Package ‘reproducible’

January 8, 2026

Type Package
Title Enhance Reproducibility of R Code

Description A collection of high-level, machine- and OS-independent tools
for making reproducible and reusable content in R.
The two workhorse functions are 'Cache()' and 'prepInputs()'.
'Cache()' allows for nested caching, is robust to environments and objects
with environments (like functions), and deals with some classes of
file-backed R objects e.g., from 'terra' and 'raster' packages.
Both functions have been developed to be foundational components of data
retrieval and processing in continuous workflow situations. In both functions,
efforts are made to make the first and subsequent calls of functions have
the same result, but faster at subsequent times by way of checksums
and digesting. Several features are still under development, including
cloud storage of cached objects allowing for sharing between users. Several
advanced options are available, see '?reproducibleOptions()'.

SystemRequirements 'unrar' (Linux/macOS) or '7-Zip' (Windows) to work
with "rar’ files.

URL https://reproducible.predictiveecology.org,
https://github.com/PredictiveEcology/reproducible

Date 2026-01-07

Version 3.0.0

Depends R (>=4.3)

Imports cli, data.table (>= 1.10.4), digest, filelock, fpCompare, fs,
lobstr, methods, stats, tools, utils

Suggests archive, covr, curl (>= 7.0.0), DBI, future, geodata, glue,
googledrive, httr, httr2 (>= 1.2.1), knitr, parallel,
parallelly, gs2, raster (>= 3.5-15), RCurl (>= 1.95-4.8),
rlang, rmarkdown, RSQLite, R.utils, rvest, sf, sp (>= 1.4-2),
terra (>= 1.7-20), testthat, withr

Encoding UTF-8
Language en-CA
License GPL-3

https://reproducible.predictiveecology.org
https://github.com/PredictiveEcology/reproducible

VignetteBuilder knitr, rmarkdown

BugReports https://github.com/PredictiveEcology/reproducible/issues
ByteCompile yes
RoxygenNote 7.3.3

Collate 'DBI.R' 'messages.R' 'GPT2.R' 'cache-helpers.R'
'cache-internals.R' 'robustDigest.R' 'cache.R' 'cacheGeo.R'
'checksums.R' 'cloud.R' 'convertPaths.R' 'copy.R' 'download.R'
'downloadTileAndUpload.R' 'exportedMethods.R' 'gis.R'
'helpers.R' 'listNamed.R' 'objectSize.R' 'options.R’

'‘packages.R' 'paths.R' 'pipe.R' 'postProcess.R’
"‘postProcessTo.R' 'preProcess.R' 'prepInputs.R’
'reproducible-deprecated.R' 'reproducible-package.R' 'search.R'
'showCacheEtc.R' 'spatialObjects-class.R' 'terra-migration.R’
'zzz.R’

NeedsCompilation no

Author Eliot] B Mclntire [aut, cre] (ORCID:
<https://orcid.org/0000-0002-6914-8316>),
Alex M Chubaty [aut] (ORCID: <https://orcid.org/0000-0001-7146-8135>),
Tati Micheletti [ctb] (ORCID: <https://orcid.org/0000-0003-4838-8342>),
Ceres Barros [ctb] (ORCID: <https://orcid.org/0000-0003-4036-977X>),
Ian Eddy [ctb] (ORCID: <https://orcid.org/0000-0001-7397-2116>),
His Majesty the King in Right of Canada, as represented by the Minister
of Natural Resources Canada [cph]

Maintainer Eliot J B Mclntire <eliot.mcintire@canada.ca>
Repository CRAN
Date/Publication 2026-01-08 14:40:02 UTC

Contents

reproducible-package Lo
.addTagsRepo o . o L e e
debugCache e
filemove
AsGridded . . L L. L
dsMemoised L
0bjSizeWithTry o e
PrefixX ..o e e
.prepareFileBackedRaster L Lo
xremoveCacheAtts oL L
LequireNamespace e e e
setSubAttrInListo L L
wherelnStack L.
GWIAD e e e e e e e e e e e e e e
assessDataType L
basename2 L

Contents

https://github.com/PredictiveEcology/reproducible/issues
https://orcid.org/0000-0002-6914-8316
https://orcid.org/0000-0001-7146-8135
https://orcid.org/0000-0003-4838-8342
https://orcid.org/0000-0003-4036-977X
https://orcid.org/0000-0001-7397-2116

Contents

3
Cache e e e e 21
CacheDigest e 32
CacheGeo e 33
cacheld e e 36
checkAndMakeCloudFolderID 36
checkPath e 37
checkRelative e e 39
Checksums e e e e e 39
cloudDownload e 42
compareNA e e 43
convertCallToCommonFormat 43
convertPaths e e 44
COPY - - o o e e 45
copySingleFile 47
createCache e e e e e 48
detectActiveCoOres e e e e e e 52
determineFilename 53
downloadFile e 54
downloadRemote e e 56
extractFromArchive 58
Filenames e 59
fixErrorsIn e e e 61
gdalProject 61
getRelative 63
harmonizeCall e e 65
internetEXists L. e e e e e e e e e e e 65
isUpdated e 66
keepOrigGeom e 66
HnkOrCopy o o e e e e e 67
ListNamed e e 68
loadFile e e 69
matchCall2 e e e 70
mergeCache L e 70
messageDF 72
minFn e e e e e 74
movedCache e e e e e 75
normPath 76
numCoresToUse e 78
objSize e e 79
paddedFloatToChar 80
Path-class e 81
POStPIOCess e e e e e e 82
postProcessTo L 85
preplnputso e 90
preplnputsWithTiles 96
preProcessParams L e 98
purgeChecksums 101

rasterRead 101

4 reproducible-package

remapFilenames e e e e 102
reproducibleOptions e e 102
TELTY o v v e 106
saveToCache e 107
searchFull e 108
setrandomseed L L 109
showCache e 110
studyAreaName o e 114
tempdir2 e e e 115
tempfile2o e e 116
unrarPath e e 116
usesPointer L e e e 117
writeFuture e 117
Index 119

reproducible-package The reproducible package

Description

This package aims at making high-level, robust, machine and OS independent tools for making
deeply reproducible and reusable content in R. The core user functions are Cache and prepInputs.
Each of these is built around many core and edge cases required to have reproducible code of
arbitrary complexity.

Main Tools

There are many elements within the reproducible package. However, there are currently two main
ones that are critical for reproducible research. The key element for reproducible research is that
the code must always return the same content every time it is run, but it must be vastly faster the
2nd, 3rd, 4th etc, time it is run. That way, the entire code sequence for a project of arbitrary size
can be run from the start every time.

Cache(): A robust wrapper for any function, including those with environments, disk-backed stor-
age (currently on Raster) class), operating-system independent, whose first time called will
execute the function, second time will compare the inputs to a database of entries, and recover
the first result if inputs are identical. If options("reproducible.useMemoise” = TRUE), the
second time will be very fast as it will recover the answer from RAM.

prepInputs()for other specifics for other classes.: Download, or load objects, and possibly post-
process them. The main advantage to using this over more direct routes is that it will automat-
ically build checksums tables, use Cache internally where helpful, and possibly run a variety
of post-processing actions. This means this function can also itself be cached for even more
speed. This allows all project data to be stored in custom cloud locations or in their original
online data repositories, without altering code between the first, second, third, etc., times
the code is run.

.addTagsRepo 5

Package options

See reproducibleOptions() for a complete description of package options() to configure be-
haviour.

Author(s)
Maintainer: Eliot] B Mclntire <eliot.mcintire@canada.ca> (ORCID)
Authors:
e Alex M Chubaty <achubaty@for-cast.ca> (ORCID)

Other contributors:

e Tati Micheletti <tati.micheletti@gmail.com> (ORCID) [contributor]
¢ Ceres Barros <ceres.barros@ubc. ca> (ORCID) [contributor]
* lan Eddy <ian.eddy@nrcan-rncan.gc.ca> (ORCID) [contributor]

» His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources
Canada [copyright holder]

See Also
Useful links:
* https://reproducible.predictiveecology.org

e https://github.com/PredictiveEcology/reproducible

* Report bugs at https://github.com/PredictiveEcology/reproducible/issues

.addTagsRepo Add a Tag to a Cached Object in the Repository

Description

This hidden function appends a single tag (key-value pair) to the metadata of a cached object iden-
tified by its cacheId. Tags can be stored either in a database (via DBI) or in a file-based cache
system.

Updates the value of an existing tag for a cached object identified by its cacheId. If the tag does
not exist and add = TRUE, the tag will be added. This function supports both database-backed and
file-based cache systems.

https://orcid.org/0000-0002-6914-8316
https://orcid.org/0000-0001-7146-8135
https://orcid.org/0000-0003-4838-8342
https://orcid.org/0000-0003-4036-977X
https://orcid.org/0000-0001-7397-2116
https://reproducible.predictiveecology.org
https://github.com/PredictiveEcology/reproducible
https://github.com/PredictiveEcology/reproducible/issues

6 .addTagsRepo

Usage

.addTagsRepo(
cacheld,
cachePath = getOption("reproducible.cachePath”),
tagKey = character(),
tagValue = character(),
cacheSaveFormat = getOption("reproducible.cacheSaveFormat”),
drv = getDrv(getOption("reproducible.drv”, NULL)),
conn = getOption("reproducible.conn”, NULL)
)

.updateTagsRepo(
cacheld,
cachePath = getOption("reproducible.cachePath”),
tagKey = character(),
tagValue = character(),
add = TRUE,
cacheSaveFormat = getOption("reproducible.cacheSaveFormat”),
drv = getDrv(getOption("reproducible.drv”, NULL)),
conn = getOption("reproducible.conn”, NULL)

)
Arguments
cacheld character (1) Unique identifier of the cached object. Must be of length 1.
cachePath character (1) Path to the cache directory. Defaults to getOption("reproducible.cachePath”).
tagKey character (1) The key for the tag. Must be supplied.
tagValue character (1) The new value for the tag. Must be supplied
cacheSaveFormat
character (1) Format used for saving cache files. Defaults to getOption("reproducible.cacheSaveF«
drv A DBI driver object. Defaults to getDrv(getOption("reproducible.drv”,
NULL)).
conn A DBI connection object. If NULL, a new connection is created internally.
add logical(1) If TRUE, adds the tag if it does not exist. Defaults to TRUE.
Details

This function is primarily used internally by the reproducible package to maintain metadata about
cached objects. It supports both database-backed and file-based caching systems.

 If useDBI() returns TRUE, the tag update is performed in the database table.
* If no rows are affected and add = TRUE, the tag is inserted using . addTagsRepo().

* For file-based caches, the function modifies the tag in the corresponding metadata file.

.debugCache

Value

NULL (invisibly). The function is called for its side effects.
NULL (invisibly). Called for its side effects.

See Also

.addTagsRepo() for adding tags without updating.

Examples

Not run:

a <- Cache(rnorm(1))

.addTagsRepo(cacheld = gsub("cacheld:", "", attr(a, "tags")),
tagKey = "status”, tagValue = "processed")

showCache() # last entry is the above line

End(Not run)

Not run:

a <- Cache(rnorm(1))

Update an existing tag

.updateTagsRepo(cacheld = gsub("cacheld:"”, "", attr(a, "tags")),
tagKey = "status”, tagValue = "second")

Add a tag if it doesn't exist
.updateTagsRepo(cacheld = gsub("cacheld:”, "", attr(a, "tags")),
tagKey = "status"”, tagValue = "new", add = TRUE)

End(Not run)

.debugCache Attach debug info to return for Cache

Description

Internal use only. Attaches an attribute to the output, usable for debugging the Cache.

Usage
.debugCache(obj, preDigest, ..., fullCall)
Arguments
obj An arbitrary R object.
preDigest A list of hashes.

Dots passed from Cache

fullCall The original call to Cache

8 .IsGridded

Value

The same object as obj, but with 2 attributes set.

Author(s)

Eliot MclIntire

.file.move Move a file to a new location — Defunct — use hardLinkOrCopy

Description

This will first try to file.rename, and if that fails, then it will file.copy then file.remove.

Usage

.file.move(from, to, overwrite = FALSE)

Arguments

from, to character vectors, containing file names or paths.

overwrite logical indicating whether to overwrite destination file if it exists.
Value

Logical indicating whether operation succeeded.

.isGridded Some spatial helper functions

Description

Some spatial helper functions

Usage
.isGridded(x)

.isVector(x)
.isSF(x)
.isSpat(x)
.isSpatialAny(x)

.isCRSany(x)

.IsMemoised 9

Arguments

X A spatial object.

Details

.isGridded returns TRUE if the object is a SpatRaster or Raster

.isVector returns TRUE if the object is SpatVector, spatial or sf

. 1sSF returns TRUE if the object is sf or sfc

.isSpat returns TRUE if the object is SpatVector or SpatRaster

.isSpatialAny returns TRUE if the object returns TRUE for .isGridded or .isVector

Value

Logical.

.isMemoised Evaluate whether a cacheld is memoised

Description

Intended for internal use. Exported so other packages can use this function.

Usage

.isMemoised(cacheld, cachePath = getOption("reproducible.cachePath"))

Arguments

cacheld Character string. If passed, this will override the calculated hash of the inputs,
and return the result from this cacheId in the cachePath. Setting this is equiv-
alent to manually saving the output of this function, i.e., the object will be on
disk, and will be recovered in subsequent This may help in some particularly
finicky situations where Cache is not correctly detecting unchanged inputs. This
will guarantee the object will be identical each time; this may be useful in oper-
ational code.

cachePath A repository used for storing cached objects. This is optional if Cache is used
inside a SpaDES module.

Value

A logical, length 1 indicating whether the cacheId is memoised.

10 .prefix

.objSizeWithTry lobstr::obj_size with a try to address issue #72

Description

It is not clear why, but it appears that running lobstr: :obj_size again, after a bad binding error,
it will work.

Usage

.0bjSizeWithTry(x, useTry = TRUE)

Arguments
X An object
useTry Logical. If TRUE, the default, then it will use try. Can optionally avoid this if set
to FALSE. The try takes sufficient extra compute time that it is worth avoiding
it if possible.
Value

The size of an object, using lobstr::obj_size or object.size if the first fails

.prefix Add a prefix or suffix to the basename part of a file path

Description

Prepend (or postpend) a filename with a prefix (or suffix). If the directory name of the file cannot
be ascertained from its path, it is assumed to be in the current working directory.

Usage
.prefix(f, prefix = "")
.suffix(f, suffix = "")
Arguments
f A character string giving the name/path of a file.
prefix A character string to prepend to the filename.

suffix A character string to postpend to the filename.

.prepareFileBackedRaster 11

Value

A character string or vector with the prefix pre-pended or suffix post-pended on the basename of
the f, before the file extension.

Author(s)

Jean Marchal and Alex Chubaty

Examples

file's full path is specified (i.e., dirname is known)

myFile <- file.path("~/data”, "file.tif")

.prefix(myFile, "small_") ## "/home/username/data/small_file.tif"
.suffix(myFile, "_cropped”) ## "/home/username/data/myFile_cropped.shp”
file's full path is not specified

.prefix("myFile.shp”, "small") ## "./small_myFile.shp"
.suffix("myFile.shp”, "_cropped”) ## "./myFile_cropped.shp”

.prepareFileBackedRaster
Copy the file-backing of a file-backed Raster* object

Description

Rasters are sometimes file-based, so the normal save and copy and assign mechanisms in R don’t
work for saving, copying and assigning. This function creates an explicit file copy of the file that
is backing the raster, and changes the pointer (i.e., filename(object)) so that it is pointing to the
new file.

Usage

.prepareFileBackedRaster(
obj,
repoDir = NULL,
overwrite = FALSE,
drv = getDrv(getOption("reproducible.drv”, NULL)),
conn = getOption("reproducible.conn”, NULL),
verbose = getOption("reproducible.verbose”),

12 .removeCacheAtts

Arguments
obj The raster object to save to the repository.
repoDir Character denoting an existing directory in which an artifact will be saved.
overwrite Logical. Should the raster be saved to disk, overwriting existing file.
drv If using a database backend, drv must be an object that inherits from DBIDriver
(e.g.,RSQLite::SQLite).
conn an optional DBIConnection object, as returned by dbConnect ().
verbose Numeric, -1 silent (where possible), 0 being very quiet, 1 showing more messag-
ing, 2 being more messaging, etc. Default is 1. Above 3 will output much more
information about the internals of Caching, which may help diagnose Caching
challenges. Can set globally with an option, e.g., options('reproducible.verbose' = @) to reduce 1
Not used
Value

A raster object and its newly located file backing. Note that if this is a legitimate Cache repository,
the new location will be a subdirectory called ‘rasters/’ of ‘repoDir/’. If this is not a repository,
the new location will be within repoDir.

Author(s)

Eliot MclIntire

.removeCacheAtts Remove attributes that are highly varying

Description

Remove attributes that are highly varying

Usage

.removeCacheAtts(x)

Arguments

X Any arbitrary R object that could have attributes

.requireNamespace 13

.requireNamespace Provide standard messaging for missing package dependencies

Description

This provides a standard message format for missing packages, e.g., detected via requireNamespace.

Usage

.requireNamespace(
pkg = "methods”,
minVersion = NULL,
stopOnFALSE = FALSE,
messageStart = NULL

)
Arguments
pkg Character string indicating name of package required
minVersion Character string indicating minimum version of package that is needed

stopOnFALSE Logical. If TRUE, this function will create an error (i.e., stop) if the function
returns FALSE; otherwise it simply returns FALSE

messageStart A character string with a prefix of message to provide

Value

A logical or stop if the namespace is not available to be loaded.

.setSubAttrInList Set subattributes within a list by reference

Description

Sets only a single element within a list attribute.

Usage

.setSubAttrInList(object, attr, subAttr, value)

Arguments
object An arbitrary object
attr The attribute name (that is a list object) to change
subAttr The list element name to change

value The new value

14 .wrap

Value

This sets or updates the subAttr element of a list that is located at attr(object, attr), with the
value. This, therefore, updates a sub-element of a list attribute and returns that same object with
the updated attribute.

.wherelInStack Search for objects in the call stack

Description

Normally, this is only used in special, advanced uses. The standard approach to getting an object
from an environment in the call stack is to explicitly pass it into the function.

Usage

.whereInStack(obj, startingEnv = parent.frame())

Arguments
obj Character string. The object name to search.
startingEnv An environment to start searching in.

Value

The environment in which the object exists. It will return the first environment it finds, searching
outwards from where the function is used.

.wrap Deal with class for saving to and loading from Cache or Disk

Description

This generic and some methods will do whatever is required to prepare an object for saving to
disk (or RAM) via e.g., saveRDS. Some objects (e.g., terra’s Spat*) cannot be saved without first
wrapping them. Also, file-backed objects are similar.

.wrap

Usage

.wrap(

)

obj,

cachePath = getOption("reproducible.cachePath”),
preDigest,

drv = getDrv(getOption("reproducible.drv”, NULL)),
conn = getOption("reproducible.conn”, NULL),
verbose = getOption("reproducible.verbose”),
outputObjects = NULL,

cacheld = NULL,

S3 method for class 'list'
.wrap(

obj,

cachePath = getOption("reproducible.cachePath”),
preDigest,

drv = getDrv(getOption("reproducible.drv”, NULL)),
conn = getOption("reproducible.conn”, NULL),
verbose = getOption("reproducible.verbose”),
outputObjects = NULL,

cacheld = NULL,

)

S3 method for class 'environment'

.wrap(
obj,
cachePath = getOption("reproducible.cachePath”),
preDigest,

drv = getDrv(getOption("reproducible.drv”, NULL)),
conn = getOption("reproducible.conn”, NULL),
verbose = getOption("reproducible.verbose”),
outputObjects = NULL,

cacheld = NULL,

)

Default S3 method:

.wrap(
obj,
cachePath = getOption("reproducible.cachePath”),
preDigest,

drv = getDrv(getOption("reproducible.drv”, NULL)),
conn = getOption("reproducible.conn”, NULL),
verbose = getOption("reproducible.verbose”),
outputObjects = NULL,

15

16

)

cacheld = NULL,

Default S3 method:
.unwrap(

)

obj,

cachePath = getOption("reproducible.cachePath”),
cacheld = NULL,

drv = getDrv(getOption("reproducible.drv”, NULL)),
conn = getOption("reproducible.conn”, NULL),

.unwrap(

)

obj,

cachePath = getOption("reproducible.cachePath”),
cacheld = NULL,

drv = getDrv(getOption("reproducible.drv”, NULL)),
conn = getOption("reproducible.conn”, NULL),

S3 method for class 'environment'
.unwrap(

)

obj,

cachePath = getOption("reproducible.cachePath”),
cacheld = NULL,

drv = getDrv(getOption("reproducible.drv”, NULL)),
conn = getOption("reproducible.conn”, NULL),

S3 method for class 'list'
.unwrap(

)

obj,

cachePath = getOption("reproducible.cachePath”),
cacheld = NULL,

drv = getDrv(getOption("reproducible.drv”, NULL)),
conn = getOption("reproducible.conn”, NULL),

S3 method for class 'PackedSpatExtent2'
.unwrap(

obj,
cachePath = getOption("reproducible.cachePath”),
cacheld = NULL,

.wrap

.wrap 17

drv = getDrv(getOption("reproducible.drv”, NULL)),
conn = getOption("reproducible.conn”, NULL),

)...

S3 method for class 'PackedSpatVector2'

.unwrap(
obj,
cachePath = getOption("reproducible.cachePath”),
cacheld = NULL,
drv = getDrv(getOption("reproducible.drv”, NULL)),
conn = getOption("reproducible.conn”, NULL),

)

S3 method for class 'data.table'

.unwrap(
obj,
cachePath = getOption("reproducible.cachePath”),
cacheld = NULL,
drv = getDrv(getOption("reproducible.drv”, NULL)),
conn = getOption("reproducible.conn”, NULL),

)

S3 method for class 'PackedSpatVector'

.unwrap(
obj,
cachePath = getOption("reproducible.cachePath”),
cacheld = NULL,
drv = getDrv(getOption("reproducible.drv”, NULL)),
conn = getOption("reproducible.conn”, NULL),

Arguments

obj Any arbitrary R object.

cachePath A repository used for storing cached objects. This is optional if Cache is used
inside a SpaDES module.

preDigest The list of preDigest that comes from CacheDigest of an object

drv If using a database backend, drv must be an object that inherits from DBIDriver
(e.g.,RSQLite::SQLite).

conn an optional DBIConnection object, as returned by dbConnect().

verbose Numeric, -1 silent (where possible), 0 being very quiet, 1 showing more messag-

ing, 2 being more messaging, etc. Default is 1. Above 3 will output much more
information about the internals of Caching, which may help diagnose Caching
challenges. Can set globally with an option, e.g., options('reproducible.verbose' = @) to reduce 1

18 assessDataType

outputObjects Optional character vector indicating which objects to return. This is only rele-
vant for list, environment (or similar) objects

cacheld Used strictly for messaging. This should be the cacheld of the object being
recovered. Default is NULL.

Arguments passed to methods; default does not use anything in

Value

Returns an object that can be saved to disk e.g., via saveRDS.

Examples

For SpatExtent

if (requireNamespace("terra”)) {
ex <- terra::ext(c(0, 2, 0, 3))
exWrapped <- .wrap(ex)
ex1 <- .unwrap(exWrapped)

}

assessDataType Assess the appropriate raster layer data type

Description

When writing raster-type objects to disk, a datatype can be specified. These functions help identify
what smallest datatype can be used.

Usage

assessDataType(ras, type = "writeRaster")

Default S3 method:

assessDataType(ras, type = "writeRaster")
Arguments
ras The RasterLayer or RasterStack for which data type will be assessed.
type Character. "writeRaster” (default) or "GDAL" (defunct) to return the recom-

mended data type for writing from the raster packages, respectively, or "projectRaster”
to return recommended resampling type.

Value

A character string indicating the data type of the spatial layer (e.g., "INT2U"). See terra: :datatype()

assessDataType

Examples

if (requireNamespace("terra”, quietly = TRUE)) {
LOG1S
rasOrig <- terra::rast(ncols = 10, nrows = 10)
ras <- rasOrig
ras[] <- rep(c(0,1),50)
assessDataType(ras)

ras <- rasOrig
ras[] <- rep(c(0,1),50)
assessDataType(ras)

ras[] <- rep(c(TRUE,FALSE),50)
assessDataType(ras)

ras[] <- c(NA, NA, rep(c(0,1),49))
assessDataType(ras)

ras <- rasOrig
ras[] <- c(@, NaN, rep(c(0,1),49))
assessDataType(ras)

INT1S
ras[] <- -1:98
assessDataType(ras)

ras[] <- c(NA, -1:97)
assessDataType(ras)

INTIU

ras <- rasOrig
ras[] <- 1:100
assessDataType(ras)

ras[] <- c(NA, 2:100)
assessDataType(ras)

INT2U

ras <- rasOrig

ras[] <- round(runif(100, min
assessDataType(ras)

64000, max = 65000))

INT2S

ras <- rasOrig

ras[] <- round(runif(100, min
assessDataType(ras)

-32767, max = 32767))

ras[54] <- NA
assessDataType(ras)

INT4U

19

20

assessDataType

ras <- rasOrig
ras[] <- round(runif(10@, min
assessDataType(ras)

0, max = 500000000))

ras[14] <- NA
assessDataType(ras)

INT4S

ras <- rasOrig

ras[] <- round(runif(100, min
assessDataType(ras)

-200000000, max = 200000000))

ras[14] <- NA
assessDataType(ras)

FLT4S

ras <- rasOrig

ras[] <- runif(100, min = -10, max = 87)
assessDataType(ras)

ras <- rasOrig
ras[] <- round(runif (100, min = -3.4e+26, max = 3.4e+28))
assessDataType(ras)

ras <- rasOrig
ras[] <- round(runif(10@, min
assessDataType(ras)

3.4e+26, max = 3.4e+28))

ras <- rasOrig
ras[] <- round(runif (100, min = -3.4e+26, max = -1))
assessDataType(ras)

FLT8S

ras <- rasOrig

ras[] <- c(-Inf, 1, rep(c(0,1),49))
assessDataType(ras)

ras <- rasOrig
ras[] <- c(Inf, 1, rep(c(0,1),49))
assessDataType(ras)

ras <- rasOrig
ras[] <- round(runif (100, min = -1.7e+30, max = 1.7e+308))
assessDataType(ras)

ras <- rasOrig
ras[] <- round(runif(100, min
assessDataType(ras)

1.7e+30, max = 1.7e+308))

ras <- rasOrig
ras[] <- round(runif (100, min = -1.7e+308, max = -1))
assessDataType(ras)

basename2 21

2 layer with different types LOG1S and FLT8S

ras <- rasOrig

ras[] <- rep(c(0,1),50)

rasl <- rasOrig

ras1[] <- round(runif(100, min = -1.7e+308, max = -1))
sta <- c(ras, rasl)

assessDataType(sta)

basename?2 A version of base: :basename that is NULL resistant

Description

A version of base: :basename that is NULL resistant

Usage

basename2(x)

Arguments

X A character vector of paths

Value

NULL if x is NULL, otherwise, as basename.

Same as base: :basename()

Cache Saves a wide variety function call outputs to disk and optionally RAM,
for recovery later

Description

A function that can be used to wrap around other functions to cache function calls for later use.
This is normally most effective when the function to cache is slow to run, yet the inputs and outputs
are small. The benefit of caching, therefore, will decline when the computational time of the "first"
function call is fast and/or the argument values and return objects are large. The default setting (and
first call to Cache) will always save to disk. The 2nd call to the same function will return from disk,
unless options(”reproducible.useMemoise” = TRUE), then the 2nd time will recover the object
from RAM and is normally much faster (at the expense of RAM use).

22 Cache

Usage

Cache(
FUN,

dryRun = getOption("reproducible.dryRun”, FALSE),
notOlderThan = NULL,

.objects = NULL,

.cacheExtra = NULL,

.functionName = NULL,

.cacheChaining = getOption("reproducible.cacheChaining”, NULL),
outputObjects = NULL,

algo = "xxhash64"”,

cachePath = NULL,

length = getOption("reproducible.length”, Inf),

userTags = c(),

omitArgs = NULL,

classOptions = list(),

debugCache = character(),

quick = getOption("reproducible.quick"”, FALSE),

verbose = getOption("reproducible.verbose”, 1),

cacheld = NULL,

cacheSaveFormat = getOption("reproducible.cacheSaveFormat"”),
useCache = getOption("reproducible.useCache”, TRUE),
useCloud = getOption("reproducible.useCloud”, FALSE),
cloudFolderID = getOption("reproducible.cloudFolderID”, NULL),
showSimilar = getOption("reproducible.showSimilar"”, FALSE),
drv = getOption("reproducible.drv”, NULL),

conn = getOption("reproducible.conn”, NULL)

)

cache2(
FUN,

dryRun = getOption("reproducible.dryRun”, FALSE),
notOlderThan = NULL,

.objects = NULL,

.cacheExtra = NULL,

.functionName = NULL,

.cacheChaining = getOption("reproducible.cacheChaining”, NULL),
outputObjects = NULL,

algo = "xxhash64"”,

cachePath = NULL,

length = getOption("reproducible.length”, Inf),
userTags = c(),

omitArgs = NULL,

classOptions = list(),

debugCache = character(),

quick = getOption("reproducible.quick"”, FALSE),

Cache 23

verbose = getOption("reproducible.verbose”, 1),

cacheld = NULL,

cacheSaveFormat = getOption("reproducible.cacheSaveFormat”),
useCache = getOption("reproducible.useCache”, TRUE),

useCloud = getOption("reproducible.useCloud”, FALSE),
cloudFolderID = getOption("reproducible.cloudFolderID”, NULL),
showSimilar = getOption("reproducible.showSimilar"”, FALSE),
drv = getOption("reproducible.drv”, NULL),

conn = getOption("reproducible.conn”, NULL)

)

CacheV2(
FUN,

notOlderThan = NULL,

.objects = NULL,

.cacheExtra = NULL,

.functionName = NULL,

outputObjects = NULL,

algo = "xxhash64",

cacheRepo = NULL,

cachePath = NULL,

length = getOption("reproducible.length”, Inf),
compareRasterFilelLength,

userTags = c(),

omitArgs = NULL,

classOptions = list(),

debugCache = character(),

makeCopy = FALSE,

quick = getOption("reproducible.quick"”, FALSE),
verbose = getOption("reproducible.verbose”, 1),
cacheld = NULL,

useCache = getOption("reproducible.useCache”, TRUE),
useCloud = FALSE,

cloudFolderID = NULL,

showSimilar = getOption("reproducible.showSimilar”, FALSE),
drv = getDrv(getOption("reproducible.drv”, NULL)),
conn = getOption("reproducible.conn”, NULL)

)
Arguments
FUN Either a function (e.g., rnorm), a function call (e.g., rnorm(1)), or an unevalu-
ated function call (e.g., using quote()).
Arguments passed to FUN, if FUN is not an expression.
dryRun See reproducibleOptions.

notOlderThan A time. Load an object from the Cache if it was created after this.

Cache

.objects Character vector of objects to be digested. This is only applicable if there is
a list, environment (or similar) with named objects within it. Only this/these
objects will be considered for caching, i.e., only use a subset of the list, environ-
ment or similar objects. In the case of nested list-type objects, this will only be
applied outermost first.

.cacheExtra A an arbitrary R object that will be included in the CacheDigest, but otherwise
not passed into the FUN. If the user supplies a named list, then Cache will report
which individual elements of . cacheExtra have changed when options(”reproducible.showSimilar
= TRUE). This can allow a user more control and understanding for debugging.

.functionName A an arbitrary character string that provides a name that is different than the
actual function name (e.g., "rnorm") which will be used for messaging. This can
be useful when the actual function is not helpful for a user, such as do. call.

.cacheChaining A logical or a the name of a function. If TRUE, then the current Cache call
will evaluate the function "outside" the Cache call (via sys.function(-1)) and
attach the digest of that outer function to the entry for this Cache call. This
will then be used by any subsequent Cache call within the same function. If
the outer function is unchanged, and there is one or more objects that had been
returned by a previous Cache call, then those objects will not be digested; rather
their cacheld tag will be used in place of a new digest. This should cause no
change in Caching outcomes, and it should be faster in cases where there are
several Cache calls within the same function. If FALSE (current default), then
this feature is not used. If set to NULL (i.e., unset, the current default), then it
will not use cache chaining, but it will attach more information to the Cache
entries for each cacheld, as well as new entries for "surroundingFunction”
digest, so that if a user switches to . cacheChaining = TRUE, then it will be able
to begin using cache chaining without needing to rerun the calls again. Can be
set by an option.

outputObjects Optional character vector indicating which objects to return. This is only rele-
vant for list, environment (or similar) objects

algo The digest algorithm to use. Default xxhash64 (see digest::digest() for
others).
cachePath A repository used for storing cached objects. This is optional if Cache is used

inside a SpaDES module.

length Numeric. If the element passed to Cache is a Path class object (from e.g.,
asPath(filename)) or it is a Raster with file-backing, then this will be passed
todigest::digest, essentially limiting the number of bytes to digest (for speed).

This will only be used if quick = FALSE. Defaultis getOption("reproducible.length"),
which is set to Inf.

userTags A character vector with descriptions of the Cache function call. These will be
added to the Cache so that this entry in the Cache can be found using userTags
e.g., via showCache().

omitArgs Optional character string of arguments in the FUN to omit from the digest.

classOptions Optional list. This will pass into . robustDigest for specific classes. Should be
options that the . robustDigest knows what to do with.

debugCache Character or Logical. Either "complete” or "quick” (uses partial matching, so

n.n n_n

c" or "q" work). TRUE is equivalent to "complete”. If "complete”, then the

Cache 25

returned object from the Cache function will have two attributes, debugCache1
and debugCache?2, which are the entire 1ist(...) and that same object, but af-
ter all .robustDigest calls, at the moment that it is digested using digest,
respectively. This attr(mySimOut, "debugCache2") can then be compared
to a subsequent call and individual items within the object attr(mySimOut,
"debugCachel1”) can be compared. If "quick”, then it will return the same two
objects directly, without evalutating the FUN(. . .).

quick Logical or character. If TRUE, no disk-based information will be assessed, i.e.,
only memory content. See Details section about quick in Cache().

verbose Numeric, -1 silent (where possible), 0 being very quiet, 1 showing more messag-
ing, 2 being more messaging, etc. Default is 1. Above 3 will output much more
information about the internals of Caching, which may help diagnose Caching
challenges. Can set globally with an option, e.g., options('reproducible.verbose' = @) to reduce 1

cacheld Character string. If passed, this will override the calculated hash of the inputs,
and return the result from this cachelId in the cachePath. Setting this is equiv-
alent to manually saving the output of this function, i.e., the object will be on
disk, and will be recovered in subsequent This may help in some particularly
finicky situations where Cache is not correctly detecting unchanged inputs. This
will guarantee the object will be identical each time; this may be useful in oper-
ational code.

cacheSaveFormat
Character string: currently either gs or rds. Defaults to getOption("reproducible.cacheSaveFormat’
gs may be faster but appears to have narrower range of conditions that work; rds
is safer, and may be slower.

useCache Logical, numeric or "overwrite” or "devMode”. See details.
useCloud Logical. See Details.

cloudFolderID A googledrive dribble of a folder, e.g., using drive_mkdir(). If left as NULL,
the function will create a cloud folder with name from last two folder lev-
els of the cachePath path, : paste@(basename(dirname(cachePath)), "_",
basename (cachePath)). This cloudFolderID will be added to options("reproducible.cloudFolde!
but this will not persist across sessions. If this is a character string, it will treat

this as a folder name to create or use on GoogleDrive.

showSimilar A logical or numeric. Useful for debugging. If TRUE or 1, then if the Cache does
not find an identical archive in the cachePath, it will report (via message) the
next most recent similar archive, and indicate which argument(s) is/are different.
If a number larger than 1, then it will report the N most recent similar archived
objects.

drv If using a database backend, drv must be an object that inherits from DBIDriver
(e.g., RSQLite::SQLite).

conn an optional DBIConnection object, as returned by dbConnect ().

cacheRepo Same as cachePath, but kept for backwards compatibility.

compareRasterFilelLength
Being deprecated; use length.

makeCopy Now deprecated. Ignored if used.

26 Cache

Details

There are other similar functions in the R universe. This version of Cache has been used as part of
a robust continuous workflow approach. As a result, we have tested it with many "non-standard" R
objects (e.g., RasterLayer, Spat objects) and environments (which are always unique, so do not
cache readily).

This version of the Cache function accommodates those four special, though quite common, cases
by:

1. converting any environments into list equivalents;

2. identifying the dispatched S4 method (including those made through inheritance) before hash-
ing so the correct method is being cached;

3. by hashing the linked file, rather than the raster object. Currently, only file-backed Rasterx*
or Spat* objects are digested (e.g., not ff objects, or any other R object where the data are on
disk instead of in RAM);

4. Uses digest::digest() This is used for file-backed objects as well.

5. Cache will save arguments passed by user in a hidden environment. Any nested Cache func-
tions will use arguments in this order: 1) actual arguments passed at each Cache call; 2) any
inherited arguments from an outer Cache call; 3) the default values of the Cache function. See
section on Nested Caching.

Cache will add a tag to the entry in the cache database called accessed, which will assign the time
that it was accessed, either read or write. That way, cached items can be shown (using showCache)
or removed (using clearCache) selectively, based on their access dates, rather than only by their
creation dates. See example in clearCache().

Value

Returns the value of the function call or the cached version (i.e., the result from a previous call to
this same cached function with identical arguments).

Nested Caching

Commonly, Caching is nested, i.e., an outer function is wrapped in a Cache function call, and one
or more inner functions are also wrapped in a Cache function call. A user can always specify
arguments in every Cache function call, but this can get tedious and can be prone to errors. The
normal way that R handles arguments is it takes the user passed arguments if any, and default
arguments for all those that have no user passed arguments. We have inserted a middle step. The
order or precedence for any given Cache function call is

1. user arguments, 2. inherited arguments, 3. default arguments. At this time, the top level
Cache arguments will propagate to all inner functions unless each individual Cache call has
other arguments specified, i.e., "middle" nested Cache function calls don’t propagate their
arguments to further "inner" Cache function calls. See example.

userTags is unique of all arguments: its values will be appended to the inherited userTags.

Cache 27

quick

The quick argument is attempting to sort out an ambiguity with character strings: are they file
paths or are they simply character strings. When quick = TRUE, Cache will treat these as character
strings; when quick = FALSE, they will be attempted to be treated as file paths first; if there is no
file, then it will revert to treating them as character strings. If user passes a character vector to this,
then this will behave like omitArgs: quick = "file" will treat the argument "file" as character
string.

The most often encountered situation where this ambiguity matters is in arguments about filenames:
is the filename an input pointing to an object whose content we want to assess (e.g., a file-backed
raster), or an output (as in saveRDS) and it should not be assessed. If only run once, the output file
won’t exist, so it will be treated as a character string. However, once the function has been run once,
the output file will exist, and Cache(. . .) will assess it, which is incorrect. In these cases, the user
is advised to use quick = "TheOutputFilenameArgument” to specify the argument whose content
on disk should not be assessed, but whose character string should be assessed (distinguishing it
from omitArgs = "TheOutputFilenameArgument”, which will not assess the file content nor the
character string).

This is relevant for objects of class character, Path and Raster currently. For class character,
it is ambiguous whether this represents a character string or a vector of file paths. If it is known that
character strings should not be treated as paths, then quick = TRUE is appropriate, with no loss of
information. If it is file or directory, then it will digest the file content, or basename (object). For
class Path objects, the file’s metadata (i.e., filename and file size) will be hashed instead of the file
contents if quick = TRUE. If set to FALSE (default), the contents of the file(s) are hashed. If quick =
TRUE, length is ignored. Raster objects are treated as paths, if they are file-backed.

Caching Speed

Caching speed may become a critical aspect of a final product. For example, if the final product is a
shiny app, rerunning the entire project may need to take less then a few seconds at most. There are 3
arguments that affect Cache speed: quick, length, and algo. quick is passed to .robustDigest,
which currently only affects Path and Raster= class objects. In both cases, quick means that little
or no disk-based information will be assessed.

Filepaths

If a function has a path argument, there is some ambiguity about what should be done. Possibilities
include:

1. hash the string as is (this will be very system specific, meaning a Cache call will not work if
copied between systems or directories);
2. hash the basename(path);
3. hash the contents of the file.
If paths are passed in as is (i.e,. character string), the result will not be predictable. Instead, one
should use the wrapper function asPath(path), which sets the class of the string to a Path, and

one should decide whether one wants to digest the content of the file (using quick = FALSE), or just
the filename ((quick = TRUE)). See examples.

28 Cache

Stochasticity or randomness

In general, it is expected that caching will only be used when randomness is not desired, e.g.,
Cache(rnorm(1)) is unlikely to be useful in many cases. However, Cache captures the call that is
passed to it, leaving all functions unevaluated. As a result Cache(glm, x ~y, rnorm(1)) will not
work as a means of forcing a new evaluation each time, as the rnorm(1) is not evaluated before the
call is assessed against the cache database. To force a new call each time, evaluate the randomness
prior to the Cache call, e.g., ran = rnorm(1) then pass this to .cacheExtra, e.g., Cache(glm, x ~
y, .cacheExtra=ran)

drv and conn

By default, drv uses an SQLite database. This can be sufficient for most cases. However, if a user
has dozens or more cores making requests to the Cache database, it may be insufficient. A user can
set up a different database backend, e.g., PostgreSQL that can handle multiple simultaneous read-
write situations. See https://github.com/PredictiveEcology/SpaDES/wiki/Using-alternate-database-backends:

useCache

Logical or numeric. If FALSE or 9, then the entire Caching mechanism is bypassed and the function
is evaluated as if it was not being Cached. Default is getOption("reproducible.useCache")),
which is TRUE by default, meaning use the Cache mechanism. This may be useful to turn all Caching
on or off in very complex scripts and nested functions. Increasing levels of numeric values will
cause deeper levels of Caching to occur (though this may not work as expected in all cases). The
following is no longer supported: Currently, only implemented in postProcess: to do both caching
of inner cropInputs, projectInputs and maskInputs, and caching of outer postProcess, use
useCache = 2; to skip the inner sequence of 3 functions, use useCache = 1. For large objects, this
may prevent many duplicated save to disk events.

If useCache = "overwrite"” (which can be set with options("reproducible.useCache” = "overwrite")),
then the function invoke the caching mechanism but will purge any entry that is matched, and it will
be replaced with the results of the current call.

If useCache = "devMode": The point of this mode is to facilitate using the Cache when functions
and datasets are continually in flux, and old Cache entries are likely stale very often. In devMode,
the cache mechanism will work as normal if the Cache call is the first time for a function OR if it
successfully finds a copy in the cache based on the normal Cache mechanism. It differs from the
normal Cache if the Cache call does not find a copy in the cachePath, but it does find an entry
that matches based on userTags. In this case, it will delete the old entry in the cachePath (iden-
tified based on matching userTags), then continue with normal Cache. For this to work correctly,
userTags must be unique for each function call. This should be used with caution as it is still ex-
perimental. Currently, if userTags are not unique to a single entry in the cachePath, it will default
to the behaviour of useCache = TRUE with a message. This means that "devMode"” is most useful if
used from the start of a project.

useCloud

This is experimental and there are many conditions under which this is known to not work correctly.
This is a way to store all or some of the local Cache in the cloud. Currently, the only cloud option is
Google Drive, via googledrive. For this to work, the user must be or be able to be authenticated with
googledrive: :drive_auth. The principle behind this useCloud is that it will be a full or partial

https://github.com/PredictiveEcology/SpaDES/wiki/Using-alternate-database-backends-for-Cache

Cache 29

mirror of a local Cache. It is not intended to be used independently from a local Cache. To share ob-

jects that are in the Cloud with another person, it requires 2 steps. 1) share the cloudFolderID$id,

which can be retrieved by getOption("reproducible.cloudFolderID")$id after at least one

Cache call has been made. 2) The other user must then set their cacheFolderIDin aCache\(..., reproducible.cloudFol
call or set their option manually options\(\"reproducible.cloudFolderID\" = \"the ID here\"\).

If TRUE, then this Cache call will download (if local copy doesn’t exist, but cloud copy does exist),
upload (local copy does or doesn’t exist and cloud copy doesn’t exist), or will not download nor
upload if object exists in both. If TRUE will be at least 1 second slower than setting this to FALSE, and
likely even slower as the cloud folder gets large. If a user wishes to keep "high-level" control, set this
to getOption("reproducible.useCloud”, FALSE) or getOption("reproducible.useCloud”,
TRUE) (if the default behaviour should be FALSE or TRUE, respectively) so it can be turned on and
off with this option. NOTE: This argument will not be passed into inner/nested Cache calls.)

Object attributes

Users should be cautioned that object attributes may not be preserved, especially in the case of
objects that are file-backed, such as Raster or SpatRaster objects. If a user needs to keep at-
tributes, they may need to manually re-attach them to the object after recovery. With the example of
SpatRaster objects, saving to disk requires terra: :wrap if it is a memory-backed object. When
running terra: :unwrap on this object, any attributes that a user had added are lost.

sideEffect

This feature is now deprecated. Do not use as it is ignored.

Note

As indicated above, several objects require pre-treatment before caching will work as expected.
The function . robustDigest accommodates this. It is an S4 generic, meaning that developers can
produce their own methods for different classes of objects. Currently, there are methods for several
types of classes. See . robustDigest().

Author(s)

Eliot MclIntire

See Also

showCache (), clearCache(), keepCache(), CacheDigest() to determine the digest of a given
function or expression, as used internally within Cache, movedCache(), .robustDigest(), and for
more advanced uses there are several helper functions, e.g., rmFromCache (), CacheStorageDir ()

Examples

data.table::setDTthreads(2)
tmpDir <- tempdir()
opts <- options(reproducible.cachePath = tmpDir)

Usage -- All below are equivalent; even where args are missing or provided,
Cache evaluates using default values, if these are specified in formals(FUN)

Cache

a <- list(Q)

b <- list(fun = rnorm)

bbb <- 1

ee <- new.env(parent = emptyenv())
ee$qgq <- bbb

al[1]1] <- Cache(rnorm(1)) # no evaluation prior to Cache

a[[2]]1 <- Cache(rnorm, 1) # no evaluation prior to Cache

a[[3]] <- Cache(do.call, rnorm, list(1))

a[[4]] <- Cache(do.call(rnorm, list(1)))

a[[5]] <- Cache(do.call(b$fun, list(1)))

a[[6]1] <- Cache(do.call, b$fun, list(1))

al[71]1 <- Cache(b$fun, 1)

a[[8]1] <- Cache(b$fun(1))

a[[10]] <- Cache(quote(rnorm(1)))

a[[11]] <- Cache(stats::rnorm(1))

a[[12]] <- Cache(stats::rnorm, 1)

a[[13]] <- Cache(rnorm(1, @, get("bbb"”, inherits = FALSE)))

a[[14]] <- Cache(rnorm(1, @, get("qq"”, inherits = FALSE, envir = ee)))
a[[15]1] <- Cache(rnorm(1, bbb - bbb, get("bbb"”, inherits = FALSE)))
a[[16]1] <- Cache(rnorm(sd = 1, @, n = get("bbb"”, inherits = FALSE))) # change order
a[[17]1] <- Cache(rnorm(1, sd = get("ee", inherits = FALSE)$qq), mean = 0)

with base pipe -- this is put in quotes ('') because R version 4.0 can't understand this
if you are using R >= 4.1 or R >= 4.2 if using the _ placeholder,

then you can just use pipe normally

usingPipel <- "b$fun(1) |> Cache()"” # base pipe

For long pipe, need to wrap sequence in { }, or else only last step is cached
usingPipe2 <-
"{"bbb" |>
parse(text = _) |>
eval() |>
rnorm()} |>
Cache()'
if (getRversion() >= "4.1") {
a[[9]1] <- eval(parse(text = usingPipel)) # recovers cached copy
3
if (getRversion() >= "4.2") { # uses the _ placeholder; only available in R >= 4.2
a[[18]] <- eval(parse(text = usingPipe2)) # recovers cached copy

3
length(unique(a)) == 1 # all same

Pipe -- have to use { } or else only final function is Cached
if (getRversion() >= "4.1") {

bla <- 'sample(le5, 1) |> rnorm() |> Cache()'

b1lb <- 'sample(le5, 1) |> rnorm() |> Cache()'

b2a <- '{sample(le5, 1) |> rnorm()} |> Cache()'

b2b <- '{sample(le5, 1) |> rnorm()} |> Cache()'

bla <- eval(parse(text = b1a))

b1b <- eval(parse(text = b1b))

b2a <- eval(parse(text = b2a))

Cache 31

b2b <- eval(parse(text = b2b))

all.equal(bla, blb) # Not TRUE because the sample is run first

all.equal(b2a, b2b) # TRUE because of { }, sample is not run
}

HHHHHHHEEEEE A
Advanced examples
HHHHHHARHEEE

.cacheExtra -- add something to digest
Cache(rnorm(1), .cacheExtra = "sfesseel1") # adds something other than fn args
Cache(rnorm(1), .cacheExtra = "nothing"”) # even though fn is same, the extra is different

omitArgs -- remove something from digest (kind of the opposite of .cacheExtra)
Cache(rnorm(2, sd = 1), omitArgs = "sd"”) # removes one or more args from cache digest
Cache(rnorm(2, sd = 2), omitArgs = "sd") # b/c sd is not used, this is same as previous

cacheld -- force the use of a digest -- can give undesired consequences
Cache(rnorm(3), cacheld = "k323431232") # sets the cacheld for this call
Cache(runif(14), cacheld = "k323431232") # recovers same as above, i.e, rnorm(3)

Turn off Caching session-wide

opts <- options(reproducible.useCache = FALSE)
Cache(rnorm(3)) # doesn't cache

options(opts)

showSimilar can help with debugging why a Cache call isn't picking up a cached copy

Cache(rnorm(4), showSimilar = TRUE) # shows that the argument “n~ is different

AR AR AR

devMode -- enables cache database to stay

small even when developing code
HHHHHHHHHHERE AR AR
opt <- options("reproducible.useCache” = "devMode")
clearCache(tmpDir, ask = FALSE)

centralTendency <- function(x) {

mean (x)
3
funnyData <- c(1, 1, 1, 1, 10)
uniqueUserTags <- c("thisIsUnique”, "reallyUnique")

ranNumsB <- Cache(centralTendency, funnyData, cachePath = tmpDir,
userTags = uniqueUserTags) # sets new value to Cache
showCache(tmpDir) # 1 unique cacheld -- cacheld is 71cd24ec3b@d@cac

During development, we often redefine function internals
centralTendency <- function(x) {
median(x)
3
When we rerun, we don't want to keep the "old"” cache because the function will
never again be defined that way. Here, because of userTags being the same,
it will replace the entry in the Cache, effetively overwriting it, even though
it has a different cacheld
ranNumsD <- Cache(centralTendency, funnyData, cachePath = tmpDir, userTags = uniqueUserTags)

32 CacheDigest

showCache(tmpDir) # 1 unique artifact -- cacheld is 632cd06f30e111be

If it finds it by cachelID, doesn't matter what the userTags are
ranNumsD <- Cache(centralTendency, funnyData, cachePath = tmpDir, userTags = "thisIsUnique")
options(opt)

S HHHHHE B HHE P B EE A
For more in depth uses, see vignette
if (interactive())

browseVignettes(package = "reproducible”)
CacheDigest The exact digest function that Cache uses
Description

This can be used by a user to pre-test their arguments before running Cache, for example to deter-
mine whether there is a cached copy.

Usage

CacheDigest(
objsToDigest,

algo = "xxhash64"”,
calledFrom = "CacheDigest"”,
.functionName = NULL,
quick = FALSE

)

Arguments

objsToDigest A list of all the objects (e.g., arguments) to be digested
e passed to . robustDigest.
algo The digest algorithm to use. Default xxhash64 (see digest::digest() for

others).
calledFrom a Character string, length 1, with the function to compare with. Default is

"Cache". All other values may not produce robust CacheDigest results.

.functionName A an arbitrary character string that provides a name that is different than the
actual function name (e.g., "rnorm") which will be used for messaging. This can
be useful when the actual function is not helpful for a user, such as do.call.

quick Logical or character. If TRUE, no disk-based information will be assessed, i.e.,
only memory content. See Details section about quick in Cache().

Value

A list of length 2 with the outputHash, which is the digest that Cache uses for cacheId and also
preDigest, which is the digest of each sub-element in objsToDigest.

CacheGeo 33

Examples

data.table::setDTthreads(2)
a <- Cache(rnorm, 1)

like with Cache, user can pass function and args in a few ways
CacheDigest(rnorm(1)) # shows same cacheld as previous line
CacheDigest(rnorm, 1) # shows same cacheld as previous line

CacheGeo Cache-like function for spatial domains

Description

Usage

CacheGeo(
targetFile = NULL,
domain,
FUN,
destinationPath = getOption("reproducible.destinationPath”, "."),
useCloud = getOption("reproducible.useCloud”, FALSE),
cloudFolderID = NULL,
purge = FALSE,
useCache = getOption("reproducible.useCache"),
overwrite = getOption("reproducible.overwrite”),
action = c("nothing”, "update”, "replace”, "append"),
bufferOK = FALSE,
verbose = getOption("reproducible.verbose”),

)
Arguments

targetFile The (optional) local file (or path to file) name for a sf object or data. frame that
can be coerced to a sf object (i.e., has a geometry column). If cloudFolderID
is specified, then this will be the name of the file stored and/or accessed in that
cloud folder.

domain An sf polygon object that is the spatial area of interest. If NULL, then this will
return the whole object in targetFile.

FUN A function call that will be called if there is the domain is not already contained

within the sf object at targetFile. This function call MUST return either a sf
class object or a data.frame class object that has a geometry column (which
can then be converted to sf with sf::st_as_sf)

34 CacheGeo

destinationPath
Character string of a directory in which to download and save the file that comes
from url and is also where the function will look for archive or targetFile.
NOTE (still experimental): To prevent repeated downloads in different loca-
tions, the user can also set options(”reproducible.inputPaths") to one or
more local file paths to search for the file before attempting to download. Default
for that option is NULL meaning do not search locally.

useCloud A logical.

cloudFolderID If this is specified, then it must be either 1) a Google Drive url to a folder where
the targetFile will be read from or written to, or 2) a googledrive id or 3) an
absolute path to a (possibly non-existent yet) folder on your Google drive.

purge Logical or Integer. @/FALSE (default) keeps existing CHECKSUMS. txt file and
prepInputs will write or append to it. 1/TRUE will deleted the entire CHECKSUMS . txt
file. Other options, see details.

useCache Passed to Cache in various places. Defaults to getOption("reproducible.useCache”,

2L) in preplInputs, and getOption("reproducible.useCache"”, FALSE) if

calling any of the inner functions manually. For prepInputs, this mean it will

use Cache only up to 2 nested levels, which includes preProcess. postProcess

and its nested *Input functions (e.g., cropInputs, projectInputs, maskInputs)

are no longer internally cached, as terra processing speeds mean internal caching

is more time consuming. We recommend caching the full prepInputs call in-

stead (e.g. prepInputs(...) |>Cache()).

overwrite Logical. Passed to writeTo (possibly inside postProcess) and postProcess.

"non non "non

action A character string, with one of ¢("nothing", "update", "replace", "append"). Par-
tial matching is used ("n" is sufficient). nothing will prevent any updating of the
targetFile, i.e., "read only". append will add the spatial elements in domain
to targetFile (and writing it back to disk). update will do the same as append,
but will also remove any identical geometries before appending. replace does
nothing currently.

bufferok Alogical. If TRUE, then after testing whether the domain is within the targetFile
spatial object, and if it returns FALSE, then the function will create a larger ob-
ject, buffered by 2.5% of the extent of the object. If FALSE, then it will be strict
about whether the domain is within the targetFile.

verbose Numeric, -1 silent (where possible), 0 being very quiet, 1 showing more messag-
ing, 2 being more messaging, etc. Default is 1. Above 3 will output much more
information about the internals of Caching, which may help diagnose Caching
challenges. Can set globally with an option, e.g., options('reproducible.verbose' = @) to reduce 1

All named objects that are needed for FUN, including the function itself, if it is
not in a package.

Details

This function is a combination of Cache and prepInputs but for spatial domains. This differs from
Cache in that the current function call doesn’t have to have an identical function call previously
run. Instead, it needs to have had a previous function call where the domain being passes is within
the geographic limits of the targetFile. This is similar to a geospatial operation on a remote GIS
server, with 2 differences:

CacheGeo 35

1. This downloads the object first before doing the GIS locally, and 2. it will optionally upload
an updated object if the geographic area did not yet exist.

This has a very specific use case: assess whether an existing sf polygon or multipolygon object
(local or remote) covers the spatial area of a domain of interest. If it does, then return only that
part of the sf object that completely covers the domain. If it does not, then run FUN. It is expected
that FUN will produce an sf polygon or multipolygon class object. The result of FUN will then be
appended to the sf object as a new entry (feature) or it will replace the existing "same extent" entry
in the sf object.

Value

Returns an object that results from FUN, which will possibly be a subset of a larger spatial object
that is specified with targetFile.

Examples

if (requireNamespace("sf", quietly = TRUE) &&
requireNamespace("terra”, quietly = TRUE)) {
dPath <- checkPath(file.path(tempdir2()), create = TRUE)
localFileLux <- system.file("ex/lux.shp", package = "terra")

1 step for each layer

1st step -- get study area

full <- prepInputs(localFilelLux, destinationPath = dPath) # default is sf::st_read
zoneA <- full[3:6,]

zoneB <- full[8,] # not in A

zoneC <- full[3,] # yes in A

zoneD <- full[7:8, 1 # not in A, B or C

zoneE <- full[3:5,] # yes in A

2nd step: re-write to disk as read/write is lossy; want all "from disk” for this ex.

writeTo(zoneA, writeTo = "zoneA.shp”, destinationPath = dPath)
writeTo(zoneB, writeTo = "zoneB.shp"”, destinationPath = dPath)
writeTo(zoneC, writeTo = "zoneC.shp"”, destinationPath = dPath)
writeTo(zoneD, writeTo = "zoneD.shp”, destinationPath = dPath)
writeTo(zoneE, writeTo = "zoneE.shp"”, destinationPath = dPath)

Must re-read to get identical columns

zoneA <- sf::st_read(file.path(dPath, "zoneA.shp"))
zoneB <- sf::st_read(file.path(dPath, "zoneB.shp"))
zoneC <- sf::st_read(file.path(dPath, "zoneC.shp"))
zoneD <- sf::st_read(file.path(dPath, "zoneD.shp"))
zoneE <- sf::st_read(file.path(dPath, "zoneE.shp"))

The function that is to be run. This example returns a data.frame because

saving “sf” class objects with list-like columns does not work with
many st_driver()
fun <- function(domain, newField) {

domain |>

as.data.frame() |>
cbind(params = I(lapply(seq_len(NROW(domain)), function(x) newField)))

36 checkAndMakeCloudFolderID

Run sequence -- A, B will add new entries in targetFile, C will not,

D will, E will not

for (z in list(zoneA, zoneB, zoneC, zoneD, zoneE)) {

out <- CacheGeo(

targetFile = "fireSenseParams.rds”,
domain = z,
FUN = fun(domain, newField = I(list(list(a =1, b =1:2, c = "D")))),
fun = fun, # pass whatever is needed into the function
destinationPath = dPath,

action = "update”
, cloudFolderID = "cachedObjects"” # to upload/download from cloud
)
}
3
cacheld Extract the cache id of an object
Description

Any object that was returned from the Cache or was calculated as part of a Cache call will have
an attribute, tags and an entry with cacheId: prefix. This is a lightweight helper to extract that
cacheld.

Usage
cacheld(obj)

Arguments

obj Any R object

Value

The cacheld if this was part of a Cache call. Otherwise NULL

checkAndMakeCloudFolderID
Check for presence of checkFolderID (for Cache(useCloud))

Description

Will check for presence of a cloudFolderID and make a new one if one not present on Google
Drive, with a warning.

checkPath 37

Usage

checkAndMakeCloudFolderID(
cloudFolderID = getOption("reproducible.cloudFolderID”, NULL),
cachePath = NULL,
create = FALSE,
overwrite = FALSE,
verbose = getOption("reproducible.verbose”, 1),
team_drive = NULL

Arguments

cloudFolderID The google folder ID where cloud caching will occur.

cachePath A repository used for storing cached objects. This is optional if Cache is used
inside a SpaDES module.
create Logical. If TRUE, then the cloudFolderID will be created. This should be used

with caution as there are no checks for overwriting. See googledrive: :drive_mkdir.
Default FALSE.

overwrite Logical. Passed to googledrive: :drive_mkdir.

verbose Numeric, -1 silent (where possible), 0 being very quiet, 1 showing more messag-
ing, 2 being more messaging, etc. Default is 1. Above 3 will output much more
information about the internals of Caching, which may help diagnose Caching
challenges. Can set globally with an option, e.g., options('reproducible.verbose' = @) to reduce 1

team_drive Logical indicating whether to check team drives.

Value

Returns the character string of the cloud folder ID created or reported

checkPath Check directory path

Description

Checks the specified path to a directory for formatting consistencies, such as trailing slashes, etc.

Usage

checkPath(path, create)

S4 method for signature 'character,logical’
checkPath(path, create)

S4 method for signature 'character,missing'
checkPath(path)

38 checkPath

S4 method for signature 'NULL,ANY'
checkPath(path)

S4 method for signature 'missing,ANY'

checkPath()
Arguments
path A character string corresponding to a directory path.
create A logical indicating whether the path should be created if it does not exist. De-
fault is FALSE.
Value

Character string denoting the cleaned up filepath.

Note

This will not work for paths to files. To check for existence of files, use file.exists(). To
normalize a path to a file, use normPath() or normalizePath().

See Also

file.exists(), dir.create(), normPath()

Examples

normalize file paths

paths <- list("”./aaa/zzz",

./aaa/zzz/",

.//aaal//zzz",
".//aaal/zzz/",

" \\\\aaa\\\\zzz",

" \\\\aaa\\\\zzz\\\\",
file.path(".", "aaa", "zzz"))

checked <- normPath(paths)
length(unique(checked)) ## 1; all of the above are equivalent

check to see if a path exists
tmpdir <- file.path(tempdir(), "example_checkPath")

dir.exists(tmpdir) ## FALSE
tryCatch(checkPath(tmpdir, create = FALSE), error = function(e) FALSE) ## FALSE

checkPath(tmpdir, create = TRUE)
dir.exists(tmpdir) ## TRUE

unlink(tmpdir, recursive = TRUE)

checkRelative 39

checkRelative An alternative to basename and dirname when there are sub-folders

Description

This confirms that the files which may be absolute actually exist when compared makeRelative(knownRelativeFiles,
absolutePrefix). This is different than just using basename because it will include any sub-folder
structure within the knownRelativePaths

Usage
checkRelative(
files,
absolutePrefix,
knownRelativeFiles,
verbose = getOption("reproducible.verbose”)
)
Arguments
files A character vector of files to check to see if they are the same as knownRelativeFiles,

once the absolutePrefix is removed

absolutePrefix A directory to "remove" from files to compare to knownRelativeFiles

knownRelativeFiles
A character vector of relative filenames, that could have sub-folder structure.

verbose Numeric, -1 silent (where possible), 0 being very quiet, 1 showing more messag-
ing, 2 being more messaging, etc. Default is 1. Above 3 will output much more
information about the internals of Caching, which may help diagnose Caching
challenges. Can set globally with an option, e.g., options('reproducible.verbose' = 8) to reduce 1

Checksums Calculate checksum

Description

Verify (and optionally write) checksums. Checksums are computed using .digest(), which is
simply a wrapper around digest: :digest.

40

Usage

Checksums(
path,
write,

quickCheck = getOption("reproducible.quickCheck”, FALSE),

checksumFile
files = NULL,
getOption("reproducible.verbose”, 1),

verbose =

)

= identifyCHECKSUMStxtFile(path),

S4 method for signature 'character,logical’

Checksums(
path,
write,

quickCheck = getOption("reproducible.quickCheck”, FALSE),

checksumFile
files = NULL,
getOption("reproducible.verbose”, 1),

verbose =

)

= identifyCHECKSUMStxtFile(path),

S4 method for signature 'character,missing'’

Checksums(
path,
write,

quickCheck = getOption("reproducible.quickCheck”, FALSE),

checksumFile
files = NULL,
getOption("reproducible.verbose”, 1),

verbose =

Arguments

path

write

quickCheck

checksumFile

= identifyCHECKSUMStxtFile(path),

Checksums

Character string giving the directory path containing CHECKSUMS. txt file, or

where it will be written if checksumFile = TRUE.

Logical indicating whether to overwrite CHECKSUMS. txt. Default is FALSE, as
users should not change this file. Module developers should write this file prior
to distributing their module code, and update accordingly when the data change.

Logical. If TRUE, then this will only use file sizes, rather than a digest::digest

hash. This is generally faster, but will be much less robust.

The filename of the checksums file to read or write to. The default is ‘CHECKSUMS.

located at file.path(path, module, "data”, checksumFile). Itis likely not
a good idea to change this, and should only be used in cases such as Cache,

which can evaluate if the checksumFile has changed.

txt’

Checksums 41

files An optional character string or vector of specific files to checksum. This may be
very important if there are many files listed in a CHECKSUMS. txt file, but only a
few are to be checksummed.

verbose Numeric, -1 silent (where possible), 0 being very quiet, 1 showing more messag-
ing, 2 being more messaging, etc. Default is 1. Above 3 will output much more
information about the internals of Caching, which may help diagnose Caching
challenges. Can set globally with an option, e.g., options('reproducible.verbose' = @) to reduce 1

Passed to digest::digest() and utils::write.table(). For digest, the
notable argument is algo. For write. table, the notable argument is append.

Value

A data.table with columns: result, expectedFile, actualFile, checksum.x, checksum.y,
algorithm.x, algorithm.y, filesize.x, filesize.y indicating the result of comparison be-
tween local file (x) and expectation based on the CHECKSUMS. txt file.

Note

In version 1.2.0 and earlier, two checksums per file were required because of differences in the
checksum hash values on Windows and Unix-like platforms. Recent versions use a different (faster)
algorithm and only require one checksum value per file. To update your ‘CHECKSUMS. txt’ files
using the new algorithm, see https://github.com/PredictiveEcology/SpaDES/issues/295%#
issuecomment-246513405.

Author(s)

Alex Chubaty

Examples

Not run:

modulePath <- file.path(tempdir(), "myModulePath")

dir.create(modulePath, recursive = TRUE, showWarnings = FALSE)

moduleName <- "myModule”

cat("hi", file = file.path(modulePath, moduleName)) # put something there for this example

verify checksums of all data files
Checksums(modulePath, files = moduleName)

write new CHECKSUMS.txt file
Checksums(files = moduleName, modulePath, write = TRUE)

End(Not run)

https://github.com/PredictiveEcology/SpaDES/issues/295#issuecomment-246513405
https://github.com/PredictiveEcology/SpaDES/issues/295#issuecomment-246513405

42 cloudDownload

cloudDownload Download from cloud, if necessary

Description

Meant for internal use, as there are internal objects as arguments.

Usage

cloudDownload(
outputHash,
newFileName,
gdrivels,
cachePath,
cloudFolderlID,
drv = getDrv(getOption("reproducible.drv”, NULL)),
conn = getOption("reproducible.conn”, NULL),
verbose = getOption("reproducible.verbose")

)
Arguments
outputHash The cacheld of the object to upload
newFileName The character string of the local filename that the downloaded object will have
gdrivels The result of googledrive: :drive_ls(googledrive: :as_id(cloudFolderID),
pattern = "outputHash")
cachePath A repository used for storing cached objects. This is optional if Cache is used

inside a SpaDES module.

cloudFolderID A googledrive dribble of a folder, e.g., using drive_mkdir(). If left as NULL,
the function will create a cloud folder with name from last two folder lev-
els of the cachePath path, : paste@(basename(dirname(cachePath)), "_",
basename (cachePath)). This cloudFolderID will be added to options("reproducible.cloudFolde!
but this will not persist across sessions. If this is a character string, it will treat

this as a folder name to create or use on GoogleDrive.

drv If using a database backend, drv must be an object that inherits from DBIDriver
(e.g.,RSQLite::SQLite).

conn an optional DBIConnection object, as returned by dbConnect ().

verbose Numeric, -1 silent (where possible), 0 being very quiet, 1 showing more messag-

ing, 2 being more messaging, etc. Default is 1. Above 3 will output much more
information about the internals of Caching, which may help diagnose Caching
challenges. Can set globally with an option, e.g., options('reproducible.verbose' = @) to reduce 1

compareNA 43

compareNA NA-aware comparison of two vectors

Description

Copied from http: //www. cookbook-r.com/Manipulating_data/Comparing_vectors_or_factors_
with_NA/. This function returns TRUE wherever elements are the same, including NA’s, and FALSE
everywhere else.

Usage

compareNA(v1, v2)

Arguments
v A vector
v2 A vector
Value

A logical vector, indicating positions where two vectors are same or differ.

Examples

a <- c(NA, 1, 2, NA)
b <- c¢(1, NA, 2, NA)
compareNA(a, b)

convertCallToCommonFormat

Convert all ways of calling a function into canonical form, including
defaults

Description

e.g., stats::rnorm(1) —> rnorm(n = 1, mean = 0, sd = 1)

Usage

convertCallToCommonFormat(call, usesDots, isSquiggly, .callingEnv)

http://www.cookbook-r.com/Manipulating_data/Comparing_vectors_or_factors_with_NA/
http://www.cookbook-r.com/Manipulating_data/Comparing_vectors_or_factors_with_NA/

44 convertPaths

Arguments
call The full captured call as it was passed by user.
usesDots Logical. Whether the original Cache call used . . .
isSquiggly Logical. Whether there are curly braces e.g., as in a pipe sequence.
.callingEnv Environment. The environment from which Cache was called.
convertPaths Change the absolute path of a file
Description

convertPaths is simply a wrapper around gsub for changing the first part of a path. convertRasterPaths
is useful for changing the path to a file-backed raster (e.g., after copying the file to a new location).

Usage

convertPaths(x, patterns, replacements)

convertRasterPaths(x, patterns, replacements)

Arguments
X For convertPaths, a character vector of file paths. For convertRasterPaths,
a disk-backed RasterLayer object, or a list of such rasters.
patterns Character vector containing a pattern to match (see ?gsub).

replacements Character vector of the same length of patterns containing replacement text
(see ?gsub).
Value
A normalized path with the patterns replaced by replacements. Or a list of such objects if x was
a list.
Author(s)
Eliot Mclntire and Alex Chubaty

Examples

filenames <- c("/home/user1/Documents/file.txt"”, "/Users/userl/Documents/file.txt")
oldPaths <- dirname(filenames)

newPaths <- c("/home/user2/Desktop”, "/Users/user2/Desktop”)
convertPaths(filenames, oldPaths, newPaths)

Copy 45

Copy Recursive copying of nested environments, and other "hard to copy"
objects

Description

When copying environments and all the objects contained within them, there are no copies made:
it is a pass-by-reference operation. Sometimes, a deep copy is needed, and sometimes, this must be
recursive (i.e., environments inside environments).

Usage

Copy(object, ...)

S4 method for signature 'ANY'

Copy(
object,
filebackedDir,
drv = getDrv(getOption("reproducible.drv”, NULL)),
conn = getOption("reproducible.conn”, NULL),
verbose = getOption("reproducible.verbose”),

)

S4 method for signature 'data.table'
Copy(object, ...)

S4 method for signature 'list'
Copy(object, ...)

S4 method for signature 'refClass'
Copy(object, ...)

S4 method for signature 'data.frame'

Copy(object, ...)
Arguments
object An R object (likely containing environments) or an environment.

Only used for custom Methods

filebackedDir A directory to copy any files that are backing R objects, currently only valid for
Raster classes. Defaults to .reproducibleTempPath(), which is unlikely to
be very useful. Can be NULL, which means that the file will not be copied and
could therefore cause a collision as the pre-copied object and post-copied object
would have the same file backing them.

46 Copy

drv If using a database backend, drv must be an object that inherits from DBIDriver
(e.g.,RSQLite::SQLite).

conn an optional DBIConnection object, as returned by dbConnect ().

verbose Numeric, -1 silent (where possible), 0 being very quiet, 1 showing more messag-

ing, 2 being more messaging, etc. Default is 1. Above 3 will output much more
information about the internals of Caching, which may help diagnose Caching
challenges. Can set globally with an option, e.g., options('reproducible.verbose' = @) to reduce 1

Details

To create a new Copy method for a class that needs its own method, try something like shown in
example and put it in your package (or other R structure).

Value

The same object as object, but with pass-by-reference class elements "deep" copied. reproducible
has methods for several classes.

Author(s)

Eliot MclIntire

See Also

.robustDigest(), Filenames()

Examples

e <- new.env()

e$abc <- letters

e$one <- 1L

e$lst <- list(W = 1:10, X = runif(10), Y = rnorm(10), Z = LETTERS[1:10])
1s(e)

'normal' copy

f<-e

1s(f)

f$one

f$one <- 2L

f$one

e$one ## uh oh, e has changed!

deep copy
e$one <- 1L
g <- Copy(e)
1s(g)
g$one
g$one <- 3L
g$one
f$one

e$one

copySingleFile 47

To create a new deep copy method, use the following template
setMethod("Copy”, signature = "the class”, # where = specify here if not in a package,

#it definition = function(object, filebackendDir, ...) {
#i# # write deep copy code here
)
copySingleFile Copy a file using robocopy on Windows and rsync on Linux/macOS
Description

This is replacement for file. copy, but for one file at a time. The additional feature is that it will use
robocopy (on Windows) or rsync on Linux or Mac, if they exist. It will default back to file.copy
if none of these exists. If there is a possibility that the file already exists, then this function should
be very fast as it will do "update only", i.e., nothing.

Usage

copySingleFile(
from = NULL,
to = NULL,
useRobocopy = TRUE,
overwrite = TRUE,
delDestination = FALSE,
create = TRUE,
silent = FALSE

)

copyFile(
from = NULL,
to = NULL,
useRobocopy = TRUE,
overwrite = TRUE,
delDestination = FALSE,
create = TRUE,
silent = FALSE

)
Arguments
from The source file.
to The new file.
useRobocopy For Windows, this will use a system call to robocopy which appears to be much

faster than the internal file.copy function. Uses /MIR flag. Default TRUE.

overwrite Passed to file. copy

48

createCache

delDestination Logical, whether the destination should have any files deleted, if they don’t exist
in the source. This is /purge for robocopy and —delete for rsync.

create Passed to checkPath.
silent Should a progress be printed.
Value

This function is called for its side effect, i.e., a file is copied from to to.

Author(s)

Eliot MclIntire and Alex Chubaty

Examples

tmpDirFrom <- file.path(tempdir(), "example_fileCopy_from")
tmpDirTo <- file.path(tempdir(), "example_fileCopy_to")
tmpFilel <- tempfile(”filel1"”, tmpDirFrom, ".csv")

tmpFile2 <- tempfile("file2", tmpDirFrom, ".csv")
dir.create(tmpDirFrom, recursive = TRUE, showWarnings = FALSE)
dir.create(tmpDirTo, recursive = TRUE, showWarnings = FALSE)

f1 <-
f2 <-
t1 <-
t2 <-

write.
write.

normalizePath(tmpFilel, mustWork = FALSE)
normalizePath(tmpFile2, mustWork = FALSE)
normalizePath(file.path(tmpDirTo, basename(tmpFilel)), mustWork
normalizePath(file.path(tmpDirTo, basename(tmpFile2)), mustWork

csv(data.frame(a = 1:10, b = runif(10), c = letters[1:10]), f1)
csv(data.frame(c = 11:20, d = runif(10), e = letters[11:20]), f2

copyFile(c(f1, f2), c(t1, t2))

file.exists(t1) ## TRUE

file.exists(t2) ## TRUE
identical(read.csv(f1), read.csv(f2)) ## FALSE
identical(read.csv(f1), read.csv(tl1)) ## TRUE
identical(read.csv(f2), read.csv(t2)) ## TRUE

)

FALSE)
FALSE)

createCache Low-level functions to create and work with a cache
Description
These are intended for advanced use only.
Usage
createCache(

cachePath = getOption("reproducible.cachePath”),

drv

= getDrv(getOption("reproducible.drv”, NULL)),

conn = getOption("reproducible.conn”, NULL),

createCache

force = FALSE,
verbose = getOption("reproducible.verbose"”)

)
loadFromCache(
cachePath = getOption("reproducible.cachePath”),
cacheld,
preDigest,
fullCacheTableForObj = NULL,
cacheSaveFormat = getOption("reproducible.cacheSaveFormat”, .rdsFormat),

.functionName = NULL,

.dotsFromCache = NULL,

drv = getDrv(getOption("reproducible.drv”, NULL)),
conn = getOption("reproducible.conn”, NULL),
verbose = getOption("reproducible.verbose”)

)
extractFromCache(sc, elem, ifNot = NULL)

rmFromCache (
cachePath = getOption("reproducible.cachePath”),
cacheld,
drv = getDrv(getOption("reproducible.drv”, NULL)),
conn = getOption("reproducible.conn”, NULL),
cacheSaveFormat = getOption("reproducible.cacheSaveFormat”, .rdsFormat),
verbose,

)

CacheDBFile(
cachePath = getOption("reproducible.cachePath”),
drv = getDrv(getOption("reproducible.drv”, NULL)),
conn = getOption("reproducible.conn”, NULL)

)

CacheStorageDir(cachePath = getOption("reproducible.cachePath”))

CacheStoredFile(
cachePath = getOption("reproducible.cachePath”),
cacheld,
cacheSaveFormat = getOption("reproducible.cacheSaveFormat”),
obj = NULL,
readOnly = FALSE
)

CacheDBTableName (
cachePath = getOption("reproducible.cachePath”),
drv = getDrv(getOption("reproducible.drv”, NULL))

49

50 createCache

)

CacheIsACache(
cachePath = getOption("reproducible.cachePath”),
create = FALSE,
drv = getDrv(getOption("reproducible.drv”, NULL)),
conn = getOption("reproducible.conn”, NULL),
verbose = getOption("reproducible.verbose")

)
Arguments

cachePath A path describing the directory in which to create the database file(s)

drv A driver, passed to dbConnect

conn an optional DBIConnection object, as returned by dbConnect().

force Logical. Should it create a cache in the cachePath, even if it already exists,
overwriting.

verbose Numeric, -1 silent (where possible), 0 being very quiet, 1 showing more messag-
ing, 2 being more messaging, etc. Default is 1. Above 3 will output much more
information about the internals of Caching, which may help diagnose Caching
challenges. Can set globally with an option, e.g., options('reproducible.verbose' = @) to reduce 1

cacheld The cacheld or otherwise digested hash value, as character string.

preDigest The list of preDigest that comes from CacheDigest of an object

fullCacheTableForObj
The result of showCache, but subsetted for only the cacheld being loaded or
selected

cacheSaveFormat

The text string representing the file extension used normally by different save
formats; currently only "rds” or "qs” (which now uses gs2 package. Defaults
to getOption("reproducible.cacheSaveFormat”, "rds")

.functionName Optional. Used for messaging when this function is called from Cache

.dotsFromCache Optional. Used internally.

sc a cache tags data.table object
elem character string specifying a tagKey value to match
ifNot character (or NULL) specifying the return value to use if elem not matched

Arguments passed to FUN, if FUN is not an expression.

obj The optional object that is of interest; it may have an attribute "saveRawFile"
that would be important.

readOnly Logical. Only relevant during transition from gs to gs2. Essentially, during tran-
sition, gs objects can be read, but not saved. If TRUE then the CacheStoredFile
can return a .qgs file; if FALSE, then this will not be able to return gs; instead it
will return gs2 files.

create Logical. Currently only affects non RSQLite default drivers. If TRUE and there
is no Cache database, the function will create one.

createCache 51

Details

* createCache() will create a Cache folder structure and necessary files, based on the particu-
lar drv or conn provided;

* loadFromCache() retrieves a single object from the cache, given its cacheld;

* extractFromCache() retrieves a single tagValue from the cache based on the tagKey of
elem;

* rmFromCache() removes one or more items from the cache, and updates the cache database
files.

Value

* createCache() returns NULL (invisibly) and intended to be called for side effects;
* loadFromCache() returns the object from the cache that has the particular cacheld;

* extractFromCache() returns the tagValue from the cache corresponding to elem if found,
otherwise the value of ifNot;

* rmFromCache () returns NULL (invisibly) and is intended to be called for side effects;

» CacheDBFile() returns the name of the database file for a given Cache, when useDBI() ==
FALSE, or NULL if TRUE;

* CacheDBFiles() (i.e,. plural) returns the name of all the database files for a given Cache
when useDBI () == TRUE, or NULL if FALSE;

» CacheStoredFile() returns the file path to the file with the specified hash value, This can be
loaded to memory with e.g., loadFile().;

* CacheStorageDir () returns the name of the directory where cached objects are stored;
* CacheStoredFile returns the file path to the file with the specified hash value;

* CacheDBTableName() returns the name of the table inside the SQL database, if that is being
used;

* CachelIsACache() returns alogical indicating whether the cachePath is currently a reproducible
cache database;

Examples

data.table::setDTthreads(2)
newCache <- tempdir2()
createCache(newCache)

out <- Cache(rnorm(1), cachePath = newCache)
cacheld <- gsub("cacheld:"”, "", attr(out, "tags"))

loadFromCache(newCache, cacheld = cacheld)

rmFromCache (newCache, cacheld = cacheld)

52

detectActiveCores

clean up
unlink(newCache, recursive = TRUE)

data.table::setDTthreads(2)
newCache <- tempdir2()

Given the drv and conn, creates the minimum infrastructure for a cache
createCache(newCache)

CacheDBFile(newCache) # identifies the database file
CacheStorageDir(newCache) # identifies the directory where cached objects are stored

out <- Cache(rnorm(1), cachePath = newCache)
cacheld <- gsub(”cacheld:"”, "", attr(out, "tags"))

CacheStoredFile(newCache, cacheld = cacheld)

The name of the table inside the SQL database
CacheDBTableName (newCache)

CachelsACache(newCache) # returns TRUE

clean up
unlink(newCache, recursive = TRUE)

detectActiveCores Count Active Threads Based on CPU Usage

Description

This function counts the number of active system processes (threads) that match a given pattern
and exceed a specified minimum CPU usage threshold. It works on Unix-like systems (e.g., Linux,
macOS) and does not support Windows.

Usage
detectActiveCores(pattern = "", minCPU = 50)
Arguments
pattern A character string used to filter process lines. Only processes whose command
line matches this pattern will be considered. Default is "" (matches all).
minCPU A numeric value specifying the minimum CPU usage (in percent) for a process
to be considered active. Default is 50.
Value

An integer representing the number of active threads matching the pattern and exceeding the CPU
usage threshold. Returns NULL with a message if run on Windows.

determineFilename 53

Note
This function uses the ps -ef system command and regular expressions to parse CPU usage. It may
not be portable across all Unix variants.

Examples

Not run:
detectActiveCores(pattern = "R"”, minCPU = 30)

End(Not run)

determineFilename Determine filename, either automatically or manually

Description

Determine the filename, given various combinations of inputs.

Usage

determineFilename(
filename2 = NULL,
filenamel = NULL,
destinationPath = getOption("reproducible.destinationPath”, "."),
verbose = getOption("reproducible.verbose”, 1),
prefix = "Small”,

)
Arguments
filename2 filename2 is optional, and is either NULL (no writing of outputs to disk), or
several options for writing the object to disk. If TRUE (the default), it will give
it a file name determined by .prefix(basename(filenamel), prefix). Ifa
character string, it will use this as its file name. See determineFilename().
filenamel Character strings giving the file paths of the input object (filename1) filename1

is only used for messaging (i.e., the object itself is passed in as x) and possibly

naming of output (see details and filename2).
destinationPath

Optional. If filename?2 is a relative file path, then this will be the directory of

the resulting absolute file path.
verbose Numeric, -1 silent (where possible), 0 being very quiet, 1 showing more messag-

ing, 2 being more messaging, etc. Default is 1. Above 3 will output much more

information about the internals of Caching, which may help diagnose Caching

challenges. Can set globally with an option, e.g., options('reproducible.verbose' = @) to reduce 1
prefix The character string to prepend to filenamel, if filename2 not provided.

Passed into writeTo()

54 downloadFile

Details

The post processing workflow, which includes this function, addresses several scenarios, and de-
pending on which scenario, there are several file names at play. For example, Raster objects may
have file-backed data, and so possess a file name, whereas Spatial objects do not. Also, if post
processing is part of a prepInputs() workflow, there will always be a file downloaded. From the
perspective of postProcess, these are the "inputs" or filenamel. Similarly, there may or may not
be a desire to write an object to disk after all post processing, filename2.

This subtlety means that there are two file names that may be at play: the "input" file name
(filenamel), and the "output" filename (filename2). When this is used within postProcess,
it is straight forward.

However, when postProcess is used within a prepInputs call, the filename1 file is the file name
of the downloaded file (usually automatically known following the downloading, and refered to as
targetFile) and the filename?2 is the file name of the of post-processed file.

If filename2 is TRUE, i.e., not an actual file name, then the cropped/masked raster will be writ-
ten to disk with the original filenam1/targetFile name, with prefix prefixed to the base-
name(targetFile).

If filename2 is a character string, it will be the path of the saved/written object e.g., passed to
writeOutput. It will be tested whether it is an absolute or relative path and used as is if absolute or
prepended with destinationPath if relative.

If filename2is logical, then the output filename will be prefix prefixed to the basename(filenamel).
If a character string, it will be the path returned. It will be tested whether it is an absolute or relative
path and used as is if absolute or prepended with destinationPath if provided, and if filename?2

is relative.

downloadFile A wrapper around a set of downloading functions

Description

Currently, this only deals with googledrive: :drive_download, and utils::download.file().
In general, this is not intended for use by a user.

Usage

downloadFile(
archive,
targetFile,
neededFiles,
destinationPath = getOption("reproducible.destinationPath”, "."),
quick,
checksumFile,
dlFun = NULL,
checkSums,
url,
needChecksums,

downloadFile

preDigest,
overwrite =
alsoExtract

55

getOption("reproducible.overwrite”, TRUE),

"similar”,

verbose = getOption("reproducible.verbose”, 1),
purge = FALSE,

.tempPath,

.callingEnv,

Arguments

archive

targetFile

neededFiles

destinationPath

quick

checksumFile
d1Fun

checkSums
url

needChecksums

Optional character string giving the path of an archive containing targetFile,
or a vector giving a set of nested archives (e.g., c("xxx.tar", "inner.zip",
"inner.rar")). If there is/are (an) inner archive(s), but they are unknown, the
function will try all until it finds the targetFile. See table in preProcess(). If
it is NA, then it will not attempt to see it as an archive, even if it has archive-like
file extension (e.g., .zip). This may be useful when an R function is expecting
an archive directly.

Character string giving the filename (without relative or absolute path) to the
eventual file (raster, shapefile, csv, etc.) after downloading and extracting from
a zip or tar archive. This is the file before it is passed to postProcess. The
internal checksumming does not checksum the file after it is postProcessed
(e.g., cropped/reprojected/masked). Using Cache around prepInputs will do a
sufficient job in these cases. See table in preProcess().

Character string giving the name of the file(s) to be extracted.

Character string of a directory in which to download and save the file that comes
from url and is also where the function will look for archive or targetFile.
NOTE (still experimental): To prevent repeated downloads in different loca-
tions, the user can also set options("reproducible.inputPaths”) to one or
more local file paths to search for the file before attempting to download. Default
for that option is NULL meaning do not search locally.

Logical. This is passed internally to Checksums() (the quickCheck argument),
and to Cache() (the quick argument). This results in faster, though less robust
checking of inputs. See the respective functions.

A character string indicating the absolute path to the CHECKSUMS. txt file.

Optional "download function" name, such as "raster::getData”, which does
custom downloading, in addition to loading into R. Still experimental.

A checksums file, e.g., created by Checksums(..., write = TRUE)

Optional character string indicating the URL to download from. If not specified,
then no download will be attempted. If not entry exists in the CHECKSUMS. txt (in
destinationPath), an entry will be created or appended to. This CHECKSUMS . txt
entry will be used in subsequent calls to prepInputs or preProcess, comparing
the file on hand with the ad hoc CHECKSUMS. txt. See table in preProcess().

A numeric, with @ indicating do not write a new checksums, 1 write a new one,
2 append new information to existing one.

56 downloadRemote

preDigest The list of preDigest that comes from CacheDigest of an object
overwrite Logical. If TRUE then the download will overwrite an existing file if it exists.
alsoExtract Optional character string naming files other than targetFile that must be ex-

tracted from the archive. If NULL, the default, then it will extract all files. Other
options: "similar"” will extract all files with the same filename without file
extension as targetFile. NA will extract nothing other than targetFile. A
character string of specific file names will cause only those to be extracted. See
table in preProcess().

verbose Numeric, -1 silent (where possible), 0 being very quiet, 1 showing more messag-
ing, 2 being more messaging, etc. Default is 1. Above 3 will output much more
information about the internals of Caching, which may help diagnose Caching
challenges. Can set globally with an option, e.g., options('reproducible.verbose' = 0) to reduce 1

purge Logical or Integer. @/FALSE (default) keeps existing CHECKSUMS. txt file and
prepInputs will write or append to it. 1/TRUE will deleted the entire CHECKSUMS . txt
file. Other options, see details.

.tempPath Optional temporary path for internal file intermediate steps. Will be cleared
on.exit from this function.

.callingEnv The environment where the function was called from. Used to find objects, if
necessary.

Passed to d1Fun. Still experimental. Can be e.g., type for google docs.

Value

This function is called for its side effects, which will be a downloaded file (targetFile), placed
in destinationPath. This file will be checksummed, and that checksum will be appended to the
checksumFile.

Author(s)

Eliot MclIntire

downloadRemote Download a remote file

Description

Download a remote file

Usage

downloadRemote(
url,
archive,
targetFile,
checkSums,

downloadRemote 57

dlFun = NULL,

fileToDownload,
messSkipDownload,
destinationPath,

overwrite,

needChecksums,

.tempPath,

preDigest,

alsoExtract = "similar”,
verbose = getOption("reproducible.verbose”, 1),
.callingEnv = parent.frame(),

Arguments

url Optional character string indicating the URL to download from. If not specified,
then no download will be attempted. If not entry exists in the CHECKSUMS . txt (in
destinationPath), an entry will be created or appended to. This CHECKSUMS . txt
entry will be used in subsequent calls to prepInputs or preProcess, comparing
the file on hand with the ad hoc CHECKSUMS. txt. See table in preProcess().

archive Optional character string giving the path of an archive containing targetFile,
or a vector giving a set of nested archives (e.g., c("xxx.tar"”, "inner.zip",
"inner.rar")). If there is/are (an) inner archive(s), but they are unknown, the
function will try all until it finds the targetFile. See table in preProcess(). If
it is NA, then it will not attempt to see it as an archive, even if it has archive-like
file extension (e.g., .zip). This may be useful when an R function is expecting
an archive directly.

targetFile Character string giving the filename (without relative or absolute path) to the
eventual file (raster, shapefile, csv, etc.) after downloading and extracting from
a zip or tar archive. This is the file before it is passed to postProcess. The
internal checksumming does not checksum the file after it is postProcessed
(e.g., cropped/reprojected/masked). Using Cache around prepInputs will do a
sufficient job in these cases. See table in preProcess().

checkSums TODO

d1Fun Optional "download function" name, such as "raster: :getData”, which does
custom downloading, in addition to loading into R. Still experimental.

fileToDownload TODO

messSkipDownload
The character string text to pass to messaging if download skipped

destinationPath
Character string of a directory in which to download and save the file that comes
from url and is also where the function will look for archive or targetFile.
NOTE (still experimental): To prevent repeated downloads in different loca-
tions, the user can also set options(”reproducible.inputPaths”) to one or
more local file paths to search for the file before attempting to download. Default
for that option is NULL meaning do not search locally.

58 extractFromArchive

overwrite Logical. Passed to writeTo (possibly inside postProcess) and postProcess.

needChecksums Logical indicating whether to generate checksums. ## TODO: add overwrite
arg to the function?

.tempPath Optional temporary path for internal file intermediate steps. Will be cleared
on.exit from this function.

preDigest The list of preDigest that comes from CacheDigest of an object

alsoExtract Optional character string naming files other than targetFile that must be ex-

tracted from the archive. If NULL, the default, then it will extract all files. Other
options: "similar” will extract all files with the same filename without file
extension as targetFile. NA will extract nothing other than targetFile. A
character string of specific file names will cause only those to be extracted. See
table in preProcess().

verbose Numeric, -1 silent (where possible), 0 being very quiet, 1 showing more messag-
ing, 2 being more messaging, etc. Default is 1. Above 3 will output much more
information about the internals of Caching, which may help diagnose Caching
challenges. Can set globally with an option, e.g., options('reproducible.verbose' = @) to reduce 1

.callingEnv The environment where the function was called from. Used to find objects, if
necessary.

Additional arguments passed to postProcess() and Cache(). Since ... is
passed to postProcess(), these will ... will also be passed into the inner
functions, e.g., cropInputs(). Possibly useful other arguments include d1Fun
which is passed to preProcess. See details and examples.

extractFromArchive Extract files from archive

Description

Extract zip or tar archive files, possibly nested in other zip or tar archives.

Usage

extractFromArchive(
archive,
destinationPath = getOption("reproducible.destinationPath”, dirname(archive)),
neededFiles = NULL,
extractedArchives = NULL,
checkSums = NULL,
needChecksums = 0,
filesExtracted = character(),
checkSumFilePath = character(),
quick = FALSE,
verbose = getOption("reproducible.verbose”, 1),
. tempPath,

Filenames 59

Arguments

archive Character string giving the path of the archive containing the file to be ex-
tracted. This path must exist or be NULL

destinationPath
Character string giving the path where neededFiles will be extracted. Defaults
to the archive directory.

neededFiles Character string giving the name of the file(s) to be extracted.

extractedArchives
Used internally to track archives that have been extracted from.

checkSums A checksums file, e.g., created by Checksums(..., write = TRUE)

needChecksums A numeric, with @ indicating do not write a new checksums, 1 write a new one,
2 append new information to existing one.

filesExtracted Used internally to track files that have been extracted.

checkSumFilePath
The full path to the checksum.txt file

quick Passed to Checksums

verbose Numeric, -1 silent (where possible), 0 being very quiet, 1 showing more messag-
ing, 2 being more messaging, etc. Default is 1. Above 3 will output much more
information about the internals of Caching, which may help diagnose Caching
challenges. Can set globally with an option, e.g., options('reproducible.verbose' = @) to reduce 1

.tempPath Optional temporary path for internal file intermediate steps. Will be cleared
on.exit from this function.

Passed to unzip or untar, e.g., overwrite

Value

A character vector listing the paths of the extracted archives.

Author(s)

Jean Marchal and Eliot Mclntire

Filenames Return the filename(s) from a Raster* object

Description

This is mostly just a wrapper around filename from the raster package, except that instead
of returning an empty string for a RasterStack object, it will return a vector of length >1 for
RasterStack.

60 Filenames

Usage
Filenames(obj, allowMultiple = TRUE, returnList = FALSE)

S4 method for signature 'ANY'
Filenames(obj, allowMultiple = TRUE, returnList = FALSE)

S4 method for signature 'environment'
Filenames(obj, allowMultiple = TRUE, returnList = FALSE)

S4 method for signature 'list'
Filenames(obj, allowMultiple = TRUE, returnList = FALSE)

S4 method for signature 'data.table'
Filenames(obj, allowMultiple = TRUE, returnList = FALSE)

S4 method for signature 'Path'
Filenames(obj, allowMultiple = TRUE, returnList = FALSE)

Arguments

obj A Raster= object (i.e., RasterLayer, RasterStack, RasterBrick)

allowMultiple Logical. If TRUE, the default, then all relevant filenames will be returned, i.e., in
cases such as . grd where multiple files are required. If FALSE, then only the first
file will be returned, e.g., filename.grd, in the case of default Raster format in
R.

returnList Default FALSE. If FALSE, then return format will be a character vector. When
TRUE, list or environment objects will return a list of character strings or vectors.
When returned as a character vector, then the names of objects with >1 filename
associated with them will be given a numeric suffix, which means the name in
the returned vector does not match the object in the list or environment. When
returned as a list, their names are preserved.

Details

New methods can be made for this generic.

Value
A character vector of filenames that are part of the objects passed to obj. This returns NULL is the
object is not file-backed or does not have a method to recover the file-backed filename.

Author(s)

Eliot MclIntire

fixErrorsin 61

fixErrorsIn Fix common errors in GIS layers, using terra

Description

Currently, this only tests for validity of a SpatVect file, then if there is a problem, it will run
terra: :makeValid

Usage
fixErrorsIn(
X ’
error = NULL,
verbose = getOption("reproducible.verbose”),
fromFnName = ""
)
Arguments
X The SpatStat or SpatVect object to try to fix.
error The error message, e.g., coming from try(...)
verbose Numeric, -1 silent (where possible), 0 being very quiet, 1 showing more messag-
ing, 2 being more messaging, etc. Default is 1. Above 3 will output much more
information about the internals of Caching, which may help diagnose Caching
challenges. Can set globally with an option, e.g., options('reproducible.verbose' = 0) to reduce 1
fromFnName The function name that produced the error, e.g., maskTo
Value

An object of the same class as x, but with some errors fixed via terra: :makeValid()

gdalProject 3-Step postProcess sequence for SpatRasters using gdalwarp

Description

DEFUNCT: Please use the postProcessTo functions.

gdalResample is a thin wrapper around sf: :gdal_utils('gdalwarp', ...) with specific options
set, notably, "-r", "near"”, -te, -te_srs, tr, -dstnodata = NA, -overwrite.
gdalMask is a thin wrapper around sf: :gdal_utils('gdalwarp', ...) with specific options set,

notably, -cutline, -dstnodata = NA, and -overwrite.

62 gdalProject

Usage

gdalProject(
fromRas,
toRas,
filenameDest,
verbose = getOption("reproducible.verbose”),

)

gdalResample(
fromRas,
toRas,
filenameDest,
verbose = getOption("reproducible.verbose”),

)

gdalMask (
fromRas,
maskToVect,
writeTo = NULL,
verbose = getOption("reproducible.verbose”),

)

Arguments
fromRas see from argument from postProcessTo(), but can only be a SpatRaster.
toRas see to argument from postProcessTo(), but can only be a SpatRaster.

filenameDest A filename with an appropriate extension (e.g., . tif) for gdal to write the out-
put to. Since this function is conceived to be part of a chain, and not the final
step, this function does not use writeTo, which is reserved for the final step in
the chain.

verbose Numeric, -1 silent (where possible), 0 being very quiet, 1 showing more messag-
ing, 2 being more messaging, etc. Default is 1. Above 3 will output much more
information about the internals of Caching, which may help diagnose Caching
challenges. Can set globally with an option, e.g., options('reproducible.verbose' = @) to reduce 1

For gdalProject, this can be method. For gdalMask can be destinationPath
and touches. For all gdalx, this can also be and datatype.

maskToVect see maskTo argument from maskTo(), but can only be a SpatVector

writeTo Optional character string of a filename to use writeRaster to save the final
object. Default is NULL, which means there is no writeRaster
Details

gdalProject is a thin wrapper around sf: :gdal_utils('gdalwarp', ...) with specific options
set, notably, -r to method (in the ...), -t_srs to the crs of the toRas, -te to the extent of the toRas,

getRelative 63

-te_srs to the crs of the toRas, ~dstnodata = NA, and -overwrite.

These three functions are used within postProcessTo, in the sequence: gdalProject, gdalResample
and gdalMask, when from and projectTo are SpatRaster and maskTo is a SpatVector, but only
if options(reproducible.gdalwarp = TRUE) is set.

This sequence is a slightly different order than the sequence when gdalwarp = FALSE or the argu-
ments do not match the above. This sequence was determined to be faster and more accurate than
any other sequence, including running all three steps in one gdalwarp call (which gdalwarp can
do). Using one-step gdalwarp resulted in very coarse pixelation when converting from a coarse
resolution to fine resolution, which visually was inappropriate in test cases.

See Also

gdalResample(), and gdalMask() and the overarching postProcessTo()

Examples

if (require("terra”, quietly = TRUE)) {
prepare dummy data -- 3 SpatRasters, 2 SpatVectors
need 2 SpatRaster
rf <- system.file("ex/elev.tif", package = "terra")
elevl <- terra::rast(rf)

a polygon vector

f <- system.file("ex/lux.shp”, package = "terra")
vOrig <- terra::vect(f)

v <- vOrig[1:2, 1]

utm <- terra::crs("epsg:23028") # $wkt

utm <- "+proj=utm +zone=28 +datum=WGS84 +units=m +no_defs"”

vInUTM <- terra::project(vOrig, utm)

vAsRasInlLonglLat <- terra::rast(vOrig, resolution = 0.008333333)
res100 <- 100

rInUTM <- terra::rast(vInUTM, resolution = res100, vals = 1)

crop, reproject, mask, crop a raster with a vector in a different projection
--> gives message about not enough information

t1 <- postProcessTo(elevl, to = vInUTM)

crop, reproject, mask a raster to a different projection, then mask
t2a <- postProcessTo(elevl, to = vAsRasInLonglLat, maskTo = vInUTM)
t3a <- postProcessTo(elevl, to = rInUTM, maskTo = vInUTM)

getRelative Relative paths

Description

Extracting relative file paths.

64 getRelative

Usage

getRelative(path, relativeToPath)

makeRelative(files, absoluteBase)

Arguments

path character vector or list specifying file paths
relativeToPath directory against which path will be relativized.
files character vector or list specifying file paths
absoluteBase base directory (as absolute path) to prepend to files

Details

» getRelative() searches path "from the right" (instead of "from the left") and tries to recon-
struct it relative to directory specified by relativeToPath. This is useful when dealing with
symlinked paths.

* makeRelative() checkstoseeif files and normPath(absoluteBase) share a common path
(i.e., "from the left"), otherwise it returns files.

Examples

create a project directory (e.g., on a hard drive)
(tmp1 <- tempdir2("myProject”, create = TRUE))

create a cache directory elsewhere (e.g., on an SSD)
(tmp2 <- tempdir2("my_cache”, create = TRUE))

symlink the project cache directory to tmp2
files created here are actually stored in tmp2
prjCache <- file.path(tmp1, "cache")
file.symlink(tmp2, prjCache)

create a dummy cache object file in the project cache dir

(tmpf <- tempfile(”cache_", prjCache))

cat(rnorm(100), file = tmpf)

file.exists(tmpf)

normPath(tmpf) ## note the 'real' location (i.e., symlink resolved)

getRelative(tmpf, prjCache) ## relative path
getRelative(tmpf, tmp2) ## relative path

makeRelative(tmpf, tmp2) ## abs path; tmpf and normPath(tmp2) don't share common path
makeRelative(tmpf, prjCache) ## abs path; tmpf and normPath(tmp2) don't share common path
makeRelative(normPath(tmpf), prjCache) ## rel path; share common path when both normPath-ed

unlink(tmp1, recursive = TRUE)
unlink(tmp2, recursive = TRUE)

harmonizeCall 65

harmonizeCall Harmonize all forms of call

Description
This will convert all known (imagined) calls so that they have the same canonical format i.e.,
rnorm(n=1, mean=0, sd=1)

Usage

harmonizeCall(calllList, .callingEnv, .functionName = NULL)

Arguments
calllList A named list with elements call, usesDots and FUNorig
.callingEnv The calling environment where Cache was called from

.functionName A possible function name. If omitted, then it will be deduced from the calllList
and may be inaccurate.

Value

A named list. We illustrate with the example rnorm(1). The named list will have the original
calllList (call (the original call, without quote), FUNorig, the original value passed by user to

FUN, and usesDots which is a logical indicating whether the ... are used), and appended with
new_call (the harmonized call, with the function and arguments evaluated, e.g., (function (n,

mean =0, sd=1) .Call(C_rnorm, n, mean, sd)) (1)), func_call, the same harmonized call with
neither function nor arguments not evaluated (e.g., rnorm(1)), func which will be function or
method definition function (n, mean=0, sd=1) .Call(C_rnorm, n, mean, sd), and . functionName,
which will be the function name as a character string (rnorm) either directly passed from the user’s
.functionName or deduced from the func_call.

internetExists Checks for existed of a url or the internet using https://CRAN.
R-project.org

Description

A lightweight function that may be less reliable than more purpose built solutions such as checking
a specific web page using RCurl: :url.exists. However, this is slightly faster and is sufficient for
many uses.

Usage

internetExists()

urlExists(url)

https://CRAN.R-project.org
https://CRAN.R-project.org

66 keepOrigGeom

Arguments

url A url of the form https://. .. to test for existence.

Value

Logical, TRUE if internet site exists, FALSE otherwise

Logical, TRUE if internet site exists, FALSE otherwise.

isUpdated Has a cached object has been updated?

Description

Has a cached object has been updated?

Usage

isUpdated(x)

Arguments

X cached object

Value

logical

keepOrigGeom Keep original geometries of sf objects

Description

When intersections occur, what was originally 2 polygons features can become LINESTRING and/or
POINT and any COLLECTIONS or MULTI- versions of these. This function evaluates what the orig-
inal geometry was and drops any newly created different geometries. For example, if a POLYGON
becomes a COLLECTION of MULTIPOLYGON, POLYGON and POINT geometries, the POINT geometries
will be dropped. This function is used internally in postProcessTo().

Usage
keepOrigGeom(newObj, origObj)

Arguments

newOb j The new, derived sf object

origObj The previous, object whose geometries should be used.

linkOrCopy 67

Value

The original newObj, but with only the type of geometry that entered into the function.

1inkOrCopy Hardlink, symlink, or copy a file

Description

Attempt first to make a hardlink. If that fails, try to make a symlink (on non-windows systems and
symlink = TRUE). If that fails, copy the file.

Usage

1linkOrCopy(
from,
to,
symlink = TRUE,
overwrite = TRUE,
verbose = getOption("reproducible.verbose”, 1)

)
Arguments
from, to Character vectors, containing file names or paths. to can alternatively be the
path to a single existing directory.
symlink Logical indicating whether to use symlink (instead of hardlink). Default FALSE.
overwrite Logical. Passed to writeTo (possibly inside postProcess) and postProcess.
verbose Numeric, -1 silent (where possible), 0 being very quiet, 1 showing more messag-
ing, 2 being more messaging, etc. Default is 1. Above 3 will output much more
information about the internals of Caching, which may help diagnose Caching
challenges. Can set globally with an option, e.g., options('reproducible.verbose' = @) to reduce 1
Value

This function is called for its side effects, which will be a file.link is that is available or file. copy
if not (e.g., the two directories are not on the same physical disk).

Note

Use caution with files-backed objects (e.g., rasters). See examples.

Author(s)
Alex Chubaty and Eliot Mclntire

68 listNamed

See Also
file.link(), file.symlink(), file.copy().

Examples

tmpDir <- file.path(tempdir(), "symlink-test")
tmpDir <- normalizePath(tmpDir, winslash = "/", mustWork = FALSE)
dir.create(tmpDir)

fo <- file.path(tmpDir, "file@.csv")
write.csv(iris, f0)

dl <- file.path(tmpDir, "dir1")
dir.create(d1)
write.csv(iris, file.path(d1l, "filel.csv"))

d2 <- file.path(tmpDir, "dir2")
dir.create(d2)
f2 <- file.path(tmpDir, "file2.csv")

create link to a file

linkOrCopy(fo, f2)

file.exists(f2) ## TRUE

identical(read.table(f@), read.table(f2)) ## TRUE

deleting the link shouldn't delete the original file
unlink(fo)

file.exists(f@) ## FALSE

file.exists(f2) ## TRUE

if (requireNamespace("terra”, quietly = TRUE)) {
using spatRasters and other file-backed objects
f3a <- system.file("ex/test.grd”, package = "terra")
f3b <- system.file("ex/test.gri”, package = "terra")
r3a <- terra::rast(f3a)
f4a <- file.path(tmpDir, "raster4.grd”)
f4b <- file.path(tmpDir, "raster4.gri")
linkOrCopy(f3a, f4a) ## hardlink
1inkOrCopy(f3b, f4b) ## hardlink
r4da <- terra::rast(f4a)

isTRUE(all.equal(r3a, r4a)) # TRUE

cleanup
unlink(tmpDir, recursive = TRUE)

listNamed Create a list with names from object names

loadFile 69

Description

nan

This is a convenience wrapper around a <- 1; newList <- list(a); names(newList) <- "a".

Usage

listNamed(...)

Arguments

Any elements to add to a list, as in base: :list

Details

This will return a named list, where names are the object names, captured internally in the function
and assigned to the list. If a user manually supplies names, these will be kept (i.e., not overwritten
by the object name).

Examples

AN N AN
w N =

a
b
d
(newList <- listNamed(a, b, dManual = d)) # "dManual” name kept

loadFile Load a file from the cache

Description

Load a file from the cache

Usage
loadFile(file, ...)

Arguments
file character specifying the path to the file
Allows format for backward compatibility
Value

the object loaded from file

70 mergeCache

matchCall?2 Remove quote and determine if call uses . . .
Description
Minor cleaning up of the FUN and . . . to be used subsequently. This does only very minor things as

it is run even if useCache = FALSE, i.e., even if the Cache is skipped.

Usage

matchCall2(definition, call, envir, envir2 = parent.frame(), FUN)

Arguments
definition a function, by default the function from which match.call is called. See details.
call an unevaluated call to the function specified by definition, as generated by
call.
envir an environment, from which the . .. in call are retrieved, if any.
envir2 Environment. The environment where matchCall2 was called.
FUN Either a function (e.g., rnorm), a function call (e.g., rnorm(1)), or an unevalu-
ated function call (e.g., using quote()).
Value

A named list with call (the original call, without quote), FUNorig, the original value passed by
user to FUN, and usesDots which is a logical indicating whether the . . . are used.

mergeCache Merge two cache repositories together

Description

Usage

mergeCache(
cacheTo,
cacheFrom,
drvTo = getDrv(getOption("reproducible.drv”, NULL)),
drvFrom = getDrv(getOption("reproducible.drv”, NULL)),
connTo = NULL,
connFrom = NULL,
verbose = getOption("reproducible.verbose”)

mergeCache 71

)

S4 method for signature 'ANY'
mergeCache(
cacheTo,
cacheFrom,
drvTo = getDrv(getOption("reproducible.drv”, NULL)),
drvFrom = getDrv(getOption("reproducible.drv”, NULL)),
connTo = NULL,
connFrom = NULL,
verbose = getOption("reproducible.verbose”)

)
Arguments
cacheTo The cache repository (character string of the file path) that will become larger,
i.e., merge into this
cacheFrom The cache repository (character string of the file path) from which all objects
will be taken and copied from
drvTo The database driver for the cacheTo.
drvFrom The database driver for the cacheFrom
connTo The connection for the cacheTo. If not provided, then a new one will be made
from drvTo and cacheTo
connFrom The database for the cacheFrom. If not provided, then a new one will be made
from drvFrom and cacheFrom
verbose Numeric, -1 silent (where possible), 0 being very quiet, 1 showing more messag-
ing, 2 being more messaging, etc. Default is 1. Above 3 will output much more
information about the internals of Caching, which may help diagnose Caching
challenges. Can set globally with an option, e.g., options('reproducible.verbose' = @) to reduce 1
Details

All the cacheFrom artifacts will be put into cacheTo repository. All userTags will be copied
verbatim, including accessed, with 1 exception: date will be the current Sys.time() at the time
of merging. The createdDate column will be similarly the current time of merging.

Value

The character string of the path of cacheTo, i.e., not the objects themselves.

72

messageDF

messageDF

Use message with a consistent use of verbose

Description

This family has a consistent use of verbose allowing messages to be turned on or off or verbosity

increased or decreased throughout the family of messaging in reproducible.

Usage

messageDF (
df,
round,
colour = NULL,
colnames = NULL,
indent = NULL,
verbose = getOption("reproducible.verbose”),
verboselLevel = 1,
appendLF = TRUE
)

messagePrepInputs(

appendLF = TRUE,
verbose = getOption("reproducible.verbose”),
verboselLevel = 1

)

messagePreProcess(

appendLF = TRUE,
verbose = getOption("reproducible.verbose”),
verboselLevel = 1

)

messageCache(
colour = getOption("reproducible.messageColourCache"”),
verbose = getOption("reproducible.verbose”),
verboselLevel = 1,
appendLF = TRUE

)

messageQuestion(..., verboselLevel = @, appendLF = TRUE)

.messageFunctionFn(

L

messageDF

73

appendLF = TRUE,

verbose

= getOption("reproducible.verbose”),

verboselLevel = 1

)

messageColoured(

*
colour
indent

NULL,
NULL,

hangingIndent = TRUE,

verbose

= getOption("reproducible.verbose”, 1),

verboselLevel = 1,
appendLF = TRUE

Arguments

df
round
colour

colnames

indent

verbose

A data.frame, data.table, matrix
An optional numeric to pass to round
Any colour that can be understood by cli

Logical or NULL. If TRUE, then it will print column names even if there aren’t any
in the df (i.e., they will) be V1 etc., NULL will print them if they exist, and FALSE
which will omit them.

An integer, indicating whether to indent each line

Numeric, -1 silent (where possible), 0 being very quiet, 1 showing more messag-
ing, 2 being more messaging, etc. Default is 1. Above 3 will output much more
information about the internals of Caching, which may help diagnose Caching
challenges. Can set globally with an option, e.g., options('reproducible.verbose' = @) to reduce 1

verboselLevel The numeric value for this message= call, equal or above which verbose must

appendLF

be. The higher this is set, the more unlikely the call will show a message.
logical: should messages given as a character string have a newline appended?

Any character vector, passed to paste@(...)

hangingIndent Logical. If there are \n, should there be a handing indent of 2 spaces. Default is

Details

TRUE

» messageDF uses message to print a clean square data structure.

* messageColoured allows specific colours to be used.

* messageQuestion sets a high level for verbose so that the message always gets asked.

Value

Used for side effects. This will produce a message of a structured data. frame.

74 minFn

minFn Get min or maximum value of a (Spat)Raster

Description

During the transition from raster to terra, some functions are not drop in replacements, such as
minValue and maxValue became terra::minmax. This helper allows one function to be used,
which calls the correct max or min function, depending on whether the object is a Raster or
SpatRaster.

Usage
minFn(x)
maxFn(x)
dataType2(x, ...)
nlayers2(x)

values2(x, ...)

Arguments

X A Raster or SpatRaster object.

Passed to the functions in raster or terra, as needed.

Value

A vector (not matrix as in terra: :minmax) with the minimum or maximum value on the Raster or
SpatRaster, one value per layer.

Examples

if (requireNamespace("terra”, quietly = TRUE)) {
ras <- terra::rast(terra::ext(@, 10, 0, 10), vals = 1:100)
maxFn(ras)
minFn(ras)

}

movedCache 75

movedCache Deal with moved cache issues

Description

If a user manually copies a complete Cache folder (including the db file and rasters folder), there are
issues that must be addressed, depending on the Cache backend used. If using DBI (e.g., RSQLite
or Postgres), the db table must be renamed. Run this function after a manual copy of a cache folder.
See examples for one way to do that.

Usage
movedCache (
new,
old,
drv = getDrv(getOption("reproducible.drv”, NULL)),
conn = getOption("reproducible.conn”, NULL),
verbose = getOption("reproducible.verbose")
)
Arguments
new Either the path of the new cachePath where the cache was moved or copied to,
or the new DB Table Name
old Optional, if there is only one table in the new cache path. Either the path of the
previous cachePath where the cache was moved or copied from, or the old DB
Table Name
drv If using a database backend, drv must be an object that inherits from DBIDriver
(e.g.,RSQLite::SQLite).
conn an optional DBIConnection object, as returned by dbConnect ().
verbose Numeric, -1 silent (where possible), 0 being very quiet, 1 showing more messag-
ing, 2 being more messaging, etc. Default is 1. Above 3 will output much more
information about the internals of Caching, which may help diagnose Caching
challenges. Can set globally with an option, e.g., options('reproducible.verbose' = @) to reduce 1
Details

When the backend database for a reproducinle cache is an SQL database, the files on disk cannot
be copied manually to a new location because they contain internal tables. Because reproducible
gives the main table a name based on the cachePath path, calls to Cache will attempt to call this
internally if it detects a name mismatch.

Value

movedCache does not return anything; it is called for its side effects.

76 normPath

Examples

data.table::setDTthreads(2)

tmpdir <- "tmpdir”

tmpCache <- "tmpCache”

tmpCacheDir <- normalizePath(file.path(tempdir(), tmpCache), mustWork = FALSE)
tmpdirPath <- normalizePath(file.path(tempdir(), tmpdir), mustWork = FALSE)

bb <- Cache(rnorm, 1, cachePath = tmpCacheDir)

Copy all files from tmpCache to tmpdir
froms <- normalizePath(dir(tmpCacheDir, recursive = TRUE, full.names = TRUE),
mustWork = FALSE
)
dir.create(file.path(tmpdirPath, "rasters"), recursive = TRUE, showWarnings = FALSE)
dir.create(file.path(tmpdirPath, "cacheOutputs"”), recursive = TRUE, showWarnings = FALSE)
file.copy(
from = froms, overwrite = TRUE,
to = gsub(tmpCache, tmpdir, froms)
)

Can use 'movedCache' to update the database table, though will generally

happen automatically, with message indicating so

movedCache(new = tmpdirPath, old = tmpCacheDir)

bb <- Cache(rnorm, 1, cachePath = tmpdirPath) # should recover the previous call

normPath Normalize file paths

Description

Checks the specified path for formatting consistencies:

1. use slash instead of backslash;
2. do tilde etc. expansion;

3. remove trailing slash.

Usage
normPath(path)

S4 method for signature 'character'
normPath(path)

S4 method for signature 'list'
normPath(path)

S4 method for signature 'NULL'
normPath(path)

normPath 77

S4 method for signature 'missing'’
normPath ()

S4 method for signature 'logical'
normPath(path)

normPathRel (path)

Arguments

path A character vector of filepaths.

Details

Additionally, normPath() attempts to create a absolute paths, whereas normPathRel () maintains
relative paths.

d> getwd()

[11 "/home/achubaty/Documents/GitHub/PredictiveEcology/reproducible”

d> normPathRel ("potato/chips”)

[1] "potato/chips”

d> normPath("potato/chips”)

[1] "/home/achubaty/Documents/GitHub/PredictiveEcology/reproducible/potato/chips”

Value

Character vector of cleaned up filepaths.

Examples

normalize file paths
paths <- list("./aaa/zzz",
"./aaal/zzz/",
.//aaa//zzz",
".//aaal/zzz/",
" \\\\aaa\\\\zzz",
" \\\\aaa\\\\zzz\\\\",
file.path(".", "aaa", "zzz"))

»

checked <- normPath(paths)
length(unique(checked)) ## 1; all of the above are equivalent

check to see if a path exists
tmpdir <- file.path(tempdir(), "example_checkPath")

dir.exists(tmpdir) ## FALSE
tryCatch(checkPath(tmpdir, create = FALSE), error = function(e) FALSE) ## FALSE

checkPath(tmpdir, create = TRUE)
dir.exists(tmpdir) ## TRUE

78 numCoresToUse

unlink(tmpdir, recursive = TRUE)

numCoresToUse Estimate Number of CPU Cores to Use for Parallel Processing

Description

This function estimates the number of CPU cores that can be safely used for parallel processing,
taking into account a minimum threshold, the total number of physical cores, and currently active
threads.

Usage

numCoresToUse(min = 2, max = NULL)

Arguments
min An integer specifying the minimum number of cores to use. Default is 2.
max An integer specifying the maximum number of cores available, typically the
number of physical cores. Defaultis max (1L, getOption("Ncpus”, 1L), parallel
-1, logical =FALSE, na.rm=TRUE).
Value

An integer representing the number of cores that can be used for parallel tasks, ensuring at least
min cores are used, while subtracting one for the current process and an estimate of actively used
threads (via detectActiveCores()).

Note

This function depends on detectActiveCores() and is not supported on Windows systems.

See Also

detectActiveCores()

Examples

if (FALSE) {
numCoresToUse()
numCoresToUse(min = 4)

3

::detectCores()

objSize 79

objSize Wrapper around lobstr: :obj_size

Description

This function attempts to estimate the real object size of an object. If the object has pass-by-
reference semantics, it may not estimate the object size well without a specific method developed.
For the case of terra class objects, this will be accurate (both RAM and file size), but only if it
is not passed inside a list or environment. To get an accurate size of these, they should be passed
individually.

Usage

objSize(x, quick = FALSE, recursive = FALSE, ...)

objSizeSession(sumLevel = Inf, enclosingEnvs = TRUE, .prevEnvirs = list())

Arguments

X An object

quick Logical. If FALSE, then an attribute, "objSize" will be added to the returned
value, with each of the elements’ object size returned also.

recursive Logical. If TRUE, then, in addition to evaluating the whole object, it will also
return the recursive sizes of the elements of a list or environment.
Additional arguments (currently unused), enables backwards compatible use.

sumLevel Numeric, indicating at which depth in the list of objects should the object sizes

be summed (summarized). Default is Inf, meaning no sums. Currently, the
only option other than Inf is 1: objSizeSession(1), which gives the size of

each package.
enclosingEnvs Logical indicating whether to include enclosing environments. Default TRUE.
.prevEnvirs For internal account keeping to identify and prevent duplicate counting
Details

For functions, a user can include the enclosing environment as described https://www.r-bloggers.
com/2015/03/using-closures-as-objects-in-r/and http://adv-r.had.co.nz/memory.html.
It is not entirely clear which estimate is better. However, if the enclosing environment is the
.GlobalEnv, it will not be included even though enclosingEnvs = TRUE.

objSizeSession will give the size of the whole session, including loaded packages. Because of
the difficulties in calculating the object size of base and methods packages and Autoloads, these
are omitted.

https://www.r-bloggers.com/2015/03/using-closures-as-objects-in-r/
https://www.r-bloggers.com/2015/03/using-closures-as-objects-in-r/
http://adv-r.had.co.nz/memory.html

80 paddedFloatToChar

Value

This will return the result from lobstr::obj_size, i.e., a lobstr_bytes which is a numeric.
If quick = FALSE, it will also have an attribute, "objSize", which will be a list with each element
being the objSize of the individual elements of x. This is particularly useful if x is a list or
environment. However, because of the potential for shared memory, the sum of the individual
elements will generally not equal the value returned from this function.

Examples
library(utils)
foo <- new.env()
foo$h <- 1:10

foo$d <- 1:10

objSize(foo) # all the elements in the environment
utils::object.size(foo) # different - only measuring the environment as an object

utils::object.size(prepInputs) # only the function, without its enclosing environment
objSize(prepInputs) # the function, plus its enclosing environment

os1 <- utils::object.size(as.environment("package:reproducible”))

(os1) # very small -- just the environment container
paddedFloatToChar Convert numeric to character with padding
Description

This will pad floating point numbers, right or left. For integers, either class integer or functionally
integer (e.g., 1.0), it will not pad right of the decimal. For more specific control or to get exact
padding right and left of decimal, try the stringi package. It will also not do any rounding. See
examples.

Usage
paddedFloatToChar(x, padL = ceiling(logl@(x + 1)), padR = 3, pad = "0")

Arguments
X numeric. Number to be converted to character with padding
padL numeric. Desired number of digits on left side of decimal. If not enough, pad
will be used to pad.
padR numeric. Desired number of digits on right side of decimal. If not enough, pad

will be used to pad.
pad character to use as padding (nchar (pad) == 1 must be TRUE).

Path-class 81

Value

Character string representing the filename.

Author(s)
Eliot MclIntire and Alex Chubaty

Examples

paddedFloatToChar(1.25)
paddedFloatToChar(1.25, padL = 3, padR = 5)
paddedFloatToChar(1.25, padL = 3, padR = 1) # no rounding, so keeps 2 right of decimal

Path-class Coerce a character string to a class "Path”

Description
Allows a user to specify that their character string is indeed a filepath. Thus, methods that require
only a filepath can be dispatched correctly.

Usage

asPath(obj, nParentDirs = 0)

S3 method for class 'character'
asPath(obj, nParentDirs = @)

S3 method for class 'null'
asPath(obj, nParentDirs = 0)

Arguments
obj A character string to convert to a Path.
nParentDirs A numeric indicating the number of parent directories starting from basename(obj)
= 0 to keep for the digest
Details

It is often difficult or impossible to know algorithmically whether a character string corresponds to
a valid filepath. In the case where it is en existing file, file.exists can work. But if it does not
yet exist, e.g., for a save, it is difficult to know whether it is a valid path before attempting to save
to the path.

This function can be used to remove any ambiguity about whether a character string is a path. It
is primarily useful for achieving repeatability with Caching. Essentially, when Caching, arguments
that are character strings should generally be digested verbatim, i.e., it must be an exact copy for
the Cache mechanism to detect a candidate for recovery from the cache. Paths, are different. While

82 postProcess

they are character strings, there are many ways to write the same path. Examples of identical
meaning, but different character strings are: path expanding of ~ vs. not, double back slash vs.
single forward slash, relative path vs. absolute path. All of these should be assessed for their actual
file or directory location, NOT their character string. By converting all character string that are
actual file or directory paths with this function, then Cache will correctly assess the location, NOT
the character string representation.

Value

A vector of class Path, which is similar to a character, but has an attribute indicating how deep the
Path should be considered "digestible". In other words, most of the time, only some component of
an absolute path is relevant for evaluating its purpose in a Cache situation. In general, this is usually
equivalent to just the "relative" path

Examples

tmpf <- tempfile(fileext = ".csv")
file.exists(tmpf) ## FALSE
tmpfPath <- asPath(tmpf)

is(tmpf, "Path") ## FALSE
is(tmpfPath, "Path") ## TRUE

postProcess Generic function to post process objects

Description

The method for GIS objects (terra Spatx & sf classes) will crop, reproject, and mask, in that order.
This is a wrapper for cropTo(), fixErrorsIn(), projectTo(), maskTo() and writeTo(), with a
required amount of data manipulation between these calls so that the crs match.

Usage

postProcess(x, ...)

S3 method for class 'list'
postProcess(x, ...)

Default S3 method:

postProcess(x, ...)
Arguments
X A GIS object of postProcessing, e.g., Spat* or sf*. This can be provided as a

rlang: :quosure or a normal R object.

postProcess 83

Additional arguments passed to methods. For spatialClasses, these are: cropTo(),
fixErrorsIn(), projectTo(), maskTo(), determineFilename(), andwriteTo().
Each of these may also pass ... into other functions, like writeTo(). This
might include potentially important arguments like datatype, format. Also
passed to terra: :project, with likely important arguments such as method =
"bilinear”. See details.

Value

A GIS file (e.g., RasterLayer, SpatRaster etc.) that has been appropriately cropped, reprojected,
masked, depending on the inputs.

Post processing sequence

If the rasterToMatch or studyArea are passed, then the following sequence will occur:
1. Fixerrors fixErrorsIn(). Currently only errors fixed are for SpatialPolygons using buffer(...,
width =0).
Crop using cropTo()
Project using projectTo()
Mask using maskTo()

Determine file name determineFilename()

SR

Write that file name to disk, optionally writeTo()

NOTE: checksumming does not occur during the post-processing stage, as there are no file down-
loads. To achieve fast results, wrap prepInputs with Cache

Backwards compatibility with rasterToMatch and/or studyArea arguments

For backwards compatibility, postProcess will continue to allow passing rasterToMatch and/or
studyArea arguments. Depending on which of these are passed, different things will happen to the
targetFile located at filenamel.

See Use cases section in postProcessTo() for post processing behaviour with the new from and
to arguments.

If targetFile is a raster (Rasterx, or SpatRaster) object::

rasterToMatch studyArea Both
extent Yes Yes rasterToMatch
resolution Yes No rasterToMatch
projection Yes No* rasterToMatch*
alignment Yes No rasterToMatch
mask No** Yes studyArea**

*Can be overridden with useSAcrs.
**Will mask with NAs from rasterToMatch if maskWithRTM.

84 postProcess

If targetFile is a vector (Spatial#, sf or SpatVector) object::

rasterToMatch studyArea Both
extent Yes Yes rasterToMatch
resolution NA NA NA
projection Yes No* rasterToMatch*
alignment NA NA NA
mask No Yes studyArea

*Can be overridden with useSAcrs

See Also

prepIlnputs

Examples

if (requireNamespace("terra”, quietly = TRUE) &&
requireNamespace("withr"”, quietly = TRUE)) {
library(reproducible)
withr::local_dir(withr::local_tempdir())
withr::local_options(reproducible.inputPaths = NULL)
od <- setwd(tempdir2())
download a (spatial) file from remote url (which often is an archive) load into R
need 3 files for this example; 1 from remote, 2 local
dPath <- file.path(tempdir2())
remoteTifUrl <- "https://github.com/rspatial/terra/raw/master/inst/ex/elev.tif"

localFileLuxSm <- system.file("ex/luxSmall.shp”, package = "reproducible")
localFileLux <- system.file("ex/lux.shp”, package = "terra")

1 step for each layer

1st step -- get study area

studyArea <- prepInputs(localFilelLuxSm, fun = "terra::vect”) # default is sf::st_read

2nd step: make the input data layer like the studyArea map

Test only relevant if connected to internet -- so using try just in case

elevForStudy <- try(prepInputs(url = remoteTifUrl, to = studyArea, res = 250,
destinationPath = dPath, useCache = FALSE))

Alternate way, one step at a time. Must know each of these steps, and perform for each layer

dir.create(dPath, recursive = TRUE, showWarnings = FALSE)
file.copy(localFileLuxSm, file.path(dPath, basename(localFilelLuxSm)))

studyArea2 <- terra::vect(localFilelLuxSm)

if (lall(terra::is.valid(studyArea2))) studyArea2 <- terra::makeValid(studyArea2)
tf <- tempfile(fileext = ".tif")

download.file(url = remoteTifUrl, destfile = tf, mode = "wb"”, quiet = TRUE)
Checksums(dPath, write = TRUE, files = tf)

elevOrig <- terra::rast(tf)

studyAreaCrs <- terra::crs(studyArea)

elevForStudy2 <- terra::project(elevOrig, studyAreaCrs, res = 250) |>

postProcessTo 85

terra: :mask(studyArea2) |>
terra: :crop(studyArea2)

isTRUE(all.equal(elevForStudy, elevForStudy2)) # TRUE!

sf class
if (requireNamespace(”sf"”, quietly = TRUE)) {

studyAreaSmall <- prepInputs(localFileLuxSm, fun = "sf::st_read")

studyAreas <- list()

studyAreas[["orig"”]] <- prepInputs(localFilelux)

studyAreas[["reprojected”]] <- projectTo(studyAreas[["orig"]], studyAreaSmall)
studyAreas[["cropped"”]] <- suppressWarnings(cropTo(studyAreas[["orig"]], studyAreaSmall))
studyAreas[["masked”]] <- suppressWarnings(maskTo(studyAreas[["orig"]], studyAreaSmall))
}

SpatVector-- note: doesn't matter what class the "to” object is, only the "from”
studyAreas <- list()
studyAreaSmall <- prepInputs(localFileLuxSm)
studyAreas[["orig"”"]] <- prepInputs(localFilelLux)
studyAreas[["reprojected”]] <- projectTo(studyAreas[["orig"”]], studyAreaSmall)
studyAreas[["cropped”]] <- suppressWarnings(cropTo(studyAreas[["orig"]], studyAreaSmall))
studyAreas[["masked”]] <- suppressWarnings(maskTo(studyAreas[["orig"]], studyAreaSmall))
if (interactive()) {

par(mfrow = c(2,2));

out <- lapply(studyAreas, function(x) terra::plot(x))
}

withr::deferred_run()
setwd(od)

3
postProcessTo Transform a GIS dataset so it has the properties (extent, projection,
mask) of another
Description

This function provides a single step to achieve the GIS operations "pre-crop-with-buffer-to-speed-
up-projection”, "project”, "post-projection-crop”, "mask" and possibly "write". It uses primarily the
terra package internally (with some minor functions from sf) in an attempt to be as efficient as
possible, except if all inputs are sf objects. (in which case sf is used). Currently, this function
is tested with sf, SpatVector, SpatRaster, Raster* and Spatialx objects passed to from, and
the same plus SpatExtent, and crs passed to to or the relevant xto functions. For this function,
Gridded means a Raster= class object from raster or a SpatRaster class object from terra.
Vector means a Spatial# class object from sp, a sf class object from sf, or a SpatVector class
object from terra. This function is also used internally with the deprecated family postProcess(),
*Inputs, such as cropInputs().

86 postProcessTo

Usage

postProcessTo(
from,
to,
cropTo = NULL,
projectTo = NULL,
maskTo = NULL,
writeTo = NULL,
overwrite = TRUE,
verbose = getOption("reproducible.verbose”),

)

postProcessTerra(
from,
to,
cropTo = NULL,
projectTo = NULL,
maskTo = NULL,
writeTo = NULL,
overwrite = TRUE,
verbose = getOption("reproducible.verbose”),

)

maskTo(
from,
maskTo,
overwrite = FALSE,
verbose = getOption("reproducible.verbose”),

)

projectTo(
from,
projectTo,
overwrite = FALSE,
verbose = getOption("reproducible.verbose”),

)

cropTo(
from,
cropTo = NULL,
needBuffer = FALSE,
overwrite = FALSE,
verbose = getOption("reproducible.verbose”),

postProcessTo

)

writeTo(
from,

writeTo,
overwrite

87

getOption("reproducible.overwrite”),

isStack = NULL,
isBrick = NULL,
isRaster = NULL,

isSpatRaster
getOption("reproducible.verbose”),

verbose

Arguments

from

to

cropTo

projectTo

maskTo

writeTo

overwrite

= NULL,

A Gridded or Vector dataset on which to do one or more of: crop, project, mask,
and write

A Gridded or Vector dataset which is the object whose metadata will be the
target for cropping, projecting, and masking of from.

Optional Gridded or Vector dataset which, if supplied, will supply the extent
with which to crop from. To omit cropping completely, set this to NA. If supplied,
this will override to for the cropping step. Defaults to NULL, which means use
to

Optional Gridded or Vector dataset, or crs object (e.g., sf::st_crs). If Grid-
ded it will supply the crs, extent, res, and origin to project the from to. If
Vector, it will provide the crs only. The resolution and extent will be taken
from res(from) (i.e. ncol(from)*nrow(from)). If a Vector, the extent of the
projectTo is not used (unless it is also passed to cropTo. To omit projecting,
set this to NA. If supplied, this will override to for the projecting step. De-
faults to NULL, which means use to. Attention. Conflicts may arise with when
projectTo is a Vector/CRS object with a distinct CRS from to. Because to is
used for masking after from is re-projected using projectTo, the extents of to
and from may no longer overlap (as in align) perfectly leading to failure dur-
ing the masking step. We recommend passing a raster templates to projectTo
whose extent and CRS are both compatible with the object used later for mask-
ing (either to or maskTo).

Optional Gridded or Vector dataset which, if supplied, will supply the extent
with which to mask from. If Gridded, it will mask with the NA values on the
maskTo; if Vector, it will mask on the terra: :aggregate(maskTo). To omit
masking completely, set this to NA. If supplied, this will override to for the
masking step. Defaults to NULL, which means use to

Optional character string of a filename to use writeRaster to save the final
object. Default is NULL, which means there is no writeRaster

Logical. Used if writeTo is not NULL; also if terra determines that the object
requires writing to disk during a crop, mask or project call e.g., because it is
too large.

88 postProcessTo

verbose Numeric, -1 silent (where possible), 0 being very quiet, 1 showing more messag-
ing, 2 being more messaging, etc. Default is 1. Above 3 will output much more
information about the internals of Caching, which may help diagnose Caching
challenges. Can set globally with an option, e.g., options('reproducible.verbose' = @) to reduce 1

Arguments passed to terra: :mask (for maskTo), terra: :project (for projectTo)
orterra::writeRaster (forwriteTo) and not used for cropTo, as well postProcess’s
rasterToMatch and studyArea arguments (see below). Commonly used argu-

ments might be method, touches, and datatype. If filename is passed, it will

be ignored; use writeTo = . If reproducible.gdalwarp = TRUE, then these

will be passed to the gdalx functions. See them for details.

needBuffer Logical. Defaults to FALSE, meaning nothing is done out of the ordinary. If
TRUE, then a buffer around the cropTo, so that if a reprojection has to happen on
the cropTo prior to using it as a crop layer, then a buffer of 1.5 * res(cropTo)
will occur prior, so that no edges are cut off.

isStack, isBrick, isRaster, isSpatRaster
Logical. Default NULL. Used to convert from back to these classes prior to writ-
ing, if provided.

Details

postProcessTo is a wrapper around (an initial "wide" crop for speed) cropTo(needBuffer =
TRUE), projectTo, cropTo (the actual crop for precision), maskTo, writeTo. Users can call each
of these individually.

postProcessTerra is the early name of this function that is now postProcessTo.

This function is meant to replace postProcess () with the more efficient and faster terra functions.

Value

An object of the same class as from, but potentially cropped (via cropTo()), projected (via projectTo()),
masked (via maskTo()), and written to disk (viawriteTo()).

Use Cases

The table below shows what will result from passing different classes to from and to:

from to from will have:

Gridded Gridded the extent, projection, origin, resolution and masking where there are NA from the to

Gridded Vector the projection, origin, and mask from to, and extent will be a round number of pixels that fit within the
Vector Vector the projection, origin, extent and mask from to

If one or more of the *To arguments are supplied, these will override individual components of to.
If to is omitted or NULL, then only the *To arguments that are used will be performed. In all cases,
setting a *To argument to NA will prevent that step from happening.

postProcessTo 89

projectTo

Since these functions use the gis capabilities of sf and terra, they will only be able to do things
that those functions can do. One key caution, which is stated clearly in ?terra: :project is that
projection of a raster (i.e., gridded) object should always be with another gridded object. If the
user chooses to supply a projectTo that is a vector object for a from that is gridded, there may be
unexpected failures due e.g., to extents not overlapping during the maskTo stage.

Backwards compatibility with postProcess

rasterToMatch and studyArea::

If these are supplied, postProcessTo will use them instead of to. If only rasterToMatch is
supplied, it will be assigned to to. If only studyArea is supplied, it will be used for cropTo
and maskTo; it will only be used for projectTo if useSAcrs = TRUE. If both rasterToMatch
and studyArea are supplied, studyArea will only be applied to maskTo (unless maskWithRTM =
TRUE), and, optionally, to projectTo (if useSAcrs = TRUE); everything else will be from rasterToMatch.

targetCRS, filename2, useSAcrs, maskWithRTM::

targetCRS if supplied will be assigned to projectTo. filename2 will be assigned to writeTo.
If useSAcrs is set, then the studyArea will be assigned to projectTo. If maskWithRTM is used,
then the rasterToMath will be assigned to maskTo. All of these will override any existing values
for these arguments.

See also postProcess() documentation section on Backwards compatibility with rasterToMatch
and/or studyArea for further detail.

Cropping

If cropTo is not NA, postProcessTo does cropping twice, both the first and last steps. It does it first
for speed, as cropping is a very fast algorithm. This will quickly remove a bunch of pixels that are
not necessary. But, to not create bias, this first crop is padded by 2 * res(from)[1]), so that edge
cells still have a complete set of neighbours. The second crop is at the end, after projecting and
masking. After the projection step, the crop is no longer tight. Under some conditions, masking
will effectively mask and crop in one step, but under some conditions, this is not true, and the mask
leaves padded NAs out to the extent of the from (as it is after crop, project, mask). Thus the second
crop removes all NA cells so they are tight to the mask.

See Also

maskTo(), cropTo(), projectTo(), writeTo(), and fixErrorsIn(). Also the functions that call
sf::gdal_utils(...) directly: gdalProject(), gdalResample(), gdalMask()

Examples

if (require(”terra”, quietly = TRUE)) {
prepare dummy data -- 3 SpatRasters, 2 SpatVectors
need 2 SpatRaster
rf <- system.file("ex/elev.tif"”, package = "terra")
elevl <- terra::rast(rf)

90 prepInputs

a polygon vector

f <- system.file("ex/lux.shp”, package = "terra")
vOrig <- terra::vect(f)

v <- vOrig[1:2,]

utm <- terra::crs("epsg:23028") # $wkt

utm <- "+proj=utm +zone=28 +datum=WGS84 +units=m +no_defs"

vInUTM <- terra::project(vOrig, utm)

vAsRasInLonglLat <- terra::rast(vOrig, resolution = 0.008333333)
res100 <- 100

rInUTM <- terra::rast(vInUTM, resolution = res100, vals = 1)

crop, reproject, mask, crop a raster with a vector in a different projection
--> gives message about not enough information

t1 <- postProcessTo(elevl, to = vInUTM)

crop, reproject, mask a raster to a different projection, then mask
t2a <- postProcessTo(elevl, to = vAsRasInLonglLat, maskTo = vInUTM)
t3a <- postProcessTo(elevl, to = rInUTM, maskTo = vInUTM)

prepInputs Download and optionally post-process files

Description

Usage

prepInputs(
targetFile = NULL,
url = NULL,
archive = NULL,
alsoExtract = NULL,
destinationPath = getOption("reproducible.destinationPath”, "."),
fun = NULL,
quick = getOption("reproducible.quick”),
overwrite = getOption("reproducible.overwrite”, FALSE),
purge = FALSE,
useCache = getOption("reproducible.useCache”, 2),
. tempPath,
verbose = getOption("reproducible.verbose”, 1),

Arguments

targetFile Character string giving the filename (without relative or absolute path) to the
eventual file (raster, shapefile, csv, etc.) after downloading and extracting from

preplnputs 91

a zip or tar archive. This is the file before it is passed to postProcess. The
internal checksumming does not checksum the file after it is postProcessed
(e.g., cropped/reprojected/masked). Using Cache around prepInputs will do a
sufficient job in these cases. See table in preProcess().

url Optional character string indicating the URL to download from. If not specified,
then no download will be attempted. If not entry exists in the CHECKSUMS . txt (in
destinationPath), an entry will be created or appended to. This CHECKSUMS . txt
entry will be used in subsequent calls to prepInputs or preProcess, comparing
the file on hand with the ad hoc CHECKSUMS. txt. See table in preProcess().

archive Optional character string giving the path of an archive containing targetFile,
or a vector giving a set of nested archives (e.g., c("xxx.tar", "inner.zip",
"inner.rar")). If there is/are (an) inner archive(s), but they are unknown, the
function will try all until it finds the targetFile. See table in preProcess(). If
it is NA, then it will not attempt to see it as an archive, even if it has archive-like
file extension (e.g., .zip). This may be useful when an R function is expecting
an archive directly.

alsoExtract Optional character string naming files other than targetFile that must be ex-
tracted from the archive. If NULL, the default, then it will extract all files. Other
options: "similar"” will extract all files with the same filename without file
extension as targetFile. NA will extract nothing other than targetFile. A
character string of specific file names will cause only those to be extracted. See
table in preProcess().

destinationPath
Character string of a directory in which to download and save the file that comes
from url and is also where the function will look for archive or targetFile.
NOTE (still experimental): To prevent repeated downloads in different loca-
tions, the user can also set options(”reproducible.inputPaths") to one or
more local file paths to search for the file before attempting to download. Default
for that option is NULL meaning do not search locally.

fun Optional. If specified, this will attempt to load whatever file was downloaded
during preProcess via d1Fun. This can be either a function (e.g., sf::st_read),
character string (e.g., "base::load"), NA (for no loading, useful if d1Fun already
loaded the file) or if extra arguments are required in the function call, it must be
a call naming targetFile (e.g., sf::st_read(targetFile, quiet = TRUE))
as the file path to the file to load. See details and examples below.

quick Logical. This is passed internally to Checksums() (the quickCheck argument),
and to Cache() (the quick argument). This results in faster, though less robust
checking of inputs. See the respective functions.

overwrite Logical. Passed to writeTo (possibly inside postProcess) and postProcess.

purge Logical or Integer. @/FALSE (default) keeps existing CHECKSUMS. txt file and
prepInputs will write or append to it. 1/TRUE will deleted the entire CHECKSUMS . txt
file. Other options, see details.

useCache Passed to Cache in various places. Defaults to getOption(”reproducible.useCache”,
2L) in preplInputs, and getOption("reproducible.useCache"”, FALSE) if
calling any of the inner functions manually. For prepInputs, this mean it will
use Cache only up to 2 nested levels, which includes preProcess. postProcess

92 prepInputs

and its nested *Input functions (e.g., cropInputs, projectInputs, maskInputs)
are no longer internally cached, as terra processing speeds mean internal caching
is more time consuming. We recommend caching the full prepInputs call in-
stead (e.g. prepInputs(...) |>Cache()).

.tempPath Optional temporary path for internal file intermediate steps. Will be cleared
on.exit from this function.

verbose Numeric, -1 silent (where possible), 0 being very quiet, 1 showing more messag-
ing, 2 being more messaging, etc. Default is 1. Above 3 will output much more
information about the internals of Caching, which may help diagnose Caching
challenges. Can set globally with an option, e.g., options('reproducible.verbose' = @) to reduce 1

Additional arguments passed to postProcess() and Cache(). Since ... is
passed to postProcess(), these will ... will also be passed into the inner
functions, e.g., cropInputs(). Possibly useful other arguments include d1Fun
which is passed to preProcess. See details and examples.

Details

This function can be used to prepare R objects from remote or local data sources. The object of
this function is to provide a reproducible version of a series of commonly used steps for getting,
loading, and processing data. This function has two stages: Getting data (download, extracting
from archives, loading into R) and post-processing (for Spatial* and Raster=* objects, this is crop,
reproject, mask/intersect). To trigger the first stage, provide url or archive. To trigger the second
stage, provide studyArea or rasterToMatch. See examples.

Value

This is an omnibus function that will return an R object that will have resulted from the running of
preProcess() and postProcess() or postProcessTo(). Thus, if it is a GIS object, it may have
been cropped, reprojected, "fixed", masked, and written to disk.

Stage 1 - Getting data

See preProcess() for combinations of arguments.

1. Download from the web via either googledrive: :drive_download(),utils: :download.file();
2. Extract from archive using unzip() or untar();
3. Load into R using terra: :rast, sf: :st_read, or any other function passed in with fun;

4. Checksumming of all files during this process. This is put into a ‘CHECKSUMS. txt’ file in the
destinationPath, appending if it is already there, overwriting the entries for same files if
entries already exist.

Stage 2 - Post processing

This will be triggered if either rasterToMatch or studyArea is supplied.

1. Fix errors. Currently only errors fixed are for SpatialPolygons using buffer(..., width =
0);
2. Crop using cropTo();

preplnputs 93

fun

3. Project using projectTo();
4. Mask using maskTo();
5. write the file to disk via writeTo().

NOTE: checksumming does not occur during the post-processing stage, as there are no file down-
loads. To achieve fast results, wrap prepInputs with Cache.

NOTE: sf objects are still very experimental.

postProcessing of Spatx, sf, Raster* and Spatial* objects::

The following has been DEPRECATED because there are a sufficient number of ambiguities that
this has been changed in favour of from and the *xto family. See postProcessTo().
DEPRECATED: If rasterToMatch or studyArea are used, then this will trigger several subse-
quent functions, specifically the sequence, Crop, reproject, mask, which appears to be a common
sequence while preparing spatial data from diverse sources. See postProcess() documentation
section on Backwards compatibility with rasterToMatch and/or studyArea arguments to under-
stand various combinations of rasterToMatch and/or studyArea.

fun offers the ability to pass any custom function with which to load the file obtained by preProcess
into the session. There are two cases that are dealt with: when the preProcess downloads a file
(including via d1Fun), fun must deal with a file; and, when preProcess creates an R object (e.g.,
raster::getData returns an object), fun must deal with an object.

fun can be supplied in three ways: a function, a character string (i.e., a function name as a
string), or an expression. If a character string or function, is should have the package name e.g.,
"terra::rast” or as an actual function, e.g., base: :readRDS. In these cases, it will evaluate this
function call while passing targetFile as the first argument. These will only work in the simplest
of cases.

When more precision is required, the full call can be written and where the filename can be referred
to as targetFile if the function is loading a file. If preProcess returns an object, fun should be
set to fun = NA.

If there is a custom function call, is not in a package, prepInputs may not find it. In such cases,
simply pass the function as a named argument (with same name as function) to prepInputs. See
examples. NOTE: passing fun = NA will skip loading object into R. Note this will essentially repli-
cate the functionality of simply calling preProcess directly.

purge

In options for control of purging the CHECKSUMS. txt file are:

()

keep file

_

delete file in destinationPath, all records of downloads need to be rebuilt

delete entry with same targetFile

2
4 delete entry with same alsoExtract
3 delete entry with same archive

5

delete entry with same targetFile & alsoExtract

94

Note

preplnputs

6 delete entry with same targetFile, alsoExtract & archive

7 delete entry that same targetFile, alsoExtract & archive & url

will only remove entries in the CHECKSUMS . txt that are associated with targetFile, alsoExtract
or archive When prepInputs is called, it will write or append to a (if already exists) CHECKSUMS. txt
file. If the CHECKSUMS . txt is not correct, use this argument to remove it.

This function is still experimental: use with caution.

Author(s)

Eliot MclIntire, Jean Marchal, and Tati Micheletti

See Also

postProcessTo(), downloadFile(), extractFromArchive(), postProcess().

Examples

if (requireNamespace("terra”, quietly = TRUE) &&

requireNamespace("withr"”, quietly = TRUE)) {

library(reproducible)

withr::local_dir(withr::local_tempdir())

Make a dummy study area map -- user would supply this normally

coords <- structure(c(-122.9, -116.1, -99.2, -106, -122.9, 59.9, 65.7, 63.6, 54.8, 59.9),
.Dim = c(5L, 2L)

)

studyArea <- terra::vect(coords, "polygons"”)

terra::crs(studyArea) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

Make dummy "large"” map that must be cropped to the study area

outerSA <- terra::buffer(studyArea, 50000)

terra::crs(outerSA) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

tf <- normPath(file.path(tempdir2(), "prepInputs2.shp”))

terra::writeVector(outerSA, tf)

run prepInputs -- load file, postProcess it to the studyArea

studyArea2 <- prepInputs(
targetFile = tf, to = studyArea,

fun = "terra::vect”,
destinationPath = tempdir2()
) 1>

suppressWarnings() # not relevant warning here

clean up
unlink ("CHECKSUMS. txt")

B T
Remote file using “url”
HHHHEEHEH A

preplnputs 95

if (internetExists()) {
data.table: :setDTthreads(2)
origDir <- getwd()

download a zip file from internet, unzip all files, load as shapefile, Cache the call
First time: don't know all files - prepInputs will guess, if download file is an archive,
then extract all files, then if there is a .shp, it will load with sf::st_read

dPath <- file.path(tempdir(), "ecozones")
shpUrl <- "http://sis.agr.gc.ca/cansis/nsdb/ecostrat/zone/ecozone_shp.zip"

Wrapped in a try because this particular url can be flaky
shpEcozone <- try(prepInputs(
destinationPath = dPath,
url = shpUrl
)
if (!is(shpEcozone, "try-error”)) {
Robust to partial file deletions:
unlink(dir(dPath, full.names = TRUE)[1:3])
shpEcozone <- prepInputs(
destinationPath = dPath,
url = shpUrl
)
unlink(dPath, recursive = TRUE)

Once this is done, can be more precise in operational code:
specify targetFile, alsoExtract, and fun, wrap with Cache
ecozoneFilename <- file.path(dPath, "ecozones.shp")
ecozoneFiles <- ¢(

"ecozones.dbf"”, "ecozones.prj”,

"ecozones.sbn"”, "ecozones.sbx", "ecozones.shp"”, "ecozones.shx"
)
shpEcozone <- prepInputs(

targetFile = ecozoneFilename,

url = shpUrl,

fun = "terra::vect”,

alsoExtract = ecozoneFiles,

destinationPath = dPath
)
unlink(dPath, recursive = TRUE)

Add a study area to Crop and Mask to
Create a "study area”
coords <- structure(c(-122.98, -116.1, -99.2, -106, -122.98, 59.9, 65.73, 63.58, 54.79, 59.9),
.Dim = c(5L, 2L)
)
studyArea <- terra::vect(coords, "polygons")
terra::crs(studyArea) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"

specify targetFile, alsoExtract, and fun, wrap with Cache
ecozoneFilename <- file.path(dPath, "ecozones.shp")
Note, you don't need to "alsoExtract” the archive... if the archive is not there, but the
targetFile is there, it will not redownload the archive.
ecozoneFiles <- c(
"ecozones.dbf"”, "ecozones.prj",

96

)

"ecozones.sbn", "ecozones.sbx", "ecozones.shp”", "ecozones.shx

shpEcozoneSm <- Cache(prepInputs,

)

url = shpurl,

targetFile = reproducible::asPath(ecozoneFilename),
alsoExtract = reproducible::asPath(ecozoneFiles),
studyArea = studyArea,

fun = "terra::vect”,

destinationPath = dPath,

writeTo = "EcozoneFile.shp”

passed to determineFilename

terra::plot(shpEcozonel[, 11)
terra::plot(shpEcozoneSm[, 1], add = TRUE, col = "red")
unlink(dPath)

3
b

withr

}

::deferred_run()

preplnputsWithTiles

n

Using quoted dlFun and fun -- this is not intended to be run but used as a template

prep

Inputs(..., fun = customFun(x = targetFile), customFun

or more complex
test5 <- prepInputs(

customFun)

targetFile = targetFileLuxRDS,
dlFun =
#it getDataFn(name = "GADM", country = "LUX", level = @) # preProcess keeps file from this!
oo
fun = {
#i# out <- readRDS(targetFile)
#it sf::st_as_sf(out)}
#)
prepInputsWithTiles Alternative to prepInputs that can use Spatial Tiles stored locally or
on Google Drive
Description

Downloads, processes and optionally uploads a SpatRaster object through a tiling intermediary. If
the original url is for a very large object, but to is a relatively small subset of the area represented
by the spatial file at url, then this function will potentially by-pass the download of the large file at
url and instead only download the minimum number of tiles necessary to cover the to area. When
doUploads is TRUE, then this function will potentially create and upload the tiles to tileFolder,
prior to returning the spatial object, postProcessed to to. This function supports both Google
Drive and HTTP(S) URLs.

prepInputsWithTiles 97

Usage

prepInputsWithTiles(
targetFile,
url,
destinationPath,
to,
tilesFolder = file.path(getOption("reproducible.inputPath”), "tiles"),
urlTiles = getOption("reproducible.prepInputsUrlTiles”, NULL),
doUploads = getOption("reproducible.prepInputsDoUploads”, FALSE),
tileGrid = "CAN",
numTiles = NULL,
plot.grid = FALSE,
purge = FALSE,
verbose = getOption("reproducible.verbose”),

Arguments
targetFile Character. Name of the target file to be downloaded or processed. If missing, it
will be inferred from the URL or Google Drive metadata.
url Character. URL to the full dataset (Google Drive or HTTP/S).
destinationPath
Character. Path to the directory where files will be downloaded and processed.
to A spatial object (e.g., SpatRaster, SpatVector, sf, or Spatialx*) defining the

area of interest.

tilesFolder A local file path to put tiles. If this is an absolute path, then that will be used; if it
is a relative path, then it will be file.path(destinationPath, tilesFolder)

urlTiles Character. URL to the tile source (e.g., Google Drive folder or HTTP/S end-
point). Defaultis getOption("reproducible.prepInputsUrlTiles”, NULL).
doUploads Logical. Whether to upload processed tiles. Default is getOption("reproducible.prepInputsDoUploc
FALSE).
tileGrid Either length 3 character string, such as "CAN", to be sent to geodata: :gadm(...)
or an actual SpatVector object with a grid of polygons
numTiles Integer. Number of tiles to generate. Optional.
plot.grid Logical. Whether to plot the tile grid and area of interest. Default is FALSE.
purge Logical or Integer. @/FALSE (default) keeps existing CHECKSUMS. txt file and
prepInputs will write or append to it. 1/TRUE will deleted the entire CHECKSUMS . txt
file.
verbose Logical or numeric. Controls verbosity of messages. Defaultis getOption("reproducible.verbose”).

Either maskTo, cropTo (which will be used if to is not supplied, or arguments
passed to writeRaster, e.g., datatype (used when writing tiles).

98 preProcessParams

Details

This function can be triggered inside prepInputs if the to is supplied and both url and urlTiles
are supplied. NOTE: urlTiles can be supplied using the option(reproducible.prepInputsUrlTiles = someGoogleDri
so the original prepInputs function call can remain unaffected.

This function also uses a different checksumming procedure compared to the normal prepInputs.
This function will assess the remote url for a hash. If that hash exists, then it will compare it to a
local file with targetFile name, suffixed with . hash. If the two hashes differ (remote and local),
then it will be redownloaded; otherwise the local one will be returned.

This function is useful for working with large spatial datasets, but where the user only requires a
"relatively small" section of that dataset. This function will potentially bypass the full download and
download only the tiles that are necessary for the to. It handles downloading only the required tiles
based on spatial intersection with the target area, and supports resumable downloads from Google
Drive or HTTP/S sources.

If targetFile is missing, the function attempts to infer it from the URL using the Content-Disposition
header or the basename of the URL. For Google Drive URLs, it uses the file metadata.

Value

A single, merged SpatRaster object postProcessed to the area of interest (to), composed of the
necessary tiles. If the post-processed file already exists locally, it will be returned directly.

See Also

googledrive: :drive_get(), terra::rast(), terra::crop(), terra: :merge()

Examples

if (FALSE) {
to <- sf::st_as_sf(sf::st_sfc(sf::st_point(c(-123.3656, 48.4284)), crs = 4326))
result <- prepInputsWithTiles(
url = "https://example.com/data.tif",
destinationPath = tempdir(),
to = to,
urlTiles = "https://example.com/tiles/",
tileGrid = "CAN"

preProcessParams Download, checksum, extract files

Description

This does downloading (via downloadFile), checksumming (Checksums), and extracting from
archives (extractFromArchive), plus cleaning up of input arguments (e.g., paths, function names).
This is the first stage of three used in prepInputs.

preProcessParams

Usage

99

preProcessParams(n = NULL)

preProcess(

targetFile = NULL,

url = NULL,

archive = NULL,

alsoExtract = NULL,

destinationPath = getOption("reproducible.destinationPath”, "."),
fun = NULL,

dlFun = NULL,

quick = getOption("reproducible.quick”),

overwrite

getOption("reproducible.overwrite”, FALSE),

purge = FALSE,

verbose =
.tempPath,
.callingEnv

Arguments

n

targetFile

url

archive

alsoExtract

getOption("reproducible.verbose”, 1),

parent.frame(),

Number of non-null arguments passed to preProcess. E.g., passing n=1 re-
turns combinations with only a single non-NULL parameter. If NULL (default),
all parameter combinations are returned.

Character string giving the filename (without relative or absolute path) to the
eventual file (raster, shapefile, csv, etc.) after downloading and extracting from
a zip or tar archive. This is the file before it is passed to postProcess. The
internal checksumming does not checksum the file after it is postProcessed
(e.g., cropped/reprojected/masked). Using Cache around prepInputs will do a
sufficient job in these cases. See table in preProcess().

Optional character string indicating the URL to download from. If not specified,
then no download will be attempted. If not entry exists in the CHECKSUMS . txt (in
destinationPath), an entry will be created or appended to. This CHECKSUMS . txt
entry will be used in subsequent calls to prepInputs or preProcess, comparing
the file on hand with the ad hoc CHECKSUMS. txt. See table in preProcess().

Optional character string giving the path of an archive containing targetFile,
or a vector giving a set of nested archives (e.g., c("xxx.tar", "inner.zip",
"inner.rar")). If there is/are (an) inner archive(s), but they are unknown, the
function will try all until it finds the targetFile. See table in preProcess(). If
it is NA, then it will not attempt to see it as an archive, even if it has archive-like
file extension (e.g., .zip). This may be useful when an R function is expecting
an archive directly.

Optional character string naming files other than targetFile that must be ex-
tracted from the archive. If NULL, the default, then it will extract all files. Other
options: "similar" will extract all files with the same filename without file
extension as targetFile. NA will extract nothing other than targetFile. A

100 preProcessParams

character string of specific file names will cause only those to be extracted. See
table in preProcess().
destinationPath

Character string of a directory in which to download and save the file that comes
from url and is also where the function will look for archive or targetFile.
NOTE (still experimental): To prevent repeated downloads in different loca-
tions, the user can also set options(”reproducible.inputPaths") to one or
more local file paths to search for the file before attempting to download. Default
for that option is NULL meaning do not search locally.

fun Optional. If specified, this will attempt to load whatever file was downloaded
during preProcess via d1Fun. This can be either a function (e.g., sf::st_read),
character string (e.g., "base::load"), NA (for no loading, useful if d1Fun already
loaded the file) or if extra arguments are required in the function call, it must be
a call naming targetFile (e.g., sf::st_read(targetFile, quiet = TRUE))
as the file path to the file to load. See details and examples below.

d1Fun Optional "download function" name, such as "raster: :getData”, which does
custom downloading, in addition to loading into R. Still experimental.

quick Logical. This is passed internally to Checksums() (the quickCheck argument),
and to Cache() (the quick argument). This results in faster, though less robust
checking of inputs. See the respective functions.

overwrite Logical. Passed to writeTo (possibly inside postProcess) and postProcess.

purge Logical or Integer. @/FALSE (default) keeps existing CHECKSUMS . txt file and
prepInputs will write or append to it. 1/TRUE will deleted the entire CHECKSUMS . txt
file. Other options, see details.

verbose Numeric, -1 silent (where possible), 0 being very quiet, 1 showing more messag-

ing, 2 being more messaging, etc. Default is 1. Above 3 will output much more

information about the internals of Caching, which may help diagnose Caching

challenges. Can set globally with an option, e.g., options('reproducible.verbose' = @) to reduce 1
.tempPath Optional temporary path for internal file intermediate steps. Will be cleared

on.exit from this function.
.callingEnv The environment where the function was called from. Used to find objects, if

necessary.

Additional arguments passed to postProcess() and Cache(). Since ... is
passed to postProcess(), these will ... will also be passed into the inner
functions, e.g., cropInputs(). Possibly useful other arguments include d1Fun
which is passed to preProcess. See details and examples.

Value

A list with 5 elements: checkSums (the result of a Checksums after downloading), dots (cleaned up
..., including deprecated argument checks), fun (the function to be used to load the preProcessed
object from disk), and targetFilePath (the fully qualified path to the targetFile).

Combinations of targetFile, url, archive, alsoExtract

Use preProcessParams() for a table describing various parameter combinations and their out-
comes.

purgeChecksums 101

* If the url is a file on Google Drive, checksumming will work even without a targetFile specified
because there is an initial attempt to get the remove file information (e.g., file name). With that, the
connection between the url and the filename used in the ‘CHECKSUMS. txt’ file can be made.

Author(s)
Eliot McIntire
purgeChecksums Purge the checksums of a single file
Description
This is a manual way of achieving prepInputs(. .., purge = 7), useful in cases where prepInputs

is not called directly by the user, so it would be difficult to set purge = 7.

Usage

purgeChecksums(checksumFile, fileToRemove)

Arguments

checksumFile A character string indicating the absolute path to the CHECKSUMS. txt file.
fileToRemove The filename to remove from the checksumFile

Value

NULL. Run for its side effect, namely, and file removed from the ‘CHECKSUMS. txt’ file.

rasterRead A helper to getOption("reproducible.rasterRead")

Description

A helper to getOption("reproducible.rasterRead")

Usage

rasterRead(...)

Arguments

Passed to the function parsed and evaluated from getOption("reproducible.rasterRead")

Value

A function, that will be the evaluated, parsed character string, e.g., eval (parse(text = "terra::rast"))

102 reproducibleOptions

remapFilenames Remap file names

Description

Update file path metadata for file-backed objects (e.g., SpatRasters). Useful when moving saved
objects between projects or machines.

Usage

remapFilenames(obj, tags, cachePath = getOption("reproducible.cachePath”), ...)
Arguments

obj (optional) object whose file path metadata will be remapped

tags cache tags data. table object

cachePath character string specifying the path to the cache directory or NULL

Additional path arguments, passed to absoluteBase () and modifyListPaths()

reproducibleOptions reproducible options

Description

These provide top-level, powerful settings for a comprehensive reproducible workflow. To see
defaults, run reproducibleOptions(). See Details below.

Usage
reproducibleOptions()

Details

Below are options that can be set with options("reproducible.xxx" = newValue), where xxx is
one of the values below, and newValue is a new value to give the option. Sometimes these options
can be placed in the user’s .Rprofile file so they persist between sessions.

The following options are likely of interest to most users:

ask Default: TRUE. Used in clearCache() and keepCache().
cacheChaining Default: FALSE. Used in Cache() in the . cacheChaining argument.

cachePath Default: .reproducibleTempCacheDir. Used in Cache() and many others. The de-
fault path for repositories if not passed as an argument.

cacheSaveFormat Default: "rds”. What save format to use; currently, "qs" (which will use qs2
package as of reproducible version ">=2.1.3"), "qs2", or "rds".

reproducibleOptions 103

cacheSpeed Default "slow”. One of "slow” or "fast” (1 or2). "slow” uses digest::digest in-
ternally, which is transferable across operating systems, but much slower than digest: :digest(algo = "spooky).
So, if all caching is happening on a single machine, "fast” would be a good setting.

conn Default: NULL. Sets a specific connection to a database, e.g., dbConnect (drv = RSQLite::SQLite())
or dbConnect(drv = RPostgres::Postgres(). For remote database servers, setting one
connection may be far faster than using drv which must make a new connection every time.

destinationPath Default: NULL. Used in prepInputs() and preProcess(). Can be set globally
here.

drv Default: RSQLite::SQLite(). Sets the default driver for the backend database system. Only
tested with RSQLite: :SQLite() and RPostgres: :Postgres().

dryRun Default: FALSE.

futurePlan Default: FALSE. On Linux OSes, Cache and cloudCache have some functionality
that uses the future package. Default is to not use these, as they are experimental. They
may, however, be very effective in speeding up some things, specifically, uploading cached
elements via googledrive in cloudCache.

gdalwarp Default: FALSE. Experimental. During postProcessTo the standard approach is to use
terra functions directly, with several strategic uses of sf. However, in the special case when
from is a SpatRaster or Raster, maskTo is a SpatVector or SFC_POLYGON and projectTo
is a SpatRaster or Raster, setting this option to TRUE will use sf::gdal_utils("warp").
In many test cases, this is much faster than the terra sequence. The resulting SpatRaster is
not identical, but it is very similar.

gdalwarpThreads Default: 2. This will set -wo NUM_THREADS= to this number. Default is now 2,
meaning gdalwarp will use 2 threads with gdalProject. To turn off threading, set to @, 1 or
NA.

inputPaths Default: NULL. Used in prepInputs() and preProcess(). If set to a path, this will
cause these functions to save their downloaded and preprocessed file to this location, with
a hardlink (via file.link) to the file created in the destinationPath. This can be used
so that individual projects that use common data sets can maintain modularity (by placing
downloaded objects in their destinationPath, but also minimize re-downloading the same
(perhaps large) file over and over for each project. Because the files are hardlinks, there is no
extra space taken up by the apparently duplicated files.

inputPathsRecursive Default: FALSE. Used in prepInputs() and preProcess(). Should the
reproducible. inputPaths be searched recursively for existence of a file?

leaveOnDisk Default: TRUE. Used in postProcess(). When there is a SpatRaster object, should
postProcess force any file-backed object, to use the file-based, memory-safe tools within
terra (by temporarily setting terraOption(memfrac = @). Alternatively, if this is set to
FALSE, then postProcess will let terra decide on its own based on its internal cues (largely
based on memfrac, maxmem terraOptions). This will be ignored, however, if the user has
set the terraOptions away from its default of @.5. The default increases predictability of
whether the returned object is on disk or in memory.

memoisePersist Default: FALSE. Used in Cache(). Should the memoised copy of the Cache
objects persist even if reproducible reloads e.g., via devtools: :1load_all? This is mostly
useful for developers of reproducible. If TRUE, a object named paste@(”.reproducibleMemoise_",
cachePath) will be placed in the .GlobalEnv, i.e., one for each cachePath.

nThreads Default: 1. The number of threads to use for reading/writing cache files.

104

reproducibleOptions

objSize Default: TRUE. Logical. If TRUE, then object sizes will be included in the cache database.
Simplying calculating object size of large objects can be time consuming, so setting this to
FALSE will make caching up to 10% faster, depending on the objects.

overwrite Default: FALSE. Used in prepInputs(), preProcess(), downloadFile(), and postProcess().

quick Default: FALSE. Used in Cache (). This will cause Cache to use file.size(file) instead
of the digest::digest(file). Less robust to changes, but faster. NOTE: this will only affect
objects on disk.

rasterRead Used during prepInputs whenreading . tif, .grd, and .asc files. Default: terra: : rast.
Can be raster: :raster for backwards compatibility. Can be set using environment variable
R_REPRODUCIBLE_RASTER_READ.

shapefileRead Default NULL. Used during prepInputs when reading a . shp file. If NULL, it will
use sf::st_read if sf package is available; otherwise, it will use raster: :shapefile

showSimilar Default FALSE. Passed to Cache.

testCharacterAsFile Default FALSE. The behaviour of .robustDigest on character vectors
prior to reproducible == 2.1.2 was that the function would test for whether they were
filenames by using file.exists. If it was a filename, then it would digest the file content.
In cases of a character vector or a data.frame of "filenames", this could cause long hanging
of the R system as it tries to digest the file contents of potentially many files. This behaviour
is not transparent to a user. Now the default is to not digest the file content of a character
vector even if they are filenames. To force file content digesting, then convert to either asPath
or fs::as_fs_path. Or set this option to TRUE and the previous behaviour will return, where
it tries to guess whether a character vector is filenames or not, and if it is, then digest the file
content.

timeout Default 1200. Used in preProcess when downloading occurs. If a user has R.utils
package installed, R.utils: :withTimeout(, timeout = getOption("reproducible.timeout™))
will be wrapped around the download so that it will timeout (and error) after this many sec-
onds.

useCache Default: TRUE. Used in Cache(). If FALSE, then the entire Cache machinery is skipped
and the functions are run as if there was no Cache occurring. Can also take 2 other values:
'overwrite' and 'devMode'. 'overwrite' will cause no recovery of objects from the cache
repository, only new ones will be created. If the hash is identical to a previous one, then this
will overwrite the previous one. 'devMode' will function as normally Cache except it will use
the userTags to determine if a previous function has been run. If the userTags are identical,
but the digest value is different, the old value will be deleted from the cache repository and this
new value will be added. This addresses a common situation during the development stage:
functions are changing frequently, so any entry in the cache repository will be stale following
changes to functions, i.e., they will likely never be relevant again. This will therefore keep
the cache repository clean of stale objects. If there is ambiguity in the userTags, i.e., they do
not uniquely identify a single entry in the cachePath, then this option will default back to the
non-dev-mode behaviour to avoid deleting objects. This, therefore, is most useful if the user
is using unique values for userTags.

reproducible.useCacheV3 Default: TRUE. If this is set to FALSE, it will use the old Cache source
code. This will only be available for a short period before it is deleted from the package. See
also reproducible.digestV3. It is not guaranteed to be identical to using a previous version
of reproducible (<3.0).

useCloud Default FALSE. Passed to Cache.

reproducibleOptions 105

useDBI Default: TRUE if DBI is available. Default value can be overridden by setting environment
variable R_REPRODUCIBLE_USE_DBI. As of version 0.3, the backend is now DBI instead of
archivist.

useGdown Default: FALSE. If a user provides a Google Drive url to preProcess/prepInputs,
reproducible will use the googledrive package. This works reliably in most cases. How-
ever, for large files on unstable internet connections, it will stall and stop the download with no
error. If a user is finding this behaviour, they can install the gdown package, making sure it is
available on the PATH. This call to gdown will only work for files that do not need authentica-
tion. If authentication is needed, d1Google will fall back to googledrive: :drive_download,
even if this option is TRUE, with a message. .

useMemoise Default: FALSE. Used in Cache(). If TRUE, recovery of cached elements from the
cachePath will use memoise: :memoise. This means that the 2nd time running a function will
be much faster than the first in a session (which either will create a new cache entry to disk or
read a cached entry from disk). NOTE: memoised values are removed when the R session is
restarted. This option will use more RAM and so may need to be turned off if RAM is limit-
ing. clearCache of any sort will cause all memoising to be *forgotten’ (memoise: : forget).

useNewDigestAlgorithm Default: 1. Option 1 is the version that has existed for sometime. There
is now an option 2 which is substantially faster. It will, however, create Caches that are not
compatible with previous ones. Options 1 and 2 are not compatible with the earlier 0. 1 and
2 will make Cache less sensitive to minor but irrelevant changes (like changing the order of
arguments) and will work successfully across operating systems (especially relevant for the
new cloudCache function.

useTerra Default: FALSE. The GIS operations in postProcess, by default use primarily the Raster
package. The newer terra package does similar operations, but usually faster. A user can now
set this option to TRUE and prepInputs and several components of postProcess will use
terra internally.

verbose Default: FALSE. If set to TRUE then every Cache call will show a summary of the objects
being cached, their object.size and the time it took to digest them and also the time it took
to run the call and save the call to the cache repository or load the cached copy from the
repository. This may help diagnosing some problems that may occur.

digestV3 Default: TRUE. This uses a digest approach that includes the names of list elements
and several other tweaks that were created for reproducible 3.x. Set this to FALSE to use
some of the previous cache digesting to achieve some backwards compatibility with the digest
algorithms of reproducible (<3.x). It will not be possible to get it exact for all classes of
objects, particularly those with file-backing.

Value
This function returns a list of all the options that the reproducible package sets and uses. See
below for details of each.

Advanced

The following options are likely not needed by a user.

cloudChecksumsFilename Default: file.path(dirname(.reproducibleTempCacheDir()), "checksums.rds").
Used as an experimental argument in Cache ()

106 retry

length Default: Inf. Used in Cache(), specifically to the internal calls to CacheDigest (). This
is passed to digest: :digest. Mostly this would be changed from default Inf if the digesting
is taking too long. Use this with caution, as some objects will have many NA values in their
first many elements

useragent Default: "https://github.com/PredictiveEcology/reproducible”. User agent
for downloads using this package.

retry A wrapper around try that retries on failure

Description

This is useful for functions that are "flaky", such as curl, which may fail for unknown reasons that
do not persist.

Usage

retry(
expr,
envir = parent.frame(),
retries = 5,
exponentialDecayBase = 1.3,
silent = TRUE,
exprBetween = NULL,
messageFn = message

)
Arguments

expr An expression to run, i.e., rnorm(1), similar to what is passed to try

envir The environment in which to evaluate the quoted expression, default to parent. frame(1)

retries Numeric. The maximum number of retries.

exponentialDecayBase
Numeric > 1.0. The delay between successive retries will be runif (1, min
=0, max = exponentialDecayBase * i - 1) where i is the retry number (i.e.,
follows seqg_len(retries))

silent Logical indicating whether to try silently.

exprBetween Another expression that should be run after a failed attempt of the expr. This

should return a named list, where the names indicate the object names to update
in the main expr, and the return value is the new value. (previous versions al-
lowed a non-list return, but where the final line had to be an assignment operator,
specifying what object (that is used in expr) will be updated prior to running the
expr again. For backwards compatibility, this still works).

messageFn A function for messaging to console. Defaults to message

saveToCache 107

Details

Basedon https://github.com/jennybc/googlesheets/issues/219#issuecomment-195218525.

Value

As with try, so the successfully returned return() from the expr or a try-error.

saveToCache Save an object to Cache

Description

This is not expected to be used by a user as it requires that the cacheId be calculated in exactly
the same as it calculated inside Cache (which requires match.call to match arguments with their
names, among other things).

Usage

saveToCache(
cachePath = getOption("reproducible.cachePath”),
cacheSaveFormat = getOption("reproducible.cacheSaveFormat”),
drv = getDrv(getOption("reproducible.drv”, NULL)),
conn = getOption("reproducible.conn”, NULL),
obj,
userTags,
cacheld,
linkToCacheId = NULL,
verbose = getOption("reproducible.verbose”)

)
Arguments

cachePath A repository used for storing cached objects. This is optional if Cache is used
inside a SpaDES module.

cacheSaveFormat
Character string: currently either gs or rds. Defaults to getOption("reproducible.cacheSaveFormat’
gs may be faster but appears to have narrower range of conditions that work; rds
is safer, and may be slower.

drv If using a database backend, drv must be an object that inherits from DBIDriver
(e.g., RSQLite::SQLite).

conn an optional DBIConnection object, as returned by dbConnect ().

obj The R object to save to the cache

userTags A character vector with descriptions of the Cache function call. These will be

added to the Cache so that this entry in the Cache can be found using userTags
e.g., via showCache().

https://github.com/jennybc/googlesheets/issues/219#issuecomment-195218525

108 searchFull

cacheld The hash string representing the result of . robustDigest

linkToCacheId Optional. If a cacheld is provided here, then a file.link will be made to
the file with that cacheId name in the cache repo. This is used when identical
outputs exist in the cache. This will save disk space.

verbose Numeric, -1 silent (where possible), 0 being very quiet, 1 showing more messag-
ing, 2 being more messaging, etc. Default is 1. Above 3 will output much more
information about the internals of Caching, which may help diagnose Caching
challenges. Can set globally with an option, e.g., options('reproducible.verbose' = @) to reduce 1

Value

This is used for its side effects, namely, it will add the object to the cache and cache database.

searchFull Search up the full scope for functions

Description

This is like base: : search but when used inside a function, it will show the full scope (see figure in
the section Binding environments on http://adv-r.had.co.nz/Environments.html). This full
search path will be potentially much longer than just search() (which always starts at . GlobalEnv).

searchFullEx shows an example function that is inside this package whose only function is to
show the Scope of a package function.
Usage

searchFull(env = parent.frame(), simplify = TRUE)

searchFullEx()

Arguments

env The environment to start searching at. Default is calling environment, i.e.,
parent.frame()

simplify Logical. Should the output be simplified to character, if possible (usually it is
not possible because environments don’t always coerce correctly)

Details

searchFullEx can be used to show an example of the use of searchFull.

Value

A list of environments that is the actual search path, unlike search() which only prints from
.GlobalEnv up to base through user attached packages.

http://adv-r.had.co.nz/Environments.html

set.randomseed 109

See Also

base: :search()

Examples

seeScope <- function() {
searchFull()

3

seeScope()

searchFull()

searchFullEx ()

set.randomseed Set seed with a random value using Sys.time()

Description

This will set a random seed.

Usage

set.randomseed(set.seed = TRUE)

Arguments
set.seed Logical. If TRUE, the default, then the function will call set.seed internally
with the new random seed.
Details

This function uses 6 decimal places of Sys. time(), i.e., microseconds. Due to integer limits, it also
truncates at 1000 seconds, so there is a possibility that this will be non-unique after 1000 seconds
(at the microsecond level). In tests, this showed no duplicates after 1e7 draws in a loop, as expected.

Value

This will return the new seed invisibly. However, this is also called for its side effects, which is a
new seed set using set. seed

Note

This function does not appear to be as reliable on R <=4.1.3

110 showCache

showCache Examining and modifying the cache

Description

These are convenience wrappers around DBI package functions. They allow the user a bit of control
over what is being cached.

Usage

clearCache(
X,
userTags = character(),
after = NULL,
before = NULL,
fun = NULL,
cacheld = NULL,
ask = getOption("reproducible.ask"),
useCloud = FALSE,
cloudFolderID = getOption("reproducible.cloudFolderID”, NULL),
drv = getDrv(getOption("reproducible.drv”, NULL)),
conn = getOption("reproducible.conn”, NULL),
verbose = getOption("reproducible.verbose”),

)

S4 method for signature 'ANY'
clearCache(
X,
userTags = character(),
after = NULL,
before = NULL,
fun = NULL,
cacheld = NULL,
ask = getOption("reproducible.ask"),
useCloud = FALSE,
cloudFolderID = getOption("reproducible.cloudFolderID”, NULL),
drv = getDrv(getOption("reproducible.drv”, NULL)),
conn = getOption("reproducible.conn”, NULL),
verbose = getOption("reproducible.verbose”),

)
cc(secs, ..., verbose = getOption("reproducible.verbose”))

showCache(
X,

showCache

)

userTags = character(),

after = NULL,
before = NULL,
fun = NULL,

cacheId = NULL,

drv = getDrv(getOption("reproducible.drv”, NULL)),
conn = getOption("reproducible.conn”, NULL),
verbose = getOption("reproducible.verbose”),

S4 method for signature 'ANY'
showCache(

X,

userTags = character(),

after = NULL,

before = NULL,

fun = NULL,

cacheld = NULL,

drv = getDrv(getOption("reproducible.drv”, NULL)),
conn = getOption("reproducible.conn”, NULL),
verbose = getOption("reproducible.verbose”),

)

keepCache(
X,
userTags = character(),
after = NULL,

)

before = NULL,

ask = getOption("reproducible.ask"),

drv = getDrv(getOption("reproducible.drv”, NULL)),
conn = getOption("reproducible.conn”, NULL),
verbose = getOption("reproducible.verbose”),

S4 method for signature 'ANY'
keepCache(

X,

userTags = character(),

after = NULL,

before = NULL,

ask = getOption("reproducible.ask"),

drv = getDrv(getOption("reproducible.drv”, NULL)),
conn = getOption("reproducible.conn”, NULL),
verbose = getOption("reproducible.verbose”),

111

Arguments

X

userTags

after

before

fun

cacheld

ask

useCloud

cloudFolderID

drv

conn

verbose

showCache

A simList or a directory containing a valid Cache repository. Note: For compat-
ibility with Cache argument, cachePath can also be used instead of x, though x
will take precedence.

Character vector. If used, this will be used in place of the after and before.
Specifying one or more userTag here will clear all objects that match those
tags. Matching is via regular expression, meaning partial matches will work
unless strict beginning (*) and end ($) of string characters are used. Matching
will be against any of the 3 columns returned by showCache(), i.e., artifact,
tagValue or tagName. Also, if length(userTags) > 1, then matching is by
and. For or matching, use | in a single character string. See examples.

A time (POSIX, character understandable by data.table). Objects cached after
this time will be shown or deleted.

A time (POSIX, character understandable by data.table). Objects cached before
this time will be shown or deleted.

An optional character vector describing the function name to extract. Only func-
tions with this/these functions will be returned.

An optional character vector describing the cachelds to extract. Only entries
with this/these cachelds will be returned. If useDBI (FALSE), this will also be
dramatically faster than using userTags, for a large cache.

Logical. If FALSE, then it will not ask to confirm deletions using clearCache or
keepCache. Default is TRUE

Logical. If TRUE, then every object that is deleted locally will also be deleted in
the cloudFolderlID, if it is non-NULL

A googledrive dribble of a folder, e.g., using drive_mkdir(). If left as NULL,
the function will create a cloud folder with name from last two folder lev-
els of the cachePath path, : paste@(basename(dirname(cachePath)), "_"

-

basename (cachePath)). This cloudFolderID will be added to options("reproducible.cloudFolde!

but this will not persist across sessions. If this is a character string, it will treat
this as a folder name to create or use on GoogleDrive.

If using a database backend, drv must be an object that inherits from DBIDriver
(e.g.,RSQLite::SQLite).
an optional DBIConnection object, as returned by dbConnect ().

Numeric, -1 silent (where possible), 0 being very quiet, 1 showing more messag-
ing, 2 being more messaging, etc. Default is 1. Above 3 will output much more
information about the internals of Caching, which may help diagnose Caching

challenges. Can set globally with an option, e.g., options('reproducible.verbose' = @) to reduce 1

Other arguments. Can be in the form of tagKey = tagValue, such as, class =
"numeric” to find all entries that are numerics in the cache. Note: the special
cases of cachelId and fun have their own named arguments in these functions.
Also can be regexp = xx, where xx is TRUE if the user is passing a regular ex-
pression. Otherwise, userTags will need to be exact matches. Default is miss-
ing, which is the same as TRUE. If there are errors due to regular expression

showCache 113

problem, try FALSE. For cc, it is passed to clearCache, e.g., ask, userTags.
For showCache, it can also be sorted = FALSE to return the object unsorted.

secs Currently 3 options: the number of seconds to pass to clearCache(after =
secs), a POSIXct time e.g., from Sys.time(), or missing. If missing, the de-
fault, then it will delete the most recent entry in the Cache.

Details

If neither after or before are provided, nor userTags, then all objects will be removed. If both
after and before are specified, then all objects between after and before will be deleted. If
userTags is used, this will override after or before.

cc(secs) is just a shortcut for clearCache(repo = currentRepo, after = secs), i.e., to remove
any cache entries touched in the last secs seconds. Since, secs can be missing, this is also be a
shorthand for "remove most recent entry from the cache".

clearCache remove items from the cache based on their userTag or times values.
keepCache remove all cached items except those based on certain userTags or times values.

showCache display the contents of the cache.

By default the return of showCache is sorted by cacheId. For convenience, a user can optionally
have it unsorted (passing sorted = FALSE), which may be noticeably faster when the cache is large
(> 1e4 entries).

Value
Will clear all objects (or those that match userTags, or those between after or before) from the
repository located in cachePath. Invisibly returns a data. table of the removed items.

Note
If the cache is larger than 10MB, and clearCache is used, there will be a message and a pause, if
interactive, to prevent accidentally deleting of a large cache repository.

See Also

mergeCache (). Many more examples in Cache().

Examples

data.table::setDTthreads(2)

tmpDir <- file.path(tempdir(), "reproducible_examples”, "Cache")
try(clearCache(tmpDir, ask = FALSE), silent = TRUE) # just to make sure it is clear

Basic use
ranNumsA <- Cache(rnorm, 10, 16, cachePath = tmpDir)

All same
ranNumsB <- Cache(rnorm, 10, 16, cachePath = tmpDir) # recovers cached copy
ranNumsD <- Cache(quote(rnorm(n = 10, 16)), cachePath = tmpDir) # recovers cached copy

114 studyAreaName

Any minor change makes it different
ranNumst <- Cache(rnorm, 10, 6, cachePath = tmpDir) # different

Example 1: basic cache use with tags

ranNumsA <- Cache(rnorm, 4, cachePath = tmpDir, userTags = "objectName:a")
ranNumsB <- Cache(runif, 4, cachePath = tmpDir, userTags = "objectName:b")
ranNumsC <- Cache(runif, 40, cachePath = tmpDir, userTags = "objectName:b")

showCache(tmpDir, userTags = c("objectName"))

showCache(tmpDir, userTags = c(""a$")) # regular expression ... "a" exactly

Fine control of cache elements -- pick out only the large runif object, and remove it
cachel <- showCache(tmpDir, userTags = c("runif”)) # show only cached objects made during runif
toRemove <- cachel[tagKey == "object.size"][as.numeric(tagValue) > 700]$cacheld

clearCache(tmpDir, userTags = toRemove, ask = FALSE)
cacheAfter <- showCache(tmpDir, userTags = c("runif”)) # Only the small one is left

data.table::setDTthreads(2)
tmpDir <- file.path(tempdir(), "reproducible_examples"”, "Cache")
try(clearCache(tmpDir, ask = FALSE), silent = TRUE) # just to make sure it is clear

Cache(rnorm, 1, cachePath = tmpDir)

thisTime <- Sys.time()

Cache(rnorm, 2, cachePath = tmpDir)

Cache(rnorm, 3, cachePath = tmpDir)

Cache(rnorm, 4, cachePath = tmpDir)

showCache(x = tmpDir) # shows all 4 entries

cc(ask = FALSE, x = tmpDir)

showCache(x = tmpDir) # most recent is gone
cc(thisTime, ask = FALSE, x = tmpDir)

showCache(x = tmpDir) # all those after thisTime gone, i.e., only 1 left
cc(ask = FALSE, x = tmpDir) # Cache is

cc(ask = FALSE, x = tmpDir) # Cache is already empty

studyAreaName Get a unique name for a given study area

Description
Digest a spatial object to get a unique character string (hash) of the study area. Use .suffix() to
append the hash to a filename, e.g., when using filename2 in prepInputs.

Usage

studyAreaName (studyArea, ...)

S4 method for signature 'character'
studyAreaName (studyArea, ...)

tempdir2 115

S4 method for signature 'ANY'

studyAreaName (studyArea, ...)
Arguments
studyArea Spatial object.

Other arguments (not currently used)

Value

A character string using the . robustDigest of the studyArea. This is only intended for use with
spatial objects.

Examples

studyAreaName("Ontario"”)

tempdir2 Make a temporary (sub-)directory

Description

Create a temporary subdirectory in getOption("reproducible.tempPath”).

Usage
tempdir2(

Sub = HH’
tempdir = getOption("reproducible.tempPath”, .reproducibleTempPath()),

create = TRUE

)
Arguments
sub Character string, length 1. Can be a result of file.path("smth”, "smth2")
for nested temporary subdirectories. If the zero length character, then a random
sub-directory will be created.
tempdir Optional character string where the temporary directory should be placed. De-
faults to getOption("reproducible.tempPath”).
create Logical. Should the directory be created. Default TRUE.
Value

A character string of a path (that will be created if create = TRUE) in a sub-directory of the tempdir ().

See Also

tempfile2

116 unrarPath

tempfile2 Make a temporary file in a temporary (sub-)directory

Description

Make a temporary file in a temporary (sub-)directory

Usage
tempfile2(

nn

sub = ,
tempdir = getOption("reproducible.tempPath”, .reproducibleTempPath()),

Arguments
sub Character string, length 1. Can be a result of file.path("smth”, "smth2")
for nested temporary subdirectories. If the zero length character, then a random
sub-directory will be created.
tempdir Optional character string where the temporary directory should be placed. De-
faults to getOption("reproducible.tempPath").
passed to tempfile, e.g., fileext
Value

A character string of a path to a file in a sub-directory of the tempdir(). This file will likely not
exist yet.

See Also

tempdir2

unrarPath The known path for unrar or 7z

Description

The known path for unrar or 7z

Usage

.systemArchivePath

Format

An object of class NULL of length 0.

usesPointer 117

usesPointer Does an object use a pointer?

Description

Does an object use a pointer?

Usage

usesPointer(x)

Arguments

X an object

Value

logical

writeFuture Write to cache repository, using future: : future

Description

This will be used internally if options("reproducible. futurePlan” = TRUE). This is still exper-
imental.

Usage

writeFuture(
written,
outputToSave,
cachePath,
userTags,
drv = getDrv(getOption("reproducible.drv”, NULL)),
conn = getOption("reproducible.conn”, NULL),
cacheld,
linkToCachelId = NULL,
verbose = getOption("reproducible.verbose")

118 writeFuture

Arguments

written Integer. If zero or positive then it needs to be written still. Should be O to start.

outputToSave The R object to save to repository

cachePath The file path of the repository

userTags Character string of tags to attach to this outputToSave in the CacheRepo

drv If using a database backend, drv must be an object that inherits from DBIDriver
(e.g.,RSQLite::SQLite).

conn an optional DBIConnection object, as returned by dbConnect ().

cacheld Character string. If passed, this will override the calculated hash of the inputs,

and return the result from this cacheld in the cachePath. Setting this is equiv-
alent to manually saving the output of this function, i.e., the object will be on
disk, and will be recovered in subsequent This may help in some particularly
finicky situations where Cache is not correctly detecting unchanged inputs. This
will guarantee the object will be identical each time; this may be useful in oper-
ational code.

linkToCacheId Optional. If a cacheld is provided here, then a file.link will be made to
the file with that cacheId name in the cache repo. This is used when identical
outputs exist in the cache. This will save disk space.

verbose Numeric, -1 silent (where possible), 0 being very quiet, 1 showing more messag-
ing, 2 being more messaging, etc. Default is 1. Above 3 will output much more
information about the internals of Caching, which may help diagnose Caching
challenges. Can set globally with an option, e.g., options('reproducible.verbose' = @) to reduce 1

Value

Run for its side effect. This will add the objectToSave to the cache located at cachePath, using
cacheld as its id, while updating the database entry. It will do this using the future package, so it is
written in a future.

Index

+ datasets

unrarPath, 116
.addTagsRepo, 5
.addTagsRepo(), 7
.debugCache, 7
.digest(), 39
.file.move, 8
.isCRSany (.isGridded), 8
.1sGridded, 8
.isMemoised, 9
.1sSF (.isGridded), 8
.isSpat (.isGridded), 8
.isSpatialAny (.isGridded), 8
.isVector (.isGridded), 8
.messageFunctionFn (messageDF), 72
.objSizeWithTry, 10
.prefix, 10
.prepareFileBackedRaster, 11
.removeCacheAtts, 12
.requireNamespace, 13
.robustDigest(), 29, 46
.setSubAttrInList, 13
.suffix (.prefix), 10

.systemArchivePath (unrarPath), 116

.unwrap (.wrap), 14
.updateTagsRepo (.addTagsRepo), 5
.wherelInStack, 14

.wrap, 14

asPath (Path-class), 81
assessDataType, 18

base: :basename(), 21
base: :search(), 109
basename2, 21

Cache, 21

Cache(), 4, 25, 32, 55, 58, 91, 92, 100,
102-1006, 113

cache?2 (Cache), 21

119

CacheDBFile (createCache), 48

CacheDBTableName (createCache), 48

CacheDigest, 32

CacheDigest(), 29, 106

CacheGeo, 33

cacheld, 36

CacheIsACache (createCache), 48

CacheStorageDir (createCache), 48

CacheStorageDir (), 29

CacheStoredFile (createCache), 48

CacheV2 (Cache), 21

call, 70

cc (showCache), 110

checkAndMakeCloudFolderID, 36

checkPath, 37

checkPath,character,logical-method
(checkPath), 37

checkPath,character,missing-method
(checkPath), 37

checkPath,missing, ANY-method
(checkPath), 37

checkPath,NULL,ANY-method (checkPath),
37

checkRelative, 39

Checksums, 39

Checksums (), 55, 91, 100

Checksums, character,logical-method
(Checksums), 39

Checksums,character,missing-method
(Checksums), 39

clearCache (showCache), 110

clearCache(), 26, 29, 102

clearCache, ANY-method (showCache), 110

cloudDownload, 42

compareNA, 43

convertCallToCommonFormat, 43

convertPaths, 44

convertRasterPaths (convertPaths), 44

Copy, 45

120

Copy, ANY-method (Copy), 45
Copy,data.frame-method (Copy), 45
Copy,data.table-method (Copy), 45
Copy, list-method (Copy), 45

Copy, refClass-method (Copy), 45
copyFile (copySingleFile), 47
copySingleFile, 47
createCache, 48
cropInputs(), 58, 85, 92, 100
cropTo (postProcessTo), 85
cropTo(), 82, 83, 88, 89, 92

dataType2 (minFn), 74
detectActiveCores, 52
detectActiveCores(), 78
determineFilename, 53
determineFilename(), 53, 83
digest::digest(), 24, 26, 32,41
dir.create(), 38
downloadFile, 54
downloadFile(), 94, 104
downloadRemote, 56

extractFromArchive, 58
extractFromArchive(), 94
extractFromCache (createCache), 48

file.copy(), 68

file.exists(), 38

file.link(), 68

file.symlink(), 68

Filenames, 59

Filenames(), 46

Filenames, ANY-method (Filenames), 59

Filenames,data.table-method
(Filenames), 59

Filenames,environment-method
(Filenames), 59

Filenames,list-method (Filenames), 59

Filenames,Path-method (Filenames), 59

fixErrorsIn, 61

fixErrorsIn(), 82, 83, 89

gdalMask (gdalProject), 61
gdalMask(), 63, 89
gdalProject, 61
gdalProject(), 89
gdalResample (gdalProject), 61
gdalResample(), 63, 89

INDEX

getRelative, 63
googledrive: :drive_get(), 98

harmonizeCall, 65

internetExists, 65
isSpatial (.isGridded), 8
isUpdated, 66

keepCache (showCache), 110
keepCache(), 29, 102

keepCache, ANY-method (showCache), 110
keepOrigGeom, 66

linkOrCopy, 67

listNamed, 68

loadFile, 69

loadFile(), 51

loadFromCache (createCache), 48

makeRelative (getRelative), 63
maskTo (postProcessTo), 85
maskTo(), 62, 82, 83, 88, 89, 93
matchCall2, 70

maxFn (minFn), 74

mergeCache, 70

mergeCache(), 113

mergeCache, ANY-method (mergeCache), 70
messageCache (messageDF), 72
messageColoured (messageDF), 72
messageDF, 72

messagePrepInputs (messageDF), 72
messagePreProcess (messageDF), 72
messageQuestion (messageDF), 72
minFn, 74

movedCache, 75

movedCache(), 29

nlayers2 (minFn), 74
normPath, 76
normPath(), 38

normPath,character-method (normPath), 76

normPath,list-method (normPath), 76
normPath,logical-method (normPath), 76
normPath,missing-method (normPath), 76
normPath,NULL-method (normPath), 76
normPathRel (normPath), 76
numCoresToUse, 78

objSize, 79

INDEX

objSizeSession (objSize), 79
options(), 5

paddedFloatToChar, 80

Path-class, 81

postProcess, 82

postProcess(), 58, 85, 88, 89, 92-94, 100,
103, 104

postProcessTerra (postProcessTo), 85

postProcessTo, 85

postProcessTo(), 62, 63, 66, 83, 92-94

prepInputs, 90

prepInputs(), 4, 54, 103, 104

prepInputsWithTiles, 96

preProcess (preProcessParams), 98

preProcess(), 55-58, 91, 92, 99, 100, 103,
104

preProcessParams, 98

projectTo (postProcessTo), 85

projectTo(), 82, 83, 88, 89, 93

purgeChecksums, 101

rasterRead, 101

remapFilenames, 102

reproducible (reproducible-package), 4
reproducible-package, 4
reproducibleOptions, 23, 102
reproducibleOptions(), 5

retry, 106

rmFromCache (createCache), 48
rmFromCache(), 29

saveToCache, 107
searchFull, 108
searchFullEx (searchFull), 108
set.randomseed, 109
showCache, 110
showCache(), 24, 29, 107
showCache, ANY-method (showCache), 110
studyAreaName, 114
studyAreaName, ANY-method
(studyAreaName), 114
studyAreaName, character-method
(studyAreaName), 114
suffix (.prefix), 10

tempdir2, 115, 116
tempfile2, 115,116
terra::crop(), 98

121

terra: :merge(), 98
terra::rast(), 98

unrarPath, 116

untar(), 92

unzip(), 92

urlExists (internetExists), 65
usesPointer, 117
utils::download.file(), 54, 92
utils::write.table(), 41/

values2 (minFn), 74

writeFuture, 117
writeTo (postProcessTo), 85
writeTo(), 53, 82, 83, 88, 89, 93

	reproducible-package
	.addTagsRepo
	.debugCache
	.file.move
	.isGridded
	.isMemoised
	.objSizeWithTry
	.prefix
	.prepareFileBackedRaster
	.removeCacheAtts
	.requireNamespace
	.setSubAttrInList
	.whereInStack
	.wrap
	assessDataType
	basename2
	Cache
	CacheDigest
	CacheGeo
	cacheId
	checkAndMakeCloudFolderID
	checkPath
	checkRelative
	Checksums
	cloudDownload
	compareNA
	convertCallToCommonFormat
	convertPaths
	Copy
	copySingleFile
	createCache
	detectActiveCores
	determineFilename
	downloadFile
	downloadRemote
	extractFromArchive
	Filenames
	fixErrorsIn
	gdalProject
	getRelative
	harmonizeCall
	internetExists
	isUpdated
	keepOrigGeom
	linkOrCopy
	listNamed
	loadFile
	matchCall2
	mergeCache
	messageDF
	minFn
	movedCache
	normPath
	numCoresToUse
	objSize
	paddedFloatToChar
	Path-class
	postProcess
	postProcessTo
	prepInputs
	prepInputsWithTiles
	preProcessParams
	purgeChecksums
	rasterRead
	remapFilenames
	reproducibleOptions
	retry
	saveToCache
	searchFull
	set.randomseed
	showCache
	studyAreaName
	tempdir2
	tempfile2
	unrarPath
	usesPointer
	writeFuture
	Index

