

Value

The same data frame with a column of 1-based integers named .row.

Examples

mtcars |> add_rowindex()

augment.model_fit Augment data with predictions

Description

augment() will add column(s) for predictions to the given data.

Usage

S3 method for class 'model_fit'
augment(x, new_data, eval_time = NULL, ...)

Arguments

x A model fit produced by fit.model_spec() or fit_xy.model_spec().

new_data A data frame or matrix.

eval_time For censored regression models, a vector of time points at which the survival
probability is estimated.

... Not currently used.

6 augment.model_fit

Details

Regression:
For regression models, a .pred column is added. If x was created using fit.model_spec() and
new_data contains a regression outcome column, a .resid column is also added.

Classification:
For classification models, the results can include a column called .pred_class as well as class
probability columns named .pred_{level}. This depends on what type of prediction types are
available for the model.

Censored Regression:
For these models, predictions for the expected time and survival probability are created (if the
model engine supports them). If the model supports survival prediction, the eval_time argument
is required.
If survival predictions are created and new_data contains a survival::Surv() object, additional
columns are added for inverse probability of censoring weights (IPCW) are also created (see
tidymodels.org page in the references below). This enables the user to compute performance
metrics in the yardstick package.

Quantile Regression:
For quantile regression models, a .pred_quantile column is added that contains the quantile
predictions for each row. This column has a special class "quantile_pred" and can be unnested
using tidyr::unnest()

References

https://www.tidymodels.org/learn/statistics/survival-metrics/

Examples

car_trn <- mtcars[11:32,]
car_tst <- mtcars[1:10,]

reg_form <-
linear_reg() |>
set_engine("lm") |>
fit(mpg ~ ., data = car_trn)

reg_xy <-
linear_reg() |>
set_engine("lm") |>
fit_xy(car_trn[, -1], car_trn$mpg)

augment(reg_form, car_tst)
augment(reg_form, car_tst[, -1])

augment(reg_xy, car_tst)
augment(reg_xy, car_tst[, -1])

--

https://www.tidymodels.org/learn/statistics/survival-metrics/

autoplot.model_fit 7

data(two_class_dat, package = "modeldata")
cls_trn <- two_class_dat[-(1:10),]
cls_tst <- two_class_dat[1:10 ,]

cls_form <-
logistic_reg() |>
set_engine("glm") |>
fit(Class ~ ., data = cls_trn)

cls_xy <-
logistic_reg() |>
set_engine("glm") |>
fit_xy(cls_trn[, -3],
cls_trn$Class)

augment(cls_form, cls_tst)
augment(cls_form, cls_tst[, -3])

augment(cls_xy, cls_tst)
augment(cls_xy, cls_tst[, -3])

--

if (rlang::is_installed("quantreg")) {
Quantile regression example
qr_form <-
linear_reg() |>
set_engine("quantreg") |>
set_mode("quantile regression", quantile_levels = c(0.25, 0.5, 0.75)) |>
fit(mpg ~ ., data = car_trn)

augment(qr_form, car_tst)
augment(qr_form, car_tst[, -1])

}

autoplot.model_fit Create a ggplot for a model object

Description

This method provides a good visualization method for model results. Currently, only methods for
glmnet models are implemented.

Usage

S3 method for class 'model_fit'
autoplot(object, ...)

S3 method for class 'glmnet'
autoplot(object, ..., min_penalty = 0, best_penalty = NULL, top_n = 3L)

8 auto_ml

Arguments

object A model fit object.

... For autoplot.glmnet(), options to pass to ggrepel::geom_label_repel().
Otherwise, this argument is ignored.

min_penalty A single, non-negative number for the smallest penalty value that should be
shown in the plot. If left NULL, the whole data range is used.

best_penalty A single, non-negative number that will show a vertical line marker. If left NULL,
no line is shown. When this argument is used, the ggrepl package is required.

top_n A non-negative integer for how many model predictors to label. The top predic-
tors are ranked by their absolute coefficient value. For multinomial or multivari-
ate models, the top_n terms are selected within class or response, respectively.

Details

The glmnet package will need to be attached or loaded for its autoplot() method to work correctly.

Value

A ggplot object with penalty on the x-axis and coefficients on the y-axis. For multinomial or multi-
variate models, the plot is faceted.

auto_ml Automatic Machine Learning

Description

auto_ml() defines an automated searching and tuning process where many models of different
families are trained and ranked given their performance on the training data.

There are different ways to fit this model, and the method of estimation is chosen by setting the
model engine. The engine-specific pages for this model are listed below.

• h2o¹²

¹ The default engine. ² Requires a parsnip extension package for classification and regression.

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

auto_ml(mode = "unknown", engine = "h2o")

Arguments

mode A single character string for the prediction outcome mode. Possible values for
this model are "unknown", "regression", or "classification".

engine A single character string specifying what computational engine to use for fitting.

https://www.tidymodels.org/

bag_mars 9

Details

This function only defines what type of model is being fit. Once an engine is specified, the method
to fit the model is also defined. See set_engine() for more on setting the engine, including how
to set engine arguments.

The model is not trained or fit until the fit() function is used with the data.

Each of the arguments in this function other than mode and engine are captured as quosures. To
pass values programmatically, use the injection operator like so:

value <- 1
auto_ml(argument = !!value)

References

https://www.tidymodels.org, Tidy Modeling with R, searchable table of parsnip models

See Also

fit(), set_engine(), update(), h2o engine details

bag_mars Ensembles of MARS models

Description

bag_mars() defines an ensemble of generalized linear models that use artificial features for some
predictors. These features resemble hinge functions and the result is a model that is a segmented
regression in small dimensions. This function can fit classification and regression models.

There are different ways to fit this model, and the method of estimation is chosen by setting the
model engine. The engine-specific pages for this model are listed below.

• earth¹²

¹ The default engine. ² Requires a parsnip extension package for classification and regression.

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

bag_mars(
mode = "unknown",
num_terms = NULL,
prod_degree = NULL,
prune_method = NULL,
engine = "earth"

)

https://www.tidymodels.org
https://www.tmwr.org/
https://www.tidymodels.org/find/parsnip/
https://www.tidymodels.org/

10 bag_mlp

Arguments

mode A single character string for the prediction outcome mode. Possible values for
this model are "unknown", "regression", or "classification".

num_terms The number of features that will be retained in the final model, including the
intercept.

prod_degree The highest possible interaction degree.

prune_method The pruning method.

engine A single character string specifying what computational engine to use for fitting.

Details

This function only defines what type of model is being fit. Once an engine is specified, the method
to fit the model is also defined. See set_engine() for more on setting the engine, including how
to set engine arguments.

The model is not trained or fit until the fit() function is used with the data.

Each of the arguments in this function other than mode and engine are captured as quosures. To
pass values programmatically, use the injection operator like so:

value <- 1
bag_mars(argument = !!value)

References

https://www.tidymodels.org, Tidy Modeling with R, searchable table of parsnip models

See Also

fit(), set_engine(), update(), earth engine details

bag_mlp Ensembles of neural networks

Description

bag_mlp() defines an ensemble of single layer, feed-forward neural networks. This function can fit
classification and regression models.

There are different ways to fit this model, and the method of estimation is chosen by setting the
model engine. The engine-specific pages for this model are listed below.

• nnet¹²

¹ The default engine. ² Requires a parsnip extension package for classification and regression.

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

https://www.tidymodels.org
https://www.tmwr.org/
https://www.tidymodels.org/find/parsnip/
https://www.tidymodels.org/

bag_mlp 11

Usage

bag_mlp(
mode = "unknown",
hidden_units = NULL,
penalty = NULL,
epochs = NULL,
engine = "nnet"

)

Arguments

mode A single character string for the prediction outcome mode. Possible values for
this model are "unknown", "regression", or "classification".

hidden_units An integer for the number of units in the hidden model.

penalty A non-negative numeric value for the amount of weight decay.

epochs An integer for the number of training iterations.

engine A single character string specifying what computational engine to use for fitting.

Details

This function only defines what type of model is being fit. Once an engine is specified, the method
to fit the model is also defined. See set_engine() for more on setting the engine, including how
to set engine arguments.

The model is not trained or fit until the fit() function is used with the data.

Each of the arguments in this function other than mode and engine are captured as quosures. To
pass values programmatically, use the injection operator like so:

value <- 1
bag_mlp(argument = !!value)

References

https://www.tidymodels.org, Tidy Modeling with R, searchable table of parsnip models

See Also

fit(), set_engine(), update(), nnet engine details

https://www.tidymodels.org
https://www.tmwr.org/
https://www.tidymodels.org/find/parsnip/

12 bag_tree

bag_tree Ensembles of decision trees

Description

bag_tree() defines an ensemble of decision trees. This function can fit classification, regression,
and censored regression models.

There are different ways to fit this model, and the method of estimation is chosen by setting the
model engine. The engine-specific pages for this model are listed below.

• rpart¹²

• C5.0²

¹ The default engine. ² Requires a parsnip extension package for censored regression, classification,
and regression.

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

bag_tree(
mode = "unknown",
cost_complexity = 0,
tree_depth = NULL,
min_n = 2,
class_cost = NULL,
engine = "rpart"

)

Arguments

mode A single character string for the prediction outcome mode. Possible values for
this model are "unknown", "regression", "classification", or "censored regres-
sion".

cost_complexity

A positive number for the the cost/complexity parameter (a.k.a. Cp) used by
CART models (specific engines only).

tree_depth An integer for the maximum depth of the tree (i.e. number of splits) (specific
engines only).

min_n An integer for the minimum number of data points in a node that is required for
the node to be split further.

class_cost A non-negative scalar for a class cost (where a cost of 1 means no extra cost).
This is useful for when the first level of the outcome factor is the minority class.
If this is not the case, values between zero and one can be used to bias to the
second level of the factor.

engine A single character string specifying what computational engine to use for fitting.

https://www.tidymodels.org/

bart 13

Details

This function only defines what type of model is being fit. Once an engine is specified, the method
to fit the model is also defined. See set_engine() for more on setting the engine, including how
to set engine arguments.

The model is not trained or fit until the fit() function is used with the data.

Each of the arguments in this function other than mode and engine are captured as quosures. To
pass values programmatically, use the injection operator like so:

value <- 1
bag_tree(argument = !!value)

References

https://www.tidymodels.org, Tidy Modeling with R, searchable table of parsnip models

See Also

fit(), set_engine(), update(), rpart engine details, C5.0 engine details

bart Bayesian additive regression trees (BART)

Description

bart() defines a tree ensemble model that uses Bayesian analysis to assemble the ensemble. This
function can fit classification and regression models.

There are different ways to fit this model, and the method of estimation is chosen by setting the
model engine. The engine-specific pages for this model are listed below.

• dbarts¹

¹ The default engine.

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

bart(
mode = "unknown",
engine = "dbarts",
trees = NULL,
prior_terminal_node_coef = NULL,
prior_terminal_node_expo = NULL,
prior_outcome_range = NULL

)

https://www.tidymodels.org
https://www.tmwr.org/
https://www.tidymodels.org/find/parsnip/
https://www.tidymodels.org/

14 bart

Arguments

mode A single character string for the prediction outcome mode. Possible values for
this model are "unknown", "regression", or "classification".

engine A single character string specifying what computational engine to use for fitting.

trees An integer for the number of trees contained in the ensemble.
prior_terminal_node_coef

A coefficient for the prior probability that a node is a terminal node. Values
are usually between 0 and one with a default of 0.95. This affects the baseline
probability; smaller numbers make the probabilities larger overall. See Details
below.

prior_terminal_node_expo

An exponent in the prior probability that a node is a terminal node. Values
are usually non-negative with a default of 2 This affects the rate that the prior
probability decreases as the depth of the tree increases. Larger values make
deeper trees less likely.

prior_outcome_range

A positive value that defines the width of a prior that the predicted outcome is
within a certain range. For regression it is related to the observed range of the
data; the prior is the number of standard deviations of a Gaussian distribution
defined by the observed range of the data. For classification, it is defined as the
range of +/-3 (assumed to be on the logit scale). The default value is 2.

Details

The prior for the terminal node probability is expressed as prior = a * (1 + d)^(-b) where d is the
depth of the node, a is prior_terminal_node_coef and b is prior_terminal_node_expo. See
the Examples section below for an example graph of the prior probability of a terminal node for
different values of these parameters.

This function only defines what type of model is being fit. Once an engine is specified, the method
to fit the model is also defined. See set_engine() for more on setting the engine, including how
to set engine arguments.

The model is not trained or fit until the fit() function is used with the data.

Each of the arguments in this function other than mode and engine are captured as quosures. To
pass values programmatically, use the injection operator like so:

value <- 1
bart(argument = !!value)

References

https://www.tidymodels.org, Tidy Modeling with R, searchable table of parsnip models

See Also

fit(), set_engine(), update(), dbarts engine details

https://www.tidymodels.org
https://www.tmwr.org/
https://www.tidymodels.org/find/parsnip/

boost_tree 15

Examples

show_engines("bart")

bart(mode = "regression", trees = 5)

--
Examples for terminal node prior

library(ggplot2)
library(dplyr)

prior_test <- function(coef = 0.95, expo = 2, depths = 1:10) {
tidyr::crossing(coef = coef, expo = expo, depth = depths) |>
mutate(
`terminial node prior` = coef * (1 + depth)^(-expo),
coef = format(coef),
expo = format(expo))

}

prior_test(coef = c(0.05, 0.5, .95), expo = c(1/2, 1, 2)) |>
ggplot(aes(depth, `terminial node prior`, col = coef)) +
geom_line() +
geom_point() +
facet_wrap(~ expo)

boost_tree Boosted trees

Description

boost_tree() defines a model that creates a series of decision trees forming an ensemble. Each
tree depends on the results of previous trees. All trees in the ensemble are combined to produce a
final prediction. This function can fit classification, regression, and censored regression models.

There are different ways to fit this model, and the method of estimation is chosen by setting the
model engine. The engine-specific pages for this model are listed below.

• xgboost¹

• C5.0

• h2o²

• lightgbm²

• mboost²

• spark

¹ The default engine. ² Requires a parsnip extension package for censored regression, classification,
and regression.

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

https://www.tidymodels.org/

16 boost_tree

Usage

boost_tree(
mode = "unknown",
engine = "xgboost",
mtry = NULL,
trees = NULL,
min_n = NULL,
tree_depth = NULL,
learn_rate = NULL,
loss_reduction = NULL,
sample_size = NULL,
stop_iter = NULL

)

Arguments

mode A single character string for the prediction outcome mode. Possible values for
this model are "unknown", "regression", "classification", or "censored regres-
sion".

engine A single character string specifying what computational engine to use for fitting.
mtry A number for the number (or proportion) of predictors that will be randomly

sampled at each split when creating the tree models (specific engines only).
trees An integer for the number of trees contained in the ensemble.
min_n An integer for the minimum number of data points in a node that is required for

the node to be split further.
tree_depth An integer for the maximum depth of the tree (i.e. number of splits) (specific

engines only).
learn_rate A number for the rate at which the boosting algorithm adapts from iteration-to-

iteration (specific engines only). This is sometimes referred to as the shrinkage
parameter.

loss_reduction A number for the reduction in the loss function required to split further (specific
engines only).

sample_size A number for the number (or proportion) of data that is exposed to the fitting
routine. For xgboost, the sampling is done at each iteration while C5.0 samples
once during training.

stop_iter The number of iterations without improvement before stopping (specific engines
only).

Details

This function only defines what type of model is being fit. Once an engine is specified, the method
to fit the model is also defined. See set_engine() for more on setting the engine, including how
to set engine arguments.

The model is not trained or fit until the fit() function is used with the data.

Each of the arguments in this function other than mode and engine are captured as quosures. To
pass values programmatically, use the injection operator like so:

C5_rules 17

value <- 1
boost_tree(argument = !!value)

References

https://www.tidymodels.org, Tidy Modeling with R, searchable table of parsnip models

See Also

fit(), set_engine(), update(), xgboost engine details, C5.0 engine details, h2o engine
details, lightgbm engine details, mboost engine details, spark engine details, xgb_train(),
C5.0_train()

Examples

show_engines("boost_tree")

boost_tree(mode = "classification", trees = 20)

C5_rules C5.0 rule-based classification models

Description

C5_rules() defines a model that derives feature rules from a tree for prediction. A single tree or
boosted ensemble can be used. This function can fit classification models.

There are different ways to fit this model, and the method of estimation is chosen by setting the
model engine. The engine-specific pages for this model are listed below.

• C5.0¹²

¹ The default engine. ² Requires a parsnip extension package.

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

C5_rules(mode = "classification", trees = NULL, min_n = NULL, engine = "C5.0")

Arguments

mode A single character string for the type of model. The only possible value for this
model is "classification".

trees A non-negative integer (no greater than 100) for the number of members of the
ensemble.

min_n An integer greater between zero and nine for the minimum number of data points
in a node that are required for the node to be split further.

engine A single character string specifying what computational engine to use for fitting.

https://www.tidymodels.org
https://www.tmwr.org/
https://www.tidymodels.org/find/parsnip/
https://www.tidymodels.org/

18 case_weights

Details

C5.0 is a classification model that is an extension of the C4.5 model of Quinlan (1993). It has tree-
and rule-based versions that also include boosting capabilities. C5_rules() enables the version of
the model that uses a series of rules (see the examples below). To make a set of rules, an initial C5.0
tree is created and flattened into rules. The rules are pruned, simplified, and ordered. Rule sets are
created within each iteration of boosting.

This function only defines what type of model is being fit. Once an engine is specified, the method
to fit the model is also defined. See set_engine() for more on setting the engine, including how
to set engine arguments.

The model is not trained or fit until the fit() function is used with the data.

Each of the arguments in this function other than mode and engine are captured as quosures. To
pass values programmatically, use the injection operator like so:

value <- 1
C5_rules(argument = !!value)

References

Quinlan R (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers.

https://www.tidymodels.org, Tidy Modeling with R, searchable table of parsnip models

See Also

C50::C5.0(), C50::C5.0Control(), fit(), set_engine(), update(), C5.0 engine details

Examples

show_engines("C5_rules")

C5_rules()

case_weights Using case weights with parsnip

Description

Case weights are positive numeric values that influence how much each data point has during the
model fitting process. There are a variety of situations where case weights can be used.

https://www.tidymodels.org
https://www.tmwr.org/
https://www.tidymodels.org/find/parsnip/

case_weights_allowed 19

Details

tidymodels packages differentiate how different types of case weights should be used during the
entire data analysis process, including preprocessing data, model fitting, performance calculations,
etc.

The tidymodels packages require users to convert their numeric vectors to a vector class that reflects
how these should be used. For example, there are some situations where the weights should not
affect operations such as centering and scaling or other preprocessing operations.

The types of weights allowed in tidymodels are:

• Frequency weights via hardhat::frequency_weights()

• Importance weights via hardhat::importance_weights()

More types can be added by request.

For parsnip, the fit() and fit_xy() functions contain a case_weight argument that takes these
data. For Spark models, the argument value should be a character value.

See Also

frequency_weights(), importance_weights(), fit(), fit_xy()

case_weights_allowed Determine if case weights are used

Description

Not all modeling engines can incorporate case weights into their calculations. This function can
determine whether they can be used.

Usage

case_weights_allowed(spec)

Arguments

spec A parsnip model specification.

Value

A single logical.

Examples

case_weights_allowed(linear_reg())
case_weights_allowed(linear_reg(engine = "keras"))

20 ctree_train

control_parsnip Control the fit function

Description

Pass options to the fit.model_spec() function to control its output and computations

Usage

control_parsnip(verbosity = 1L, catch = FALSE)

Arguments

verbosity An integer to control how verbose the output is. For a value of zero, no messages
or output are shown when packages are loaded or when the model is fit. For a
value of 1, package loading is quiet but model fits can produce output to the
screen (depending on if they contain their own verbose-type argument). For a
value of 2 or more, any output at all is displayed and the execution time of the
fit is recorded and printed.

catch A logical where a value of TRUE will evaluate the model inside of try(, silent
= TRUE). If the model fails, an object is still returned (without an error) that
inherits the class "try-error".

Value

An S3 object with class "control_parsnip" that is a named list with the results of the function call

Examples

control_parsnip(verbosity = 2L)

ctree_train A wrapper function for conditional inference tree models

Description

These functions are slightly different APIs for partykit::ctree() and partykit::cforest()
that have several important arguments as top-level arguments (as opposed to being specified in
partykit::ctree_control()).

ctree_train 21

Usage

ctree_train(
formula,
data,
weights = NULL,
minsplit = 20L,
maxdepth = Inf,
teststat = "quadratic",
testtype = "Bonferroni",
mincriterion = 0.95,
...

)

cforest_train(
formula,
data,
weights = NULL,
minsplit = 20L,
maxdepth = Inf,
teststat = "quadratic",
testtype = "Univariate",
mincriterion = 0,
mtry = ceiling(sqrt(ncol(data) - 1)),
ntree = 500L,
...

)

Arguments

formula A symbolic description of the model to be fit.

data A data frame containing the variables in the model.

weights A vector of weights whose length is the same as nrow(data). For partykit::ctree()
models, these are required to be non-negative integers while for partykit::cforest()
they can be non-negative integers or doubles.

minsplit The minimum sum of weights in a node in order to be considered for splitting.

maxdepth maximum depth of the tree. The default maxdepth = Inf means that no restric-
tions are applied to tree sizes.

teststat A character specifying the type of the test statistic to be applied.

testtype A character specifying how to compute the distribution of the test statistic.

mincriterion The value of the test statistic (for testtype == "Teststatistic"), or 1 - p-
value (for other values of testtype) that must be exceeded in order to imple-
ment a split.

... Other options to pass to partykit::ctree() or partykit::cforest().

mtry Number of input variables randomly sampled as candidates at each node for
random forest like algorithms. The default mtry = Inf means that no random
selection takes place.

22 cubist_rules

ntree Number of trees to grow in a forest.

Value

An object of class party (for ctree) or cforest.

Examples

if (rlang::is_installed(c("modeldata", "partykit"))) {
data(bivariate, package = "modeldata")
ctree_train(Class ~ ., data = bivariate_train)
ctree_train(Class ~ ., data = bivariate_train, maxdepth = 1)

}

cubist_rules Cubist rule-based regression models

Description

cubist_rules() defines a model that derives simple feature rules from a tree ensemble and creates
regression models within each rule. This function can fit regression models.

There are different ways to fit this model, and the method of estimation is chosen by setting the
model engine. The engine-specific pages for this model are listed below.

• Cubist¹²

¹ The default engine. ² Requires a parsnip extension package.

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

cubist_rules(
mode = "regression",
committees = NULL,
neighbors = NULL,
max_rules = NULL,
engine = "Cubist"

)

Arguments

mode A single character string for the type of model. The only possible value for this
model is "regression".

committees A non-negative integer (no greater than 100) for the number of members of the
ensemble.

neighbors An integer between zero and nine for the number of training set instances that
are used to adjust the model-based prediction.

https://www.tidymodels.org/

cubist_rules 23

max_rules The largest number of rules.

engine A single character string specifying what computational engine to use for fitting.

Details

Cubist is a rule-based ensemble regression model. A basic model tree (Quinlan, 1992) is created
that has a separate linear regression model corresponding for each terminal node. The paths along
the model tree are flattened into rules and these rules are simplified and pruned. The parameter
min_n is the primary method for controlling the size of each tree while max_rules controls the
number of rules.

Cubist ensembles are created using committees, which are similar to boosting. After the first model
in the committee is created, the second model uses a modified version of the outcome data based on
whether the previous model under- or over-predicted the outcome. For iteration m, the new outcome
y* is computed using

If a sample is under-predicted on the previous iteration, the outcome is adjusted so that the next time
it is more likely to be over-predicted to compensate. This adjustment continues for each ensemble
iteration. See Kuhn and Johnson (2013) for details.

After the model is created, there is also an option for a post-hoc adjustment that uses the training
set (Quinlan, 1993). When a new sample is predicted by the model, it can be modified by its nearest
neighbors in the original training set. For K neighbors, the model-based predicted value is adjusted
by the neighbor using:

where t is the training set prediction and w is a weight that is inverse to the distance to the neighbor.

This function only defines what type of model is being fit. Once an engine is specified, the method
to fit the model is also defined. See set_engine() for more on setting the engine, including how
to set engine arguments.

The model is not trained or fit until the fit() function is used with the data.

Each of the arguments in this function other than mode and engine are captured as quosures. To
pass values programmatically, use the injection operator like so:

value <- 1
cubist_rules(argument = !!value)

References

https://www.tidymodels.org, Tidy Modeling with R, searchable table of parsnip models

https://www.tidymodels.org
https://www.tmwr.org/
https://www.tidymodels.org/find/parsnip/

24 decision_tree

Quinlan R (1992). "Learning with Continuous Classes." Proceedings of the 5th Australian Joint
Conference On Artificial Intelligence, pp. 343-348.

Quinlan R (1993)."Combining Instance-Based and Model-Based Learning." Proceedings of the
Tenth International Conference on Machine Learning, pp. 236-243.

Kuhn M and Johnson K (2013). Applied Predictive Modeling. Springer.

See Also

Cubist::cubist(), Cubist::cubistControl(), fit(), set_engine(), update(), Cubist engine
details

decision_tree Decision trees

Description

decision_tree() defines a model as a set of if/then statements that creates a tree-based structure.
This function can fit classification, regression, and censored regression models.

There are different ways to fit this model, and the method of estimation is chosen by setting the
model engine. The engine-specific pages for this model are listed below.

• rpart¹²

• C5.0

• partykit²

• spark

¹ The default engine. ² Requires a parsnip extension package for censored regression, classification,
and regression.

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

decision_tree(
mode = "unknown",
engine = "rpart",
cost_complexity = NULL,
tree_depth = NULL,
min_n = NULL

)

https://www.tidymodels.org/

decision_tree 25

Arguments

mode A single character string for the prediction outcome mode. Possible values for
this model are "unknown", "regression", "classification", or "censored regres-
sion".

engine A single character string specifying what computational engine to use for fitting.

cost_complexity

A positive number for the the cost/complexity parameter (a.k.a. Cp) used by
CART models (specific engines only).

tree_depth An integer for maximum depth of the tree.

min_n An integer for the minimum number of data points in a node that are required
for the node to be split further.

Details

This function only defines what type of model is being fit. Once an engine is specified, the method
to fit the model is also defined. See set_engine() for more on setting the engine, including how
to set engine arguments.

The model is not trained or fit until the fit() function is used with the data.

Each of the arguments in this function other than mode and engine are captured as quosures. To
pass values programmatically, use the injection operator like so:

value <- 1
decision_tree(argument = !!value)

References

https://www.tidymodels.org, Tidy Modeling with R, searchable table of parsnip models

See Also

fit(), set_engine(), update(), rpart engine details, C5.0 engine details, partykit engine
details, spark engine details

Examples

show_engines("decision_tree")

decision_tree(mode = "classification", tree_depth = 5)

https://www.tidymodels.org
https://www.tmwr.org/
https://www.tidymodels.org/find/parsnip/

26 descriptors

descriptors Data Set Characteristics Available when Fitting Models

Description

When using the fit() functions there are some variables that will be available for use in arguments.
For example, if the user would like to choose an argument value based on the current number of
rows in a data set, the .obs() function can be used. See Details below.

Usage

.cols()

.preds()

.obs()

.lvls()

.facts()

.x()

.y()

.dat()

Details

Existing functions:

• .obs(): The current number of rows in the data set.

• .preds(): The number of columns in the data set that is associated with the predictors prior
to dummy variable creation.

• .cols(): The number of predictor columns available after dummy variables are created (if
any).

• .facts(): The number of factor predictors in the data set.

• .lvls(): If the outcome is a factor, this is a table with the counts for each level (and NA
otherwise).

• .x(): The predictors returned in the format given. Either a data frame or a matrix.

• .y(): The known outcomes returned in the format given. Either a vector, matrix, or data
frame.

• .dat(): A data frame containing all of the predictors and the outcomes. If fit_xy() was
used, the outcomes are attached as the column, ..y.

discrim_flexible 27

For example, if you use the model formula circumference ~ . with the built-in Orange data, the
values would be

.preds() = 2 (the 2 remaining columns in `Orange`)

.cols() = 5 (1 numeric column + 4 from Tree dummy variables)

.obs() = 35

.lvls() = NA (no factor outcome)

.facts() = 1 (the Tree predictor)

.y() = <vector> (circumference as a vector)

.x() = <data.frame> (The other 2 columns as a data frame)

.dat() = <data.frame> (The full data set)

If the formula Tree ~ . were used:

.preds() = 2 (the 2 numeric columns in `Orange`)

.cols() = 2 (same)

.obs() = 35

.lvls() = c("1" = 7, "2" = 7, "3" = 7, "4" = 7, "5" = 7)

.facts() = 0

.y() = <vector> (Tree as a vector)

.x() = <data.frame> (The other 2 columns as a data frame)

.dat() = <data.frame> (The full data set)

To use these in a model fit, pass them to a model specification. The evaluation is delayed until the
time when the model is run via fit() (and the variables listed above are available). For example:

library(modeldata)
data("lending_club")

rand_forest(mode = "classification", mtry = .cols() - 2)

When no descriptors are found, the computation of the descriptor values is not executed.

discrim_flexible Flexible discriminant analysis

Description

discrim_flexible() defines a model that fits a discriminant analysis model that can use nonlin-
ear features created using multivariate adaptive regression splines (MARS). This function can fit
classification models.

There are different ways to fit this model, and the method of estimation is chosen by setting the
model engine. The engine-specific pages for this model are listed below.

• earth¹²

¹ The default engine. ² Requires a parsnip extension package.

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

https://www.tidymodels.org/

28 discrim_flexible

Usage

discrim_flexible(
mode = "classification",
num_terms = NULL,
prod_degree = NULL,
prune_method = NULL,
engine = "earth"

)

Arguments

mode A single character string for the prediction outcome mode. Possible values for
this model are "unknown", "regression", or "classification".

num_terms The number of features that will be retained in the final model, including the
intercept.

prod_degree The highest possible interaction degree.

prune_method The pruning method.

engine A single character string specifying what computational engine to use for fitting.

Details

This function only defines what type of model is being fit. Once an engine is specified, the method
to fit the model is also defined. See set_engine() for more on setting the engine, including how
to set engine arguments.

The model is not trained or fit until the fit() function is used with the data.

Each of the arguments in this function other than mode and engine are captured as quosures. To
pass values programmatically, use the injection operator like so:

value <- 1
discrim_flexible(argument = !!value)

References

https://www.tidymodels.org, Tidy Modeling with R, searchable table of parsnip models

See Also

fit(), set_engine(), update(), earth engine details

https://www.tidymodels.org
https://www.tmwr.org/
https://www.tidymodels.org/find/parsnip/

discrim_linear 29

discrim_linear Linear discriminant analysis

Description

discrim_linear() defines a model that estimates a multivariate distribution for the predictors
separately for the data in each class (usually Gaussian with a common covariance matrix). Bayes’
theorem is used to compute the probability of each class, given the predictor values. This function
can fit classification models.

There are different ways to fit this model, and the method of estimation is chosen by setting the
model engine. The engine-specific pages for this model are listed below.

• MASS¹²

• mda²

• sda²

• sparsediscrim²

¹ The default engine. ² Requires a parsnip extension package.

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

discrim_linear(
mode = "classification",
penalty = NULL,
regularization_method = NULL,
engine = "MASS"

)

Arguments

mode A single character string for the type of model. The only possible value for this
model is "classification".

penalty An non-negative number representing the amount of regularization used by some
of the engines.

regularization_method

A character string for the type of regularized estimation. Possible values are:
"diagonal", "min_distance", "shrink_cov", and "shrink_mean" (sparsediscrim
engine only).

engine A single character string specifying what computational engine to use for fitting.

https://www.tidymodels.org/

30 discrim_quad

Details

This function only defines what type of model is being fit. Once an engine is specified, the method
to fit the model is also defined. See set_engine() for more on setting the engine, including how
to set engine arguments.

The model is not trained or fit until the fit() function is used with the data.

Each of the arguments in this function other than mode and engine are captured as quosures. To
pass values programmatically, use the injection operator like so:

value <- 1
discrim_linear(argument = !!value)

References

https://www.tidymodels.org, Tidy Modeling with R, searchable table of parsnip models

See Also

fit(), set_engine(), update(), MASS engine details, mda engine details, sda engine details,
sparsediscrim engine details

discrim_quad Quadratic discriminant analysis

Description

discrim_quad() defines a model that estimates a multivariate distribution for the predictors sep-
arately for the data in each class (usually Gaussian with separate covariance matrices). Bayes’
theorem is used to compute the probability of each class, given the predictor values. This function
can fit classification models.

There are different ways to fit this model, and the method of estimation is chosen by setting the
model engine. The engine-specific pages for this model are listed below.

• MASS¹²

• sparsediscrim²

¹ The default engine. ² Requires a parsnip extension package.

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

discrim_quad(
mode = "classification",
regularization_method = NULL,
engine = "MASS"

)

https://www.tidymodels.org
https://www.tmwr.org/
https://www.tidymodels.org/find/parsnip/
https://www.tidymodels.org/

discrim_regularized 31

Arguments

mode A single character string for the type of model. The only possible value for this
model is "classification".

regularization_method

A character string for the type of regularized estimation. Possible values are:
"diagonal", "shrink_cov", and "shrink_mean" (sparsediscrim engine only).

engine A single character string specifying what computational engine to use for fitting.

Details

This function only defines what type of model is being fit. Once an engine is specified, the method
to fit the model is also defined. See set_engine() for more on setting the engine, including how
to set engine arguments.

The model is not trained or fit until the fit() function is used with the data.

Each of the arguments in this function other than mode and engine are captured as quosures. To
pass values programmatically, use the injection operator like so:

value <- 1
discrim_quad(argument = !!value)

References

https://www.tidymodels.org, Tidy Modeling with R, searchable table of parsnip models

See Also

fit(), set_engine(), update(), MASS engine details, sparsediscrim engine details

discrim_regularized Regularized discriminant analysis

Description

discrim_regularized() defines a model that estimates a multivariate distribution for the predic-
tors separately for the data in each class. The structure of the model can be LDA, QDA, or some
amalgam of the two. Bayes’ theorem is used to compute the probability of each class, given the
predictor values. This function can fit classification models.

There are different ways to fit this model, and the method of estimation is chosen by setting the
model engine. The engine-specific pages for this model are listed below.

• klaR¹²

¹ The default engine. ² Requires a parsnip extension package.

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

https://www.tidymodels.org
https://www.tmwr.org/
https://www.tidymodels.org/find/parsnip/
https://www.tidymodels.org/

32 discrim_regularized

Usage

discrim_regularized(
mode = "classification",
frac_common_cov = NULL,
frac_identity = NULL,
engine = "klaR"

)

Arguments

mode A single character string for the prediction outcome mode. Possible values for
this model are "unknown", "regression", or "classification".

frac_common_cov, frac_identity
Numeric values between zero and one.

engine A single character string specifying what computational engine to use for fitting.

Details

There are many ways of regularizing models. For example, one form of regularization is to penalize
model parameters. Similarly, the classic James–Stein regularization approach shrinks the model
structure to a less complex form.

The model fits a very specific type of regularized model by Friedman (1989) that uses two types
of regularization. One modulates how class-specific the covariance matrix should be. This allows
the model to balance between LDA and QDA. The second regularization component shrinks the
covariance matrix towards the identity matrix.

For the penalization approach, discrim_linear() with a mda engine can be used. Other regu-
larization methods can be used with discrim_linear() and discrim_quad() can used via the
sparsediscrim engine for those functions.

This function only defines what type of model is being fit. Once an engine is specified, the method
to fit the model is also defined. See set_engine() for more on setting the engine, including how
to set engine arguments.

The model is not trained or fit until the fit() function is used with the data.

Each of the arguments in this function other than mode and engine are captured as quosures. To
pass values programmatically, use the injection operator like so:

value <- 1
discrim_regularized(argument = !!value)

References

https://www.tidymodels.org, Tidy Modeling with R, searchable table of parsnip models

Friedman, J (1989). Regularized Discriminant Analysis. Journal of the American Statistical Asso-
ciation, 84, 165-175.

See Also

fit(), set_engine(), update(), klaR engine details

https://www.tidymodels.org
https://www.tmwr.org/
https://www.tidymodels.org/find/parsnip/

extract-parsnip 33

extract-parsnip Extract elements of a parsnip model object

Description

These functions extract various elements from a parsnip object. If they do not exist yet, an error is
thrown.

• extract_spec_parsnip() returns the parsnip model specification.

• extract_fit_engine() returns the engine specific fit embedded within a parsnip model fit.
For example, when using linear_reg() with the "lm" engine, this returns the underlying lm
object.

• extract_parameter_dials() returns a single dials parameter object.

• extract_parameter_set_dials() returns a set of dials parameter objects.

• extract_fit_time() returns a tibble with fit times. The fit times correspond to the time for
the parsnip engine to fit and do not include other portions of the elapsed time in fit.model_spec().

Usage

S3 method for class 'model_fit'
extract_spec_parsnip(x, ...)

S3 method for class 'model_fit'
extract_fit_engine(x, ...)

S3 method for class 'model_spec'
extract_parameter_set_dials(x, ...)

S3 method for class 'model_spec'
extract_parameter_dials(x, parameter, ...)

S3 method for class 'model_fit'
extract_fit_time(x, summarize = TRUE, ...)

Arguments

x A parsnip model_fit object or a parsnip model_spec object.

... Not currently used.

parameter A single string for the parameter ID.

summarize A logical for whether the elapsed fit time should be returned as a single row or
multiple rows. Doesn’t support FALSE for parsnip models.

34 fit.model_spec

Details

Extracting the underlying engine fit can be helpful for describing the model (via print(), summary(),
plot(), etc.) or for variable importance/explainers.

However, users should not invoke the predict() method on an extracted model. There may be
preprocessing operations that parsnip has executed on the data prior to giving it to the model. By-
passing these can lead to errors or silently generating incorrect predictions.

Good:

parsnip_fit |> predict(new_data)

Bad:

parsnip_fit |> extract_fit_engine() |> predict(new_data)

Value

The extracted value from the parsnip object, x, as described in the description section.

Examples

lm_spec <- linear_reg() |> set_engine("lm")
lm_fit <- fit(lm_spec, mpg ~ ., data = mtcars)

lm_spec
extract_spec_parsnip(lm_fit)

extract_fit_engine(lm_fit)
lm(mpg ~ ., data = mtcars)

fit.model_spec Fit a Model Specification to a Dataset

Description

fit() and fit_xy() take a model specification, translate the required code by substituting argu-
ments, and execute the model fit routine.

Usage

S3 method for class 'model_spec'
fit(
object,
formula,
data,
case_weights = NULL,
control = control_parsnip(),

fit.model_spec 35

...
)

S3 method for class 'model_spec'
fit_xy(object, x, y, case_weights = NULL, control = control_parsnip(), ...)

Arguments

object An object of class model_spec that has a chosen engine (via set_engine()).

formula An object of class formula (or one that can be coerced to that class): a symbolic
description of the model to be fitted.

data Optional, depending on the interface (see Details below). A data frame contain-
ing all relevant variables (e.g. outcome(s), predictors, case weights, etc). Note:
when needed, a named argument should be used.

case_weights An optional classed vector of numeric case weights. This must return TRUE when
hardhat::is_case_weights() is run on it. See hardhat::frequency_weights()
and hardhat::importance_weights() for examples.

control A named list with elements verbosity and catch. See control_parsnip().

... Not currently used; values passed here will be ignored. Other options required
to fit the model should be passed using set_engine().

x A matrix, sparse matrix, or data frame of predictors. Only some models have
support for sparse matrix input. See parsnip::get_encoding() for details. x
should have column names.

y A vector, matrix or data frame of outcome data.

Details

fit() and fit_xy() substitute the current arguments in the model specification into the compu-
tational engine’s code, check them for validity, then fit the model using the data and the engine-
specific code. Different model functions have different interfaces (e.g. formula or x/y) and these
functions translate between the interface used when fit() or fit_xy() was invoked and the one
required by the underlying model.

When possible, these functions attempt to avoid making copies of the data. For example, if the
underlying model uses a formula and fit() is invoked, the original data are references when the
model is fit. However, if the underlying model uses something else, such as x/y, the formula is
evaluated and the data are converted to the required format. In this case, any calls in the resulting
model objects reference the temporary objects used to fit the model.

If the model engine has not been set, the model’s default engine will be used (as discussed on each
model page). If the verbosity option of control_parsnip() is greater than zero, a warning will
be produced.

If you would like to use an alternative method for generating contrasts when supplying a formula to
fit(), set the global option contrasts to your preferred method. For example, you might set it to:
options(contrasts = c(unordered = "contr.helmert", ordered = "contr.poly")). See the
help page for stats::contr.treatment() for more possible contrast types.

For models with "censored regression" modes, an additional computation is executed and saved
in the parsnip object. The censor_probs element contains a "reverse Kaplan-Meier" curve that

36 fit.model_spec

models the probability of censoring. This may be used later to compute inverse probability censor-
ing weights for performance measures.

Sparse data is supported, with the use of the x argument in fit_xy(). See allow_sparse_x column
of get_encoding() for sparse input compatibility.

Value

A model_fit object that contains several elements:

• lvl: If the outcome is a factor, this contains the factor levels at the time of model fitting.

• ordered: If the outcome is a factor, was it an ordered factor?

• spec: The model specification object (object in the call to fit)

• fit: when the model is executed without error, this is the model object. Otherwise, it is a
try-error object with the error message.

• preproc: any objects needed to convert between a formula and non-formula interface (such
as the terms object)

The return value will also have a class related to the fitted model (e.g. "_glm") before the base class
of "model_fit".

See Also

set_engine(), control_parsnip(), model_spec, model_fit

Examples

Although `glm()` only has a formula interface, different
methods for specifying the model can be used

library(dplyr)
library(modeldata)
data("lending_club")

lr_mod <- logistic_reg()

using_formula <-
lr_mod |>
set_engine("glm") |>
fit(Class ~ funded_amnt + int_rate, data = lending_club)

using_xy <-
lr_mod |>
set_engine("glm") |>
fit_xy(x = lending_club[, c("funded_amnt", "int_rate")],

y = lending_club$Class)

using_formula
using_xy

gen_additive_mod 37

gen_additive_mod Generalized additive models (GAMs)

Description

gen_additive_mod() defines a model that can use smoothed functions of numeric predictors in a
generalized linear model. This function can fit classification and regression models.
There are different ways to fit this model, and the method of estimation is chosen by setting the
model engine. The engine-specific pages for this model are listed below.

• mgcv¹

¹ The default engine.
More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

gen_additive_mod(
mode = "unknown",
select_features = NULL,
adjust_deg_free = NULL,
engine = "mgcv"

)

Arguments

mode A single character string for the prediction outcome mode. Possible values for
this model are "unknown", "regression", or "classification".

select_features

TRUE or FALSE. If TRUE, the model has the ability to eliminate a predictor (via
penalization). Increasing adjust_deg_free will increase the likelihood of re-
moving predictors.

adjust_deg_free

If select_features = TRUE, then acts as a multiplier for smoothness. Increase
this beyond 1 to produce smoother models.

engine A single character string specifying what computational engine to use for fitting.

Details

This function only defines what type of model is being fit. Once an engine is specified, the method
to fit the model is also defined. See set_engine() for more on setting the engine, including how
to set engine arguments.
The model is not trained or fit until the fit() function is used with the data.
Each of the arguments in this function other than mode and engine are captured as quosures. To
pass values programmatically, use the injection operator like so:

value <- 1
gen_additive_mod(argument = !!value)

https://www.tidymodels.org/

38 glance.model_fit

References

https://www.tidymodels.org, Tidy Modeling with R, searchable table of parsnip models

See Also

fit(), set_engine(), update(), mgcv engine details

Examples

show_engines("gen_additive_mod")

gen_additive_mod()

glance.model_fit Construct a single row summary "glance" of a model, fit, or other
object

Description

This method glances the model in a parsnip model object, if it exists.

Usage

S3 method for class 'model_fit'
glance(x, ...)

Arguments

x model or other R object to convert to single-row data frame

... other arguments passed to methods

Value

a tibble

https://www.tidymodels.org
https://www.tmwr.org/
https://www.tidymodels.org/find/parsnip/

glm_grouped 39

glm_grouped Fit a grouped binomial outcome from a data set with case weights

Description

stats::glm() assumes that a tabular data set with case weights corresponds to "different observa-
tions have different dispersions" (see ?glm).

In some cases, the case weights reflect that the same covariate pattern was observed multiple times
(i.e., frequency weights). In this case, stats::glm() expects the data to be formatted as the number
of events for each factor level so that the outcome can be given to the formula as cbind(events_1,
events_2).

glm_grouped() converts data with integer case weights to the expected "number of events" format
for binomial data.

Usage

glm_grouped(formula, data, weights, ...)

Arguments

formula A formula object with one outcome that is a two-level factors.

data A data frame with the outcomes and predictors (but not case weights).

weights An integer vector of weights whose length is the same as the number of rows
in data. If it is a non-integer numeric, it will be converted to integer (with a
warning).

... Options to pass to stats::glm(). If family is not set, it will automatically be
assigned the basic binomial family.

Value

A object produced by stats::glm().

Examples

#--
The same data set formatted three ways

First with basic case weights that, from ?glm, are used inappropriately.
ucb_weighted <- as.data.frame(UCBAdmissions)
ucb_weighted$Freq <- as.integer(ucb_weighted$Freq)
head(ucb_weighted)
nrow(ucb_weighted)

Format when yes/no data are in individual rows (probably still inappropriate)
library(tidyr)
ucb_long <- uncount(ucb_weighted, Freq)
head(ucb_long)

40 linear_reg

nrow(ucb_long)

Format where the outcome is formatted as number of events
ucb_events <-

ucb_weighted |>
tidyr::pivot_wider(
id_cols = c(Gender, Dept),
names_from = Admit,
values_from = Freq,
values_fill = 0L

)
head(ucb_events)
nrow(ucb_events)

#--
Different model fits

Treat data as separate Bernoulli data:
glm(Admit ~ Gender + Dept, data = ucb_long, family = binomial)

Weights produce the same statistics
glm(

Admit ~ Gender + Dept,
data = ucb_weighted,
family = binomial,
weights = ucb_weighted$Freq

)

Data as binomial "x events out of n trials" format. Note that, to get the same
coefficients, the order of the levels must be reversed.
glm(

cbind(Rejected, Admitted) ~ Gender + Dept,
data = ucb_events,
family = binomial

)

The new function that starts with frequency weights and gets the correct place:
glm_grouped(Admit ~ Gender + Dept, data = ucb_weighted, weights = ucb_weighted$Freq)

linear_reg Linear regression

Description

linear_reg() defines a model that can predict numeric values from predictors using a linear func-
tion. This function can fit regression models.

There are different ways to fit this model, and the method of estimation is chosen by setting the
model engine. The engine-specific pages for this model are listed below.

linear_reg 41

• lm¹

• brulee

• gee²

• glm

• glmer²

• glmnet

• gls²

• h2o²

• keras

• lme²

• lmer²

• quantreg

• spark

• stan

• stan_glmer²

¹ The default engine. ² Requires a parsnip extension package for regression.

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

linear_reg(mode = "regression", engine = "lm", penalty = NULL, mixture = NULL)

Arguments

mode A single character string for the type of model. The only possible value for this
model is "regression".

engine A single character string specifying what computational engine to use for fitting.
Possible engines are listed below. The default for this model is "lm".

penalty A non-negative number representing the total amount of regularization (specific
engines only).

mixture A number between zero and one (inclusive) denoting the proportion of L1 regu-
larization (i.e. lasso) in the model.

• mixture = 1 specifies a pure lasso model,
• mixture = 0 specifies a ridge regression model, and
• 0 < mixture < 1 specifies an elastic net model, interpolating lasso and

ridge.

Available for specific engines only.

https://www.tidymodels.org/

42 logistic_reg

Details

This function only defines what type of model is being fit. Once an engine is specified, the method
to fit the model is also defined. See set_engine() for more on setting the engine, including how
to set engine arguments.

The model is not trained or fit until the fit() function is used with the data.

Each of the arguments in this function other than mode and engine are captured as quosures. To
pass values programmatically, use the injection operator like so:

value <- 1
linear_reg(argument = !!value)

References

https://www.tidymodels.org, Tidy Modeling with R, searchable table of parsnip models

See Also

fit(), set_engine(), update(), lm engine details, brulee engine details, gee engine details,
glm engine details, glmer engine details, glmnet engine details, gls engine details, h2o
engine details, keras engine details, lme engine details, lmer engine details, quantreg
engine details, spark engine details, stan engine details, stan_glmer engine details

Examples

show_engines("linear_reg")

linear_reg()

logistic_reg Logistic regression

Description

logistic_reg() defines a generalized linear model for binary outcomes. A linear combination of
the predictors is used to model the log odds of an event. This function can fit classification models.

There are different ways to fit this model, and the method of estimation is chosen by setting the
model engine. The engine-specific pages for this model are listed below.

• glm¹

• brulee

• gee²

• glmer²

• glmnet

• h2o²

https://www.tidymodels.org
https://www.tmwr.org/
https://www.tidymodels.org/find/parsnip/

logistic_reg 43

• keras

• LiblineaR

• spark

• stan

• stan_glmer²

¹ The default engine. ² Requires a parsnip extension package.

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

logistic_reg(
mode = "classification",
engine = "glm",
penalty = NULL,
mixture = NULL

)

Arguments

mode A single character string for the type of model. The only possible value for this
model is "classification".

engine A single character string specifying what computational engine to use for fitting.
Possible engines are listed below. The default for this model is "glm".

penalty A non-negative number representing the total amount of regularization (specific
engines only). For keras models, this corresponds to purely L2 regularization
(aka weight decay) while the other models can be either or a combination of L1
and L2 (depending on the value of mixture).

mixture A number between zero and one (inclusive) giving the proportion of L1 regular-
ization (i.e. lasso) in the model.

• mixture = 1 specifies a pure lasso model,
• mixture = 0 specifies a ridge regression model, and
• 0 < mixture < 1 specifies an elastic net model, interpolating lasso and

ridge.

Available for specific engines only. For LiblineaR models, mixture must be
exactly 1 or 0 only.

Details

This function only defines what type of model is being fit. Once an engine is specified, the method
to fit the model is also defined. See set_engine() for more on setting the engine, including how
to set engine arguments.

The model is not trained or fit until the fit() function is used with the data.

Each of the arguments in this function other than mode and engine are captured as quosures. To
pass values programmatically, use the injection operator like so:

https://www.tidymodels.org/

44 mars

value <- 1
logistic_reg(argument = !!value)

This model fits a classification model for binary outcomes; for multiclass outcomes, see multinom_reg().

References

https://www.tidymodels.org, Tidy Modeling with R, searchable table of parsnip models

See Also

fit(), set_engine(), update(), glm engine details, brulee engine details, gee engine details,
glmer engine details, glmnet engine details, h2o engine details, keras engine details,
LiblineaR engine details, spark engine details, stan engine details, stan_glmer engine
details

Examples

show_engines("logistic_reg")

logistic_reg()

mars Multivariate adaptive regression splines (MARS)

Description

mars() defines a generalized linear model that uses artificial features for some predictors. These
features resemble hinge functions and the result is a model that is a segmented regression in small
dimensions. This function can fit classification and regression models.

There are different ways to fit this model, and the method of estimation is chosen by setting the
model engine. The engine-specific pages for this model are listed below.

• earth¹

¹ The default engine.

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

mars(
mode = "unknown",
engine = "earth",
num_terms = NULL,
prod_degree = NULL,
prune_method = NULL

)

https://www.tidymodels.org
https://www.tmwr.org/
https://www.tidymodels.org/find/parsnip/
https://www.tidymodels.org/

max_mtry_formula 45

Arguments

mode A single character string for the prediction outcome mode. Possible values for
this model are "unknown", "regression", or "classification".

engine A single character string specifying what computational engine to use for fitting.

num_terms The number of features that will be retained in the final model, including the
intercept.

prod_degree The highest possible interaction degree.

prune_method The pruning method.

Details

This function only defines what type of model is being fit. Once an engine is specified, the method
to fit the model is also defined. See set_engine() for more on setting the engine, including how
to set engine arguments.

The model is not trained or fit until the fit() function is used with the data.

Each of the arguments in this function other than mode and engine are captured as quosures. To
pass values programmatically, use the injection operator like so:

value <- 1
mars(argument = !!value)

References

https://www.tidymodels.org, Tidy Modeling with R, searchable table of parsnip models

See Also

fit(), set_engine(), update(), earth engine details

Examples

show_engines("mars")

mars(mode = "regression", num_terms = 5)

max_mtry_formula Determine largest value of mtry from formula. This function poten-
tially caps the value of mtry based on a formula and data set. This is
a safe approach for survival and/or multivariate models.

Description

Determine largest value of mtry from formula. This function potentially caps the value of mtry
based on a formula and data set. This is a safe approach for survival and/or multivariate models.

https://www.tidymodels.org
https://www.tmwr.org/
https://www.tidymodels.org/find/parsnip/

46 maybe_matrix

Usage

max_mtry_formula(mtry, formula, data)

Arguments

mtry An initial value of mtry (which may be too large).

formula A model formula.

data The training set (data frame).

Value

A value for mtry.

Examples

should be 9
max_mtry_formula(200, cbind(wt, mpg) ~ ., data = mtcars)

maybe_matrix Fuzzy conversions

Description

These are substitutes for as.matrix() and as.data.frame() that leave a sparse matrix as-is.

Usage

maybe_matrix(x)

maybe_data_frame(x)

Arguments

x A data frame, matrix, or sparse matrix.

Value

A data frame, matrix, or sparse matrix.

min_cols 47

min_cols Execution-time data dimension checks

Description

For some tuning parameters, the range of values depend on the data dimensions (e.g. mtry). Some
packages will fail if the parameter values are outside of these ranges. Since the model might receive
resampled versions of the data, these ranges can’t be set prior to the point where the model is fit.
These functions check the possible range of the data and adjust them if needed (with a warning).

Usage

min_cols(num_cols, source)

min_rows(num_rows, source, offset = 0)

Arguments

num_cols, num_rows
The parameter value requested by the user.

source A data frame for the data to be used in the fit. If the source is named "data",
it is assumed that one column of the data corresponds to an outcome (and is
subtracted off).

offset A number subtracted off of the number of rows available in the data.

Value

An integer (and perhaps a warning).

Examples

nearest_neighbor(neighbors= 100) |>
set_engine("kknn") |>
set_mode("regression") |>
translate()

library(ranger)
rand_forest(mtry = 2, min_n = 100, trees = 3) |>

set_engine("ranger") |>
set_mode("regression") |>
fit(mpg ~ ., data = mtcars)

48 mlp

mlp Single layer neural network

Description

mlp() defines a multilayer perceptron model (a.k.a. a single layer, feed-forward neural network).
This function can fit classification and regression models.

There are different ways to fit this model, and the method of estimation is chosen by setting the
model engine. The engine-specific pages for this model are listed below.

• nnet¹

• brulee

• brulee_two_layer

• h2o²

• keras

¹ The default engine. ² Requires a parsnip extension package for classification and regression.

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

mlp(
mode = "unknown",
engine = "nnet",
hidden_units = NULL,
penalty = NULL,
dropout = NULL,
epochs = NULL,
activation = NULL,
learn_rate = NULL

)

Arguments

mode A single character string for the prediction outcome mode. Possible values for
this model are "unknown", "regression", or "classification".

engine A single character string specifying what computational engine to use for fitting.

hidden_units An integer for the number of units in the hidden model.

penalty A non-negative numeric value for the amount of weight decay.

dropout A number between 0 (inclusive) and 1 denoting the proportion of model param-
eters randomly set to zero during model training.

epochs An integer for the number of training iterations.

https://www.tidymodels.org/

model_fit 49

activation A single character string denoting the type of relationship between the original
predictors and the hidden unit layer. The activation function between the hidden
and output layers is automatically set to either "linear" or "softmax" depending
on the type of outcome. Possible values depend on the engine being used.

learn_rate A number for the rate at which the boosting algorithm adapts from iteration-to-
iteration (specific engines only). This is sometimes referred to as the shrinkage
parameter.

Details

This function only defines what type of model is being fit. Once an engine is specified, the method
to fit the model is also defined. See set_engine() for more on setting the engine, including how
to set engine arguments.

The model is not trained or fit until the fit() function is used with the data.

Each of the arguments in this function other than mode and engine are captured as quosures. To
pass values programmatically, use the injection operator like so:

value <- 1
mlp(argument = !!value)

References

https://www.tidymodels.org, Tidy Modeling with R, searchable table of parsnip models

See Also

fit(), set_engine(), update(), nnet engine details, brulee engine details, brulee_two_layer
engine details, h2o engine details, keras engine details

Examples

show_engines("mlp")

mlp(mode = "classification", penalty = 0.01)

model_fit Model Fit Objects

Description

Model fits are trained model specifications that are ready to predict on new data. Model fits have
class model_fit and, usually, a subclass referring to the engine used to fit the model.

https://www.tidymodels.org
https://www.tmwr.org/
https://www.tidymodels.org/find/parsnip/

50 model_formula

Details

An object with class "model_fit" is a container for information about a model that has been fit to
the data.

The main elements of the object are:

• lvl: A vector of factor levels when the outcome is a factor. This is NULL when the outcome is
not a factor vector.

• spec: A model_spec object.

• fit: The object produced by the fitting function.

• preproc: This contains any data-specific information required to process new a sample point
for prediction. For example, if the underlying model function requires arguments x and y and
the user passed a formula to fit, the preproc object would contain items such as the terms
object and so on. When no information is required, this is NA.

As discussed in the documentation for model_spec, the original arguments to the specification are
saved as quosures. These are evaluated for the model_fit object prior to fitting. If the resulting
model object prints its call, any user-defined options are shown in the call preceded by a tilde (see
the example below). This is a result of the use of quosures in the specification.

This class and structure is the basis for how parsnip stores model objects after seeing the data and
applying a model.

Examples

Keep the `x` matrix if the data are not too big.
spec_obj <-

linear_reg() |>
set_engine("lm", x = ifelse(.obs() < 500, TRUE, FALSE))

spec_obj

fit_obj <- fit(spec_obj, mpg ~ ., data = mtcars)
fit_obj

nrow(fit_objfitx)

model_formula Formulas with special terms in tidymodels

Description

In R, formulas provide a compact, symbolic notation to specify model terms. Many modeling
functions in R make use of "specials", or nonstandard notations used in formulas. Specials are
defined and handled as a special case by a given modeling package. For example, the mgcv package,
which provides support for generalized additive models in R, defines a function s() to be in-lined
into formulas. It can be used like so:

model_formula 51

mgcv::gam(mpg ~ wt + s(disp, k = 5), data = mtcars)

In this example, the s() special defines a smoothing term that the mgcv package knows to look for
when preprocessing model input.

The parsnip package can handle most specials without issue. The analogous code for specifying
this generalized additive model with the parsnip "mgcv" engine looks like:

gen_additive_mod() |>
set_mode("regression") |>
set_engine("mgcv") |>
fit(mpg ~ wt + s(disp, k = 5), data = mtcars)

However, parsnip is often used in conjunction with the greater tidymodels package ecosystem,
which defines its own pre-processing infrastructure and functionality via packages like hardhat and
recipes. The specials defined in many modeling packages introduce conflicts with that infrastruc-
ture.

To support specials while also maintaining consistent syntax elsewhere in the ecosystem, tidymod-
els delineates between two types of formulas: preprocessing formulas and model formulas.
Preprocessing formulas specify the input variables, while model formulas determine the model
structure.

Example

To create the preprocessing formula from the model formula, just remove the specials, retaining
references to input variables themselves. For example:

model_formula <- mpg ~ wt + s(disp, k = 5)
preproc_formula <- mpg ~ wt + disp

• With parsnip, use the model formula:

model_spec <-
gen_additive_mod() |>
set_mode("regression") |>
set_engine("mgcv")

model_spec |>
fit(model_formula, data = mtcars)

• With recipes, use the preprocessing formula only:

library(recipes)

recipe(preproc_formula, mtcars)

The recipes package supplies a large variety of preprocessing techniques that may replace the
need for specials altogether, in some cases.

• With workflows, use the preprocessing formula everywhere, but pass the model formula to
the formula argument in add_model():

52 model_spec

library(workflows)

wflow <-
workflow() |>
add_formula(preproc_formula) |>
add_model(model_spec, formula = model_formula)

fit(wflow, data = mtcars)

The workflow will then pass the model formula to parsnip, using the preprocessor formula
elsewhere. We would still use the preprocessing formula if we had added a recipe preprocessor
using add_recipe() instead a formula via add_formula().

model_spec Model Specifications

Description

The parsnip package splits the process of fitting models into two steps:

1. Specify how a model will be fit using a model specification

2. Fit a model using the model specification

This is a different approach to many other model interfaces in R, like lm(), where both the specifi-
cation of the model and the fitting happens in one function call. Splitting the process into two steps
allows users to iteratively define model specifications throughout the model development process.

This intermediate object that defines how the model will be fit is called a model specification and has
class model_spec. Model type functions, like linear_reg() or boost_tree(), return model_spec
objects.

Fitted model objects, resulting from passing a model_spec to fit() or fit_xy, have class model_fit,
and contain the original model_spec objects inside them. See ?model_fit for more on that object
type, and ?extract_spec_parsnip to extract model_specs from model_fits.

Details

An object with class "model_spec" is a container for information about a model that will be fit.

The main elements of the object are:

• args: A vector of the main arguments for the model. The names of these arguments may
be different from their counterparts n the underlying model function. For example, for a
glmnet model, the argument name for the amount of the penalty is called "penalty" instead
of "lambda" to make it more general and usable across different types of models (and to
not be specific to a particular model function). The elements of args can tune() with the
use of the tune package. For more information see https://www.tidymodels.org/start/
tuning/. If left to their defaults (NULL), the arguments will use the underlying model functions
default value. As discussed below, the arguments in args are captured as quosures and are not
immediately executed.

https://tune.tidymodels.org/
https://www.tidymodels.org/start/tuning/
https://www.tidymodels.org/start/tuning/

model_spec 53

• ...: Optional model-function-specific parameters. As with args, these will be quosures and
can be tune().

• mode: The type of model, such as "regression" or "classification". Other modes will be added
once the package adds more functionality.

• method: This is a slot that is filled in later by the model’s constructor function. It generally
contains lists of information that are used to create the fit and prediction code as well as
required packages and similar data.

• engine: This character string declares exactly what software will be used. It can be a package
name or a technology type.

This class and structure is the basis for how parsnip stores model objects prior to seeing the data.

Argument Details

An important detail to understand when creating model specifications is that they are intended to
be functionally independent of the data. While it is true that some tuning parameters are data
dependent, the model specification does not interact with the data at all.

For example, most R functions immediately evaluate their arguments. For example, when calling
mean(dat_vec), the object dat_vec is immediately evaluated inside of the function.

parsnip model functions do not do this. For example, using

rand_forest(mtry = ncol(mtcars) - 1)

does not execute ncol(mtcars) - 1 when creating the specification. This can be seen in the output:

> rand_forest(mtry = ncol(mtcars) - 1)
Random Forest Model Specification (unknown)

Main Arguments:
mtry = ncol(mtcars) - 1

The model functions save the argument expressions and their associated environments (a.k.a. a
quosure) to be evaluated later when either fit.model_spec() or fit_xy.model_spec() are called
with the actual data.

The consequence of this strategy is that any data required to get the parameter values must be
available when the model is fit. The two main ways that this can fail is if:

1. The data have been modified between the creation of the model specification and when the
model fit function is invoked.

2. If the model specification is saved and loaded into a new session where those same data objects
do not exist.

The best way to avoid these issues is to not reference any data objects in the global environment but
to use data descriptors such as .cols(). Another way of writing the previous specification is

rand_forest(mtry = .cols() - 1)

54 multinom_reg

This is not dependent on any specific data object and is evaluated immediately before the model
fitting process begins.

One less advantageous approach to solving this issue is to use quasiquotation. This would insert
the actual R object into the model specification and might be the best idea when the data object is
small. For example, using

rand_forest(mtry = ncol(!!mtcars) - 1)

would work (and be reproducible between sessions) but embeds the entire mtcars data set into the
mtry expression:

> rand_forest(mtry = ncol(!!mtcars) - 1)
Random Forest Model Specification (unknown)

Main Arguments:
mtry = ncol(structure(list(Sepal.Length = c(5.1, 4.9, 4.7, 4.6, 5, <snip>

However, if there were an object with the number of columns in it, this wouldn’t be too bad:

> mtry_val <- ncol(mtcars) - 1
> mtry_val
[1] 10
> rand_forest(mtry = !!mtry_val)
Random Forest Model Specification (unknown)

Main Arguments:
mtry = 10

More information on quosures and quasiquotation can be found at https://adv-r.hadley.nz/
quasiquotation.html.

multinom_reg Multinomial regression

Description

multinom_reg() defines a model that uses linear predictors to predict multiclass data using the
multinomial distribution. This function can fit classification models.

There are different ways to fit this model, and the method of estimation is chosen by setting the
model engine. The engine-specific pages for this model are listed below.

• nnet¹

• brulee

• glmnet

• h2o²

https://adv-r.hadley.nz/quasiquotation.html
https://adv-r.hadley.nz/quasiquotation.html

multinom_reg 55

• keras

• spark

¹ The default engine. ² Requires a parsnip extension package.

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

multinom_reg(
mode = "classification",
engine = "nnet",
penalty = NULL,
mixture = NULL

)

Arguments

mode A single character string for the type of model. The only possible value for this
model is "classification".

engine A single character string specifying what computational engine to use for fitting.
Possible engines are listed below. The default for this model is "nnet".

penalty A non-negative number representing the total amount of regularization (specific
engines only). For keras models, this corresponds to purely L2 regularization
(aka weight decay) while the other models can be a combination of L1 and L2
(depending on the value of mixture).

mixture A number between zero and one (inclusive) giving the proportion of L1 regular-
ization (i.e. lasso) in the model.

• mixture = 1 specifies a pure lasso model,
• mixture = 0 specifies a ridge regression model, and
• 0 < mixture < 1 specifies an elastic net model, interpolating lasso and

ridge.

Available for specific engines only.

Details

This function only defines what type of model is being fit. Once an engine is specified, the method
to fit the model is also defined. See set_engine() for more on setting the engine, including how
to set engine arguments.

The model is not trained or fit until the fit() function is used with the data.

Each of the arguments in this function other than mode and engine are captured as quosures. To
pass values programmatically, use the injection operator like so:

value <- 1
multinom_reg(argument = !!value)

This model fits a classification model for multiclass outcomes; for binary outcomes, see logistic_reg().

https://www.tidymodels.org/

56 multi_predict

References

https://www.tidymodels.org, Tidy Modeling with R, searchable table of parsnip models

See Also

fit(), set_engine(), update(), nnet engine details, brulee engine details, glmnet engine
details, h2o engine details, keras engine details, spark engine details

Examples

show_engines("multinom_reg")

multinom_reg()

multi_predict Model predictions across many sub-models

Description

For some models, predictions can be made on sub-models in the model object.

Usage

multi_predict(object, ...)

Default S3 method:
multi_predict(object, ...)

S3 method for class '`_xgb.Booster`'
multi_predict(object, new_data, type = NULL, trees = NULL, ...)

S3 method for class '`_C5.0`'
multi_predict(object, new_data, type = NULL, trees = NULL, ...)

S3 method for class '`_elnet`'
multi_predict(object, new_data, type = NULL, penalty = NULL, ...)

S3 method for class '`_lognet`'
multi_predict(object, new_data, type = NULL, penalty = NULL, ...)

S3 method for class '`_multnet`'
multi_predict(object, new_data, type = NULL, penalty = NULL, ...)

S3 method for class '`_glmnetfit`'
multi_predict(object, new_data, type = NULL, penalty = NULL, ...)

https://www.tidymodels.org
https://www.tmwr.org/
https://www.tidymodels.org/find/parsnip/

naive_Bayes 57

S3 method for class '`_earth`'
multi_predict(object, new_data, type = NULL, num_terms = NULL, ...)

S3 method for class '`_torch_mlp`'
multi_predict(object, new_data, type = NULL, epochs = NULL, ...)

S3 method for class '`_train.kknn`'
multi_predict(object, new_data, type = NULL, neighbors = NULL, ...)

Arguments

object A model fit.
... Optional arguments to pass to predict.model_fit(type = "raw") such as type.
new_data A rectangular data object, such as a data frame.
type A single character value or NULL. Possible values are "numeric", "class",

"prob", "conf_int", "pred_int", "quantile", or "raw". When NULL, predict()
will choose an appropriate value based on the model’s mode.

trees An integer vector for the number of trees in the ensemble.
penalty A numeric vector of penalty values.
num_terms An integer vector for the number of MARS terms to retain.
epochs An integer vector for the number of training epochs.
neighbors An integer vector for the number of nearest neighbors.

Value

A tibble with the same number of rows as the data being predicted. There is a list-column named
.pred that contains tibbles with multiple rows per sub-model. Note that, within the tibbles, the
column names follow the usual standard based on prediction type (i.e. .pred_class for type =
"class" and so on).

naive_Bayes Naive Bayes models

Description

naive_Bayes() defines a model that uses Bayes’ theorem to compute the probability of each class,
given the predictor values. This function can fit classification models.

There are different ways to fit this model, and the method of estimation is chosen by setting the
model engine. The engine-specific pages for this model are listed below.

• klaR¹²
• h2o²
• naivebayes²

¹ The default engine. ² Requires a parsnip extension package.

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

https://www.tidymodels.org/

58 naive_Bayes

Usage

naive_Bayes(
mode = "classification",
smoothness = NULL,
Laplace = NULL,
engine = "klaR"

)

Arguments

mode A single character string for the prediction outcome mode. Possible values for
this model are "unknown", "regression", or "classification".

smoothness An non-negative number representing the the relative smoothness of the class
boundary. Smaller examples result in model flexible boundaries and larger val-
ues generate class boundaries that are less adaptable

Laplace A non-negative value for the Laplace correction to smoothing low-frequency
counts.

engine A single character string specifying what computational engine to use for fitting.

Details

This function only defines what type of model is being fit. Once an engine is specified, the method
to fit the model is also defined. See set_engine() for more on setting the engine, including how
to set engine arguments.

The model is not trained or fit until the fit() function is used with the data.

Each of the arguments in this function other than mode and engine are captured as quosures. To
pass values programmatically, use the injection operator like so:

value <- 1
naive_Bayes(argument = !!value)

References

https://www.tidymodels.org, Tidy Modeling with R, searchable table of parsnip models

See Also

fit(), set_engine(), update(), klaR engine details, h2o engine details, naivebayes engine
details

https://www.tidymodels.org
https://www.tmwr.org/
https://www.tidymodels.org/find/parsnip/

nearest_neighbor 59

nearest_neighbor K-nearest neighbors

Description

nearest_neighbor() defines a model that uses the K most similar data points from the training set
to predict new samples. This function can fit classification and regression models.

There are different ways to fit this model, and the method of estimation is chosen by setting the
model engine. The engine-specific pages for this model are listed below.

• kknn¹

¹ The default engine.

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

nearest_neighbor(
mode = "unknown",
engine = "kknn",
neighbors = NULL,
weight_func = NULL,
dist_power = NULL

)

Arguments

mode A single character string for the prediction outcome mode. Possible values for
this model are "unknown", "regression", or "classification".

engine A single character string specifying what computational engine to use for fitting.

neighbors A single integer for the number of neighbors to consider (often called k). For
kknn, a value of 5 is used if neighbors is not specified.

weight_func A single character for the type of kernel function used to weight distances be-
tween samples. Valid choices are: "rectangular", "triangular", "epanechnikov",
"biweight", "triweight", "cos", "inv", "gaussian", "rank", or "optimal".

dist_power A single number for the parameter used in calculating Minkowski distance.

Details

This function only defines what type of model is being fit. Once an engine is specified, the method
to fit the model is also defined. See set_engine() for more on setting the engine, including how
to set engine arguments.

The model is not trained or fit until the fit() function is used with the data.

Each of the arguments in this function other than mode and engine are captured as quosures. To
pass values programmatically, use the injection operator like so:

https://www.tidymodels.org/

60 null_model

value <- 1
nearest_neighbor(argument = !!value)

References

https://www.tidymodels.org, Tidy Modeling with R, searchable table of parsnip models

See Also

fit(), set_engine(), update(), kknn engine details

Examples

show_engines("nearest_neighbor")

nearest_neighbor(neighbors = 11)

null_model Null model

Description

Fit a single mean or largest class model. null_model() is the user-facing function that relies on
the underlying computational function, nullmodel().

Usage

null_model(mode = "classification", engine = "parsnip")

Arguments

mode A single character string for the type of model. The only possible values for this
model are "regression" and "classification".

engine A single character string specifying what computational engine to use for fitting.
Possible engines are listed below. The default for this model is "parsnip".

Details

null_model() defines a simple, non-informative model. It doesn’t have any main arguments. This
function can fit classification and regression models.

null_model() emulates other model building functions, but returns the simplest model possible
given a training set: a single mean for numeric outcomes and the most prevalent class for factor
outcomes. When class probabilities are requested, the percentage of the training set samples with
the most prevalent class is returned.

https://www.tidymodels.org
https://www.tmwr.org/
https://www.tidymodels.org/find/parsnip/

null_model 61

Engine Details

Engines may have pre-set default arguments when executing the model fit call. For this type of
model, the template of the fit calls are below:

parsnip:

null_model() |>
set_engine("parsnip") |>
set_mode("regression") |>
translate()

Null Model Specification (regression)
##
Computational engine: parsnip
##
Model fit template:
parsnip::nullmodel(x = missing_arg(), y = missing_arg())

null_model() |>
set_engine("parsnip") |>
set_mode("classification") |>
translate()

Null Model Specification (classification)
##
Computational engine: parsnip
##
Model fit template:
parsnip::nullmodel(x = missing_arg(), y = missing_arg())

Prediction types:

parsnip:::get_from_env("null_model_predict") |>
dplyr::select(mode, type)

A tibble: 5 x 2
mode type
<chr> <chr>
1 regression numeric
2 regression raw
3 classification class
4 classification prob
5 classification raw

See Also

fit.model_spec()

Examples

null_model(mode = "regression")

62 pls

parsnip_addin Start an RStudio Addin that can write model specifications

Description

parsnip_addin() starts a process in the RStudio IDE Viewer window that allows users to write
code for parsnip model specifications from various R packages. The new code is written to the
current document at the location of the cursor.

Usage

parsnip_addin()

pls Partial least squares (PLS)

Description

pls() defines a partial least squares model that uses latent variables to model the data. It is similar
to a supervised version of principal component. This function can fit classification and regression
models.

There are different ways to fit this model, and the method of estimation is chosen by setting the
model engine. The engine-specific pages for this model are listed below.

• mixOmics¹²

¹ The default engine. ² Requires a parsnip extension package for classification and regression.

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

pls(
mode = "unknown",
predictor_prop = NULL,
num_comp = NULL,
engine = "mixOmics"

)

Arguments

mode A single character string for the prediction outcome mode. Possible values for
this model are "unknown", "regression", or "classification".

predictor_prop The maximum proportion of original predictors that can have non-zero coeffi-
cients for each PLS component (via regularization). This value is used for all
PLS components for X.

num_comp The number of PLS components to retain.
engine A single character string specifying what computational engine to use for fitting.

https://www.tidymodels.org/

poisson_reg 63

Details

This function only defines what type of model is being fit. Once an engine is specified, the method
to fit the model is also defined. See set_engine() for more on setting the engine, including how
to set engine arguments.

The model is not trained or fit until the fit() function is used with the data.

Each of the arguments in this function other than mode and engine are captured as quosures. To
pass values programmatically, use the injection operator like so:

value <- 1
pls(argument = !!value)

References

https://www.tidymodels.org, Tidy Modeling with R, searchable table of parsnip models

See Also

fit(), set_engine(), update(), mixOmics engine details

poisson_reg Poisson regression models

Description

poisson_reg() defines a generalized linear model for count data that follow a Poisson distribution.
This function can fit regression models.

There are different ways to fit this model, and the method of estimation is chosen by setting the
model engine. The engine-specific pages for this model are listed below.

• glm¹²

• gee²

• glmer²

• glmnet²

• h2o²

• hurdle²

• stan²

• stan_glmer²

• zeroinfl²

¹ The default engine. ² Requires a parsnip extension package.

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

https://www.tidymodels.org
https://www.tmwr.org/
https://www.tidymodels.org/find/parsnip/
https://www.tidymodels.org/

64 poisson_reg

Usage

poisson_reg(
mode = "regression",
penalty = NULL,
mixture = NULL,
engine = "glm"

)

Arguments

mode A single character string for the type of model. The only possible value for this
model is "regression".

penalty A non-negative number representing the total amount of regularization (glmnet
only).

mixture A number between zero and one (inclusive) giving the proportion of L1 regular-
ization (i.e. lasso) in the model.

• mixture = 1 specifies a pure lasso model,
• mixture = 0 specifies a ridge regression model, and
• 0 < mixture < 1 specifies an elastic net model, interpolating lasso and

ridge.

Available for glmnet and spark only.

engine A single character string specifying what computational engine to use for fitting.

Details

This function only defines what type of model is being fit. Once an engine is specified, the method
to fit the model is also defined. See set_engine() for more on setting the engine, including how
to set engine arguments.

The model is not trained or fit until the fit() function is used with the data.

Each of the arguments in this function other than mode and engine are captured as quosures. To
pass values programmatically, use the injection operator like so:

value <- 1
poisson_reg(argument = !!value)

References

https://www.tidymodels.org, Tidy Modeling with R, searchable table of parsnip models

See Also

fit(), set_engine(), update(), glm engine details, gee engine details, glmer engine details,
glmnet engine details, h2o engine details, hurdle engine details, stan engine details,
stan_glmer engine details, zeroinfl engine details

https://www.tidymodels.org
https://www.tmwr.org/
https://www.tidymodels.org/find/parsnip/

rand_forest 65

rand_forest Random forest

Description

rand_forest() defines a model that creates a large number of decision trees, each independent of
the others. The final prediction uses all predictions from the individual trees and combines them.
This function can fit classification, regression, and censored regression models.

There are different ways to fit this model, and the method of estimation is chosen by setting the
model engine. The engine-specific pages for this model are listed below.

• ranger¹

• aorsf²

• grf

• h2o²

• partykit²

• randomForest

• spark

¹ The default engine. ² Requires a parsnip extension package for censored regression, classification,
and regression.

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

rand_forest(
mode = "unknown",
engine = "ranger",
mtry = NULL,
trees = NULL,
min_n = NULL

)

Arguments

mode A single character string for the prediction outcome mode. Possible values for
this model are "unknown", "regression", "classification", or "censored regres-
sion".

engine A single character string specifying what computational engine to use for fitting.

mtry An integer for the number of predictors that will be randomly sampled at each
split when creating the tree models.

trees An integer for the number of trees contained in the ensemble.

min_n An integer for the minimum number of data points in a node that are required
for the node to be split further.

https://www.tidymodels.org/

66 repair_call

Details

This function only defines what type of model is being fit. Once an engine is specified, the method
to fit the model is also defined. See set_engine() for more on setting the engine, including how
to set engine arguments.

The model is not trained or fit until the fit() function is used with the data.

Each of the arguments in this function other than mode and engine are captured as quosures. To
pass values programmatically, use the injection operator like so:

value <- 1
rand_forest(argument = !!value)

References

https://www.tidymodels.org, Tidy Modeling with R, searchable table of parsnip models

See Also

fit(), set_engine(), update(), ranger engine details, aorsf engine details, grf engine
details, h2o engine details, partykit engine details, randomForest engine details, spark
engine details

Examples

show_engines("rand_forest")

rand_forest(mode = "classification", trees = 2000)

repair_call Repair a model call object

Description

When the user passes a formula to fit() and the underlying model function uses a formula, the
call object produced by fit() may not be usable by other functions. For example, some arguments
may still be quosures and the data portion of the call will not correspond to the original data.

Usage

repair_call(x, data)

Arguments

x A fitted parsnip model. An error will occur if the underlying model does not
have a call element.

data A data object that is relevant to the call. In most cases, this is the data frame that
was given to parsnip for the model fit (i.e., the training set data). The name of
this data object is inserted into the call.

https://www.tidymodels.org
https://www.tmwr.org/
https://www.tidymodels.org/find/parsnip/

required_pkgs.model_spec 67

Details

repair_call() call can adjust the model objects call to be usable by other functions and methods.

Value

A modified parsnip fitted model.

Examples

fitted_model <-
linear_reg() |>
set_engine("lm", model = TRUE) |>
fit(mpg ~ ., data = mtcars)

In this call, note that `data` is not `mtcars` and the `model = ~TRUE`
indicates that the `model` argument is an rlang quosure.
fitted_modelfitcall

All better:
repair_call(fitted_model, mtcars)fitcall

required_pkgs.model_spec

Determine required packages for a model

Description

Determine required packages for a model

Usage

S3 method for class 'model_spec'
required_pkgs(x, infra = TRUE, ...)

S3 method for class 'model_fit'
required_pkgs(x, infra = TRUE, ...)

Arguments

x A model specification or fit.

infra Should parsnip itself be included in the result?

... Not used.

Value

A character vector

68 req_pkgs

Examples

should_fail <- try(required_pkgs(linear_reg(engine = NULL)), silent = TRUE)
should_fail

linear_reg() |>
set_engine("glmnet") |>
required_pkgs()

linear_reg() |>
set_engine("glmnet") |>
required_pkgs(infra = FALSE)

linear_reg() |>
set_engine("lm") |>
fit(mpg ~ ., data = mtcars) |>
required_pkgs()

req_pkgs Determine required packages for a model

Description

[Deprecated]

Usage

req_pkgs(x, ...)

Arguments

x A model specification or fit.

... Not used.

Details

This function has been deprecated in favor of required_pkgs().

Value

A character string of package names (if any).

rule_fit 69

rule_fit RuleFit models

Description

rule_fit() defines a model that derives simple feature rules from a tree ensemble and uses them
as features in a regularized model. This function can fit classification and regression models.

There are different ways to fit this model, and the method of estimation is chosen by setting the
model engine. The engine-specific pages for this model are listed below.

• xrf¹²

• h2o²

¹ The default engine. ² Requires a parsnip extension package for classification and regression.

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

rule_fit(
mode = "unknown",
mtry = NULL,
trees = NULL,
min_n = NULL,
tree_depth = NULL,
learn_rate = NULL,
loss_reduction = NULL,
sample_size = NULL,
stop_iter = NULL,
penalty = NULL,
engine = "xrf"

)

Arguments

mode A single character string for the prediction outcome mode. Possible values for
this model are "unknown", "regression", or "classification".

mtry A number for the number (or proportion) of predictors that will be randomly
sampled at each split when creating the tree models (specific engines only).

trees An integer for the number of trees contained in the ensemble.

min_n An integer for the minimum number of data points in a node that is required for
the node to be split further.

tree_depth An integer for the maximum depth of the tree (i.e. number of splits) (specific
engines only).

learn_rate A number for the rate at which the boosting algorithm adapts from iteration-to-
iteration (specific engines only). This is sometimes referred to as the shrinkage
parameter.

https://www.tidymodels.org/

70 rule_fit

loss_reduction A number for the reduction in the loss function required to split further (specific
engines only).

sample_size A number for the number (or proportion) of data that is exposed to the fitting
routine. For xgboost, the sampling is done at each iteration while C5.0 samples
once during training.

stop_iter The number of iterations without improvement before stopping (specific engines
only).

penalty L1 regularization parameter.

engine A single character string specifying what computational engine to use for fitting.

Details

The RuleFit model creates a regression model of rules in two stages. The first stage uses a tree-based
model that is used to generate a set of rules that can be filtered, modified, and simplified. These
rules are then added as predictors to a regularized generalized linear model that can also conduct
feature selection during model training.

This function only defines what type of model is being fit. Once an engine is specified, the method
to fit the model is also defined. See set_engine() for more on setting the engine, including how
to set engine arguments.

The model is not trained or fit until the fit() function is used with the data.

Each of the arguments in this function other than mode and engine are captured as quosures. To
pass values programmatically, use the injection operator like so:

value <- 1
rule_fit(argument = !!value)

References

Friedman, J. H., and Popescu, B. E. (2008). "Predictive learning via rule ensembles." The Annals
of Applied Statistics, 2(3), 916-954.

https://www.tidymodels.org, Tidy Modeling with R, searchable table of parsnip models

See Also

xrf::xrf.formula(), fit(), set_engine(), update(), xrf engine details, h2o engine details

Examples

show_engines("rule_fit")

rule_fit()

https://www.tidymodels.org
https://www.tmwr.org/
https://www.tidymodels.org/find/parsnip/

set_args 71

set_args Change elements of a model specification

Description

set_args() can be used to modify the arguments of a model specification while set_mode() is
used to change the model’s mode.

Usage

set_args(object, ...)

set_mode(object, mode, ...)

S3 method for class 'model_spec'
set_mode(object, mode, quantile_levels = NULL, ...)

Arguments

object A model specification.

... One or more named model arguments.

mode A character string for the model type (e.g. "classification" or "regression")
quantile_levels

A vector of values between zero and one (only for the "quantile regression"
mode); otherwise, it is NULL. The model uses these values to appropriately train
quantile regression models to make predictions for these values (e.g., quantile_levels
= 0.5 is the median).

Details

set_args() will replace existing values of the arguments.

Value

An updated model object.

Examples

rand_forest()

rand_forest() |>
set_args(mtry = 3, importance = TRUE) |>
set_mode("regression")

linear_reg() |>
set_mode("quantile regression", quantile_levels = c(0.2, 0.5, 0.8))

72 set_engine

set_engine Declare a computational engine and specific arguments

Description

set_engine() is used to specify which package or system will be used to fit the model, along with
any arguments specific to that software.

Usage

set_engine(object, engine, ...)

Arguments

object A model specification.

engine A character string for the software that should be used to fit the model. This is
highly dependent on the type of model (e.g. linear regression, random forest,
etc.).

... Any optional arguments associated with the chosen computational engine. These
are captured as quosures and can be tuned with tune().

Details

In parsnip,

• the model type differentiates basic modeling approaches, such as random forests, logistic
regression, linear support vector machines, etc.,

• the mode denotes in what kind of modeling context it will be used (most commonly, classifi-
cation or regression), and

• the computational engine indicates how the model is fit, such as with a specific R package
implementation or even methods outside of R like Keras or Stan.

Use show_engines() to get a list of possible engines for the model of interest.

Modeling functions in parsnip separate model arguments into two categories:

• Main arguments are more commonly used and tend to be available across engines. These
names are standardized to work with different engines in a consistent way, so you can use
the parsnip main argument trees, instead of the heterogeneous arguments for this parameter
from ranger and randomForest packages (num.trees and ntree, respectively). Set these in
your model type function, like rand_forest(trees = 2000).

• Engine arguments are either specific to a particular engine or used more rarely; there is
no change for these argument names from the underlying engine. The ... argument of
set_engine() allows any engine-specific argument to be passed directly to the engine fit-
ting function, like set_engine("ranger", importance = "permutation").

show_engines 73

Value

An updated model specification.

Examples

First, set main arguments using the standardized names
logistic_reg(penalty = 0.01, mixture = 1/3) |>

Now specify how you want to fit the model with another argument
set_engine("glmnet", nlambda = 10) |>
translate()

Many models have possible engine-specific arguments
decision_tree(tree_depth = 5) |>

set_engine("rpart", parms = list(prior = c(.65,.35))) |>
set_mode("classification") |>
translate()

show_engines Display currently available engines for a model

Description

The possible engines for a model can depend on what packages are loaded. Some parsnip extension
add engines to existing models. For example, the poissonreg package adds additional engines for
the poisson_reg() model and these are not available unless poissonreg is loaded.

Usage

show_engines(x)

Arguments

x The name of a parsnip model (e.g., "linear_reg", "mars", etc.)

Value

A tibble.

Examples

show_engines("linear_reg")

74 svm_linear

sparse_data Using sparse data with parsnip

Description

You can figure out whether a given model engine supports sparse data by calling get_encoding("name
of model") and looking at the allow_sparse_x column.

Details

Using sparse data for model fitting and prediction shouldn’t require any additional configurations.
Just pass in a sparse matrix such as dgCMatrix from the Matrix package or a sparse tibble from the
sparsevctrs package to the data argument of fit(), fit_xy(), and predict().

Models that don’t support sparse data will try to convert to non-sparse data with warnings. If
conversion isn’t possible, an informative error will be thrown.

svm_linear Linear support vector machines

Description

svm_linear() defines a support vector machine model. For classification, the model tries to max-
imize the width of the margin between classes (using a linear class boundary). For regression, the
model optimizes a robust loss function that is only affected by very large model residuals and uses
a linear fit. This function can fit classification and regression models.

There are different ways to fit this model, and the method of estimation is chosen by setting the
model engine. The engine-specific pages for this model are listed below.

• LiblineaR¹
• kernlab

¹ The default engine.

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

svm_linear(mode = "unknown", engine = "LiblineaR", cost = NULL, margin = NULL)

Arguments

mode A single character string for the prediction outcome mode. Possible values for
this model are "unknown", "regression", or "classification".

engine A single character string specifying what computational engine to use for fitting.
cost A positive number for the cost of predicting a sample within or on the wrong

side of the margin
margin A positive number for the epsilon in the SVM insensitive loss function (regres-

sion only)

https://www.tidymodels.org/

svm_poly 75

Details

This function only defines what type of model is being fit. Once an engine is specified, the method
to fit the model is also defined. See set_engine() for more on setting the engine, including how
to set engine arguments.

The model is not trained or fit until the fit() function is used with the data.

Each of the arguments in this function other than mode and engine are captured as quosures. To
pass values programmatically, use the injection operator like so:

value <- 1
svm_linear(argument = !!value)

References

https://www.tidymodels.org, Tidy Modeling with R, searchable table of parsnip models

See Also

fit(), set_engine(), update(), LiblineaR engine details, kernlab engine details

Examples

show_engines("svm_linear")

svm_linear(mode = "classification")

svm_poly Polynomial support vector machines

Description

svm_poly() defines a support vector machine model. For classification, the model tries to maximize
the width of the margin between classes using a polynomial class boundary. For regression, the
model optimizes a robust loss function that is only affected by very large model residuals and uses
polynomial functions of the predictors. This function can fit classification and regression models.

There are different ways to fit this model, and the method of estimation is chosen by setting the
model engine. The engine-specific pages for this model are listed below.

• kernlab¹

¹ The default engine.

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

https://www.tidymodels.org
https://www.tmwr.org/
https://www.tidymodels.org/find/parsnip/
https://www.tidymodels.org/

76 svm_poly

Usage

svm_poly(
mode = "unknown",
engine = "kernlab",
cost = NULL,
degree = NULL,
scale_factor = NULL,
margin = NULL

)

Arguments

mode A single character string for the prediction outcome mode. Possible values for
this model are "unknown", "regression", or "classification".

engine A single character string specifying what computational engine to use for fitting.
cost A positive number for the cost of predicting a sample within or on the wrong

side of the margin
degree A positive number for polynomial degree.
scale_factor A positive number for the polynomial scaling factor.
margin A positive number for the epsilon in the SVM insensitive loss function (regres-

sion only)

Details

This function only defines what type of model is being fit. Once an engine is specified, the method
to fit the model is also defined. See set_engine() for more on setting the engine, including how
to set engine arguments.

The model is not trained or fit until the fit() function is used with the data.

Each of the arguments in this function other than mode and engine are captured as quosures. To
pass values programmatically, use the injection operator like so:

value <- 1
svm_poly(argument = !!value)

References

https://www.tidymodels.org, Tidy Modeling with R, searchable table of parsnip models

See Also

fit(), set_engine(), update(), kernlab engine details

Examples

show_engines("svm_poly")

svm_poly(mode = "classification", degree = 1.2)

https://www.tidymodels.org
https://www.tmwr.org/
https://www.tidymodels.org/find/parsnip/

svm_rbf 77

svm_rbf Radial basis function support vector machines

Description

svm_rbf() defines a support vector machine model. For classification, the model tries to maximize
the width of the margin between classes using a nonlinear class boundary. For regression, the
model optimizes a robust loss function that is only affected by very large model residuals and uses
nonlinear functions of the predictors. The function can fit classification and regression models.

There are different ways to fit this model, and the method of estimation is chosen by setting the
model engine. The engine-specific pages for this model are listed below.

• kernlab¹

¹ The default engine.

More information on how parsnip is used for modeling is at https://www.tidymodels.org/.

Usage

svm_rbf(
mode = "unknown",
engine = "kernlab",
cost = NULL,
rbf_sigma = NULL,
margin = NULL

)

Arguments

mode A single character string for the prediction outcome mode. Possible values for
this model are "unknown", "regression", or "classification".

engine A single character string specifying what computational engine to use for fitting.
Possible engines are listed below. The default for this model is "kernlab".

cost A positive number for the cost of predicting a sample within or on the wrong
side of the margin

rbf_sigma A positive number for radial basis function.

margin A positive number for the epsilon in the SVM insensitive loss function (regres-
sion only)

Details

This function only defines what type of model is being fit. Once an engine is specified, the method
to fit the model is also defined. See set_engine() for more on setting the engine, including how
to set engine arguments.

The model is not trained or fit until the fit() function is used with the data.

https://www.tidymodels.org/

78 tidy.model_fit

Each of the arguments in this function other than mode and engine are captured as quosures. To
pass values programmatically, use the injection operator like so:

value <- 1
svm_rbf(argument = !!value)

References

https://www.tidymodels.org, Tidy Modeling with R, searchable table of parsnip models

See Also

fit(), set_engine(), update(), kernlab engine details

Examples

show_engines("svm_rbf")

svm_rbf(mode = "classification", rbf_sigma = 0.2)

tidy.model_fit Turn a parsnip model object into a tidy tibble

Description

This method tidies the model in a parsnip model object, if it exists.

Usage

S3 method for class 'model_fit'
tidy(x, ...)

Arguments

x An object to be converted into a tidy tibble::tibble().

... Additional arguments to tidying method.

Value

a tibble

https://www.tidymodels.org
https://www.tmwr.org/
https://www.tidymodels.org/find/parsnip/

translate 79

translate Resolve a Model Specification for a Computational Engine

Description

translate() will translate a model specification into a code object that is specific to a particular
engine (e.g. R package). It translates generic parameters to their counterparts.

Usage

translate(x, ...)

Default S3 method:
translate(x, engine = x$engine, ...)

Arguments

x A model specification.

... Not currently used.

engine The computational engine for the model (see ?set_engine).

Details

translate() produces a template call that lacks the specific argument values (such as data, etc).
These are filled in once fit() is called with the specifics of the data for the model. The call may also
include tune() arguments if these are in the specification. To handle the tune() arguments, you
need to use the tune package. For more information see https://www.tidymodels.org/start/
tuning/

It does contain the resolved argument names that are specific to the model fitting function/engine.

This function can be useful when you need to understand how parsnip goes from a generic model
specific to a model fitting function.

Note: this function is used internally and users should only use it to understand what the underlying
syntax would be. It should not be used to modify the model specification.

Examples

lm_spec <- linear_reg(penalty = 0.01)

`penalty` is translated to `lambda`
translate(lm_spec, engine = "glmnet")

`penalty` not applicable for this model.
translate(lm_spec, engine = "lm")

`penalty` is translated to `reg_param`
translate(lm_spec, engine = "spark")

https://tune.tidymodels.org/
https://www.tidymodels.org/start/tuning/
https://www.tidymodels.org/start/tuning/

80 update.bag_mars

with a placeholder for an unknown argument value:
translate(linear_reg(penalty = tune(), mixture = tune()), engine = "glmnet")

update.bag_mars Updating a model specification

Description

If parameters of a model specification need to be modified, update() can be used in lieu of recre-
ating the object from scratch.

Usage

S3 method for class 'bag_mars'
update(
object,
parameters = NULL,
num_terms = NULL,
prod_degree = NULL,
prune_method = NULL,
fresh = FALSE,
...

)

S3 method for class 'bag_mlp'
update(
object,
parameters = NULL,
hidden_units = NULL,
penalty = NULL,
epochs = NULL,
fresh = FALSE,
...

)

S3 method for class 'bag_tree'
update(
object,
parameters = NULL,
cost_complexity = NULL,
tree_depth = NULL,
min_n = NULL,
class_cost = NULL,
fresh = FALSE,
...

)

update.bag_mars 81

S3 method for class 'bart'
update(
object,
parameters = NULL,
trees = NULL,
prior_terminal_node_coef = NULL,
prior_terminal_node_expo = NULL,
prior_outcome_range = NULL,
fresh = FALSE,
...

)

S3 method for class 'boost_tree'
update(
object,
parameters = NULL,
mtry = NULL,
trees = NULL,
min_n = NULL,
tree_depth = NULL,
learn_rate = NULL,
loss_reduction = NULL,
sample_size = NULL,
stop_iter = NULL,
fresh = FALSE,
...

)

S3 method for class 'C5_rules'
update(
object,
parameters = NULL,
trees = NULL,
min_n = NULL,
fresh = FALSE,
...

)

S3 method for class 'cubist_rules'
update(
object,
parameters = NULL,
committees = NULL,
neighbors = NULL,
max_rules = NULL,
fresh = FALSE,
...

82 update.bag_mars

)

S3 method for class 'decision_tree'
update(
object,
parameters = NULL,
cost_complexity = NULL,
tree_depth = NULL,
min_n = NULL,
fresh = FALSE,
...

)

S3 method for class 'discrim_flexible'
update(
object,
num_terms = NULL,
prod_degree = NULL,
prune_method = NULL,
fresh = FALSE,
...

)

S3 method for class 'discrim_linear'
update(
object,
penalty = NULL,
regularization_method = NULL,
fresh = FALSE,
...

)

S3 method for class 'discrim_quad'
update(object, regularization_method = NULL, fresh = FALSE, ...)

S3 method for class 'discrim_regularized'
update(
object,
frac_common_cov = NULL,
frac_identity = NULL,
fresh = FALSE,
...

)

S3 method for class 'gen_additive_mod'
update(
object,
select_features = NULL,

update.bag_mars 83

adjust_deg_free = NULL,
parameters = NULL,
fresh = FALSE,
...

)

S3 method for class 'linear_reg'
update(
object,
parameters = NULL,
penalty = NULL,
mixture = NULL,
fresh = FALSE,
...

)

S3 method for class 'logistic_reg'
update(
object,
parameters = NULL,
penalty = NULL,
mixture = NULL,
fresh = FALSE,
...

)

S3 method for class 'mars'
update(
object,
parameters = NULL,
num_terms = NULL,
prod_degree = NULL,
prune_method = NULL,
fresh = FALSE,
...

)

S3 method for class 'mlp'
update(
object,
parameters = NULL,
hidden_units = NULL,
penalty = NULL,
dropout = NULL,
epochs = NULL,
activation = NULL,
learn_rate = NULL,
fresh = FALSE,

84 update.bag_mars

...
)

S3 method for class 'multinom_reg'
update(
object,
parameters = NULL,
penalty = NULL,
mixture = NULL,
fresh = FALSE,
...

)

S3 method for class 'naive_Bayes'
update(object, smoothness = NULL, Laplace = NULL, fresh = FALSE, ...)

S3 method for class 'nearest_neighbor'
update(
object,
parameters = NULL,
neighbors = NULL,
weight_func = NULL,
dist_power = NULL,
fresh = FALSE,
...

)

S3 method for class 'pls'
update(
object,
parameters = NULL,
predictor_prop = NULL,
num_comp = NULL,
fresh = FALSE,
...

)

S3 method for class 'poisson_reg'
update(
object,
parameters = NULL,
penalty = NULL,
mixture = NULL,
fresh = FALSE,
...

)

S3 method for class 'proportional_hazards'

update.bag_mars 85

update(
object,
parameters = NULL,
penalty = NULL,
mixture = NULL,
fresh = FALSE,
...

)

S3 method for class 'rand_forest'
update(
object,
parameters = NULL,
mtry = NULL,
trees = NULL,
min_n = NULL,
fresh = FALSE,
...

)

S3 method for class 'rule_fit'
update(
object,
parameters = NULL,
mtry = NULL,
trees = NULL,
min_n = NULL,
tree_depth = NULL,
learn_rate = NULL,
loss_reduction = NULL,
sample_size = NULL,
penalty = NULL,
fresh = FALSE,
...

)

S3 method for class 'surv_reg'
update(object, parameters = NULL, dist = NULL, fresh = FALSE, ...)

S3 method for class 'survival_reg'
update(object, parameters = NULL, dist = NULL, fresh = FALSE, ...)

S3 method for class 'svm_linear'
update(
object,
parameters = NULL,
cost = NULL,
margin = NULL,

86 update.bag_mars

fresh = FALSE,
...

)

S3 method for class 'svm_poly'
update(
object,
parameters = NULL,
cost = NULL,
degree = NULL,
scale_factor = NULL,
margin = NULL,
fresh = FALSE,
...

)

S3 method for class 'svm_rbf'
update(
object,
parameters = NULL,
cost = NULL,
rbf_sigma = NULL,
margin = NULL,
fresh = FALSE,
...

)

Arguments

object A model specification.

parameters A 1-row tibble or named list with main parameters to update. Use either parameters
or the main arguments directly when updating. If the main arguments are used,
these will supersede the values in parameters. Also, using engine arguments in
this object will result in an error.

num_terms The number of features that will be retained in the final model, including the
intercept.

prod_degree The highest possible interaction degree.

prune_method The pruning method.

fresh A logical for whether the arguments should be modified in-place or replaced
wholesale.

... Not used for update().

hidden_units An integer for the number of units in the hidden model.

penalty An non-negative number representing the amount of regularization used by some
of the engines.

epochs An integer for the number of training iterations.

update.bag_mars 87

cost_complexity

A positive number for the the cost/complexity parameter (a.k.a. Cp) used by
CART models (specific engines only).

tree_depth An integer for maximum depth of the tree.

min_n An integer for the minimum number of data points in a node that are required
for the node to be split further.

class_cost A non-negative scalar for a class cost (where a cost of 1 means no extra cost).
This is useful for when the first level of the outcome factor is the minority class.
If this is not the case, values between zero and one can be used to bias to the
second level of the factor.

trees An integer for the number of trees contained in the ensemble.
prior_terminal_node_coef

A coefficient for the prior probability that a node is a terminal node.
prior_terminal_node_expo

An exponent in the prior probability that a node is a terminal node.
prior_outcome_range

A positive value that defines the width of a prior that the predicted outcome is
within a certain range. For regression it is related to the observed range of the
data; the prior is the number of standard deviations of a Gaussian distribution
defined by the observed range of the data. For classification, it is defined as the
range of +/-3 (assumed to be on the logit scale). The default value is 2.

mtry A number for the number (or proportion) of predictors that will be randomly
sampled at each split when creating the tree models (specific engines only).

learn_rate A number for the rate at which the boosting algorithm adapts from iteration-to-
iteration (specific engines only). This is sometimes referred to as the shrinkage
parameter.

loss_reduction A number for the reduction in the loss function required to split further (specific
engines only).

sample_size A number for the number (or proportion) of data that is exposed to the fitting
routine. For xgboost, the sampling is done at each iteration while C5.0 samples
once during training.

stop_iter The number of iterations without improvement before stopping (specific engines
only).

committees A non-negative integer (no greater than 100) for the number of members of the
ensemble.

neighbors An integer between zero and nine for the number of training set instances that
are used to adjust the model-based prediction.

max_rules The largest number of rules.
regularization_method

A character string for the type of regularized estimation. Possible values are:
"diagonal", "min_distance", "shrink_cov", and "shrink_mean" (sparsediscrim
engine only).

frac_common_cov, frac_identity
Numeric values between zero and one.

88 update.bag_mars

select_features

TRUE or FALSE. If TRUE, the model has the ability to eliminate a predictor (via
penalization). Increasing adjust_deg_free will increase the likelihood of re-
moving predictors.

adjust_deg_free

If select_features = TRUE, then acts as a multiplier for smoothness. Increase
this beyond 1 to produce smoother models.

mixture A number between zero and one (inclusive) denoting the proportion of L1 regu-
larization (i.e. lasso) in the model.

• mixture = 1 specifies a pure lasso model,
• mixture = 0 specifies a ridge regression model, and
• 0 < mixture < 1 specifies an elastic net model, interpolating lasso and

ridge.

Available for specific engines only.

dropout A number between 0 (inclusive) and 1 denoting the proportion of model param-
eters randomly set to zero during model training.

activation A single character string denoting the type of relationship between the original
predictors and the hidden unit layer. The activation function between the hidden
and output layers is automatically set to either "linear" or "softmax" depending
on the type of outcome. Possible values depend on the engine being used.

smoothness An non-negative number representing the the relative smoothness of the class
boundary. Smaller examples result in model flexible boundaries and larger val-
ues generate class boundaries that are less adaptable

Laplace A non-negative value for the Laplace correction to smoothing low-frequency
counts.

weight_func A single character for the type of kernel function used to weight distances be-
tween samples. Valid choices are: "rectangular", "triangular", "epanechnikov",
"biweight", "triweight", "cos", "inv", "gaussian", "rank", or "optimal".

dist_power A single number for the parameter used in calculating Minkowski distance.

predictor_prop The maximum proportion of original predictors that can have non-zero coeffi-
cients for each PLS component (via regularization). This value is used for all
PLS components for X.

num_comp The number of PLS components to retain.

dist A character string for the probability distribution of the outcome. The default is
"weibull".

cost A positive number for the cost of predicting a sample within or on the wrong
side of the margin

margin A positive number for the epsilon in the SVM insensitive loss function (regres-
sion only)

degree A positive number for polynomial degree.

scale_factor A positive number for the polynomial scaling factor.

rbf_sigma A positive number for radial basis function.

update.bag_mars 89

Value

An updated model specification.

Examples

--

model <- C5_rules(trees = 10, min_n = 2)
model
update(model, trees = 1)
update(model, trees = 1, fresh = TRUE)

--

model <- cubist_rules(committees = 10, neighbors = 2)
model
update(model, committees = 1)
update(model, committees = 1, fresh = TRUE)

model <- pls(predictor_prop = 0.1)
model
update(model, predictor_prop = 1)
update(model, predictor_prop = 1, fresh = TRUE)

--

model <- rule_fit(trees = 10, min_n = 2)
model
update(model, trees = 1)
update(model, trees = 1, fresh = TRUE)

model <- boost_tree(mtry = 10, min_n = 3)
model
update(model, mtry = 1)
update(model, mtry = 1, fresh = TRUE)

param_values <- tibble::tibble(mtry = 10, tree_depth = 5)

model |> update(param_values)
model |> update(param_values, mtry = 3)

param_values$verbose <- 0
Fails due to engine argument
model |> update(param_values)

model <- linear_reg(penalty = 10, mixture = 0.1)

90 update.bag_mars

model
update(model, penalty = 1)
update(model, penalty = 1, fresh = TRUE)

Index

.cols (descriptors), 26

.dat (descriptors), 26

.extract_surv_status, 3

.extract_surv_time, 4

.facts (descriptors), 26

.get_prediction_column_names, 4

.get_prediction_column_names(), 4

.lvls (descriptors), 26

.obs (descriptors), 26

.preds (descriptors), 26

.x (descriptors), 26

.y (descriptors), 26
?extract_spec_parsnip, 52
?model_fit, 52

add_rowindex, 5
aorsf, 65
augment.model_fit, 5
auto_ml, 8
autoplot.glmnet (autoplot.model_fit), 7
autoplot.glmnet(), 8
autoplot.model_fit, 7

bag_mars, 9
bag_mlp, 10
bag_tree, 12
bart, 13
boost_tree, 15
boost_tree(), 52
brulee, 41, 42, 48, 54
brulee_two_layer, 48

C5.0, 12, 15, 17, 24
C5.0_train(), 17
C50::C5.0(), 18
C50::C5.0Control(), 18
C5_rules, 17
case_weights, 18
case_weights_allowed, 19
cforest_train (ctree_train), 20

control_parsnip, 20
control_parsnip(), 35, 36
ctree_train, 20
Cubist, 22
Cubist::cubist(), 24
Cubist::cubistControl(), 24
cubist_rules, 22

dbarts, 13
decision_tree, 24
descriptors, 26
discrim_flexible, 27
discrim_linear, 29
discrim_linear(), 32
discrim_quad, 30
discrim_quad(), 32
discrim_regularized, 31

earth, 9, 27, 44
extract-parsnip, 33
extract_fit_engine.model_fit

(extract-parsnip), 33
extract_fit_time.model_fit

(extract-parsnip), 33
extract_parameter_dials.model_spec

(extract-parsnip), 33
extract_parameter_set_dials.model_spec

(extract-parsnip), 33
extract_spec_parsnip.model_fit

(extract-parsnip), 33

fit, 67, 68
fit(), 9–11, 13, 14, 16–19, 23–25, 28, 30–32,

37, 38, 42–45, 49, 52, 55, 56, 58–60,
63, 64, 66, 70, 74–78

fit.model_spec, 34
fit.model_spec(), 5, 6, 20, 33, 53, 61
fit_xy, 52
fit_xy(), 19, 74
fit_xy.model_spec (fit.model_spec), 34

91

92 INDEX

fit_xy.model_spec(), 5, 53
frequency_weights(), 19

gee, 41, 42, 63
gen_additive_mod, 37
generalized additive models, 50
get_encoding(), 36
ggrepel::geom_label_repel(), 8
glance.model_fit, 38
glm, 41, 42, 63
glm_grouped, 39
glm_grouped(), 39
glmer, 41, 42, 63
glmnet, 41, 42, 54, 63
gls, 41
grf, 65

h2o, 8, 15, 41, 42, 48, 54, 57, 63, 65, 69
hardhat::frequency_weights(), 19, 35
hardhat::importance_weights(), 19, 35
hardhat::is_case_weights(), 35
hurdle, 63

importance_weights(), 19
injection operator, 9–11, 13, 14, 16, 18,

23, 25, 28, 30–32, 37, 42, 43, 45, 49,
55, 58, 59, 63, 64, 66, 70, 75, 76, 78

keras, 41, 43, 48, 55
kernlab, 74, 75, 77
kknn, 59
klaR, 31, 57

LiblineaR, 43, 74
lightgbm, 15
linear_reg, 40
linear_reg(), 33, 52
lm, 41
lme, 41
lmer, 41
logistic_reg, 42
logistic_reg(), 42, 55

mars, 44
MASS, 29, 30
max_mtry_formula, 45
maybe_data_frame (maybe_matrix), 46
maybe_matrix, 46
mboost, 15
mda, 29

mgcv, 37
min_cols, 47
min_rows (min_cols), 47
mixOmics, 62
mlp, 48
model fit, 5, 57
model specification, 19, 33, 67, 68, 71, 72,

79, 86
model specifications, 49
model_fit, 49
model_formula, 50
model_spec, 50, 52
multi_predict, 56
multinom_reg, 54
multinom_reg(), 44

naive_Bayes, 57
naivebayes, 57
nearest_neighbor, 59
nnet, 10, 48, 54
null_model, 60

parsnip_addin, 62
parsnip_update (update.bag_mars), 80
partykit, 24, 65
partykit::cforest(), 20, 21
partykit::ctree(), 20, 21
partykit::ctree_control(), 20
pls, 62
poisson_reg, 63
poisson_reg(), 73
predict, 49
predict(), 74

quantreg, 41
quosures, 9–11, 13, 14, 16, 18, 23, 25, 28,

30–32, 37, 42, 43, 45, 49, 55, 58, 59,
63, 64, 66, 70, 75, 76, 78

rand_forest, 65
randomForest, 65
ranger, 65
repair_call, 66
req_pkgs, 68
required_pkgs.model_fit

(required_pkgs.model_spec), 67
required_pkgs.model_spec, 67
rpart, 12, 24
rule_fit, 69

INDEX 93

sda, 29
set_args, 71
set_engine, 72
set_engine(), 9–11, 13, 14, 16–18, 23–25,

28, 30–32, 35–38, 42–45, 49, 55, 56,
58–60, 63, 64, 66, 70, 75–78

set_mode (set_args), 71
show_engines, 73
show_engines(), 72
spark, 15, 24, 41, 43, 55, 65
sparse_data, 74
sparsediscrim, 29, 30
stan, 41, 43, 63
stan_glmer, 41, 43, 63
stats::contr.treatment(), 35
stats::glm(), 39
survival::Surv(), 3, 4, 6
svm_linear, 74
svm_poly, 75
svm_rbf, 77

tibble::tibble(), 78
tidy.model_fit, 78
tidyr::unnest(), 6
translate, 79

update(), 9–11, 13, 14, 17, 18, 24, 25, 28,
30–32, 38, 42, 44, 45, 49, 56, 58, 60,
63, 64, 66, 70, 75, 76, 78

update.bag_mars, 80
update.bag_mlp (update.bag_mars), 80
update.bag_tree (update.bag_mars), 80
update.bart (update.bag_mars), 80
update.boost_tree (update.bag_mars), 80
update.C5_rules (update.bag_mars), 80
update.cubist_rules (update.bag_mars),

80
update.decision_tree (update.bag_mars),

80
update.discrim_flexible

(update.bag_mars), 80
update.discrim_linear

(update.bag_mars), 80
update.discrim_quad (update.bag_mars),

80
update.discrim_regularized

(update.bag_mars), 80
update.gen_additive_mod

(update.bag_mars), 80

update.linear_reg (update.bag_mars), 80
update.logistic_reg (update.bag_mars),

80
update.mars (update.bag_mars), 80
update.mlp (update.bag_mars), 80
update.multinom_reg (update.bag_mars),

80
update.naive_Bayes (update.bag_mars), 80
update.nearest_neighbor

(update.bag_mars), 80
update.pls (update.bag_mars), 80
update.poisson_reg (update.bag_mars), 80
update.proportional_hazards

(update.bag_mars), 80
update.rand_forest (update.bag_mars), 80
update.rule_fit (update.bag_mars), 80
update.surv_reg (update.bag_mars), 80
update.survival_reg (update.bag_mars),

80
update.svm_linear (update.bag_mars), 80
update.svm_poly (update.bag_mars), 80
update.svm_rbf (update.bag_mars), 80

with the parsnip mgcv engine, 51

xgb_train(), 17
xgboost, 15
xrf, 69
xrf::xrf.formula(), 70

zeroinfl, 63

	.extract_surv_status
	.extract_surv_time
	.get_prediction_column_names
	add_rowindex
	augment.model_fit
	autoplot.model_fit
	auto_ml
	bag_mars
	bag_mlp
	bag_tree
	bart
	boost_tree
	C5_rules
	case_weights
	case_weights_allowed
	control_parsnip
	ctree_train
	cubist_rules
	decision_tree
	descriptors
	discrim_flexible
	discrim_linear
	discrim_quad
	discrim_regularized
	extract-parsnip
	fit.model_spec
	gen_additive_mod
	glance.model_fit
	glm_grouped
	linear_reg
	logistic_reg
	mars
	max_mtry_formula
	maybe_matrix
	min_cols
	mlp
	model_fit
	model_formula
	model_spec
	multinom_reg
	multi_predict
	naive_Bayes
	nearest_neighbor
	null_model
	parsnip_addin
	pls
	poisson_reg
	rand_forest
	repair_call
	required_pkgs.model_spec
	req_pkgs
	rule_fit
	set_args
	set_engine
	show_engines
	sparse_data
	svm_linear
	svm_poly
	svm_rbf
	tidy.model_fit
	translate
	update.bag_mars
	Index

