Package ‘rlang’
January 9, 2026

Version 1.1.7
Title Functions for Base Types and Core R and 'Tidyverse' Features

Description A toolbox for working with base types, core R features
like the condition system, and core 'Tidyverse' features like tidy
evaluation.

License MIT + file LICENSE
ByteCompile true

Biarch true

Depends R (>=4.0.0)
Imports utils

Suggests cli (>= 3.1.0), covr, crayon, desc, fs, glue, knitr,
magrittr, methods, pillar, pkgload, rmarkdown, stats, testthat
(>=3.2.0), tibble, usethis, vctrs (>= 0.2.3), withr

Enhances winch
Encoding UTF-8
RoxygenNote 7.3.3

URL https://rlang.r-1lib.org, https://github.com/r-1ib/rlang

BugReports https://github.com/r-1ib/rlang/issues
Config/build/compilation-database true
Config/testthat/edition 3

Config/Needs/website dplyr, tidyverse/tidytemplate
NeedsCompilation yes

Author Lionel Henry [aut, cre],
Hadley Wickham [aut],
mikefc [cph] (Hash implementation based on Mike's xxhashlite),
Yann Collet [cph] (Author of the embedded xxHash library),
Posit, PBC [cph, fnd]

Maintainer Lionel Henry <lionel@posit.co>
Repository CRAN
Date/Publication 2026-01-09 12:10:02 UTC

https://rlang.r-lib.org
https://github.com/r-lib/rlang
https://github.com/r-lib/rlang/issues

2 Contents

Contents
abort L e e e 4
ArgS_EITOT_CONLEXE v v v v e v v e it e e e e e e e e e e e e e 10
arg_match L 11
AS_DOX . . . e 12
as_data_mask e 13
AS_ENVIFONMENT o v e e e e e e e e e e e 16
as_function L e e e e e 17
as_label e 18
AS_NAME . . v v v v e e e e e e e e e e e e e e e e 19
AS_SIING o o i e e 20
bare-type-predicates 21
DOX . . e e 22
bytes-class e e e 23
call2 . . . e e e 24
caller_arg e e 26
call_args L e 26
call_inspect 27
call_match e 28
call_modify 29
call_name e 31
catch_cnd L e e e e 32
check_dots_empty 33
check dots_ unnamed L 34
check dots_used L e 35
check _exclusive e 36
check_required 37
cnd_inherits e e 38
CNA_MESSAZE o e e e e e e e e e e e e 40
end_signal e 41
done e e e 42
dot-data e e e 43
dyn-dotso e 44
embrace-operatort i e e e e e e e e 45
1310013 20) 12 45
englue e e 46
BNQUO . v v v v e 48
IV . o ot e e e e e e e e e e e e e e e e e e e 50
env_bindo 52
ENV_DIOWSE . . . o v o o o e e e e e e 55
env_cache e 56
env_clone e 57
env_depth e 58
BNV_ZEL . . v v it e e e e e e e e e e e e 58
eNV_has e e 60
env_inheritso s 60

env_is_user_facing 61

Contents

3
ENV_NAME . . . v v v v o e e e e e e e e e e e 62
ENV_NAMES . .« v v v v v e 63
ENV_PArENt it e e e e e e e e e e e e e e 64
env_poke . ..o 65
ENV_PIINt o o o e e e e e e e e e e e e e e e 66
env_unbind L e 66
eval_bare L L e 67
eval_tidy e e e 69
CBXEC v v v e e e e e e e e e e 71
104 o) A 72
EXPIS_AULO_NAME« o ¢ v v v v e e e e e e e e e e e e e e 73
XPI_PIINt . . . o ot o e e e e e e e e e e e e e e 74
fag-options 75
fn_body 75
fn_env e e e e e 76
fn_fmls e s e 77
format_error_bullets e 78
frhs . . . e e e e 79
foteXt . . e e e e e e 80
GELLENV . . . L i e e e e e e e e e e e e 81
global_entrace e 82
global_handle 83
global_prompt_installo 84
glue-operators e e 84
hash e e e e e 87
has_name e 88
inherits_any L 89
INJECt . . . e 90
INJECHON-OPETAtOT v v v i v e e e e e e e e e e e e e 91
1s_call . . . e 93
IS_EMPLY . . o o oo e e e e e 94
IS_ENVIFONMENT v v e e e e e e e e e e e e e 95
IS_EXPIESSION . o . v v v v v et e e e e e e e e e e e e e e e e e 95
is_formula e 97
is_function L e 98
is_installed L. e e e e e e e 100
is_integerisho 102
IS_INTETACLIVE o o o e e e e e e e 103
iIs_named . .. oL e e e e 103
IS_NAMESPACE . « . v v v v v e e e e e e e e e e e e e e e e e e e 105
is_symbol ..o 105
IS_ETUE . . o ot e e e e e e e e e 106
is_weakref L L e e e e 106
last_error L e e e 107
last_warnings e e e e 107
LiSt2 . e e e e e e e 110
local_bindings 112

local_error_call e 113

local_options e e e e 116
MISSING_ATrZ o o o i e e e e e e e e e e e e e e e 117
NAMES2 . . o ottt e e e e e e e e e e e e e 120
new_formula L e 121
new_function 122
NEW_QUOSUTE .« & v v v v v e e e e e e e e e e e e e e e e e e e 123
NEW_QUOSUTES . « & v v v v v e e e e e e e e e e e e e e e e e e e 124
new_weakref L 125
on_load e 126
OP-ZEL-AtLT o e e e e e e e e e e e e 128
op-null-continuation Lo e e 129
op-null-default 129
pairlist2o 130
PATSE_EXPI . .« . v v it e e e e e e e e 130
qq_show L e 132
quosure-tools e 133
quo_squash 135
rep_along e e e e e 136
rlang_backtrace_on_error Lo e 136
rlang_error L. 138
scalar-type-predicates Lo e 139
SEA2 . e e e e e 140
SEt_NAMES . . & v v v v e e e e e e e e e e s, 140
splice 141
Splice-operator e 143
Stack . . . L 146
SYML © v v e 147
trace_back e 149
try_fetch L e 150
type-predicates e e e 152
VECtOr-CONSIIUCION v v vt i ettt e e e e e e e e 154
wref_keyo 155
7o R 156
zap_sreref . ..o L e 156
Index 158
abort Signal an error, warning, or message
Description

These functions are equivalent to base functions base: : stop(), base: :warning(), and base: :message().
They signal a condition (an error, warning, or message respectively) and make it easy to supply con-
dition metadata:

» Supply class to create a classed condition that can be caught or handled selectively, allowing
for finer-grained error handling.

abort

* Supply metadata with named . ..

can be examined by handlers.

arguments. This data is stored in the condition object and

* Supply call to inform users about which function the error occurred in.

* Supply another condition as parent to create a chained condition.

Certain components of condition messages are formatted with unicode symbols and terminal colours
by default. These aspects can be customised, see Customising condition messages.

Usage

abort(
message = NULL,
class = NULL,
call,
body = NULL,
footer = NULL,
trace = NULL,

parent = NULL,
use_cli_format = NULL,
.inherit = TRUE,
.internal = FALSE,

.file = NULL,

.frame = caller_env(),
.trace_bottom = NULL,
.subclass = deprecated()

)

warn(
message = NULL,
class = NULL,
body = NULL,

footer = NULL,

parent = NULL,
use_cli_format = NULL,
.inherit = NULL,

.frequency = c("always"”, "regularly"”, "once"),

.frequency_id = NULL,
.subclass = deprecated()

)

inform(
message = NULL,
class = NULL,
body = NULL,

footer = NULL,
parent = NULL,

6 abort

use_cli_format = NULL,

.inherit = NULL,

.file = NULL,

.frequency = c("always"”, "regularly"”, "once"),
.frequency_id = NULL,

.subclass = deprecated()

)

nn

signal (message = , class, ..., .subclass = deprecated())

reset_warning_verbosity(id)

reset_message_verbosity(id)

Arguments

message The message to display, formatted as a bulleted list. The first element is dis-

played as an alert bullet prefixed with ! by default. Elements named "*", "i",
nytorx! are formatted as regular, info, success, failure, and error bul-

nyn

v", "x", and

lets respectively. See Formatting messages with cli for more about bulleted
messaging.
If a message is not supplied, it is expected that the message is generated lazily
through cnd_header () and cnd_body () methods. In that case, class must be
supplied. Only inform() allows empty messages as it is occasionally useful to
build user output incrementally.

If a function, it is stored in the header field of the error condition. This acts
as a cnd_header () method that is invoked lazily when the error message is
displayed.

class Subclass of the condition.

Additional data to be stored in the condition object. If you supply condition
fields, you should usually provide a class argument. You may consider prefix-
ing condition fields with the name of your package or organisation to prevent
name collisions.

call The execution environment of a currently running function, e.g. call = caller_env().
The corresponding function call is retrieved and mentioned in error messages as
the source of the error.

You only need to supply call when throwing a condition from a helper function
which wouldn’t be relevant to mention in the message.

Can also be NULL or a defused function call to respectively not display any call
or hard-code a code to display.

For more information about error calls, see Including function calls in error
messages.

body, footer Additional bullets.
trace A trace object created by trace_back().

parent Supply parent when you rethrow an error from a condition handler (e.g. with
try_fetch()).

abort 7

 If parent is a condition object, a chained error is created, which is useful
when you want to enhance an error with more details, while still retaining
the original information.

* If parent is NA, it indicates an unchained rethrow, which is useful when you
want to take ownership over an error and rethrow it with a custom message
that better fits the surrounding context.

Technically, supplying NA lets abort () know it is called from a condition
handler. This helps it create simpler backtraces where the condition han-
dling context is hidden by default.

For more information about error calls, see Including contextual information
with error chains.

use_cli_format Whether to format message lazily using cli if available. This results in prettier
and more accurate formatting of messages. See local_use_cli() to set this
condition field by default in your package namespace.

If set to TRUE, message should be a character vector of individual and unformat-
ted lines. Any newline character "\\n" already present in message is reformat-
ted by cli’s paragraph formatter. See Formatting messages with cli.

.inherit Whether the condition inherits from parent according to cnd_inherits() and
try_fetch(). By default, parent conditions of higher severity are not inherited.
For instance an error chained to a warning is not inherited to avoid unexpectedly
catching an error downgraded to a warning.

.internal If TRUE, a footer bullet is added to message to let the user know that the error is
internal and that they should report it to the package authors. This argument is
incompatible with footer.

.file A connection or a string specifying where to print the message. The default
depends on the context, see the stdout vs stderr section.

.frame The throwing context. Used as default for . trace_bottom, and to determine the
internal package to mention in internal errors when . internal is TRUE.

.trace_bottom Used in the display of simplified backtraces as the last relevant call frame to
show. This way, the irrelevant parts of backtraces corresponding to condition
handling (tryCatch(), try_fetch(), abort(), etc.) are hidden by default.
Defaults to call if it is an environment, or . frame otherwise. Without effect if
trace is supplied.

.subclass [Deprecated] This argument was renamed to class in rlang 0.4.2 for con-
sistency with our conventions for class constructors documented in https://
adv-r.hadley.nz/s3.html#s3-subclassing.

.frequency How frequently should the warning or message be displayed? By default ("always")
it is displayed at each time. If "regularly”, it is displayed once every 8 hours.
If "once", it is displayed once per session.

.frequency_id A unique identifier for the warning or message. This is used when . frequency
is supplied to recognise recurring conditions. This argument must be supplied if
.frequency is not set to "always".

id The identifying string of the condition that was supplied as . frequency_id to
warn() or inform().

https://cli.r-lib.org/
https://adv-r.hadley.nz/s3.html#s3-subclassing
https://adv-r.hadley.nz/s3.html#s3-subclassing

8 abort

Details

e abort() throws subclassed errors, see "rlang_error”.

e warn() temporarily set the warning.length global option to the maximum value (8170),
unless that option has been changed from the default value. The default limit (1000 characters)
is especially easy to hit when the message contains a lot of ANSI escapes, as created by the
crayon or cli packages

Error prefix

As with base: : stop(), errors thrown with abort () are prefixed with "Error: ". Calls and source
references are included in the prefix, e.g. "Error in my_function() at myfile.R:1:2:". There
are a few cosmetic differences:

* The call is stripped from its arguments to keep it simple. It is then formatted using the cli
package if available.
* A line break between the prefix and the message when the former is too long. When a source

location is included, a line break is always inserted.

If your throwing code is highly structured, you may have to explicitly inform abort() about the
relevant user-facing call to include in the prefix. Internal helpers are rarely relevant to end users.
See the call argument of abort ().

Backtrace

abort () saves a backtrace in the trace component of the error condition. You can print a simplified
backtrace of the last error by calling last_error () and a full backtrace with summary(last_error()).
Learn how to control what is displayed when an error is thrown with rlang_backtrace_on_error.

Muffling and silencing conditions
Signalling a condition with inform() or warn() displays a message in the console. These messages
can be muffled as usual with base: : suppressMessages() or base: : suppressWarnings().
inform() and warn() messages can also be silenced with the global options rlib_message_verbosity
and rlib_warning_verbosity. These options take the values:
* "default”: Verbose unless the . frequency argument is supplied.
* "verbose": Always verbose.

* "quiet”: Always quiet.

When set to quiet, the message is not displayed and the condition is not signalled.

stdout and stderr

By default, abort() and inform() print to standard output in interactive sessions. This allows
rlang to be in control of the appearance of messages in IDEs like RStudio.

There are two situations where messages are streamed to stderr:

* In non-interactive sessions, messages are streamed to standard error so that R scripts can easily
filter them out from normal output by redirecting stderr.

https://cli.r-lib.org/
https://cli.r-lib.org/

abort 9

 If a sink is active (either on output or on messages) messages are always streamed to stderr.

These exceptions ensure consistency of behaviour in interactive and non-interactive sessions, and
when sinks are active.

See Also

¢ Including function calls in error messages

* Including contextual information with error chains

Examples

These examples are guarded to avoid throwing errors
if (FALSE) {

Signal an error with a message just like stop():
abort("The error message.")

Unhandled errors are saved automatically by “abort()™ and can be
retrieved with “last_error()”. The error prints with a simplified
backtrace:

<- function() try(g())

<- function() evalq(h())

<- function() abort("Tilt.")

last_error()

S0 —h H OH OH

Use “summary()” to print the full backtrace and the condition fields:
summary(last_error())

Give a class to the error:
abort("The error message”, "mypkg_bad_error")

This allows callers to handle the error selectively
tryCatch(
mypkg_function(),
mypkg_bad_error = function(err) {
warn(conditionMessage(err)) # Demote the error to a warning
NA # Return an alternative value
3
)

You can also specify metadata that will be stored in the condition:
abort("The error message."”, "mypkg_bad_error”, data = 1:10)

This data can then be consulted by user handlers:
tryCatch(
mypkg_function(),
mypkg_bad_error = function(err) {
Compute an alternative return value with the data:
recover_error(err$data)

10 args_error_context

If you call low-level APIs it may be a good idea to create a
chained error with the low-level error wrapped in a more
user-friendly error. Use “try_fetch()~ to fetch errors of a given
class and rethrow them with the “parent™ argument of “abort():
file <- "http://foo.bar/baz"
try(
try_fetch(
download(file),
error = function(err) {
msg <- sprintf(”Can't download ~“%s", file)
abort(msg, parent = err)
b))
)

You can also hard-code the call when it's not easy to
forward it from the caller
f <= function() {
abort("my message", call = call("my_function”))
3
g <- function() {
fO
3
Shows that the error occurred in “my_function()"
try(g)

3

args_error_context Documentation anchor for error arguments

Description

Use @inheritParams rlang::args_error_context in your package to document arg and call
arguments (or equivalently their prefixed versions error_arg and error_call).

* arg parameters should be formatted as argument (e.g. using cli’s . arg specifier) and included
in error messages. See also caller_arg().

* call parameters should be included in error conditions in a field named call. An easy way
to do this is by passing a call argument to abort (). See also local_error_call().

Arguments
arg An argument name as a string. This argument will be mentioned in error mes-
sages as the input that is at the origin of a problem.
error_arg An argument name as a string. This argument will be mentioned in error mes-

sages as the input that is at the origin of a problem.

arg_match

11

call The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of abort () for more information.

error_call The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of abort () for more information.

arg_match Match an argument to a character vector
Description

This is equivalent to base: :match.arg() with a few differences:

* Partial matches trigger an error.

* Error messages are a bit more informative and obey the tidyverse standards.

arg_match() derives the possible values from the caller function.

arg_match@() is a bare-bones version if performance is at a premium. It requires a string as arg
and explicit character values. For convenience, arg may also be a character vector containing
every element of values, possibly permuted. In this case, the first element of arg is used.

Usage

arg_match(
arg,
values =

NULL,

multiple = FALSE,
error_arg = caller_arg(arg),
error_call = caller_env()

arg_match@(arg, values, arg_nm = caller_arg(arg), error_call = caller_env())

Arguments

arg

values

multiple

error_arg

error_call

arg_nm

A symbol referring to an argument accepting strings.

A character vector of possible values that arg can take.
These dots are for future extensions and must be empty.
Whether arg may contain zero or several values.

An argument name as a string. This argument will be mentioned in error mes-
sages as the input that is at the origin of a problem.

The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of abort () for more information.

Same as error_arg.

12 as_box

Value

The string supplied to arg.

See Also

check_required()

Examples

fn <= function(x = c("foo", "bar")) arg_match(x)
fn("bar")

Throws an informative error for mismatches:

try(fn("b"))
try(fn("baz"))

Use the bare-bones version with explicit values for speed:
arg_matcho("bar"”, c("foo”, "bar", "baz"))

For convenience:

fn1 <- function(x = c("bar”, "baz", "foo")) fn3(x)

fn2 <- function(x = c("baz", "bar"”, "foo")) fn3(x)

fn3 <- function(x) arg_matcho(x, c("foo", "bar", "baz"))
n1()

fn2("bar™)

try(fn3("zoo"))

as_box Convert object to a box

Description

* as_box () boxes its input only if it is not already a box. The class is also checked if supplied.

* as_box_if () boxes its input only if it not already a box, or if the predicate . p returns TRUE.

Usage
as_box(x, class = NULL)

as_box_if(.x, .p, .class = NULL, ...)
Arguments
X, . X An R object.

class, .class A box class. If the input is already a box of that class, it is returned as is. If the
input needs to be boxed, class is passed to new_box().

.p A predicate function.

Arguments passed to .p.

as_data_mask 13

as_data_mask Create a data mask

Description

A data mask is an environment (or possibly multiple environments forming an ancestry) containing
user-supplied objects. Objects in the mask have precedence over objects in the environment (i.e.
they mask those objects). Many R functions evaluate quoted expressions in a data mask so these
expressions can refer to objects within the user data.

These functions let you construct a tidy eval data mask manually. They are meant for developers of
tidy eval interfaces rather than for end users.

Usage
as_data_mask(data)

as_data_pronoun(data)

new_data_mask(bottom, top = bottom)

Arguments
data A data frame or named vector of masking data.
bottom The environment containing masking objects if the data mask is one environ-
ment deep. The bottom environment if the data mask comprises multiple envi-
ronment.
If you haven’t supplied top, this must be an environment that you own, i.e. that
you have created yourself.
top The last environment of the data mask. If the data mask is only one environment
deep, top should be the same as bottom.
This must be an environment that you own, i.e. that you have created your-
self. The parent of top will be changed by the tidy eval engine and should be
considered undetermined. Never make assumption about the parent of top.
Value

A data mask that you can supply to eval_tidy().

Why build a data mask?

Most of the time you can just call eval_tidy() with a list or a data frame and the data mask will
be constructed automatically. There are three main use cases for manual creation of data masks:

* When eval_tidy() is called with the same data in a tight loop. Because there is some over-
head to creating tidy eval data masks, constructing the mask once and reusing it for subsequent
evaluations may improve performance.

14 as_data_mask

* When several expressions should be evaluated in the exact same environment because a quoted
expression might create new objects that can be referred in other quoted expressions evaluated
at a later time. One example of this is tibble::1st() where new columns can refer to
previous ones.

* When your data mask requires special features. For instance the data frame columns in dplyr
data masks are implemented with active bindings.

Building your own data mask

Unlike base: :eval() which takes any kind of environments as data mask, eval_tidy() has spe-
cific requirements in order to support quosures. For this reason you can’t supply bare environments.

There are two ways of constructing an rlang data mask manually:

* as_data_mask() transforms a list or data frame to a data mask. It automatically installs the
data pronoun .data.

* new_data_mask() is a bare bones data mask constructor for environments. You can supply a
bottom and a top environment in case your data mask comprises multiple environments (see
section below).

Unlike as_data_mask() it does not install the .data pronoun so you need to provide one
yourself. You can provide a pronoun constructed with as_data_pronoun() or your own
pronoun class.

as_data_pronoun() will create a pronoun from a list, an environment, or an rlang data mask.
In the latter case, the whole ancestry is looked up from the bottom to the top of the mask.
Functions stored in the mask are bypassed by the pronoun.

Once you have built a data mask, simply pass it to eval_tidy() as the data argument. You can
repeat this as many times as needed. Note that any objects created there (perhaps because of a call
to <-) will persist in subsequent evaluations.

Top and bottom of data mask

In some cases you’ll need several levels in your data mask. One good reason is when you include
functions in the mask. It’s a good idea to keep data objects one level lower than function objects, so
that the former cannot override the definitions of the latter (see examples).

In that case, set up all your environments and keep track of the bottom child and the top parent.
You’ll need to pass both to new_data_mask().

Note that the parent of the top environment is completely undetermined, you shouldn’t expect it to
remain the same at all times. This parent is replaced during evaluation by eval_tidy() to one of
the following environments:

* The default environment passed as the env argument of eval_tidy().

* The environment of the current quosure being evaluated, if applicable.

Consequently, all masking data should be contained between the bottom and top environment of the
data mask.

as_data_mask 15

Examples

Evaluating in a tidy evaluation environment enables all tidy
features:

mask <- as_data_mask(mtcars)

eval_tidy(quo(letters), mask)

You can install new pronouns in the mask:
mask$.pronoun <- as_data_pronoun(list(foo = "bar"”, baz = "bam"))
eval_tidy(quo(.pronoun$foo), mask)

In some cases the data mask can leak to the user, for example if
a function or formula is created in the data mask environment:
cyl <- "user variable from the context”

fn <- eval_tidy(quote(function() cyl), mask)

fnQ

If new objects are created in the mask, they persist in the
subsequent calls:

eval_tidy(quote(new <- cyl + am), mask)

eval_tidy(quote(new * 2), mask)

In some cases your data mask is a whole chain of environments
rather than a single environment. You'll have to use
“new_data_mask()” and let it know about the bottom of the mask
(the last child of the environment chain) and the topmost parent.

ETgE T

A common situation where you'll want a multiple-environment mask
is when you include functions in your mask. In that case you'll
put functions in the top environment and data in the bottom. This
will prevent the data from overwriting the functions.

top <- new_environment(list("+~ = base::paste, ¢ = base::paste))

o o R

Let's add a middle environment just for sport:
middle <- env(top)

And finally the bottom environment containing data:
bottom <- env(middle, a = "a", b = "b", ¢ = "c")

We can now create a mask by supplying the top and bottom
environments:
mask <- new_data_mask(bottom, top = top)

This data mask can be passed to eval_tidy() instead of a list or
data frame:
eval_tidy(quote(a + b + ¢), data = mask)

Note how the function “c()” and the object “c¢c” are looked up
properly because of the multi-level structure:

eval_tidy(quote(c(a, b, c)), data = mask)

new_data_mask() does not create data pronouns, but

16 as_environment

data pronouns can be added manually:
mask$.fns <- as_data_pronoun(top)

The ~.data™ pronoun should generally be created from the

mask. This will ensure data is looked up throughout the whole
ancestry. Only non-function objects are looked up from this

pronoun:

mask$.data <- as_data_pronoun(mask)

mask$.data$c

Now we can reference values with the pronouns:
eval_tidy(quote(c(.data$a, .data$b, .data$c)), data = mask)

as_environment Coerce to an environment

Description

as_environment () coerces named vectors (including lists) to an environment. The names must
be unique. If supplied an unnamed string, it returns the corresponding package environment (see
pkg_env()).

Usage

as_environment(x, parent = NULL)

Arguments
X An object to coerce.
parent A parent environment, empty_env() by default. This argument is only used
when x is data actually coerced to an environment (as opposed to data repre-
senting an environment, like NULL representing the empty environment).
Details

If x is an environment and parent is not NULL, the environment is duplicated before being set a new
parent. The return value is therefore a different environment than x.

Examples

Coerce a named vector to an environment:
env <- as_environment(mtcars)

By default it gets the empty environment as parent:
identical(env_parent(env), empty_env())

With strings it is a handy shortcut for pkg_env():
as_environment ("base")

as_function

17

as_environment("rlang”)

With NULL it returns the empty environment:
as_environment (NULL)

as_function

Convert to function

Description

as_function() transforms a one-sided formula into a function. This powers the lambda syntax in
packages like purtr.

Usage

as_function(
X,

env = global_env(),

’

arg = caller_arg(x),
call = caller_env()

is_lambda(x)

Arguments

X

env

arg

call

A function or formula.
If a function, it is used as is.

If a formula, e.g. ~ .x + 2, it is converted to a function with up to two argu-
ments: .x (single argument) or .x and .y (two arguments). The . placeholder
can be used instead of .x. This allows you to create very compact anonymous
functions (lambdas) with up to two inputs. Functions created from formulas
have a special class. Use is_lambda() to test for it.

If a string, the function is looked up in env. Note that this interface is strictly
for user convenience because of the scoping issues involved. Package developers
should avoid supplying functions by name and instead supply them by value.

Environment in which to fetch the function in case x is a string.
These dots are for future extensions and must be empty.

An argument name as a string. This argument will be mentioned in error mes-
sages as the input that is at the origin of a problem.

The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of abort() for more information.

18 as_label

Examples

f <- as_function(~ .x + 1)
f(10)

g <- as_function(~ -1 x .)

g(4)
h <- as_function(~ .x - .y)
h(6, 3)

Functions created from a formula have a special class:
is_lambda(f)
is_lambda(as_function(function() "foo"))

as_label Create a default name for an R object

Description
as_label () transforms R objects into a short, human-readable description. You can use labels to:

 Display an object in a concise way, for example to labellise axes in a graphical plot.
* Give default names to columns in a data frame. In this case, labelling is the first step before
name repair.
See also as_name () for transforming symbols back to a string. Unlike as_label (), as_name() is
a well defined operation that guarantees the roundtrip symbol -> string -> symbol.

In general, if you don’t know for sure what kind of object you’re dealing with (a call, a symbol,
an unquoted constant), use as_label () and make no assumption about the resulting string. If you
know you have a symbol and need the name of the object it refers to, use as_name (). For instance,
use as_label () with objects captured with enquo() and as_name () with symbols captured with
ensym().

Usage
as_label(x)

Arguments

X An object.

Transformation to string

* Quosures are squashed before being labelled.

* Symbols are transformed to string with as_string().
* Calls are abbreviated.

* Numbers are represented as such.

* Other constants are represented by their type, such as <dbl> or <data.frame>.

as_name 19

See Also

as_name () for transforming symbols back to a string deterministically.

Examples

as_label() is useful with quoted expressions:
as_label (expr(foo(bar)))

as_label (expr(foobar))
It works with any R object. This is also useful for quoted
arguments because the user might unquote constant objects:

as_label(1:3)

as_label (base::1list)

as_name Extract names from symbols

Description

as_name() converts symbols to character strings. The conversion is deterministic. That is, the
roundtrip symbol -> name -> symbol always gives the same result.

* Use as_name() when you need to transform a symbol to a string to refer to an object by its
name.

* Use as_label() when you need to transform any kind of object to a string to represent that
object with a short description.

Usage
as_name(x)
Arguments
X A string or symbol, possibly wrapped in a quosure. If a string, the attributes are
removed, if any.
Details

rlang::as_name() is the opposite of base: :as.name(). If you’re writing base R code, we rec-
ommend using base: :as.symbol() which is an alias of as.name() that follows a more modern
terminology (R types instead of S modes).

Value

A character vector of length 1.

20 as_string

See Also

as_label () for converting any object to a single string suitable as a label. as_string() for a
lower-level version that doesn’t unwrap quosures.

Examples

Let's create some symbols:
foo <- quote(foo)
bar <- sym("bar")

as_name() converts symbols to strings:
foo
as_name(foo)

typeof (bar)
typeof (as_name(bar))

as_name() unwraps quosured symbols automatically:
as_name (quo(foo))

as_string Cast symbol to string

Description

as_string() converts symbols to character strings.

Usage

as_string(x)

Arguments

X A string or symbol. If a string, the attributes are removed, if any.

Value

A character vector of length 1.

Unicode tags

Unlike base: :as.symbol() and base::as.name(), as_string() automatically transforms uni-
code tags such as "<U+5E78>" to the proper UTF-8 character. This is important on Windows be-
cause:

* R on Windows has no UTF-8 support, and uses native encoding instead.

* The native encodings do not cover all Unicode characters. For example, Western encodings
do not support CKJ characters.

bare-type-predicates 21

* When a lossy UTF-8 -> native transformation occurs, uncovered characters are transformed
to an ASCII unicode tag like "<U+5E78>".

» Symbols are always encoded in native. This means that transforming the column names of a
data frame to symbols might be a lossy operation.

* This operation is very common in the tidyverse because of data masking APIs like dplyr where
data frames are transformed to environments. While the names of a data frame are stored as a
character vector, the bindings of environments are stored as symbols.

Because it reencodes the ASCII unicode tags to their UTF-8 representation, the string -> symbol ->
string roundtrip is more stable with as_string().
See Also

as_name () for a higher-level variant of as_string() that automatically unwraps quosures.

Examples

Let's create some symbols:
foo <- quote(foo)
bar <- sym("bar")

as_string() converts symbols to strings:
foo
as_string(foo)

typeof (bar)
typeof (as_string(bar))

bare-type-predicates Bare type predicates

Description

These predicates check for a given type but only return TRUE for bare R objects. Bare objects have
no class attributes. For example, a data frame is a list, but not a bare list.

Usage
is_bare_list(x, n = NULL)

NULL)

is_bare_atomic(x, n

is_bare_vector(x, n = NULL)
is_bare_double(x, n = NULL)

is_bare_complex(x, n = NULL)

22 box

is_bare_integer(x, n = NULL)

is_bare_numeric(x, n = NULL)

is_bare_character(x, n = NULL)

is_bare_logical(x, n = NULL)
is_bare_raw(x, n = NULL)

is_bare_string(x, n = NULL)

is_bare_bytes(x, n = NULL)

Arguments

X Object to be tested.

n Expected length of a vector.
Details

* The predicates for vectors include the n argument for pattern-matching on the vector length.

e Like is_atomic() and unlike base R is.atomic() for R < 4.4.0, is_bare_atomic() does
not return TRUE for NULL. Starting in R 4.4.0, is.atomic(NULL) returns FALSE.

* Unlike base R is.numeric(), is_bare_double() only returns TRUE for floating point num-
bers.

See Also

type-predicates, scalar-type-predicates

box Box a value

Description

new_box () is similar to base: : I() but it protects a value by wrapping it in a scalar list rather than
by adding an attribute. unbox() retrieves the boxed value. is_box() tests whether an object is
boxed with optional class. as_box () ensures that a value is wrapped in a box. as_box_if () does
the same but only if the value matches a predicate.

Usage

new_box(.x, class = NULL, ...)
is_box(x, class = NULL)

unbox (box)

bytes-class 23

Arguments
class For new_box (), an additional class for the boxed value (in addition to rlang_box).
For is_box (), a class or vector of classes passed to inherits_all().
Additional attributes passed to base: :structure().
X, . X An R object.
box A boxed value to unbox.
Examples

boxed <- new_box(letters, "mybox")
is_box(boxed)

is_box(boxed, "mybox")
is_box(boxed, "otherbox")

unbox (boxed)

as_box() avoids double-boxing:
boxed2 <- as_box(boxed, "mybox")
boxed?2

unbox (boxed2)

Compare to:

boxed_boxed <- new_box(boxed, "mybox")
boxed_boxed

unbox (unbox (boxed_boxed))

Use “as_box_if ()"~ with a predicate if you need to ensure a box
only for a subset of values:

as_box_if (NULL, is_null, "null_box")

as_box_if("foo", is_null, "null_box")

bytes-class Human readable memory sizes

Description

Construct, manipulate and display vectors of byte sizes. These are numeric vectors, so you can com-
pare them numerically, but they can also be compared to human readable values such as *10MB’.

* parse_bytes() takes a character vector of human-readable bytes and returns a structured
bytes vector.

* as_bytes() is a generic conversion function for objects representing bytes.

Note: A bytes() constructor will be exported soon.

Usage

as_bytes(x)

parse_bytes(x)

24 call2

Arguments
X A numeric or character vector. Character representations can use shorthand sizes
(see examples).
Details

These memory sizes are always assumed to be base 1000, rather than 1024.

Examples

parse_bytes("1")
parse_bytes("1K")
parse_bytes("1Kb")
parse_bytes("1KiB")
parse_bytes("1MB")

parse_bytes("1KB") < "1MB"

sum(parse_bytes(c("1MB", "5MB"”, "500KB")))

call2 Create a call

Description

Quoted function calls are one of the two types of symbolic objects in R. They represent the action
of calling a function, possibly with arguments. There are two ways of creating a quoted call:

* By quoting it. Quoting prevents functions from being called. Instead, you get the description
of the function call as an R object. That is, a quoted function call.

* By constructing it with base: :call(), base: :as.call(), or call2(). In this case, you pass
the call elements (the function to call and the arguments to call it with) separately.

See section below for the difference between call2() and the base constructors.

Usage
call2(.fn, ..., .ns = NULL)
Arguments
.fn Function to call. Must be a callable object: a string, symbol, call, or a function.

<dynamic> Arguments for the function call. Empty arguments are preserved.

.ns Namespace with which to prefix . fn. Must be a string or symbol.

call2 25

Difference with base constructors

call2() is more flexible than base: :call():

* The function to call can be a string or a callable object: a symbol, another call (e.g. a $ or
L[call), or a function to inline. base::call() only supports strings and you need to use
base::as.call() to construct a call with a callable object.

call2(list, 1, 2)

as.call(list(list, 1, 2))
* The .ns argument is convenient for creating namespaced calls.

call2("list”, 1, 2, .ns = "base")

Equivalent to
ns_call <- call(”::", as.symbol("list"), as.symbol("base"))
as.call(list(ns_call, 1, 2))

* call2() has dynamic dots support. You can splice lists of arguments with ! ! ! or unquote an
argument name with glue syntax.

args <- list(na.rm = TRUE, trim = 0)
call2("mean”, 1:10, !!largs)

Equivalent to
as.call(c(list(as.symbol("mean”), 1:10), args))

Caveats of inlining objects in calls

call2() makes it possible to inline objects in calls, both in function and argument positions. Inlin-
ing an object or a function has the advantage that the correct object is used in all environments. If
all components of the code are inlined, you can even evaluate in the empty environment.

However inlining also has drawbacks. It can cause issues with NSE functions that expect symbolic
arguments. The objects may also leak in representations of the call stack, such as traceback().

See Also
call_modify()

Examples

fn can either be a string, a symbol or a call
call2("f", a=1)

call2(quote(f), a = 1)

call2(quote(f()), a =1)

#' Can supply arguments individually or in a list
call2(quote(f), a =1, b = 2)
call2(quote(f), !!!llist(a =1, b = 2))

26 call_args

Creating namespaced calls is easy:
call2("fun”, arg = quote(baz), .ns = "mypkg")

Empty arguments are preserved:
call2("[", quote(x), , drop =)

caller_arg Find the caller argument for error messages

Description

caller_arg() is a variant of substitute() or ensym() for arguments that reference other argu-
ments. Unlike substitute() which returns an expression, caller_arg() formats the expression
as a single line string which can be included in error messages.

* When included in an error message, the resulting label should generally be formatted as argu-
ment, for instance using the . arg in the cli package.

e Use @inheritParams rlang::args_error_context to document an arg or error_arg ar-
gument that takes error_arg() as default.

Arguments

arg An argument name in the current function.

Examples

arg_checker <- function(x, arg = caller_arg(x), call = caller_env()) {
cli::cli_abort("{.arg {arg}} must be a thingy.", arg = arg, call = call)
}

my_function <- function(my_arg) {
arg_checker(my_arg)

}

try(my_function(NULL))

call_args Extract arguments from a call

Description

Extract arguments from a call

call_inspect

Usage
call_args(call)

call_args_names(call)

Arguments

call A defused call.

Value

A named list of arguments.

See Also
fn_fmls() and fn_fmls_names()

Examples

call <- quote(f(a, b))

Subsetting a call returns the arguments converted to a language
object:
call[-1]

On the other hand, call_args() returns a regular list that is
often easier to work with:
str(call_args(call))

When the arguments are unnamed, a vector of empty strings is
supplied (rather than NULL):
call_args_names(call)

27

call_inspect Inspect a call

Description

This function is a wrapper around base: :match.call(). It returns its own function call.

Usage

call_inspect(...)

Arguments

Arguments to display in the returned call.

28

Examples

call _match

When you call it directly, it simply returns what you typed
call_inspect(foo(bar), "" %>% identity())

Pass “call_inspect™ to functionals like “lapply()” or “map()” to
inspect the calls they create around the supplied function
lapply(1:3, call_inspect)

call_match

Match supplied arguments to function definition

Description

call_match() is like match.call () with these differences:

¢ It supports matching missing argument to their defaults in the function definition.

* It requires you to be a little more specific in some cases. FEither all arguments are inferred
from the call stack or none of them are (see the Inference section).

Usage

call_match(

call = NULL,
fn = NULL,

defaults
dots_env

FALSE,
NULL,

dots_expand = TRUE

)

Arguments

call
fn

defaults

dots_env

dots_expand

A call. The arguments will be matched to fn.

A function definition to match arguments to.

These dots must be empty.

Whether to match missing arguments to their defaults.

An execution environment where to find dots. If supplied and dots exist in this
environment, and if call includes . . ., the forwarded dots are matched to num-
bered dots (e.g. ..1, ..2, etc). By default this is set to the empty environment
which means that . . . expands to nothing.

If FALSE, arguments passed through . .. will not be spliced into call. Instead,
they are gathered in a pairlist and assigned to an argument named Gathering
dots arguments is useful if you need to separate them from the other named
arguments.

Note that the resulting call is not meant to be evaluated since R does not support
passing dots through a named argument, even if named ". . ."

call_modify 29

Inference from the call stack
When call is not supplied, it is inferred from the call stack along with fn and dots_env.

* call and fn are inferred from the calling environment: sys.call(sys.parent()) and sys.function(sys.parent()

* dots_env is inferred from the caller of the calling environment: caller_env(2).

If call is supplied, then you must supply fn as well. Also consider supplying dots_env as it is set
to the empty environment when not inferred.

Examples

“call_match()” supports matching missing arguments to their
defaults

fn <- function(x = "default”) fn

call_match(quote(fn()), fn)

call_match(quote(fn()), fn, defaults = TRUE)

call_modify Modify the arguments of a call

Description

If you are working with a user-supplied call, make sure the arguments are standardised with call_match()
before modifying the call.

Usage

call_modify(
.call,
.homonyms = c("keep”, "first"”, "last", "error"),
.standardise = NULL,
.env = caller_env()

)
Arguments

.call Can be a call, a formula quoting a call in the right-hand side, or a frame object
from which to extract the call expression.
<dynamic> Named or unnamed expressions (constants, names or calls) used
to modify the call. Use zap() to remove arguments. Empty arguments are
preserved.

.homonyms How to treat arguments with the same name. The default, "keep”, preserves

these arguments. Set .homonyms to "first” to only keep the first occurrences,
to "last” to keep the last occurrences, and to "error” to raise an informative
error and indicate what arguments have duplicated names.

.standardise, .env
Deprecated as of rlang 0.3.0. Please call call_match() manually.

30 call_modify

Value

A quosure if . call is a quosure, a call otherwise.

Examples

call <- quote(mean(x, na.rm = TRUE))

Modify an existing argument
call_modify(call, na.rm = FALSE)
call_modify(call, x = quote(y))

Remove an argument
call_modify(call, na.rm = zap())

Add a new argument
call_modify(call, trim = 0.1)

Add an explicit missing argument:
call_modify(call, na.rm =)

Supply a list of new arguments with ~!!!°
newargs <- list(na.rm = zap(), trim = 0.1)
call <- call_modify(call, !!!newargs)

call

Remove multiple arguments by splicing zaps:

newargs <- rep_named(c("na.rm”, "trim"), list(zap()))

call <- call_modify(call, !!!newargs)

call

Modify the ~...~ arguments as if it were a named argument:
call <- call_modify(call, ... =)

call

call <- call_modify(call, ... = zap(Q))

call

When you're working with a user-supplied call, standardise it
beforehand in case it includes unmatched arguments:

user_call <- quote(matrix(x, nc = 3))

call_modify(user_call, ncol = 1)

“call_match()" applies R's argument matching rules. Matching
ensures you're modifying the intended argument.

user_call <- call_match(user_call, matrix)

user_call

call_modify(user_call, ncol = 1)

By default, arguments with the same name are kept. This has

call name 31

subtle implications, for instance you can move an argument to
last position by removing it and remapping it:

call <- quote(foo(bar =, baz))

call_modify(call, bar = zap(), bar = missing_arg())

You can also choose to keep only the first or last homonym
arguments:
args <- list(bar = zap(), bar = missing_arg())

call_modify(call, !!l!args, .homonyms = "first")
call_modify(call, !!largs, .homonyms = "last")
call_name Extract function name or namespace of a call
Description

call_name() and call_ns() extract the function name or namespace of simple calls as a string.
They return NULL for complex calls.

» Simple calls: foo(), bar::foo().
e Complex calls: foo() (), bar::foo, foo$bar(), (function() NULL) ().

The is_call_simple() predicate helps you determine whether a call is simple. There are two
invariants you can count on:

1. If is_call_simple(x) returns TRUE, call_name(x) returns a string. Otherwise it returns
NULL.

2. If is_call_simple(x, ns = TRUE) returns TRUE, call_ns() returns a string. Otherwise it
returns NULL.

Usage

call_name(call)
call_ns(call)

is_call_simple(x, ns = NULL)

Arguments
call A defused call.
X An object to test.
ns Whether call is namespaced. If NULL, is_call_simple() is insensitive to names-
paces. If TRUE, is_call_simple() detects namespaced calls. If FALSE, it de-
tects unnamespaced calls.
Value

The function name or namespace as a string, or NULL if the call is not named or namespaced.

32 catch_cnd

Examples

Is the function named?
is_call_simple(quote(foo()))
is_call_simple(quote(fool[111()))

Is the function namespaced?
is_call_simple(quote(list()), ns = TRUE)
is_call_simple(quote(base::1ist()), ns = TRUE)

Extract the function name from quoted calls:
call_name(quote(foo(bar)))
call_name(quo(foo(bar)))

Namespaced calls are correctly handled:
call_name(quote(base: :matrix(baz)))

Anonymous and subsetted functions return NULL:
call_name(quote(foo$bar()))
call_name(quote(fool[[bar]l()))
call_name(quote(foo()()))

Extract namespace of a call with call_ns():
call_ns(quote(base::bar()))

If not namespaced, call_ns() returns NULL:
call_ns(quote(bar()))

catch_cnd Catch a condition

Description

This is a small wrapper around tryCatch() that captures any condition signalled while evaluating
its argument. It is useful for situations where you expect a specific condition to be signalled, for
debugging, and for unit testing.

Usage
catch_cnd(expr, classes = "condition”)
Arguments
expr Expression to be evaluated with a catching condition handler.
classes A character vector of condition classes to catch. By default, catches all condi-
tions.
Value

A condition if any was signalled, NULL otherwise.

check_dots_empty 33

Examples

catch_cnd(10)
catch_cnd(abort("an error™))

catch_cnd(signal("my_condition”, message = "a condition"))
check_dots_empty Check that dots are empty
Description

... can be inserted in a function signature to force users to fully name the details arguments. In this
case, supplying data in . . . is almost always a programming error. This function checks that . . . is
empty and fails otherwise.

Usage

check_dots_empty(
env = caller_env(),
error = NULL,
call = caller_env(),
action = abort

)
Arguments
env Environment in which to look for
error An optional error handler passed to try_fetch(). Use this e.g. to demote an
error into a warning.
call The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of abort() for more information.
action [Deprecated]
Details
In packages, document . . . with this standard tag:

@inheritParams rlang::args_dots_empty

See Also

Other dots checking functions: check_dots_unnamed(), check_dots_used()

34 check dots_unnamed

Examples

f <- function(x, ..., foofy = 8) {
check_dots_empty()
x + foofy

3

This fails because ~foofy™ can't be matched positionally
try(f(1, 4))

This fails because ~foofy™ can't be matched partially by name
try(f(1, foof = 4))

Thanks to ~... 7, it must be matched exactly
f(1, foofy = 4)

check_dots_unnamed Check that all dots are unnamed
Description
In functions like paste(), named arguments in . . . are often a sign of misspelled argument names.

Call check_dots_unnamed() to fail with an error when named arguments are detected.

Usage

check_dots_unnamed(
env = caller_env(),
error = NULL,
call = caller_env(),
action = abort

)
Arguments
env Environment in which to look for
error An optional error handler passed to try_fetch(). Use this e.g. to demote an
error into a warning.
call The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of abort () for more information.
action [Deprecated]
See Also

Other dots checking functions: check_dots_empty(), check_dots_used()

check dots_used 35

Examples

f <- function(..., foofy = 8) {
check_dots_unnamed()
c(...)

3

f(1, 2, 3, foofy = 4)

try(f(1, 2, 3, foof = 4))

check_dots_used Check that all dots have been used
Description
When . .. arguments are passed to a method, the method should match and use these arguments. If

this isn’t the case, this often indicates a programming error. Call check_dots_used() to fail with
an error when unused arguments are detected.

Usage

check_dots_used(
env = caller_env(),
call = caller_env(),

error = NULL,
action = deprecated()
)
Arguments
env Environment in which to look for . . . and to set up handler.
call The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of abort () for more information.
error An optional error handler passed to try_fetch(). Use this e.g. to demote an
error into a warning.
action [Deprecated]
Details
In packages, document . . . with this standard tag:

@inheritParams rlang::args_dots_used

check_dots_used() implicitly calls on.exit() to check that all elements of ... have been used
when the function exits. If you use on.exit() elsewhere in your function, make sure to use add =
TRUE so that you don’t override the handler set up by check_dots_used().

36 check_exclusive

See Also

Other dots checking functions: check_dots_empty (), check_dots_unnamed()

Examples

f <= function(...) {
check_dots_used()

g(...)
3
g <- function(x, vy, ...) {
X +y
3
f(x=1,y=2)
try(f(x =1, y =2, z = 3))
try(f(x =1, y =2, 3, 4, 5))

Use an “error” handler to handle the error differently.
For instance to demote the error to a warning:
fn <- function(...) {
check_dots_empty(
error = function(cnd) {
warning(cnd)

check_exclusive Check that arguments are mutually exclusive

Description

check_exclusive() checks that only one argument is supplied out of a set of mutually exclusive
arguments. An informative error is thrown if multiple arguments are supplied.

Usage

check_exclusive(..., .require = TRUE, .frame = caller_env(), .call = .frame)

Arguments

Function arguments.

.require Whether at least one argument must be supplied.

check_required 37

.frame Environment where the arguments in . . . are defined.

.call The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of abort () for more information.

Value

The supplied argument name as a string. If .require is FALSE and no argument is supplied, the
empty string "" is returned.

Examples

f <- function(x, y) {
switch(
check_exclusive(x, y),
x = message(" x” was supplied.”),
y = message(" y~ was supplied.”)
)
3

Supplying zero or multiple arguments is forbidden

try(f())
try(F(NULL, NULL))

The user must supply one of the mutually exclusive arguments
f(NULL)
f(y = NULL)

With ~.require™ you can allow zero arguments
f <- function(x, y) {
switch(
check_exclusive(x, y, .require = FALSE),
X = message(" x~ was supplied.”),
y = message(” y~ was supplied.”),
message("No arguments were supplied”)

fO

check_required Check that argument is supplied

Description

Throws an error if x is missing.

Usage

check_required(x, arg = caller_arg(x), call = caller_env())

38 cnd_inherits

Arguments
X A function argument. Must be a symbol.
arg An argument name as a string. This argument will be mentioned in error mes-
sages as the input that is at the origin of a problem.
call The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of abort() for more information.
See Also

arg_match()

Examples

f <= function(x) {
check_required(x)

}

Fails because “x~ is not supplied
try(fO))

Succeeds
F(NULL)

cnd_inherits Does a condition or its ancestors inherit from a class?

Description

Like any R objects, errors captured with catchers like tryCatch() have a class() which you can
test with inherits(). However, with chained errors, the class of a captured error might be different
than the error that was originally signalled. Use cnd_inherits() to detect whether an error or any
of its parent inherits from a class.

Whereas inherits() tells you whether an object is a particular kind of error, cnd_inherits()
answers the question whether an object is a particular kind of error or has been caused by such an
error.

Some chained conditions carry parents that are not inherited. See the .inherit argument of
abort (), warn(), and inform().
Usage

cnd_inherits(cnd, class)

Arguments

cnd A condition to test.

class A class passed to inherits().

cnd_inherits 39

Capture an error with cnd_inherits()
Error catchers like tryCatch() and try_fetch() can only match the class of a condition, not the
class of its parents. To match a class across the ancestry of an error, you’ll need a bit of craftiness.

Ancestry matching can’t be done with tryCatch() at all so you’ll need to switch towithCallingHandlers().
Alternatively, you can use the experimental rlang function try_fetch() which is able to perform
the roles of both tryCatch() and withCallingHandlers().

withCallingHandlers():

Unlike tryCatch(), withCallingHandlers() does not capture an error. If you don’t explicitly
jump with an error or a value throw, nothing happens.

Since we don’t want to throw an error, we’ll throw a value using callCC():

f <= function() {

parent <- error_cnd("bar”, message = "Bar")
abort("Foo", parent = parent)
3
cnd <- callCC(function(throw) {
withCallingHandlers(
O,
error = function(x) if (cnd_inherits(x, "bar")) throw(x)
)
1))
class(cnd)
#> [1] "rlang_error" "error” "condition”
class(cnd$parent)
[1] "bar” "rlang_error” "error"” "condition”

try_fetch():

This pattern is easier with try_fetch(). Like withCallingHandlers(), it doesn’t capture a
matching error right away. Instead, it captures it only if the handler doesn’t return a zap () value.

cnd <- try_fetch(

fO,

error = function(x) if (cnd_inherits(x, "bar")) x else zap()
)
class(cnd)
#> [1] "rlang_error" "error"” "condition”
class(cnd$parent)
#> [1]1 "bar” "rlang_error"” "error" "condition”

Note that try_fetch() uses cnd_inherits() internally. This makes it very easy to match a
parent condition:

cnd <- try_fetch(
O,

bar = function(x) x

40 cnd_message

)
This is the parent
class(cnd)
#> [1] "bar"” "rlang_error” "error” "condition”
cnd_message Build an error message from parts
Description

cnd_message () assembles an error message from three generics:

e cnd_header()
e cnd_body ()
e cnd_footer()
Methods for these generics must return a character vector. The elements are combined into a single

string with a newline separator. Bullets syntax is supported, either through rlang (see format_error_bullets()),
or through cli if the condition has use_cli_format set to TRUE.

The default method for the error header returns the message field of the condition object. The
default methods for the body and footer return the the body and footer fields if any, or empty
character vectors otherwise.

cnd_message() is automatically called by the conditionMessage() for rlang errors, warnings,
and messages. Error classes created with abort() only need to implement header, body or footer
methods. This provides a lot of flexibility for hierarchies of error classes, for instance you could
inherit the body of an error message from a parent class while overriding the header and footer.

Usage
cnd_message(cnd, ..., inherit = TRUE, prefix = FALSE)
cnd_header(cnd, ...)

cnd_body(cnd, ...)

cnd_footer(cnd, ...)
Arguments
cnd A condition object.

Arguments passed to methods.

inherit Wether to include parent messages. Parent messages are printed with a "Caused
by error:" prefix, even if prefix is FALSE.

cnd_signal 41

prefix Whether to print the full message, including the condition prefix (Error:, Warning:,
Message:, or Condition:). The prefix mentions the call field if present, and
the srcref info if present. If cnd has a parent field (i.e. the condition is
chained), the parent messages are included in the message with a Caused by
prefix.

Overriding header, body, and footer methods

Sometimes the contents of an error message depends on the state of your checking routine. In
that case, it can be tricky to lazily generate error messages with cnd_header (), cnd_body(), and
cnd_footer(): you have the choice between overspecifying your error class hierarchies with one
class per state, or replicating the type-checking control flow within the cnd_body () method. None
of these options are ideal.

A better option is to define header, body, or footer fields in your condition object. These can
be a static string, a lambda-formula, or a function with the same signature as cnd_header (),
cnd_body (), or cnd_footer(). These fields override the message generics and make it easy to
generate an error message tailored to the state in which the error was constructed.

cnd_signal Signal a condition object

Description

cnd_signal() takes a condition as argument and emits the corresponding signal. The type of signal
depends on the class of the condition:

* A message is signalled if the condition inherits from "message”. This is equivalent to sig-
nalling with inform() or base: :message().

* A warning is signalled if the condition inherits from "warning”. This is equivalent to sig-
nalling with warn() or base: :warning().

* An error is signalled if the condition inherits from "error"”. This is equivalent to signalling
with abort () or base: :stop().

* An interrupt is signalled if the condition inherits from "interrupt”. This is equivalent to
signalling with interrupt().

Usage
cnd_signal(cnd, ...)
Arguments
cnd A condition object (see cnd()). If NULL, cnd_signal() returns without sig-

nalling a condition.

These dots are for future extensions and must be empty.

42 done

See Also

* cnd_type() to determine the type of a condition.
e abort(),warn() and inform() for creating and signalling structured R conditions in one go.

* try_fetch() for establishing condition handlers for particular condition classes.

Examples

The type of signal depends on the class. If the condition

inherits from "warning”, a warning is issued:

cnd <- warning_cnd("my_warning_class”, message = "This is a warning")
cnd_signal(cnd)

If it inherits from "error”, an error is raised:
cnd <- error_cnd("my_error_class"”, message = "This is an error")
try(cnd_signal(cnd))

done Box a final value for early termination

Description

A value boxed with done () signals to its caller that it should stop iterating. Use it to shortcircuit a
loop.

Usage

done (x)

is_done_box(x, empty = NULL)

Arguments
X For done(), a value to box. For is_done_box (), a value to test.
empty Whether the box is empty. If NULL, is_done_box() returns TRUE for all done
boxes. If TRUE, it returns TRUE only for empty boxes. Otherwise it returns TRUE
only for non-empty boxes.
Value

A boxed value.
Examples
done(3)

x <- done(3)
is_done_box(x)

dot-data 43

dot-data .data and .env pronouns

Description
The .data and . env pronouns make it explicit where to find objects when programming with data-

masked functions.

m<- 10
mtcars %>% mutate(disp = .data$disp * .env$m)

e .data retrieves data-variables from the data frame.

e .env retrieves env-variables from the environment.

Because the lookup is explicit, there is no ambiguity between both kinds of variables. Compare:

disp <- 10
mtcars %>% mutate(disp = .data$disp * .env$disp)
mtcars %>% mutate(disp = disp * disp)

Note that .data is only a pronoun, it is not a real data frame. This means that you can’t take its
names or map a function over the contents of . data. Similarly, . env is not an actual R environment.
For instance, it doesn’t have a parent and the subsetting operators behave differently.

.data versus the magrittr pronoun .

In a magrittr pipeline, .data is not necessarily interchangeable with the magrittr pronoun .. With
grouped data frames in particular, .data represents the current group slice whereas the pronoun .
represents the whole data frame. Always prefer using .data in data-masked context.

Where does .data live?

The .data pronoun is automatically created for you by data-masking functions using the tidy eval
framework. You don’t need to import rlang::.data or use library(rlang) to work with this
pronoun.

However, the .data object exported from rlang is useful to import in your package namespace to
avoid aR CMD check note when referring to objects from the data mask. R does not have any way
of knowing about the presence or absence of .data in a particular scope so you need to import it
explicitly or equivalently declare it with utils: :globalVariables(".data").

Note that rlang::.data is a "fake" pronoun. Do not refer to rlang::.data with the rlang::
qualifier in data masking code. Use the unqualified . data symbol that is automatically put in scope
by data-masking functions.

https://magrittr.tidyverse.org/

44 dyn-dots

dyn-dots Dynamic dots features

Description
The base . .. syntax supports:

* Forwarding arguments from function to function, matching them along the way to arguments.

* Collecting arguments inside data structures, e.g. with c() or 1list().
Dynamic dots offer a few additional features, injection in particular:

1. You can splice arguments saved in a list with the splice operator ! !!.
2. You can inject names with glue syntax on the left-hand side of :=.

3. Trailing commas are ignored, making it easier to copy and paste lines of arguments.

Add dynamic dots support in your functions
If your function takes dots, adding support for dynamic features is as easy as collecting the dots with
list2() instead of 1ist (). See also dots_list(), which offers more control over the collection.

In general, passing . . . to a function that supports dynamic dots causes your function to inherit the
dynamic behaviour.

In packages, document dynamic dots with this standard tag:
@param ... <[dynamic-dots~][rlang::dyn-dots]> What these dots do.

Examples

f <= function(...) {
out <- list2(...)
rev(out)

}

Trailing commas are ignored
f(this = "that”,)

Splice lists of arguments with ~!!!°
x <- list(alpha = "first"”, omega = "last")
frx)

Inject a name using glue syntax
if (is_installed("glue")) {

nm <- "key"
fC"'{nm}" := "value")
f("prefix_{nm}" := "value")

}

embrace-operator 45

embrace-operator Embrace operator {{

Description

The embrace operator {{ is used to create functions that call other data-masking functions. It
transports a data-masked argument (an argument that can refer to columns of a data frame) from
one function to another.

my_mean <- function(data, var) {
dplyr::summarise(data, mean = mean({{ var }}))

3

Under the hood
{{ combines enquo() and !! in one step. The snippet above is equivalent to:

my_mean <- function(data, var) {
var <- enquo(var)
dplyr::summarise(data, mean = mean(!!var))

}

See Also

* What is data-masking and why do I need curly-curly?

* Data mask programming patterns

empty_env Get the empty environment

Description

The empty environment is the only one that does not have a parent. It is always used as the tail of
an environment chain such as the search path (see search_envs()).

Usage

empty_env()

Examples

Create environments with nothing in scope:
child_env(empty_env())

46 englue

englue Defuse function arguments with glue

Description

englue() creates a string with the glue operators { and {{. These operators are normally used to
inject names within dynamic dots. englue () makes them available anywhere within a function.

englue() must be used inside a function. englue("{{ var }}") defuses the argument var and
transforms it to a string using the default name operation.

Usage
englue(x, env = caller_env(), error_call = current_env(), error_arg = "x")
Arguments
X A string to interpolate with glue operators.
env User environment where the interpolation data lives in case you’re wrapping
englue() in another function.
error_call The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of abort () for more information.
error_arg An argument name as a string. This argument will be mentioned in error mes-
sages as the input that is at the origin of a problem.
Details

englue("{{ var }}") is equivalent to as_label(enquo(var)). It defuses arg and transforms the
expression to a string with as_label ().

In dynamic dots, using only { is allowed. In englue() you must use {{ at least once. Use
glue::glue() for simple interpolation.

Before using englue () in a package, first ensure that glue is installed by adding it to your Imports:

section.
usethis: :use_package("glue”, "Imports")
Wrapping englue()

You can provide englue semantics to a user provided string by supplying env. In this example we
create a variant of englue () that supports a special . qux pronoun by:

* Creating an environment masked_env that inherits from the user env, the one where their data
lives.

englue 47

* Overriding the error_arg and error_call arguments to point to our own argument name and
call environment. This pattern is slightly different from usual error context passing because
englue() is a backend function that uses its own error context by default (and not a checking
function that uses your error context by default).

my_englue <- function(text) {

masked_env <- env(caller_env(), .qux = "QUX")
englue(

text,

env = masked_env,

error_arg = "text",

error_call = current_env()
)

b

Users can then use your wrapper as they would use “englue()™:
fn <= function(x) {

foo <- "F00"

my_englue("{{ x }}_{.qux}_{foo}")
3
fn(bar)

#> [1] "bar_QUX_FO0"

If you are creating a low level package on top of englue(), you should also consider exposing env,
error_arg and error_call in your englue() wrapper so users can wrap your wrapper.

See Also

* Injecting with !!, !!!, and glue syntax

Examples

g <- function(var) englue("{{ var }}")
g(cyl)

g(1 + 1)

g(!!letters)

These are equivalent to
as_label(quote(cyl))
as_label(quote(1 + 1))
as_label(letters)

48 enquo

enquo Defuse function arguments

Description

enquo() and enquos() defuse function arguments. A defused expression can be examined, modi-
fied, and injected into other expressions.

Defusing function arguments is useful for:

* Creating data-masking functions.

* Interfacing with another data-masking function using the defuse-and-inject pattern.

These are advanced tools. Make sure to first learn about the embrace operator {{ in Data mask
programming patterns. {{ is easier to work with less theory, and it is sufficient in most applications.

Usage
enquo(arg)

enquos(

L

.named = FALSE,

.ignore_empty = c("trailing”, "none”, "all"),
.ignore_null = c("none”, "all"),
.unquote_names = TRUE,
.homonyms = c("keep"”, "first"”, "last”, "error"),
.check_assign = FALSE
)
Arguments
arg An unquoted argument name. The expression supplied to that argument is de-
fused and returned.
Names of arguments to defuse.
.named If TRUE, unnamed inputs are automatically named with as_label(). This is

equivalent to applying exprs_auto_name() on the result. If FALSE, unnamed
elements are left as is and, if fully unnamed, the list is given minimal names (a
vector of ""). If NULL, fully unnamed results are left with NULL names.

.ignore_empty Whether to ignore empty arguments. Can be one of "trailing”, "none”,
"all”. If "trailing”, only the last argument is ignored if it is empty. Named
arguments are not considered empty.

.ignore_null Whether to ignore unnamed null arguments. Can be "none” or "all”.

.unquote_names Whether to treat : = as =. Unlike =, the := syntax supports names injection.

enquo 49

.homonyms How to treat arguments with the same name. The default, "keep”, preserves
these arguments. Set . homonyms to "first” to only keep the first occurrences,
to "last” to keep the last occurrences, and to "error” to raise an informative
error and indicate what arguments have duplicated names.

.check_assign Whether to check for <- calls. When TRUE a warning recommends users to use
= if they meant to match a function parameter or wrap the <- call in curly braces
otherwise. This ensures assignments are explicit.

Value

enquo () returns a quosure and enquos () returns a list of quosures.

Implicit injection
Arguments defused with enquo() and enquos() automatically gain injection support.
my_mean <- function(data, var) {

var <- enquo(var)
dplyr::summarise(data, mean(!!var))

}
Can now use “!!" and “{{°
my_mean(mtcars, !!sym("cyl"))

See enquo@ () and enquos@() for variants that don’t enable injection.

See Also

* Defusing R expressions for an overview.

expr() to defuse your own local expressions.

Advanced defusal operators.

base::eval() and eval_bare() for resuming evaluation of a defused expression.

Examples

“enquo()” defuses the expression supplied by your user
f <- function(arg) {
enquo(arg)

3
(1 +1)

“enquos()” works with arguments and dots. It returns a list of
expressions
f <= function(...) {

enquos(...)

}

Q1+ 1, 2 % 10)

50 env

“enquo()” and “enquos()~ enable _injection_ and _embracing_ for
your users
g <- function(arg) {
f({{ arg 3} * 2)
}
g(100)

column <- sym("cyl")

g(!!column)
env Create a new environment
Description

These functions create new environments.

* env() creates a child of the current environment by default and takes a variable number of
named objects to populate it.

* new_environment () creates a child of the empty environment by default and takes a named
list of objects to populate it.

Usage

env(...)

new_environment(data = list(), parent = empty_env())

Arguments
...,data <dynamic> Named values. You can supply one unnamed to specify a custom
parent, otherwise it defaults to the current environment.
parent A parent environment.

Environments as objects

Environments are containers of uniquely named objects. Their most common use is to provide a
scope for the evaluation of R expressions. Not all languages have first class environments, i.e. can
manipulate scope as regular objects. Reification of scope is one of the most powerful features of R
as it allows you to change what objects a function or expression sees when it is evaluated.

Environments also constitute a data structure in their own right. They are a collection of uniquely
named objects, subsettable by name and modifiable by reference. This latter property (see section
on reference semantics) is especially useful for creating mutable OO systems (cf the R6 package
and the ggproto system for extending ggplot2).

https://github.com/r-lib/R6
https://ggplot2.tidyverse.org/articles/extending-ggplot2.html

env 51

Inheritance

All R environments (except the empty environment) are defined with a parent environment. An
environment and its grandparents thus form a linear hierarchy that is the basis for lexical scoping
in R. When R evaluates an expression, it looks up symbols in a given environment. If it cannot find
these symbols there, it keeps looking them up in parent environments. This way, objects defined in
child environments have precedence over objects defined in parent environments.

The ability of overriding specific definitions is used in the tidyeval framework to create powerful
domain-specific grammars. A common use of masking is to put data frame columns in scope. See
for example as_data_mask().

Reference semantics

Unlike regular objects such as vectors, environments are an uncopyable object type. This means
that if you have multiple references to a given environment (by assigning the environment to another
symbol with <- or passing the environment as argument to a function), modifying the bindings of
one of those references changes all other references as well.

See Also

env_has(), env_bind().

Examples

env() creates a new environment that inherits from the current
environment by default

env <- env(a =1, b = "foo")

env$b

identical(env_parent(env), current_env())

Supply one unnamed argument to inherit from another environment:
env <- env(base_env(), a =1, b = "foo")
identical(env_parent(env), base_env())

Both env() and child_env() support tidy dots features:
objs <- list(b = "foo", ¢ = "bar")

env <- env(a = 1, !!! objs)

env$c

You can also unquote names with the definition operator ~:=

nan

var <- "a
env <- env(!!var := "A")
env$a

Use new_environment() to create containers with the empty
environment as parent:

env <- new_environment()

env_parent(env)

Like other new_ constructors, it takes an object rather than dots:

https://en.wikipedia.org/wiki/Scope_(computer_science)

52 env_bind
new_environment(list(a = "foo"”, b = "bar"))
env_bind Bind symbols to objects in an environment
Description
These functions create bindings in an environment. The bindings are supplied through . . . as pairs

of names and values or expressions. env_bind() is equivalent to evaluating a <- expression within
the given environment. This function should take care of the majority of use cases but the other
variants can be useful for specific problems.

env_bind() takes named values which are bound in .env. env_bind() is equivalent to
base::assign().

env_bind_active() takes named functions and creates active bindings in . env. This is equiv-
alent to base: :makeActiveBinding(). An active binding executes a function each time it is
evaluated. The arguments are passed to as_function() so you can supply formulas instead
of functions.

Remember that functions are scoped in their own environment. These functions can thus refer
to symbols from this enclosure that are not actually in scope in the dynamic environment
where the active bindings are invoked. This allows creative solutions to difficult problems
(see the implementations of dplyr: :do() methods for an example).

env_bind_lazy() takes named expressions. This is equivalent to base: :delayedAssign().
The arguments are captured with exprs() (and thus support call-splicing and unquoting) and
assigned to symbols in .env. These expressions are not evaluated immediately but lazily.
Once a symbol is evaluated, the corresponding expression is evaluated in turn and its value is
bound to the symbol (the expressions are thus evaluated only once, if at all).

%<~% is a shortcut for env_bind_lazy(). It works like <- but the RHS is evaluated lazily.

Usage
env_bind(.env, ...)
env_bind_lazy(.env, ..., .eval_env = caller_env())
env_bind_active(.env, ...)
lhs %<~% rhs
Arguments
.env An environment.
<dynamic> Named objects (env_bind()), expressions env_bind_lazy(), or
functions (env_bind_active()). Use zap() to remove bindings.
.eval_env The environment where the expressions will be evaluated when the symbols are
forced.
lhs The variable name to which rhs will be lazily assigned.
rhs An expression lazily evaluated and assigned to lhs.

env_bind 53

Value

The input object . env, with its associated environment modified in place, invisibly.

Side effects

Since environments have reference semantics (see relevant section in env () documentation), mod-
ifying the bindings of an environment produces effects in all other references to that environment.
In other words, env_bind() and its variants have side effects.

Like other side-effecty functions like par() and options(), env_bind() and variants return the
old values invisibly.

See Also

env_poke () for binding a single element.

Examples

env_bind() is a programmatic way of assigning values to symbols

with “<-". We can add bindings in the current environment:
env_bind(current_env(), foo = "bar")
foo

Or modify those bindings:

bar <- "bar”

env_bind(current_env(), bar = "BAR")
bar

You can remove bindings by supplying zap sentinels:
env_bind(current_env(), foo = zap())
try(foo)

Unquote-splice a named list of zaps

zaps <- rep_named(c("foo"”, "bar"), list(zap()))
env_bind(current_env(), !!!zaps)

try(bar)

It is most useful to change other environments:
my_env <- env()

env_bind(my_env, foo = "foo")

my_env$foo

A useful feature is to splice lists of named values:
vals <- list(a = 10, b = 20)

env_bind(my_env, !!lvals, c = 30)

my_env$b

my_env$c

You can also unquote a variable referring to a symbol or a string
as binding name:

var <- "baz"

env_bind(my_env, !!var := "BAZ")

54

my_env$baz

The old values of the bindings are returned invisibly:
old <- env_bind(my_env, a = 1, b = 2, baz = "baz")
old

You can restore the original environment state by supplying the
old values back:
env_bind(my_env, !!lold)

env_bind_lazy() assigns expressions lazily:
env <- env()
env_bind_lazy(env, name = { cat("forced!\n"); "value" })

Referring to the binding will cause evaluation:
env$name

But only once, subsequent references yield the final value:
env$name

You can unquote expressions:
expr <- quote(message("forced!"))
env_bind_lazy(env, name = !!expr)
env$name

By default the expressions are evaluated in the current

environment. For instance we can create a local binding and refer
to it, even though the variable is bound in a different

environment:

who <- "mickey"”

env_bind_lazy(env, name = paste(who, "mouse”))

env$name

You can specify another evaluation environment with ~.eval_env™:
eval_env <- env(who = "minnie"”)

env_bind_lazy(env, name = paste(who, "mouse”), .eval_env = eval_env)
env$name

Or by unquoting a quosure:
quo <- local({
who <- "fievel”
quo(paste(who, "mouse"))
»
env_bind_lazy(env, name = !!quo)
env$name

You can create active bindings with env_bind_active(). Active
bindings execute a function each time they are evaluated:
fn <= function() {

cat("I have been called\n")

rnorm(1)

env_bind

env_browse 55

}

env <- env()
env_bind_active(env, symbol = fn)

~fn~ is executed each time “symbol™ is evaluated or retrieved:
env$symbol

env$symbol

eval_bare(quote(symbol), env)

eval_bare(quote(symbol), env)

All arguments are passed to as_function() so you can use the
formula shortcut:

env_bind_active(env, foo = ~ runif(1))

env$foo

env$foo

env_browse Browse environments

Description

[Defunct]

* env_browse(env) is equivalent to evaluating browser () in env. It persistently sets the envi-
ronment for step-debugging. Supply value = FALSE to disable browsing.

* env_is_browsed() is a predicate that inspects whether an environment is being browsed.

Usage

env_browse(env, value = TRUE)

env_is_browsed(env)

Arguments

env An environment.

value Whether to browse env.
Value

env_browse() returns the previous value of env_is_browsed() (a logical), invisibly.

56 env_cache

env_cache Cache a value in an environment

Description

env_cache() is a wrapper around env_get () and env_poke () designed to retrieve a cached value
from env.

* If the nm binding exists, it returns its value.

¢ Otherwise, it stores the default value in env and returns that.

Usage

env_cache(env, nm, default)

Arguments

env An environment.

nm Name of binding, a string.

default The default value to store in env if nm does not exist yet.
Value

Either the value of nm or default if it did not exist yet.

Examples
e <- env(a = "foo")

Returns existing binding
env_cache(e, "a", "default")

Creates a “b~ binding and returns its default value
env_cache(e, "b", "default")

Now “b” is defined
e$b

env_clone 57

env_clone Clone or coalesce an environment

Description

* env_clone() creates a new environment containing exactly the same bindings as the input,
optionally with a new parent.

* env_coalesce() copies binding from the RHS environment into the LHS. If the RHS already
contains bindings with the same name as in the LHS, those are kept as is.

Both these functions preserve active bindings and promises.

Usage

env_clone(env, parent = env_parent(env))

env_coalesce(env, from)

Arguments
env An environment.
parent The parent of the cloned environment.
from Environment to copy bindings from.
Examples

A clone initially contains the same bindings as the original
environment

env <- env(a =1, b = 2)

clone <- env_clone(env)

env_print(clone)
env_print(env)

But it can acquire new bindings or change existing ones without
impacting the original environment
env_bind(clone, a = "foo"”, c = 3)

env_print(clone)
env_print(env)

“env_coalesce()” copies bindings from one environment to another
lhs <- env(a = 1)

rhs <- env(a = "a", b = "b", ¢ = "c")

env_coalesce(lhs, rhs)

env_print(lhs)

To copy all the bindings from “rhs™ into “lhs™, first delete the

58 env_get

conflicting bindings from “rhs
env_unbind(lhs, env_names(rhs))
env_coalesce(lhs, rhs)
env_print(lhs)

env_depth Depth of an environment chain

Description

This function returns the number of environments between env and the empty environment, includ-
ing env. The depth of env is also the number of parents of env (since the empty environment counts
as a parent).

Usage

env_depth(env)

Arguments

env An environment.

Value

An integer.

See Also

The section on inheritance in env () documentation.

Examples

env_depth(empty_env())
env_depth(pkg_env("rlang"))

env_get Get an object in an environment

Description

env_get() extracts an object from an enviroment env. By default, it does not look in the parent
environments. env_get_list() extracts multiple objects from an environment into a named list.

env_get 59

Usage

env_get(env = caller_env(), nm, default, inherit = FALSE, last = empty_env())

env_get_list(
env = caller_env(),
nms,
default,
inherit = FALSE,
last = empty_env()

)
Arguments
env An environment.
nm Name of binding, a string.
default A default value in case there is no binding for nm in env.
inherit Whether to look for bindings in the parent environments.
last Last environment inspected when inherit is TRUE. Can be useful in conjunction
with base: : topenv().
nms Names of bindings, a character vector.
Value

An object if it exists. Otherwise, throws an error.

See Also

env_cache() for a variant of env_get () designed to cache a value in an environment.

Examples

parent <- child_env(NULL, foo = "foo")
env <- child_env(parent, bar = "bar")

This throws an error because ~foo™ is not directly defined in env:
env_get(env, "foo")

However ~foo™ can be fetched in the parent environment:
env_get(env, "foo”, inherit = TRUE)

You can also avoid an error by supplying a default value:
env_get(env, "foo"”, default = "F00")

60 env_inherits

env_has Does an environment have or see bindings?

Description

env_has() is a vectorised predicate that queries whether an environment owns bindings personally
(with inherit set to FALSE, the default), or sees them in its own environment or in any of its parents
(with inherit = TRUE).

Usage

env_has(env = caller_env(), nms, inherit = FALSE)

Arguments
env An environment.
nms A character vector of binding names for which to check existence.
inherit Whether to look for bindings in the parent environments.

Value

A named logical vector as long as nms.

Examples

parent <- child_env(NULL, foo = "foo")
env <- child_env(parent, bar = "bar")

env does not own “foo™ but sees it in its parent environment:
env_has(env, "foo")
env_has(env, "foo"”, inherit = TRUE)

env_inherits Does environment inherit from another environment?

Description

This returns TRUE if x has ancestor among its parents.

Usage

env_inherits(env, ancestor)

Arguments

env An environment.

ancestor Another environment from which x might inherit.

env_is_user_facing 61

env_is_user_facing Is frame environment user facing?

Description

Detects if env is user-facing, that is, whether it’s an environment that inherits from:

* The global environment, as would happen when called interactively

* A package that is currently being tested
If either is true, we consider env to belong to an evaluation frame that was called directly by the end
user. This is by contrast to indirect calls by third party functions which are not user facing.

For instance the lifecycle package uses env_is_user_facing() to figure out whether a deprecated
function was called directly or indirectly, and select an appropriate verbosity level as a function of
that.

Usage

env_is_user_facing(env)

Arguments

env An environment.

Escape hatch

I

You can override the return value of env_is_user_facing() by setting the global option "rlang_user_facing’
to:
* TRUE or FALSE.

* A package name as a string. Then env_is_user_facing(x) returns TRUE if x inherits from
the namespace corresponding to that package name.

Examples

fn <= function() {
env_is_user_facing(caller_env())

}

Direct call of “fn()~ from the global env
with(global_env(), fn())

Indirect call of “fn()~ from a package
with(ns_env("utils"”), fn())

https://lifecycle.r-lib.org/

62 env_name

env_name Label of an environment

Description

Special environments like the global environment have their own names. env_name () returns:

* "global" for the global environment.

* "empty" for the empty environment.

* "base" for the base package environment (the last environment on the search path).
* "namespace:pkg" if env is the namespace of the package "pkg".

* The name attribute of env if it exists. This is how the package environments and the imports en-
vironments store their names. The name of package environments is typically "package:pkg".

nn

* The empty string "" otherwise.

env_label () is exactly like env_name() but returns the memory address of anonymous environ-
ments as fallback.

Usage

env_name(env)

env_label(env)

Arguments

env An environment.

Examples

Some environments have specific names:
env_name(global_env())
env_name(ns_env("rlang"))

Anonymous environments don't have names but are labelled by their
address in memory:

env_name(env())

env_label(env())

env_names 63

env_names Names and numbers of symbols bound in an environment

Description

env_names () returns object names from an enviroment env as a character vector. All names are
returned, even those starting with a dot. env_length() returns the number of bindings.

Usage

env_names(env)

env_length(env)

Arguments

env An environment.

Value

A character vector of object names.

Names of symbols and objects

Technically, objects are bound to symbols rather than strings, since the R interpreter evaluates sym-
bols (see is_expression() for a discussion of symbolic objects versus literal objects). However it
is often more convenient to work with strings. In rlang terminology, the string corresponding to a
symbol is called the name of the symbol (or by extension the name of an object bound to a symbol).

Encoding

There are deep encoding issues when you convert a string to symbol and vice versa. Symbols
are always in the native encoding. If that encoding (let’s say latinl) cannot support some charac-
ters, these characters are serialised to ASCII. That’s why you sometimes see strings looking like
<U+1234>, especially if you’re running Windows (as R doesn’t support UTF-8 as native encoding
on that platform).

To alleviate some of the encoding pain, env_names() always returns a UTF-8 character vector
(which is fine even on Windows) with ASCII unicode points translated back to UTF-8.

Examples

env <- env(a =1, b = 2)
env_names(env)

64 env_parent

env_parent Get parent environments

Description

* env_parent() returns the parent environment of env if called with n = 1, the grandparent with
n =2, etc.

* env_tail() searches through the parents and returns the one which has empty_env() as
parent.

* env_parents() returns the list of all parents, including the empty environment. This list is
named using env_name ().

See the section on inheritance in env ()’s documentation.

Usage

env_parent(env = caller_env(), n = 1)
env_tail(env = caller_env(), last = global_env())

env_parents(env = caller_env(), last = global_env())

Arguments
env An environment.
n The number of generations to go up.
last The environment at which to stop. Defaults to the global environment. The
empty environment is always a stopping condition so it is safe to leave the de-
fault even when taking the tail or the parents of an environment on the search
path.
env_tail () returns the environment which has last as parent and env_parents()
returns the list of environments up to last.
Value

An environment for env_parent () and env_tail(), a list of environments for env_parents().

Examples

Get the parent environment with env_parent():
env_parent(global_env())

Or the tail environment with env_tail():
env_tail(global_env())

By default, env_parent() returns the parent environment of the
current evaluation frame. If called at top-level (the global

env_poke 65

frame), the following two expressions are equivalent:
env_parent()
env_parent(base_env())

This default is more handy when called within a function. In this
case, the enclosure environment of the function is returned

(since it is the parent of the evaluation frame):

enclos_env <- env()

fn <- set_env(function() env_parent(), enclos_env)
identical(enclos_env, fn())

env_poke Poke an object in an environment

Description

env_poke () will assign or reassign a binding in env if create is TRUE. If create is FALSE and a
binding does not already exists, an error is issued.

Usage

env_poke(env = caller_env(), nm, value, inherit = FALSE, create = !inherit)
Arguments

env An environment.

nm Name of binding, a string.

value The value for a new binding.

inherit Whether to look for bindings in the parent environments.

create Whether to create a binding if it does not already exist in the environment.
Details

If inherit is TRUE, the parents environments are checked for an existing binding to reassign. If
not found and create is TRUE, a new binding is created in env. The default value for create is a
function of inherit: FALSE when inheriting, TRUE otherwise.

This default makes sense because the inheriting case is mostly for overriding an existing binding.
If not found, something probably went wrong and it is safer to issue an error. Note that this is
different to the base R operator <<- which will create a binding in the global environment instead
of the current environment when no existing binding is found in the parents.

Value

The old value of nm or a zap sentinel if the binding did not exist yet.

See Also

env_bind() for binding multiple elements. env_cache() for a variant of env_poke () designed to
cache values.

66 env_unbind

env_print Pretty-print an environment

Description
This prints:
* The label and the parent label.

¢ Whether the environment is locked.

* The bindings in the environment (up to 20 bindings). They are printed succinctly using
pillar::type_sum() (if available, otherwise uses an internal version of that generic). In
addition fancy bindings (actives and promises) are indicated as such.

* Locked bindings get a [L] tag

Note that printing a package namespace (see ns_env()) with env_print() will typically tag func-
tion bindings as <lazy> until they are evaluated the first time. This is because package functions
are lazily-loaded from disk to improve performance when loading a package.

Usage

env_print(env = caller_env())

Arguments
env An environment, or object that can be converted to an environment by get_env ().
env_unbind Remove bindings from an environment
Description

env_unbind() is the complement of env_bind(). Like env_has(), it ignores the parent environ-
ments of env by default. Set inherit to TRUE to track down bindings in parent environments.

Usage

env_unbind(env = caller_env(), nms, inherit = FALSE)

Arguments
env An environment.
nms A character vector of binding names to remove.

inherit Whether to look for bindings in the parent environments.

eval bare 67

Value

The input object env with its associated environment modified in place, invisibly.

Examples

env <- env(foo = 1, bar = 2)
env_has(env, c("foo"”, "bar"))

Remove bindings with “env_unbind()"
env_unbind(env, c("foo”, "bar"))
env_has(env, c("foo", "bar"))

With inherit = TRUE, it removes bindings in parent environments

as well:
parent <- env(empty_env(), foo = 1, bar = 2)
env <- env(parent, foo = "b")

env_unbind(env, "foo", inherit = TRUE)
env_has(env, c("foo"”, "bar"))
env_has(env, c("foo”, "bar"), inherit = TRUE)

eval_bare Evaluate an expression in an environment

Description

eval_bare() is a lower-level version of function base: :eval (). Technically, it is a simple wrap-
per around the C function Rf_eval(). You generally don’t need to use eval_bare() instead of
eval(). Its main advantage is that it handles stack-sensitive calls (such as return(), on.exit()
or parent. frame()) more consistently when you pass an enviroment of a frame on the call stack.

Usage

eval_bare(expr, env = parent.frame())

Arguments

expr An expression to evaluate.

env The environment in which to evaluate the expression.
Details

These semantics are possible because eval_bare () creates only one frame on the call stack whereas
eval() creates two frames, the second of which has the user-supplied environment as frame envi-
ronment. When you supply an existing frame environment to base: :eval() there will be two
frames on the stack with the same frame environment. Stack-sensitive functions only detect the
topmost of these frames. We call these evaluation semantics "stack inconsistent".

Evaluating expressions in the actual frame environment has useful practical implications for eval_bare():

68 eval bare

e return() calls are evaluated in frame environments that might be buried deep in the call stack.
This causes a long return that unwinds multiple frames (triggering the on.exit() event for
each frame). By contrast eval () only returns from the eval () call, one level up.

* on.exit(), parent.frame(), sys.call(), and generally all the stack inspection functions
sys.xxx() are evaluated in the correct frame environment. This is similar to how this type
of calls can be evaluated deep in the call stack because of lazy evaluation, when you force an
argument that has been passed around several times.

The flip side of the semantics of eval_bare() is that it can’t evaluate break or next expressions
even if called within a loop.

See Also

eval_tidy() for evaluation with data mask and quosure support.

Examples

eval_bare() works just like base::eval() but you have to create
the evaluation environment yourself:
eval_bare(quote(foo), env(foo = "bar"))

eval() has different evaluation semantics than eval_bare(). It
can return from the supplied environment even if its an
environment that is not on the call stack (i.e. because you've
created it yourself). The following would trigger an error with
eval_bare():

ret <- quote(return(”foo"))

eval(ret, env())

eval_bare(ret, env()) # "no function to return from" error

* % o o H

Another feature of eval() is that you can control surround loops:
bail <- quote(break)
while (TRUE) {

eval(bail)

eval_bare(bail) # "no loop for break/next"” error
3
To explore the consequences of stack inconsistent semantics, let's
create a function that evaluates “parent.frame()~ deep in the call
stack, in an environment corresponding to a frame in the middle of
the stack. For consistency with R's lazy evaluation semantics, we'd
expect to get the caller of that frame as result:

fn <- function(eval_fn) {
list(
returned_env = middle(eval_fn),
actual_env = current_env()
)
3
middle <- function(eval_fn) {
deep(eval_fn, current_env())
3

deep <- function(eval_fn, eval_env) {

eval_tidy 69

expr <- quote(parent.frame())
eval_fn(expr, eval_env)

}

With eval_bare(), we do get the expected environment:
fn(rlang::eval_bare)

But that's not the case with base::eval():
fn(base: :eval)

eval_tidy Evaluate an expression with quosures and pronoun support

Description

eval_tidy() is a variant of base: : eval () that powers the tidy evaluation framework. Like eval()
it accepts user data as argument. Whereas eval() simply transforms the data to an environment,
eval_tidy() transforms it to a data mask with as_data_mask (). Evaluating in a data mask enables
the following features:

* Quosures. Quosures are expressions bundled with an environment. If data is supplied, objects
in the data mask always have precedence over the quosure environment, i.e. the data masks
the environment.

* Pronouns. If data is supplied, the .env and .data pronouns are installed in the data mask.
.env is a reference to the calling environment and . data refers to the data argument. These
pronouns are an escape hatch for the data mask ambiguity problem.

Usage

eval_tidy(expr, data = NULL, env = caller_env())

Arguments
expr An expression or quosure to evaluate.
data A data frame, or named list or vector. Alternatively, a data mask created with
as_data_mask() or new_data_mask(). Objects in data have priority over
those in env. See the section about data masking.
env The environment in which to evaluate expr. This environment is not applicable

for quosures because they have their own environments.

When should eval_tidy() be used instead of eval()?

base: :eval() is sufficient for simple evaluation. Use eval_tidy() when you’d like to support
expressions referring to the . data pronoun, or when you need to support quosures.

If you’re evaluating an expression captured with injection support, it is recommended to use eval_tidy()
because users may inject quosures.

70 eval_tidy

Note that unwrapping a quosure with quo_get_expr () does not guarantee that there is no quosures
inside the expression. Quosures might be unquoted anywhere in the expression tree. For instance,
the following does not work reliably in the presence of nested quosures:

my_quoting_fn <- function(x) {
x <= enquo(x)
expr <- quo_get_expr(x)
env <- quo_get_env(x)
eval(expr, env)

3

Works:
my_quoting_fn(toupper(letters))

Fails because of a nested quosure:
my_quoting_fn(toupper(!!quo(letters)))

Stack semantics of eval_tidy()

eval_tidy() always evaluates in a data mask, even when data is NULL. Because of this, it has
different stack semantics than base: :eval():
* Lexical side effects, such as assignment with <-, occur in the mask rather than env.

* Functions that require the evaluation environment to correspond to a frame on the call stack
do not work. This is why return() called from a quosure does not work.

* The mask environment creates a new branch in the tree representation of backtraces (which
you can visualise in a browser () session with lobstr::cst()).

See also eval_bare() for more information about these differences.

See Also

* What is data-masking and why do I need curly-curly?.
* What are quosures and when are they needed?.
* Defusing R expressions.

* new_data_mask() and as_data_mask() for manually creating data masks.

Examples

With simple defused expressions eval_tidy() works the same way as
eval():

fruit <- "apple”

vegetable <- "potato”

expr <- quote(paste(fruit, vegetable, sep = " or "))
expr
eval (expr)

eval_tidy(expr)

exec 71

Both accept a data mask as argument:

data <- list(fruit = "banana"”, vegetable = "carrot")
eval (expr, data)

eval_tidy(expr, data)

The main difference is that eval_tidy() supports quosures:
with_data <- function(data, expr) {
quo <- enquo(expr)
eval_tidy(quo, data)
}
with_data(NULL, fruit)
with_data(data, fruit)

eval_tidy() installs the "~.data” and ~.env™ pronouns to allow
users to be explicit about variable references:
with_data(data, .data$fruit)

with_data(data, .env$fruit)

exec Execute a function

Description
This function constructs and evaluates a call to . fn. It has two primary uses:

* To call a function with arguments stored in a list (if the function doesn’t support dynamic
dots). Splice the list of arguments with !!!.

* To call every function stored in a list (in conjunction with map()/ lapply())

Usage
exec(.fn, ..., .env = caller_env())
Arguments
.fn A function, or function name as a string.
<dynamic> Arguments for . fn.
.env Environment in which to evaluate the call. This will be most useful if .fnis a
string, or the function has side-effects.
Examples
args <- list(x = c(1:10, 100, NA), na.rm = TRUE)
exec("mean”, !!largs)
exec("mean”, !!largs, trim = 0.2)

fs <- list(a = function() "a", b = function() "b")
lapply(fs, exec)

72

expr

Compare to do.call it will not automatically inline expressions
into the evaluated call.

x <- 10
args <- exprs(x1 = x + 1, x2 = x * 2)
exec(list, !!largs)

do.call(list, args)

exec() is not designed to generate pretty function calls. This is
most easily seen if you call a function that captures the call:

f <- disp ~ cyl

exec("1lm", f, data = mtcars)

If you need finer control over the generated call, you'll need to
construct it yourself. This may require creating a new environment
with carefully constructed bindings

data_env <- env(data = mtcars)

eval (expr(Im(!!f, data)), data_env)

expr Defuse an R expression

Description

expr () defuses an R expression with injection support.

It is equivalent to base: :bquote().

Arguments

expr An expression to defuse.

See Also

* Defusing R expressions for an overview.
* enquo() to defuse non-local expressions from function arguments.
* Advanced defusal operators.

* sym() and call2() for building expressions (symbols and calls respectively) programmati-
cally.

* base::eval() and eval_bare() for resuming evaluation of a defused expression.

Examples

R normally returns the result of an expression
1T+ 1

“expr()° defuses the expression that you have supplied and
returns it instead of its value
expr(1 + 1)

exprs_auto_name 73

expr(toupper(letters))

It supports _injection_ with ~!!" and “!!!°, This is a convenient
way of modifying part of an expression by injecting other
objects.

var <- "cyl”
expr(with(mtcars, mean(!!sym(var))))

vars <- c("cyl”, "am")
expr(with(mtcars, c(!!!syms(vars))))

Compare to the normal way of building expressions
call("with", call("mean"”, sym(var)))

call("with”, call2("c", !!!syms(vars)))
exprs_auto_name Ensure that all elements of a list of expressions are named
Description

This gives default names to unnamed elements of a list of expressions (or expression wrappers such
as formulas or quosures), deparsed with as_label ().

Usage

exprs_auto_name(
exprs,
-
repair_auto = c("minimal”, "unique"),
repair_quiet = FALSE

guos_auto_name (quos)

Arguments
exprs A list of expressions.
These dots are for future extensions and must be empty.
repair_auto Whether to repair the automatic names. By default, minimal names are returned.

See ?vctrs: :vec_as_names for information about name repairing.
repair_quiet Whether to inform user about repaired names.

quos A list of quosures.

74 expr_print

expr_print Print an expression

Description

expr_print (), powered by expr_deparse(), is an alternative printer for R expressions with a few
improvements over the base R printer.

* It colourises quosures according to their environment. Quosures from the global environment
are printed normally while quosures from local environments are printed in unique colour (or
in italic when all colours are taken).

It wraps inlined objects in angular brackets. For instance, an integer vector unquoted in a
function call (e.g. expr(foo(!!(1:3)))) is printed like this: foo(<int: 1L, 2L, 3L>)
while by default R prints the code to create that vector: foo(1:3) which is ambiguous.

* It respects the width boundary (from the global option width) in more cases.

Usage
expr_print(x, ...)
expr_deparse(x, ..., width = peek_option("width"))
Arguments
X An object or expression to print.
Arguments passed to expr_deparse().
width The width of the deparsed or printed expression. Defaults to the global option
width.
Value

expr_deparse() returns a character vector of lines. expr_print() returns its input invisibly.

Examples

It supports any object. Non-symbolic objects are always printed
within angular brackets:

expr_print(1:3)

expr_print(function() NULL)

Contrast this to how the code to create these objects is printed:
expr_print(quote(1:3))
expr_print(quote(function() NULL))

The main cause of non-symbolic objects in expressions is
quasiquotation:
expr_print(expr(foo(!!(1:3))))

faq-options 75

Quosures from the global environment are printed normally:
expr_print(quo(foo))
expr_print(quo(foo(!!quo(bar))))

Quosures from local environments are colourised according to
their environments (if you have crayon installed):

local_quo <- local(quo(foo))

expr_print(local_quo)

wrapper_quo <- local(quo(bar(!!local_quo, baz)))
expr_print(wrapper_quo)

fag-options Global options for rlang

Description

rlang has several options which may be set globally to control behavior. A brief description of each
is given here. If any functions are referenced, refer to their documentation for additional details.

* rlang_interactive: A logical value used by is_interactive(). This can be set to TRUE
to test interactive behavior in unit tests, for example.

* rlang_backtrace_on_error: A character string which controls whether backtraces are dis-
played with error messages, and the level of detail they print. See rlang_backtrace_on_error
for the possible option values.

* rlang_trace_format_srcrefs: A logical value used to control whether srcrefs are printed
as part of the backtrace.

* rlang_trace_top_env: An environment which will be treated as the top-level environment
when printing traces. See trace_back() for examples.

fn_body Get or set function body

Description

fn_body () is a simple wrapper around base: :body (). It always returns a \{ expression and throws
an error when the input is a primitive function (whereas body () returns NULL). The setter version
preserves attributes, unlike body<-.

Usage
fn_body(fn = caller_fn())

fn_body(fn) <- value

76 fn_env

Arguments
fn A function. It is looked up in the calling frame if not supplied.
value New formals or formals names for fn.

Examples

fn_body() is like body() but always returns a block:
fn <= function() do()

body (fn)

fn_body(fn)

It also throws an error when used on a primitive function:
try(fn_body(base::1ist))

fn_env Return the closure environment of a function

Description

Closure environments define the scope of functions (see env()). When a function call is evaluated,
R creates an evaluation frame that inherits from the closure environment. This makes all objects
defined in the closure environment and all its parents available to code executed within the function.

Usage
fn_env(fn)

fn_env(x) <- value

Arguments

fn, x A function.

value A new closure environment for the function.
Details

fn_env () returns the closure environment of fn. There is also an assignment method to set a new
closure environment.

Examples

env <- child_env("base")
fn <- with_env(env, function() NULL)
identical(fn_env(fn), env)

other_env <- child_env("base")
fn_env(fn) <- other_env
identical(fn_env(fn), other_env)

fn_fmls 77

fn_fmls Extract arguments from a function

Description

fn_fmls() returns a named list of formal arguments. fn_fmls_names() returns the names of the
arguments. fn_fmls_syms() returns formals as a named list of symbols. This is especially useful
for forwarding arguments in constructed calls.

Usage
fn_fmls(fn = caller_fn())

fn_fmls_names(fn = caller_fn())
fn_fmls_syms(fn = caller_fn())
fn_fmls(fn) <- value

fn_fmls_names(fn) <- value

Arguments
fn A function. It is looked up in the calling frame if not supplied.
value New formals or formals names for fn.

Details

Unlike formals(), these helpers throw an error with primitive functions instead of returning NULL.

See Also

call_args() and call_args_names()

Examples

Extract from current call:
fn <- function(a =1, b = 2) fn_fmls()
fn()

fn_fmls_syms() makes it easy to forward arguments:
call2("apply”, !'!'! fn_fmls_syms(lapply))

You can also change the formals:
fn_fmls(fn) <- list(A = 10, B = 20)
nQ)

fn_fmls_names(fn) <- c("foo", "bar")
nQ)

78 format_error_bullets

format_error_bullets Format bullets for error messages

Description

format_error_bullets() takes a character vector and returns a single string (or an empty vector
if the input is empty). The elements of the input vector are assembled as a list of bullets, depending
on their names:

* Unnamed elements are unindented. They act as titles or subtitles.

* Elements named "*" are bulleted with a cyan "bullet" symbol.

* Elements named "i" are bulleted with a blue "info" symbol.

» Elements named "x" are bulleted with a red "cross" symbol.

* Elements named "v" are bulleted with a green "tick" symbol.

nyn

* Elements named are bulleted with a yellow "warning" symbol.
* Elements named ">" are bulleted with an "arrow" symbol.

¢ Elements named " " start with an indented line break.

For convenience, if the vector is fully unnamed, the elements are formatted as "*" bullets.

The bullet formatting for errors follows the idea that sentences in error messages are best kept short
and simple. The best way to present the information is in the cnd_body() method of an error
condition as a bullet list of simple sentences containing a single clause. The info and cross symbols
of the bullets provide hints on how to interpret the bullet relative to the general error issue, which
should be supplied as cnd_header ().

Usage

format_error_bullets(x)

Arguments
X A named character vector of messages. Named elements are prefixed with the
corresponding bullet. Elements named with a single space " " trigger a line
break from the previous bullet.
Examples

All bullets
writeLines(format_error_bullets(c("foo"”, "bar")))

This is equivalent to
writeLines(format_error_bullets(set_names(c("foo”, "bar"”), "*")))

Supply named elements to format info, cross, and tick bullets
writeLines(format_error_bullets(c(i = "foo"”, x = "bar"”, v = "baz", "*" = "quux")))

f rhs 79

An unnamed element breaks the line
writeLines(format_error_bullets(c(i = "foo\nbar")))

A" " element breaks the line within a bullet (with indentation)
writeLines(format_error_bullets(c(i = "foo"”, " " = "bar")))

f_rhs Get or set formula components

Description

f_rhs extracts the right-hand side, f_lhs extracts the left-hand side, and f_env extracts the envi-
ronment in which the formula was defined. All functions throw an error if f is not a formula.

Usage
f_rhs(f)

f_rhs(x) <- value
f_lhs(f)
f_lhs(x) <- value
f_env(f)

f_env(x) <- value

Arguments

f, x A formula

value The value to replace with.
Value

f_rhs and f_lhs return language objects (i.e. atomic vectors of length 1, a name, or a call). f_env
returns an environment.

Examples

f_rhs(~ 1 + 2 + 3)

f_rhs(~ x)
f_rhs(~ "A")
f_rhs(1 ~ 2)
f_lhs(~ y)

f_lhs(x ~ y)

80 f text
f_env(~ x)
f <- as.formula("y ~ x", env = new.env())
f_env(f)
f_text Turn RHS of formula into a string or label
Description

Equivalent of expr_text () and expr_label() for formulas.

Usage

f_text(x, width = 60L, nlines = Inf)
f_name(x)

f_label(x)

Arguments

X A formula.
width Width of each line.

nlines Maximum number of lines to extract.

Examples

f<-~a+b+bc
f_text(f)
f_label(f)

Names a quoted with ~°
f_label(~ x)
Strings are encoded
f_label(~ "a\nb")
Long expressions are collapsed
f_label(~ foo({
1T+ 2
print(x)
1))

get_env 81

get_env Get or set the environment of an object

Description

These functions dispatch internally with methods for functions, formulas and frames. If called
with a missing argument, the environment of the current evaluation frame is returned. If you call
get_env() with an environment, it acts as the identity function and the environment is simply
returned (this helps simplifying code when writing generic functions for environments).

Usage
get_env(env, default = NULL)

set_env(env, new_env = caller_env())

env_poke_parent(env, new_env)

Arguments
env An environment.
default The default environment in case env does not wrap an environment. If NULL and
no environment could be extracted, an error is issued.
new_env An environment to replace env with.
Details

While set_env() returns a modified copy and does not have side effects, env_poke_parent()
operates changes the environment by side effect. This is because environments are uncopyable. Be
careful not to change environments that you don’t own, e.g. a parent environment of a function
from a package.

See Also

quo_get_env() and quo_set_env () for versions of get_env() and set_env() that only work on
quosures.

Examples

Environment of closure functions:
fn <= function() "foo"
get_env(fn)

Or of quosures or formulas:
get_env(~foo)
get_env(quo(foo))

82 global_entrace

Provide a default in case the object doesn't bundle an environment.

Let's create an unevaluated formula:

f <- quote(~foo)

The following line would fail if run because unevaluated formulas
don't bundle an environment (they didn't have the chance to

record one yet):

get_env(f)

It is often useful to provide a default when you're writing
functions accepting formulas as input:

default <- env()

identical(get_env(f, default), default)

set_env() can be used to set the enclosure of functions and

formulas. Let's create a function with a particular environment:
env <- child_env("base")

fn <- set_env(function() NULL, env)

That function now has “env” as enclosure:
identical(get_env(fn), env)
identical(get_env(fn), current_env())

set_env() does not work by side effect. Setting a new environment
for fn has no effect on the original function:

other_env <- child_env(NULL)

set_env(fn, other_env)

identical(get_env(fn), other_env)

Since set_env() returns a new function with a different
environment, you'll need to reassign the result:

fn <- set_env(fn, other_env)

identical(get_env(fn), other_env)

global_entrace Entrace unexpected errors

Description
global_entrace() enriches base errors, warnings, and messages with rlang features.

» They are assigned a backtrace. You can configure whether to display a backtrace on error with
the rlang_backtrace_on_error global option.

* They are recorded in last_error(), last_warnings(), or last_messages(). You can in-
spect backtraces at any time by calling these functions.

Set global entracing in your RProfile with:

rlang::global_entrace()

global_handle 83

Usage

global_entrace(enable = TRUE, class = c("error”, "warning”, "message"))
Arguments

enable Whether to enable or disable global handling.

class A character vector of one or several classes of conditions to be entraced.

Inside RMarkdown documents

Call global_entrace() inside an RMarkdown document to cause errors and warnings to be pro-
moted to rlang conditions that include a backtrace. This needs to be done in a separate setup chunk
before the first error or warning.

This is useful in conjunction with rlang_backtrace_on_error_report and rlang_backtrace_on_warning_report.
To get full entracing in an Rmd document, include this in a setup chunk before the first error or
warning is signalled.

* {r setup}

rlang::global_entrace()

options(rlang_backtrace_on_warning_report = "full")

options(rlang_backtrace_on_error_report = "full")
Under the hood

On R 4.0 and newer, global_entrace() installs a global handler with globalCallingHandlers().
On older R versions, entrace() is set as an option(error =) handler. The latter method has the
disadvantage that only one handler can be set at a time. This means that you need to manually
switch between entrace() and other handlers like recover(). Also this causes a conflict with
IDE handlers (e.g. in RStudio).

global_handle Register default global handlers

Description
global_handle() sets up a default configuration for error, warning, and message handling. It calls:

* global_entrace() to enable rlang errors and warnings globally.

* global_prompt_install() torecover from packageNotFoundErrors with a user prompt to
install the missing package. Note that at the time of writing (R 4.1), there are only very limited
situations where this handler works.

Usage

global_handle(entrace = TRUE, prompt_install = TRUE)

84 glue-operators

Arguments

entrace Passed as enable argument to global_entrace().

prompt_install Passed as enable argument to global_prompt_install().

global_prompt_install Prompt user to install missing packages

Description

When enabled, packageNotFoundError thrown by loadNamespace() cause a user prompt to in-
stall the missing package and continue without interrupting the current program.

This is similar to how check_installed() prompts users to install required packages. It uses the
same install strategy, using pak if available and install.packages() otherwise.

Usage
global_prompt_install(enable = TRUE)

Arguments
enable Whether to enable or disable global handling.
glue-operators Name injection with "{" and " {{"
Description

Dynamic dots (and data-masked dots which are dynamic by default) have built-in support for names
interpolation with the glue package.

tibble::tibble(foo

:])
#> # A tibble: 1 x 1

#> foo
#> <dbl>
#> 1 1

foo <- "name"”
tibble::tibble("{foo}" := 1)
#> # A tibble: 1 x 1

#> name
#> <dbl>
#> 1 1

Inside functions, embracing an argument with {{ inserts the expression supplied as argument in the
string. This gives an indication on the variable or computation supplied as argument:

https://glue.tidyverse.org/

glue-operators 85

tib <- function(x) {
tibble::tibble("var: {{ x }}" := x)

}

tib(1 + 1)

#> # A tibble: 1 x 1
#> “var: 1 + 1°
#> <dbl>
#> 1 2

See also englue() to string-embrace outside of dynamic dots.

g <- function(x) {
englue("var: {{ x }}")
3

g1 + 1)
#> [1] "var: 1 + 1"

Technically, "{{" defuses a function argument, calls as_label() on the expression supplied as
argument, and inserts the result in the string.

”{” and ”{{":
While glue: :glue() only supports "{", dynamic dots support both "{" and "{{". The double
brace variant is similar to the embrace operator {{ available in data-masked arguments.

In the following example, the embrace operator is used in a glue string to name the result with a
default name that represents the expression supplied as argument:

my_mean <- function(data, var) {
data %>% dplyr::summarise("{{ var }}" := mean({{ var 1}}))
}

mtcars %>% my_mean(cyl)
#> # A tibble: 1 x 1

#> cyl
#> <dbl>
#> 1 6.19

mtcars %>% my_mean(cyl * am)
#> # A tibble: 1 x 1

#> “cyl x am®
#> <dbl>
#> 1 2.06

"{{" is only meant for inserting an expression supplied as argument to a function. The result of
the expression is not inspected or used. To interpolate a string stored in a variable, use the regular
glue operator "{" instead:

my_mean <- function(data, var, name = "mean”) {
data %>% dplyr::summarise("{name}" := mean({{ var 1}3}))

86

glue-operators

3

mtcars %>% my_mean(cyl)
#> # A tibble: 1 x 1

#> mean

#> <dbl>

#> 1 6.19

mtcars %>% my_mean(cyl, name = "cyl")
#> # A tibble: 1 x 1

#> cyl

#> <dbl>

1 6.19

Using the wrong operator causes unexpected results:

x <- "name"

list2("{{ x }}" := 1)
#> $” "name"””
#> [1]1 1

list2("{x3}" := 1)
#> $name
[1]1 1

Ideally, using {{ on regular objects would be an error. However for technical reasons it is not
possible to make a distinction between function arguments and ordinary variables. See Does
curly-curly work on regular objects? for more information about this limitation.

Allow overriding default names:

The implementation of my_mean() in the previous section forces a default name onto the result.
But what if the caller wants to give it a different name? In functions that take dots, it is possible
to just supply a named expression to override the default. In a function like my_mean () that takes
a named argument we need a different approach.

This is where englue() becomes useful. We can pull out the default name creation in another
user-facing argument like this:

my_mean <- function(data, var, name = englue("{{ var }}")) {
data %>% dplyr::summarise("{name}" := mean({{ var }}))

3

Now the user may supply their own name if needed:

mtcars %>% my_mean(cyl * am)
#> # A tibble: 1 x 1

#> “cyl * am”

#> <dbl>

#> 1 2.06

mtcars %>% my_mean(cyl * am, name = "mean_cyl_am")

hash 87

#> # A tibble: 1 x 1
#> mean_cyl_am
#> <dbl>
#> 1 2.06

What’s the deal with :=?:

Name injection in dynamic dots was originally implemented with : = instead of = to allow complex
expressions on the LHS:

X <= "name”
list2(!!x := 1)
#> $name

[1]1 1

Name-injection with glue operations was an extension of this existing feature and so inherited the
same interface. However, there is no technical barrier to using glue strings on the LHS of =.

Using glue syntax in packages:

Since rlang does not depend directly on glue, you will have to ensure that glue is installed by
adding it to your Imports: section.

usethis: :use_package("glue", "Imports")
hash Hashing
Description

* hash() hashes an arbitrary R object.
¢ hash_file() hashes the data contained in a file.

The generated hash is guaranteed to be reproducible across platforms that have the same endianness
and are using the same R version.

Usage
hash(x)

hash_file(path)

Arguments

X An object.

path A character vector of paths to the files to be hashed.

88 has_name

Details

These hashers use the XXH128 hash algorithm of the xxHash library, which generates a 128-bit
hash. Both are implemented as streaming hashes, which generate the hash with minimal extra
memory usage.

For hash (), objects are converted to binary using R’s native serialization tools. Serialization version
3 is used. See serialize() for more information about the serialization version.

Value

* For hash(), a single character string containing the hash.

* For hash_file(), a character vector containing one hash per file.

Examples

hash(c(1, 2, 3))
hash(mtcars)

authors <- file.path(R.home("doc"), "AUTHORS")
copying <- file.path(R.home("doc"), "COPYING")
hashes <- hash_file(c(authors, copying))
hashes

If you need a single hash for multiple files,
hash the result of “hash_file()"
hash(hashes)

has_name Does an object have an element with this name?

Description

This function returns a logical value that indicates if a data frame or another named object contains
an element with a specific name. Note that has_name() only works with vectors. For instance,
environments need the specialised function env_has().

Usage

has_name(x, name)

Arguments
X A data frame or another named object
name Element name(s) to check

Details

Unnamed objects are treated as if all names are empty strings. NA input gives FALSE as output.

inherits_any 89

Value

A logical vector of the same length as name

Examples

has_name(iris, "Species")
has_name(mtcars, "gears")

inherits_any Does an object inherit from a set of classes?

Description

* inherits_any() is like base::inherits() but is more explicit about its behaviour with
multiple classes. If classes contains several elements and the object inherits from at least
one of them, inherits_any() returns TRUE.

e inherits_all() tests that an object inherits from all of the classes in the supplied order. This
is usually the best way to test for inheritance of multiple classes.

e inherits_only() tests that the class vectors are identical. It is a shortcut for identical (class(x),
class).

Usage

inherits_any(x, class)
inherits_all(x, class)

inherits_only(x, class)

Arguments
X An object to test for inheritance.
class A character vector of classes.
Examples

obj <- structure(list(), class = c("foo", "bar", "baz"))

With the _any variant only one class must match:
inherits_any(obj, c("foobar”, "bazbaz"))
inherits_any(obj, c("foo", "bazbaz"))

With the _all variant all classes must match:
inherits_all(obj, c("foo", "bazbaz"))
inherits_all(obj, c("foo", "baz"))

The order of classes must match as well:

90 inject

inherits_all(obj, c("baz", "foo"))

inherits_only() checks that the class vectors are identical:
inherits_only(obj, c("foo"”, "baz"))
inherits_only(obj, c("foo"”, "bar", "baz"))

inject Inject objects in an R expression

Description
inject() evaluates an expression with injection support. There are three main usages:

* Splicing lists of arguments in a function call.

* Inline objects or other expressions in an expression with !'! and !!!. For instance to create
functions or formulas programmatically.

* Pass arguments to NSE functions that defuse their arguments without injection support (see for
instance enquo@()). You can use {{ arg }} with functions documented to support quosures.
Otherwise, use ! enexpr(arg).

Usage

inject(expr, env = caller_env())

Arguments
expr An argument to evaluate. This argument is immediately evaluated in env (the
current environment by default) with injected objects and expressions.
env The environment in which to evaluate expr. Defaults to the current environment.
For expert use only.
Examples

inject() simply evaluates its argument with injection
support. These expressions are equivalent:

2 *x 3

inject(2 * 3)

inject(!!2 x 113)

Injection with ~!!> can be useful to insert objects or
expressions within other expressions, like formulas:
lhs <- sym("foo")

rhs <- sym("bar")

inject(!!lhs ~ !lrhs + 10)
Injection with ~!!!" splices lists of arguments in function
calls:

args <- list(na.rm = TRUE, finite = 0.2)
inject(mean(1:10, !!largs))

injection-operator 91

injection-operator Injection operator !

Description

The injection operator !! injects a value or expression inside another expression. In other words, it
modifies a piece of code before R evaluates it.

There are two main cases for injection. You can inject constant values to work around issues of
scoping ambiguity, and you can inject defused expressions like symbolised column names.

Where does !! work?

!'l does not work everywhere, you can only use it within certain special functions:

* Functions taking defused and data-masked arguments.

Technically, this means function arguments defused with {{ or en-prefixed operators like
enquo(), enexpr(), etc.

e Inside inject().

All data-masking verbs in the tidyverse support injection operators out of the box. With base func-
tions, you need to use inject () toenable ! !. Using !! out of context may lead to incorrect results,
see What happens if I use injection operators out of context?.

The examples below are built around the base function with(). Since it’s not a tidyverse function
we will use inject() to enable !! usage.

Injecting values

Data-masking functions like with() are handy because you can refer to column names in your
computations. This comes at the price of data mask ambiguity: if you have defined an env-variable
of the same name as a data-variable, you get a name collisions. This collision is always resolved by
giving precedence to the data-variable (it masks the env-variable):

cyl <- c(100, 110)
with(mtcars, mean(cyl))
#> [1] 6.1875

The injection operator offers one way of solving this. Use it to inject the env-variable inside the
data-masked expression:

inject(

with(mtcars, mean(!!cyl))
)
#> [1] 105

Note that the . env pronoun is a simpler way of solving the ambiguity. See The data mask ambiguity
for more about this.

92 injection-operator

Injecting expressions

Injection is also useful for modifying parts of a defused expression. In the following example we
use the symbolise-and-inject pattern to inject a column name inside a data-masked expression.

var <- sym("cyl")
inject(
with(mtcars, mean(!!var))

)
#> [1] 6.1875

Since with() is a base function, you can’t inject quosures, only naked symbols and calls. This isn’t
a problem here because we’re injecting the name of a data frame column. If the environment is
important, try injecting a pre-computed value instead.

When do I need !'!?
With tidyverse APIs, injecting expressions with !'! is no longer a common pattern. First, the .env

pronoun solves the ambiguity problem in a more intuitive way:

cyl <- 100
mtcars %>% dplyr::mutate(cyl = cyl * .env$cyl)

Second, the embrace operator {{ makes the defuse-and-inject pattern easier to learn and use.

my_mean <- function(data, var) {
data %>% dplyr::summarise(mean({{ var 1}}))
3

Equivalent to
my_mean <- function(data, var) {

data %>% dplyr::summarise(mean(!!enquo(var)))

3

!'l is a good tool to learn for advanced applications but our hope is that it isn’t needed for common
data analysis cases.

See Also

* Metaprogramming patterns

is_call 93

is_call Is object a call?

Description
This function tests if x is a call. This is a pattern-matching predicate that returns FALSE if name and
n are supplied and the call does not match these properties.

Usage

is_call(x, name = NULL, n = NULL, ns = NULL)

Arguments
X An object to test. Formulas and quosures are treated literally.
name An optional name that the call should match. It is passed to sym() before match-
ing. This argument is vectorised and you can supply a vector of names to match.
In this case, is_call() returns TRUE if at least one name matches.
n An optional number of arguments that the call should match.
ns The namespace of the call. If NULL, the namespace doesn’t participate in the
pattern-matching. If an empty string "" and x is a namespaced call, is_call()
returns FALSE. If any other string, is_call() checks that x is namespaced
within ns.
Can be a character vector of namespaces, in which case the call has to match at
least one of them, otherwise is_call() returns FALSE.
See Also

is_expression()

Examples

is_call(quote(foo(bar)))

You can pattern-match the call with additional arguments:
is_call(quote(foo(bar)), "foo")

is_call(quote(foo(bar)), "bar")

is_call(quote(foo(bar)), quote(foo))

Match the number of arguments with is_call():
is_call(quote(foo(bar)), "foo", 1)
is_call(quote(foo(bar)), "foo", 2)

By default, namespaced calls are tested unqualified:
ns_expr <- quote(base::1list())
is_call(ns_expr, "list")

94

You can also specify whether the call shouldn't be namespaced by
supplying an empty string:
is_call(ns_expr, "list", ns = "")

Or if it should have a namespace:
is_call(ns_expr, "list”, ns = "utils")
is_call(ns_expr, "list"”, ns = "base")

You can supply multiple namespaces:
is_call(ns_expr, "list"”, ns = c("utils”, "base"))
is_call(ns_expr, "list"”, ns = c("utils"”, "stats"))

If one of them is "", unnamespaced calls will match as well:
is_call(quote(list()), "list", ns = "base")
is_call(quote(list()), "list", ns = c("base”, ""))
is_call(quote(base::1ist()), "list", ns = c("base”, ""))

The name argument is vectorised so you can supply a list of names
to match with:

is_call(quote(foo(bar)), c("bar”, "baz"))

is_call(quote(foo(bar)), c("bar”, "foo"))

is_empty

Us

Ar

Ex

is_call(quote(base::1list), c("::", ":::", "$", "@"))
is_empty Is object an empty vector or NULL?
Description

Is object an empty vector or NULL?

age

is_empty(x)

guments

X object to test

amples

is_empty(NULL)
is_empty(list())
is_empty(list(NULL))

iS_environment 95

is_environment Is object an environment?

Description

is_bare_environment() tests whether x is an environment without a s3 or s4 class.

Usage

is_environment(x)

is_bare_environment(x)

Arguments
X object to test
is_expression Is an object an expression?
Description

In rlang, an expression is the return type of parse_expr(), the set of objects that can be obtained
from parsing R code. Under this definition expressions include numbers, strings, NULL, symbols,
and function calls. These objects can be classified as:

* Symbolic objects, i.e. symbols and function calls (for which is_symbolic() returns TRUE)

* Syntactic literals, i.e. scalar atomic objects and NULL (testable with is_syntactic_literal())
is_expression() returns TRUE if the input is either a symbolic object or a syntactic literal. If a

call, the elements of the call must all be expressions as well. Unparsable calls are not considered
expressions in this narrow definition.

Note that in base R, there exists expression() vectors, a data type similar to a list that supports
special attributes created by the parser called source references. This data type is not supported in
rlang.

Usage
is_expression(x)
is_syntactic_literal(x)

is_symbolic(x)

96 is_expression

Arguments

X An object to test.

Details

is_symbolic() returns TRUE for symbols and calls (objects with type language). Symbolic objects
are replaced by their value during evaluation. Literals are the complement of symbolic objects. They
are their own value and return themselves during evaluation.

is_syntactic_literal() is a predicate that returns TRUE for the subset of literals that are created
by R when parsing text (see parse_expr()): numbers, strings and NULL. Along with symbols, these
literals are the terminating nodes in an AST.

Note that in the most general sense, a literal is any R object that evaluates to itself and that can
be evaluated in the empty environment. For instance, quote(c(1, 2)) is not a literal, it is a call.
However, the result of evaluating it in base_env () is a literal(in this case an atomic vector).

As the data structure for function arguments, pairlists are also a kind of language objects. How-
ever, since they are mostly an internal data structure and can’t be returned as is by the parser,
is_expression() returns FALSE for pairlists.

See Also

is_call() for a call predicate.

Examples

gl <- quote(1)
is_expression(qgl)
is_syntactic_literal(ql)

g2 <- quote(x)
is_expression(qg2)
is_symbol(q2)

g3 <- quote(x + 1)
is_expression(qg3)
is_call(qg3)

Atomic expressions are the terminating nodes of a call tree:
NULL or a scalar atomic vector:
is_syntactic_literal("string")

is_syntactic_literal (NULL)

is_syntactic_literal(letters)
is_syntactic_literal(quote(call()))

Parsable literals have the property of being self-quoting:
identical("foo"”, quote("foo"))

identical (1L, quote(1L))

identical (NULL, quote(NULL))

is_formula 97

Like any literals, they can be evaluated within the empty
environment:
eval_bare(quote(1L), empty_env())

Whereas it would fail for symbolic expressions:
eval_bare(quote(c(1L, 2L)), empty_env())

Pairlists are also language objects representing argument lists.
You will usually encounter them with extracted formals:

fmls <- formals(is_expression)

typeof (fmls)

Since they are mostly an internal data structure, is_expression()
returns FALSE for pairlists, so you will have to check explicitly
for them:

is_expression(fmls)

is_pairlist(fmls)

is_formula Is object a formula?

Description

is_formula() tests whether x is a call to ~. is_bare_formula() tests in addition that x does not
inherit from anything else than "formula”.

Note: When we first implemented is_formula(), we thought it best to treat unevaluated formulas
as formulas by default (see section below). Now we think this default introduces too many edge
cases in normal code. We recommend always supplying scoped = TRUE. Unevaluated formulas can
be handled via a is_call(x, "~") branch.

Usage

is_formula(x, scoped = NULL, lhs = NULL)

is_bare_formula(x, scoped = TRUE, lhs = NULL)

Arguments
X An object to test.
scoped A boolean indicating whether the quosure is scoped, that is, has a valid environ-
ment attribute and inherits from "formula”. If NULL, the scope is not inspected.
lhs A boolean indicating whether the formula has a left-hand side. If NULL, the LHS

is not inspected and is_formula() returns TRUE for both one- and two-sided
formulas.

98 is_function

Dealing with unevaluated formulas

At parse time, a formula is a simple call to ~ and it does not have a class or an environment.
Once evaluated, the ~ call becomes a properly structured formula. Unevaluated formulas arise by
quotation, e.g. ~~foo, quote(~foo), or substitute(arg) with arg being supplied a formula. Use
the scoped argument to check whether the formula carries an environment.

Examples

is_formula(~10)
is_formula(10)

If you don't supply “1lhs™, both one-sided and two-sided formulas
will return “TRUE®

is_formula(disp ~ am)

is_formula(~am)

You can also specify whether you expect a LHS:
is_formula(disp ~ am, lhs = TRUE)
is_formula(disp ~ am, lhs = FALSE)
is_formula(~am, lhs = TRUE)

is_formula(~am, lhs = FALSE)

Handling of unevaluated formulas is a bit tricky. These formulas
are special because they don't inherit from ~"formula”" and they
don't carry an environment (they are not scoped):

f <- quote(~foo)

f_env(f)

By default unevaluated formulas are treated as formulas
is_formula(f)

Supply “scoped = TRUE™ to ensure you have an evaluated formula
is_formula(f, scoped = TRUE)

By default unevaluated formulas not treated as bare formulas
is_bare_formula(f)

If you supply “scoped = TRUE™, they will be considered bare
formulas even though they don't inherit from " "formula""
is_bare_formula(f, scoped = TRUE)

is_function Is object a function?

Description

The R language defines two different types of functions: primitive functions, which are low-level,
and closures, which are the regular kind of functions.

is_function 99

Usage

is_function(x)
is_closure(x)
is_primitive(x)
is_primitive_eager(x)

is_primitive_lazy(x)

Arguments

X Object to be tested.

Details

Closures are functions written in R, named after the way their arguments are scoped within nested

environments (see https://en.wikipedia.org/wiki/Closure_(computer_programming)). The
root environment of the closure is called the closure environment. When closures are evaluated, a

new environment called the evaluation frame is created with the closure environment as parent. This

is where the body of the closure is evaluated. These closure frames appear on the evaluation stack,

as opposed to primitive functions which do not necessarily have their own evaluation frame and

never appear on the stack.

Primitive functions are more efficient than closures for two reasons. First, they are written entirely
in fast low-level code. Second, the mechanism by which they are passed arguments is more efficient
because they often do not need the full procedure of argument matching (dealing with positional
versus named arguments, partial matching, etc). One practical consequence of the special way in
which primitives are passed arguments is that they technically do not have formal arguments, and
formals () will return NULL if called on a primitive function. Finally, primitive functions can either
take arguments lazily, like R closures do, or evaluate them eagerly before being passed on to the C
code. The former kind of primitives are called "special” in R terminology, while the latter is referred
to as "builtin". is_primitive_eager() and is_primitive_lazy() allow you to check whether a
primitive function evaluates arguments eagerly or lazily.

You will also encounter the distinction between primitive and internal functions in technical docu-
mentation. Like primitive functions, internal functions are defined at a low level and written in C.
However, internal functions have no representation in the R language. Instead, they are called via
a call to base: :.Internal() within a regular closure. This ensures that they appear as normal R
function objects: they obey all the usual rules of argument passing, and they appear on the evalu-
ation stack as any other closures. As a result, fn_fmls() does not need to look in the .ArgsEnv
environment to obtain a representation of their arguments, and there is no way of querying from R
whether they are lazy (’special’ in R terminology) or eager ("builtin’).

You can call primitive functions with .Primitive() and internal functions with .Internal().
However, calling internal functions in a package is forbidden by CRAN’s policy because they are
considered part of the private API. They often assume that they have been called with correctly
formed arguments, and may cause R to crash if you call them with unexpected objects.

https://en.wikipedia.org/wiki/Closure_(computer_programming)

100 is_installed

Examples

Primitive functions are not closures:
is_closure(base: :c)
is_primitive(base::c)

On the other hand, internal functions are wrapped in a closure
and appear as such from the R side:
is_closure(base::eval)

Both closures and primitives are functions:
is_function(base::c)
is_function(base::eval)

Many primitive functions evaluate arguments eagerly:
is_primitive_eager(base::c)
is_primitive_eager(base::list)
is_primitive_eager(base:: +7)

However, primitives that operate on expressions, like quote() or
substitute(), are lazy:

is_primitive_lazy(base: :quote)

is_primitive_lazy(base: :substitute)

is_installed Are packages installed in any of the libraries?

Description

These functions check that packages are installed with minimal side effects. If installed, the pack-
ages will be loaded but not attached.

e is_installed() doesn’t interact with the user. It simply returns TRUE or FALSE depending
on whether the packages are installed.

* In interactive sessions, check_installed() asks the user whether to install missing pack-
ages. If the user accepts, the packages are installed with pak: :pkg_install() if available,
or utils::install.packages() otherwise. If the session is non interactive or if the user
chooses not to install the packages, the current evaluation is aborted.

You can disable the prompt by setting the rlib_restart_package_not_found global option to
FALSE. In that case, missing packages always cause an error.
Usage

is_installed(pkg, ..., version = NULL, compare = NULL)

check_installed(

pkg,
reason = NULL,

is_installed 101

version = NULL,
compare = NULL,
action = NULL,
call = caller_env()

)
Arguments
pkg The package names. Can include version requirements, e.g. "pkg (>=1.0.0)".
These dots must be empty.
version Minimum versions for pkg. If supplied, must be the same length as pkg. NA
elements stand for any versions.
compare A character vector of comparison operators to use for version. If supplied, must
be the same length as version. If NULL, >= is used as default for all elements.
NA elements in compare are also set to >= by default.
reason Optional string indicating why is pkg needed. Appears in error messages (if
non-interactive) and user prompts (if interactive).
action An optional function taking pkg and . . . arguments. Itis called by check_installed()
when the user chooses to update outdated packages. The function is passed the
missing and outdated packages as a character vector of names.
call The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of abort () for more information.
Value

is_installed() returns TRUE if all package names provided in pkg are installed, FALSE otherwise.
check_installed() either doesn’t return or returns NULL.

Handling package not found errors

check_installed() signals error conditions of class rlib_error_package_not_found. The er-
ror includes pkg and version fields. They are vectorised and may include several packages.

The error is signalled with a rlib_restart_package_not_found restart on the stack to allow han-

dlers to install the required packages. To do so, add a calling handler for rlib_error_package_not_found,
install the required packages, and invoke the restart without arguments. This restarts the check from
scratch.

The condition is not signalled in non-interactive sessions, in the restarting case, or if the rlib_restart_package_not_found
user option is set to FALSE.

Examples

is_installed("utils")
is_installed(c("base"”, "ggplot5"))
is_installed(c("base”, "ggplot5"), version = c(NA, "5.1.0"))

102 is_integerish

is_integerish Is a vector integer-like?

Description

These predicates check whether R considers a number vector to be integer-like, according to its own
tolerance check (which is in fact delegated to the C library). This function is not adapted to data
analysis, see the help for base: :is.integer () for examples of how to check for whole numbers.

Things to consider when checking for integer-like doubles:

* This check can be expensive because the whole double vector has to be traversed and checked.

 Large double values may be integerish but may still not be coercible to integer. This is because
integers in R only support values up to 231 - 1 while numbers stored as double can be much
larger.

Usage
is_integerish(x, n = NULL, finite = NULL)
is_bare_integerish(x, n = NULL, finite = NULL)

is_scalar_integerish(x, finite = NULL)

Arguments
X Object to be tested.
n Expected length of a vector.
finite Whether all values of the vector are finite. The non-finite values are NA, Inf,
-Inf and NaN. Setting this to something other than NULL can be expensive be-
cause the whole vector needs to be traversed and checked.
See Also
is_bare_numeric() for testing whether an object is a base numeric type (a bare double or integer
vector).
Examples

is_integerish(10L)
is_integerish(10.0)
is_integerish(10.0, n = 2)
is_integerish(10.000001)
is_integerish(TRUE)

is_interactive 103

is_interactive Is R running interactively?

Description

Like base: :interactive(), is_interactive() returns TRUE when the function runs interactively
and FALSE when it runs in batch mode. It also checks, in this order:

* The rlang_interactive global option. If set to a single TRUE or FALSE, is_interactive()
returns that value immediately. This escape hatch is useful in unit tests or to manually turn on
interactive features in RMarkdown outputs.

* Whether knitr or testthat is in progress, in which case is_interactive() returns FALSE.

with_interactive() and local_interactive() set the global option conveniently.
Usage

is_interactive()

local_interactive(value = TRUE, frame = caller_env())

with_interactive(expr, value = TRUE)

Arguments
value A single TRUE or FALSE. This overrides the return value of is_interactive().
frame The environment of a running function which defines the scope of the temporary
options. When the function returns, the options are reset to their original values.
expr An expression to evaluate with interactivity set to value.
is_named Is object named?
Description

* is_named() is a scalar predicate that checks that x has a names attribute and that none of the
names are missing or empty (NA or "").

e is_named2() is like is_named() but always returns TRUE for empty vectors, even those that
don’t have a names attribute. In other words, it tests for the property that each element of a
vector is named. is_named2() composes well with names2() whereas is_named() composes
with names ().

¢ have_name() is a vectorised variant.

104 is_named

Usage

is_named(x)
is_named2(x)

have_name (x)

Arguments

X A vector to test.

Details

is_named() always returns TRUE for empty vectors because

Value

is_named() and is_named2() are scalar predicates that return TRUE or FALSE. have_name() is
vectorised and returns a logical vector as long as the input.

Examples

is_named() is a scalar predicate about the whole vector of names:
is_named(c(a =1, b = 2))
is_named(c(a = 1, 2))

Unlike is_named2(), is_named() returns “FALSE™ for empty vectors
that don't have a “names™ attribute.

is_named(list())

is_named2(list())

have_name() is a vectorised predicate
have_name(c(a = 1, b = 2))
have_name(c(a = 1, 2))

Empty and missing names are treated as invalid:
invalid <- set_names(letters[1:5])
names(invalid)[1] <- ""

names(invalid)[3] <- NA

is_named(invalid)
have_name(invalid)

A data frame normally has valid, unique names
is_named(mtcars)
have_name(mtcars)

A matrix usually doesn't because the names are stored in a
different attribute

mat <- matrix(1:4, 2)

colnames(mat) <- c("a", "b")

is_namespace

is_named(mat)
names(mat)

105

is_namespace Is an object a namespace environment?

Description

Is an object a namespace environment?

Usage

is_namespace(x)

Arguments
X An object to test.
is_symbol Is object a symbol?
Description

Is object a symbol?

Usage

is_symbol(x, name = NULL)

Arguments

X An object to test.

name An optional name or vector of names that the symbol should match.

106 is_weakref

is_true Is object identical to TRUE or FALSE?

Description

These functions bypass R’s automatic conversion rules and check that x is literally TRUE or FALSE.

Usage

is_true(x)

is_false(x)

Arguments

X object to test

Examples

is_true(TRUE)
is_true(1)

is_false(FALSE)
is_false(0@)

is_weakref Is object a weak reference?

Description

Is object a weak reference?

Usage

is_weakref (x)

Arguments

X An object to test.

last_error 107

last_error Last abort () error

Description

* last_error() returns the last error entraced by abort () or global_entrace(). The error is
printed with a backtrace in simplified form.

e last_trace() is a shortcut to return the backtrace stored in the last error. This backtrace is
printed in full form.

Usage

last_error()

last_trace(drop = NULL)

Arguments
drop Whether to drop technical calls. These are hidden from users by default, set
drop to FALSE to see the full backtrace.
See Also

e rlang_backtrace_on_error to control what is displayed when an error is thrown.
* global_entrace() to enable last_error() logging for all errors.

e last_warnings() and last_messages().

last_warnings Display last messages and warnings

Description

last_warnings() and last_messages() return a list of all warnings and messages that occurred
during the last R command.

global_entrace() must be active in order to log the messages and warnings.

By default the warnings and messages are printed with a simplified backtrace, like last_error().
Use summary () to print the conditions with a full backtrace.

Usage
NULL)

last_warnings(n

last_messages(n = NULL)

108

Arguments

n

How many warnings or messages to display. Defaults to all.

Examples

Enable backtrace capture with global_entrace():

global_entrace()

last_warnings

Signal some warnings in nested functions. The warnings inform about which function emitted a
warning but they don’t provide information about the call stack:

f <= function() { warning(”"foo"); g() 3}

g <- function() { warning("bar"”, immediate. = TRUE); h() }

h <- function() warning("baz")

fO

#>
#>
#>
#>

Call last_warnings() to see backtraces for each of these warnings:

Warning in g() : bar
Warning messages:

1: In f() : foo

2: In h() : baz

last_warnings()

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

[C111
<warning/rlang_warning>
Warning in ~f()":
foo
Backtrace:
X
1. \-global f()

[[2]]
<warning/rlang_warning>
Warning in “g()":
bar
Backtrace:
X
1. \-global f()
2. \-global g()

LL3]1]
<warning/rlang_warning>
Warning in “h()™:
baz
Backtrace:

X

last_warnings 109

#> 1. \-global f()
#> 2. \-global g()
#> 3. \-global h()

This works similarly with messages:

f <= function() { inform("Hey!"); g() }
g <- function() { inform("Hi!"); h() }
h <- function() inform("Hello!")

fO

#> Hey!
#> Hi!

#> Hello!

rlang::last_messages()

[[1]1]

#> <message/rlang_message>
#> Message:

#> Hey!

#> ---

#> Backtrace:

#> X

1. \-global f()

#>

#> [[2]]

#> <message/rlang_message>
#> Message:

#> Hi!

#> ---

#> Backtrace:

#> X

#> 1. \-global f()

#> 2. \-global g()

#>

#> [[31]

#> <message/rlang_message>
#> Message:

#> Hello!

#> ---

#> Backtrace:

#> X

#> 1. \-global f()

#> 2. \-global g()

#> 3. \-global h()

See Also

last_error()

110 list2

list2 Collect dynamic dots in a list

Description

list2(...) isequivalent to list(...) with a few additional features, collectively called dynamic
dots. While 1ist2() hard-code these features, dots_list() is a lower-level version that offers
more control.

Usage
list2(...)
dots_list(

L

.named = FALSE,

.ignore_empty = c("trailing”, "none”, "all"),
.preserve_empty = FALSE,
.homonyms = c("keep"”, "first"”, "last”, "error"),
.check_assign = FALSE
)
Arguments
Arguments to collect in a list. These dots are dynamic.
.named If TRUE, unnamed inputs are automatically named with as_label(). This is

equivalent to applying exprs_auto_name() on the result. If FALSE, unnamed
elements are left as is and, if fully unnamed, the list is given minimal names (a
vector of ""). If NULL, fully unnamed results are left with NULL names.

.ignore_empty Whether to ignore empty arguments. Can be one of "trailing”, "none",
"all”. If "trailing”, only the last argument is ignored if it is empty.
.preserve_empty
Whether to preserve the empty arguments that were not ignored. If TRUE, empty
arguments are stored with missing_arg() values. If FALSE (the default) an
error is thrown when an empty argument is detected.

.homonyms How to treat arguments with the same name. The default, "keep”, preserves
these arguments. Set .homonyms to "first” to only keep the first occurrences,
to "last” to keep the last occurrences, and to "error” to raise an informative
error and indicate what arguments have duplicated names.

.check_assign Whether to check for <- calls. When TRUE a warning recommends users to use
= if they meant to match a function parameter or wrap the <- call in curly braces
otherwise. This ensures assignments are explicit.

Details

For historical reasons, dots_list() creates a named list by default. By comparison 1ist2() im-
plements the preferred behaviour of only creating a names vector when a name is supplied.

Iist2 111

Value

A list containing the . . . inputs.

Examples

Let's create a function that takes a variable number of arguments:
numeric <- function(...) {

dots <- list2(...)

num <- as.numeric(dots)

set_names(num, names(dots))

3

numeric(1, 2, 3)

The main difference with list(...) is that list2(...) enables

the ~!!!° syntax to splice lists:
x <- list(2, 3)
numeric(1, !!! x, 4)

As well as unquoting of names:
nm <~ "yup!”
numeric(!!'nm := 1)

One useful application of splicing is to work around exact and
partial matching of arguments. Let's create a function taking
named arguments and dots:
fn <- function(data, ...) {

list2(...)
3

You normally cannot pass an argument named “data” through the dots
as it will match “fn™'s “data™ argument. The splicing syntax
provides a workaround:

fn("wrong!"”, data = letters) # exact matching of “data~
fn("wrong!", dat = letters) # partial matching of “data”
fn(some_data, !!!list(data = letters)) # no matching

Empty trailing arguments are allowed:
list2(1,)

But non-trailing empty arguments cause an error:
try(list2(1, ,))

Use the more configurable “dots_list()~ function to preserve all
empty arguments:
list3 <- function(...) dots_list(..., .preserve_empty = TRUE)

Note how the last empty argument is still ignored because
~.ignore_empty” defaults to "trailing":

list3(1, ,)

The list with preserved empty arguments is equivalent to:

112

local_bindings

list(1, missing_arg())

Arguments with duplicated names are kept by default:

list2(a

Use the

1,a=2,b=3,b=4,5,6)

.homonyms™ argument to keep only the first of these:

dots_list(a =1, a=2, b=3, b=4,5, 6, .homonyms = "first")

Or the last:
dots_list(a

1, a=2,b=3 b=4,5, 6, .homonyms = "last")

Or raise an informative error:
try(dots_list(a =1, a=2, b=3, b=4, 5, 6, .homonyms = "error"))

dots_list() can be configured to warn when a “<-~ call is

detected:

my_list <- function(...) dots_list(..., .check_assign = TRUE)

my_list(a <- 1)

There is no warning if the assignment is wrapped in braces.
This requires users to be explicit about their intent:
my_list({ a<-13})

local_bindings

Temporarily change bindings of an environment

Description

* local_bindings() temporarily changes bindings in . env (which is by default the caller en-
vironment). The bindings are reset to their original values when the current frame (or an
arbitrary one if you specify . frame) goes out of scope.

e with_bindings() evaluates expr with temporary bindings. When with_bindings() returns,
bindings are reset to their original values. It is a simple wrapper around local_bindings().

Usage
local_bindings(..., .env = .frame, .frame = caller_env())
with_bindings(.expr, ..., .env = caller_env())

Arguments

.env

Pairs of names and values. These dots support splicing (with value semantics)
and name unquoting.

An environment.

local error_call 113

.frame The frame environment that determines the scope of the temporary bindings.
When that frame is popped from the call stack, bindings are switched back to
their original values.

.expr An expression to evaluate with temporary bindings.

Value

local_bindings() returns the values of old bindings invisibly; with_bindings() returns the
value of expr.

Examples

foo <- "foo"
bar <- "bar”

“foo™ will be temporarily rebinded while executing ~expr-”
with_bindings(paste(foo, bar), foo = "rebinded”)
paste(foo, bar)

local_error_call Set local error call in an execution environment

Description

local_error_call() is an alternative to explicitly passing a call argument to abort (). It sets the
call (or a value that indicates where to find the call, see below) in a local binding that is automatically
picked up by abort().

Usage

local_error_call(call, frame = caller_env())

Arguments

call This can be:
e A call to be used as context for an error thrown in that execution environ-
ment.
e The NULL value to show no context.
* An execution environment, e.g. as returned by caller_env(). The sys.call()

for that environment is taken as context.

frame The execution environment in which to set the local error call.

114 local _error_call

Motivation for setting local error calls

By default abort () uses the function call of its caller as context in error messages:

foo <- function() abort(”Uh oh.")
foo()
#> Error in ~foo()~: Uh oh.

This is not always appropriate. For example a function that checks an input on the behalf of another
function should reference the latter, not the former:

arg_check <- function(arg,
error_arg = as_string(substitute(arg))) {
abort(cli::format_error("{.arg {error_arg}} is failing."))

}

foo <- function(x) arg_check(x)

foo()

#> Error in ~arg_check()™: “x° is failing.

The mismatch is clear in the example above. arg_check() does not have any x argument and so it
is confusing to present arg_check() as being the relevant context for the failure of the x argument.

One way around this is to take a call or error_call argument and pass it to abort(). Here we
name this argument error_call for consistency with error_arg which is prefixed because there is
an existing arg argument. In other situations, taking arg and call arguments might be appropriate.

arg_check <- function(arg,
error_arg = as_string(substitute(arg)),
error_call = caller_env()) {
abort(
cli::format_error("{.arg {error_arg}} is failing."),
call = error_call

)
}
foo <- function(x) arg_check(x)
foo()
#> Error in “foo()": “x* is failing.

This is the generally recommended pattern for argument checking functions. If you mention an
argument in an error message, provide your callers a way to supply a different argument name and
a different error call. abort () stores the error call in the call condition field which is then used to
generate the "in" part of error messages.

In more complex cases it’s often burdensome to pass the relevant call around, for instance if
your checking and throwing code is structured into many different functions. In this case, use
local_error_call() to set the call locally or instruct abort () to climb the call stack one level to
find the relevant call. In the following example, the complexity is not so important that sparing the
argument passing makes a big difference. However this illustrates the pattern:

local error_call 115

arg_check <- function(arg,
error_arg = caller_arg(arg),
error_call = caller_env()) {
Set the local error call
local_error_call(error_call)

my_classed_stop(
cli::format_error("{.arg {error_arg}} is failing.")
)
}

my_classed_stop <- function(message) {
Forward the local error call to the caller's
local_error_call(caller_env())

abort(message, class = "my_class”)
3
foo <- function(x) arg_check(x)
foo()
#> Error in ~foo() : “x° is failing.

Error call flags in performance-critical functions

The call argument can also be the string "caller”. This is equivalent to caller_env() or
parent.frame() but has a lower overhead because call stack introspection is only performed when
an error is triggered. Note that eagerly calling caller_env() is fast enough in almost all cases.

If your function needs to be really fast, assign the error call flag directly instead of calling local_error_call():
.__error_call__. <- "caller”

Examples

Set a context for error messages

function() {
local_error_call(quote(foo()))
local_error_call(sys.call())

}

Disable the context
function() {

local_error_call(NULL)
3

Use the caller's context
function() {
local_error_call(caller_env())

3

116 local_options

local_options Change global options

Description

* local_options() changes options for the duration of a stack frame (by default the current
one). Options are set back to their old values when the frame returns.

» with_options() changes options while an expression is evaluated. Options are restored when
the expression returns.

* push_options() adds or changes options permanently.

* peek_option() and peek_options() return option values. The former returns the option
directly while the latter returns a list.

Usage
local_options(..., .frame = caller_env())
with_options(.expr, ...)

push_options(...)
peek_options(...)

peek_option(name)

Arguments
For local_options() and push_options(), named values defining new option
values. For peek_options(), strings or character vectors of option names.
.frame The environment of a stack frame which defines the scope of the temporary
options. When the frame returns, the options are set back to their original values.
.expr An expression to evaluate with temporary options.
name An option name as string.
Value

For local_options() and push_options(), the old option values. peek_option() returns the
current value of an option while the plural peek_options() returns a list of current option values.

Life cycle

These functions are experimental.

missing_arg 117

Examples

Store and retrieve a global option:
push_options(my_option = 10)
peek_option("my_option")

Change the option temporarily:
with_options(my_option = 100, peek_option("my_option"))
peek_option("my_option")

The scoped variant is useful within functions:
fn <= function() {
local_options(my_option = 100)
peek_option("my_option")
3
fn()
peek_option("my_option")

The plural peek returns a named list:
peek_options("my_option")
peek_options("my_option”, "digits")

missing_arg Generate or handle a missing argument

Description

These functions help using the missing argument as a regular R object.

* missing_arg() generates a missing argument.

e is_missing() is like base: :missing() but also supports testing for missing arguments con-
tained in other objects like lists. It is also more consistent with default arguments which are
never treated as missing (see section below).

* maybe_missing() is useful to pass down an input that might be missing to another function,
potentially substituting by a default value. It avoids triggering an "argument is missing" error.

Usage
missing_arg()
is_missing(x)
maybe_missing(x, default = missing_arg())

Arguments

X An object that might be the missing argument.

default The object to return if the input is missing, defaults to missing_arg().

118 missing_arg

Other ways to reify the missing argument

* base::quote(expr =) is the canonical way to create a missing argument object.
* expr() called without argument creates a missing argument.

* quo() called without argument creates an empty quosure, i.e. a quosure containing the missing
argument object.

is_missing() and default arguments

The base function missing() makes a distinction between default values supplied explicitly and
default values generated through a missing argument:

fn <= function(x = 1) base::missing(x)

fnQ)

#> [1] TRUE
fn(1)

#> [1] FALSE

This only happens within a function. If the default value has been generated in a calling function, it
is never treated as missing:

caller <- function(x = 1) fn(x)
caller()
#> [1] FALSE

rlang::is_missing() simplifies these rules by never treating default arguments as missing, even
in internal contexts:

fn <- function(x = 1) rlang::is_missing(x)

fn()
#> [1] FALSE
n(1)
#> [1] FALSE

This is a little less flexible because you can’t specialise behaviour based on implicitly supplied
default values. However, this makes the behaviour of is_missing() and functions using it simpler
to understand.

Fragility of the missing argument object

The missing argument is an object that triggers an error if and only if it is the result of evaluating
a symbol. No error is produced when a function call evaluates to the missing argument object. For
instance, it is possible to bind the missing argument to a variable with an expression like x[[1]] <-
missing_arg(). Likewise, x[[1]] is safe to use as argument, e.g. 1ist(x[[1]]) even when the
result is the missing object.

However, as soon as the missing argument is passed down between functions through a bare vari-
able, it is likely to cause a missing argument error:

missing_arg 119

x <= missing_arg()

list(x)

#> Error:

#> | argument "x" is missing, with no default

To work around this, is_missing() and maybe_missing(x) use a bit of magic to determine if the
input is the missing argument without triggering a missing error.

X <- missing_arg()
list(maybe_missing(x))
[[11]

#>

maybe_missing() is particularly useful for prototyping meta-programming algorithms in R. The
missing argument is a likely input when computing on the language because it is a standard object
in formals lists. While C functions are always allowed to return the missing argument and pass it to
other C functions, this is not the case on the R side. If you’re implementing your meta-programming
algorithm in R, use maybe_missing() when an input might be the missing argument object.

Examples

The missing argument usually arises inside a function when the
user omits an argument that does not have a default:

fn <- function(x) is_missing(x)

fnQ

Creating a missing argument can also be useful to generate calls
args <- list(1, missing_arg(), 3, missing_arg())
quo(fn(!!! args))

Other ways to create that object include:
quote(expr =)
expr()

It is perfectly valid to generate and assign the missing
argument in a list.
X <- missing_arg()

1 <- list(missing_arg())

Just don't evaluate a symbol that contains the empty argument.

Evaluating the object “x~ that we created above would trigger an
error.

x # Not run

On the other hand accessing a missing argument contained in a

list does not trigger an error because subsetting is a function
call:

1C01]]

is.null(1LC11D)

In case you really need to access a symbol that might contain the

120 names2

empty argument object, use maybe_missing():
maybe_missing(x)

is.null(maybe_missing(x))
is_missing(maybe_missing(x))

Note that base::missing() only works on symbols and does not
support complex expressions. For this reason the following lines
would throw an error:

#> missing(missing_arg())
#> missing(1[[11]1)

while is_missing() will work as expected:
is_missing(missing_arg())
is_missing(1[[111)

names2 Get names of a vector

Description

names2() always returns a character vector, even when an object does not have a names attribute.
In this case, it returns a vector of empty names "". It also standardises missing names to "".

The replacement variant names2<- never adds NA names and instead fills unnamed vectors with "".

Usage

names2(x)

names2(x) <- value

Arguments
X A vector.
value New names.
Examples
names2(letters)

It also takes care of standardising missing names:
x <- set_names(1:3, c("a", NA, "b"))
names2(x)

Replacing names with the base “names<-"~ function may introduce
“NA™ values when the vector is unnamed:

x <-1:3

names(x)[1:2] <- "foo"

new_formula 121

names(x)

Use the “names2<-" variant to avoid this
x <-1:3

names2(x)[1:2] <- "foo"

names (x)

new_formula Create a formula

Description

Create a formula

Usage

new_formula(lhs, rhs, env = caller_env())

Arguments
lhs, rhs A call, name, or atomic vector.
env An environment.

Value

A formula object.

See Also

new_quosure()

Examples

new_formula(quote(a), quote(b))
new_formula(NULL, quote(b))

122 new_function

new_function Create a function

Description

This constructs a new function given its three components: list of arguments, body code and parent
environment.

Usage

new_function(args, body, env = caller_env())

Arguments
args A named list or pairlist of default arguments. Note that if you want arguments
that don’t have defaults, you’ll need to use the special function pairlist2(). If
you need quoted defaults, use exprs().
body A language object representing the code inside the function. Usually this will
be most easily generated with base: : quote()
env The parent environment of the function, defaults to the calling environment of
new_function()
Examples

f <- function() letters
g <- new_function(NULL, quote(letters))
identical(f, g)

Pass a list or pairlist of named arguments to create a function
with parameters. The name becomes the parameter name and the

argument the default value for this parameter:
new_function(list(x = 10), quote(x))

new_function(pairlist2(x = 10), quote(x))

Use “exprs()” to create quoted defaults. Compare:
new_function(pairlist2(x = 5 + 5), quote(x))
new_function(exprs(x = 5 + 5), quote(x))

Pass empty arguments to omit defaults. ~“list()"~ doesn't allow
empty arguments but “pairlist2()~ does:
new_function(pairlist2(x =, y = 5 + 5), quote(x + y))
new_function(exprs(x = , y = 5 + 5), quote(x + y))

new_quosure 123

new_quosure Create a quosure from components

Description

* new_quosure() wraps any R object (including expressions, formulas, or other quosures) into
a quosure.

* as_quosure() is similar but it does not rewrap formulas and quosures.

Usage
new_quosure(expr, env = caller_env())

as_quosure(x, env = NULL)

is_quosure(x)

Arguments
expr An expression to wrap in a quosure.
env The environment in which the expression should be evaluated. Only used for
symbols and calls. This should normally be the environment in which the ex-
pression was created.
X An object to test.
See Also

* enquo() and quo() for creating a quosure by argument defusal.

* What are quosures and when are they needed?

Examples

“new_quosure()” creates a quosure from its components. These are
equivalent:
new_quosure(quote(foo), current_env())

quo(foo)

“new_quosure()” always rewraps its input into a new quosure, even
if the input is itself a quosure:
new_quosure(quo(foo))

This is unlike ~as_quosure()~ which preserves its input if it's
already a quosure:
as_quosure(quo(foo))

124 new_quosures

“as_quosure()” uses the supplied environment with naked expressions:
env <- env(var = "thing")
as_quosure(quote(var), env)

If the expression already carries an environment, this

environment is preserved. This is the case for formulas and
quosures:

as_quosure(~foo, env)

as_quosure(~foo)

An environment must be supplied when the input is a naked
expression:

try(
as_quosure(quote(var))
)
new_quosures Create a list of quosures
Description

This small S3 class provides methods for [and c() and ensures the following invariants:

* The list only contains quosures.
* Itis always named, possibly with a vector of empty strings.
new_quosures() takes a list of quosures and adds the quosures class and a vector of empty names

if needed. as_quosures() calls as_quosure() on all elements before creating the quosures ob-
ject.

Usage
new_quosures(x)
as_quosures(x, env, named = FALSE)

is_quosures(x)

Arguments
X A list of quosures or objects to coerce to quosures.
env The default environment for the new quosures.

named Whether to name the list with quos_auto_name().

new_weakref 125

new_weakref Create a weak reference

Description

A weak reference is a special R object which makes it possible to keep a reference to an object
without preventing garbage collection of that object. It can also be used to keep data about an
object without preventing GC of the object, similar to WeakMaps in JavaScript.

Objects in R are considered reachable if they can be accessed by following a chain of references,
starting from a root node; root nodes are specially-designated R objects, and include the global
environment and base environment. As long as the key is reachable, the value will not be garbage
collected. This is true even if the weak reference object becomes unreachable. The key effectively
prevents the weak reference and its value from being collected, according to the following chain of
ownership: weakref <- key -> value.

When the key becomes unreachable, the key and value in the weak reference object are replaced by
NULL, and the finalizer is scheduled to execute.

Usage

new_weakref(key, value = NULL, finalizer = NULL, on_quit = FALSE)

Arguments
key The key for the weak reference. Must be a reference object — that is, an environ-
ment or external pointer.
value The value for the weak reference. This can be NULL, if you want to use the weak
reference like a weak pointer.
finalizer A function that is run after the key becomes unreachable.
on_quit Should the finalizer be run when R exits?
See Also

is_weakref (), wref_key() and wref_value().

Examples

e <- env()

Create a weak reference to e
w <- new_weakref(e, finalizer = function(e) message("finalized"))

Get the key object from the weak reference

identical (wref_key(w), e)

When the regular reference (the “e” binding) is removed and a GC occurs,
the weak reference will not keep the object alive.

rm(e)

126 on_load

gcQ
identical (wref_key(w), NULL)

A weak reference with a key and value. The value contains data about the
key.

k <= env()

v <- list(1, 2, 3)

w <- new_weakref(k, v)

identical (wref_key(w), k)
identical (wref_value(w), v)

When v is removed, the weak ref keeps it alive because k is still reachable.
rm(v)

gcQ

identical (wref_value(w), list(1, 2, 3))

When k is removed, the weak ref does not keep k or v alive.
rm(k)

gcO

identical (wref_key(w), NULL)

identical (wref_value(w), NULL)

on_load Run expressions on load

Description

* on_load() registers expressions to be run on the user’s machine each time the package is
loaded in memory. This is by contrast to normal R package code which is run once at build
time on the packager’s machine (e.g. CRAN).

on_load() expressions require run_on_load() to be called inside .onLoad().
* on_package_load() registers expressions to be run each time another package is loaded.

on_load() is for your own package and runs expressions when the namespace is not sealed yet.

This means you can modify existing binding or create new ones. This is not the case with on_package_load()
which runs expressions after a foreign package has finished loading, at which point its namespace

is sealed.

Usage
on_load(expr, env = parent.frame(), ns = topenv(env))
run_on_load(ns = topenv(parent.frame()))

on_package_load(pkg, expr, env = parent.frame())

on_load 127

Arguments
expr An expression to run on load.
env The environment in which to evaluate expr. Defaults to the current environment,
which is your package namespace if you run on_load() at top level.
ns The namespace in which to hook expr.
pkg Package to hook expression into.

When should I run expressions on load?

There are two main use cases for running expressions on load:

1. When a side effect, such as registering a method with s3_register(), must occur in the user
session rather than the package builder session.

2. To avoid hard-coding objects from other packages in your namespace. If you assign foo: :bar
or the result of foo: :baz() in your package, they become constants. Any upstream changes
in the foo package will not be reflected in the objects you’ve assigned in your namespace.
This often breaks assumptions made by the authors of foo and causes all sorts of issues.

Recreating the foreign objects each time your package is loaded makes sure that any such
changes will be taken into account. In technical terms, running an expression on load intro-
duces indirection.

Comparison with .onLoad()

on_load() has the advantage that hooked expressions can appear in any file, in context. This is
unlike . onLoad() which gathers disparate expressions in a single block.

on_load() is implemented via .onLoad() and requires run_on_load() to be called from that
hook.

The expressions inside on_load() do not undergo static analysis by R CMD check. Therefore, it is
advisable to only use simple function calls inside on_load().

Examples

quote({ # Not run

First add “run_on_load()" to your ~.onLoad()~ hook,
then use “on_load()" anywhere in your package
.onLoad <- function(lib, pkg) {

run_on_load()

3
Register a method on load
on_load({
s3_register("foo::bar”, "my_class")
»

Assign an object on load
var <- NULL
on_load({

128 op-get-attr

var <- foo()

»
To use ~on_package_load()~ at top level, wrap it in “on_load()"
on_load({
on_package_load("foo"”, message("foo is loaded”))
1)

In functions it can be called directly
f <- function() on_package_load("foo", message("foo is loaded"))

b

op-get-attr Infix attribute accessor and setter

Description

This operator extracts or sets attributes for regular objects and S4 fields for S4 objects.

Usage

X %@% name

X %Q@% name <- value

Arguments

X Object

name Attribute name

value New value for attribute name.
Examples

Unlike ~@, this operator extracts attributes for any kind of
objects:

factor(1:3) %@% "levels”

mtcars %@% class

mtcars %@% class <- NULL
mtcars

It also works on S4 objects:

.Person <- setClass("Person”, slots = c(name = "character”, species = "character"))
fievel <- .Person(name = "Fievel”, species = "mouse”)

fievel %@% name

op-null-continuation 129

op-null-continuation Default value for non-NULL

Description

This infix operator is the conceptual opposite of %] | %, providing a fallback only if x is defined.

Usage
X %8&% y

Arguments

X,y If x is NULL, will return x; otherwise returns y.

See Also

op-null-default

Examples

1 %8&% 2
NULL %&8&% 2

op-null-default Default value for NULL

Description

This infix function makes it easy to replace NULLs with a default value. It’s inspired by the way that
Ruby’s or operation (| |) works.

Usage

X %1%y

Arguments

X,y If x is NULL, will return y; otherwise returns x.

Examples

1 %1% 2
NULL %||% 2

130 parse_expr

pairlist?2 Collect dynamic dots in a pairlist

Description

This pairlist constructor uses dynamic dots. Use it to manually create argument lists for calls or
parameter lists for functions.

Usage

pairlist2(...)

Arguments
<dynamic> Arguments stored in the pairlist. Empty arguments are preserved.
Examples
Unlike “exprs()", “pairlist2()" evaluates its arguments.

new_function(pairlist2(x = 1, y = 3 * 6), quote(x * y))
new_function(exprs(x = 1, y = 3 * 6), quote(x * y))

It preserves missing arguments, which is useful for creating
parameters without defaults:

new_function(pairlist2(x =, y = 3 * 6), quote(x * y))
parse_expr Parse R code
Description

These functions parse and transform text into R expressions. This is the first step to interpret or
evaluate a piece of R code written by a programmer.

* parse_expr() returns one expression. If the text contains more than one expression (sepa-
rated by semicolons or new lines), an error is issued. On the other hand parse_exprs() can
handle multiple expressions. It always returns a list of expressions (compare to base: : parse()
which returns a base::expression vector). All functions also support R connections.

* parse_expr() concatenates x with \\n separators prior to parsing in order to support the
roundtrip parse_expr (expr_deparse(x)) (deparsed expressions might be multiline). On
the other hand, parse_exprs() doesn’t do any concatenation because it’s designed to support
named inputs. The names are matched to the expressions in the output, which is useful when
a single named string creates multiple expressions.

In other words, parse_expr () supports vector of lines whereas parse_exprs() expects vec-
tors of complete deparsed expressions.

parse_expr 131

* parse_quo() and parse_quos() are variants that create a quosure. Supply env = current_env ()
if you’re parsing code to be evaluated in your current context. Supply env = global_env()
when you’re parsing external user input to be evaluated in user context.

Unlike quosures created with enquo(), enquos(), or {{, a parsed quosure never contains
injected quosures. It is thus safe to evaluate them with eval() instead of eval_tidy(),
though the latter is more convenient as you don’t need to extract expr and env.

Usage

parse_expr(x)
parse_exprs(x)
parse_quo(x, env)

parse_quos(x, env)

Arguments
X Text containing expressions to parse_expr for parse_expr () and parse_exprs().
Can also be an R connection, for instance to a file. If the supplied connection is
not open, it will be automatically closed and destroyed.
env The environment for the quosures. The global environment (the default) may
be the right choice when you are parsing external user inputs. You might also
want to evaluate the R code in an isolated context (perhaps a child of the global
environment or of the base environment).
Details

Unlike base: :parse(), these functions never retain source reference information, as doing so is
slow and rarely necessary.

Value

parse_expr() returns an expression, parse_exprs() returns a list of expressions. Note that for
the plural variants the length of the output may be greater than the length of the input. This would
happen is one of the strings contain several expressions (such as "foo; bar”). The names of x
are preserved (and recycled in case of multiple expressions). The _quo suffixed variants return
quosures.

See Also

base: :parse()

Examples

parse_expr() can parse any R expression:
parse_expr("mtcars %>% dplyr::mutate(cyl_prime = cyl / sd(cyl))")

A string can contain several expressions separated by ; or \n

132 qq_show

parse_exprs("NULL; list()\n foo(bar)")

Use names to figure out which input produced an expression:
parse_exprs(c(foo = "1; 2", bar = "3"))

You can also parse source files by passing a R connection. Let's
create a file containing R code:

path <- tempfile("my-file.R")

cat("1; 2; mtcars”, file = path)

We can now parse it by supplying a connection:
parse_exprs(file(path))

gq_show Show injected expression

Description

gq_show() helps examining injected expressions inside a function. This is useful for learning about
injection and for debugging injection code.

Arguments

expr An expression involving injection operators.

Examples

gq_show() shows the intermediary expression before it is evaluated by R:

list2(!!!1:3)
#> [[1]]

#> [1]1 1

#>

[[2]]

#> [1] 2

#>

#> [[3]1]

#> [1] 3

gg_show(list2(!!!1:3))
#> list2(1L, 2L, 3L)

It is especially useful inside functions to reveal what an injected expression looks like:

my_mean <- function(data, var) {
qg_show(data %>% dplyr::summarise(mean({{ var }})))
3

mtcars %>% my_mean(cyl)
#> data %>% dplyr::summarise(mean(”cyl))

quosure-tools 133

See Also
* Injecting with !!, !!!, and glue syntax
quosure-tools Quosure getters, setters and predicates
Description

These tools inspect and modify quosures, a type of defused expression that includes a reference to
the context where it was created. A quosure is guaranteed to evaluate in its original environment
and can refer to local objects safely.

* You can access the quosure components with quo_get_expr() and quo_get_env().

* The quo_ prefixed predicates test the expression of a quosure, quo_is_missing(), quo_is_symbol(),
etc.

All quo_ prefixed functions expect a quosure and will fail if supplied another type of object. Make
sure the input is a quosure with is_quosure().

Usage
quo_is_missing(quo)
quo_is_symbol(quo, name = NULL)
quo_is_call(quo, name = NULL, n = NULL, ns = NULL)
quo_is_symbolic(quo)
quo_is_null(quo)
quo_get_expr(quo)
quo_get_env(quo)
quo_set_expr(quo, expr)

quo_set_env(quo, env)

Arguments
quo A quosure to test.
name The name of the symbol or function call. If NULL the name is not tested.

n An optional number of arguments that the call should match.

134 quosure-tools

ns The namespace of the call. If NULL, the namespace doesn’t participate in the
pattern-matching. If an empty string "" and x is a namespaced call, is_call()
returns FALSE. If any other string, is_call() checks that x is namespaced
within ns.
Can be a character vector of namespaces, in which case the call has to match at
least one of them, otherwise is_call() returns FALSE.

expr A new expression for the quosure.

env A new environment for the quosure.

Empty quosures and missing arguments

When missing arguments are captured as quosures, either through enquo() or quos(), they are
returned as an empty quosure. These quosures contain the missing argument and typically have the
empty environment as enclosure.

Use quo_is_missing() to test for a missing argument defused with enquo().

See Also

* quo() for creating quosures by argument defusal.
* new_quosure() and as_quosure() for assembling quosures from components.

* What are quosures and when are they needed? for an overview.

Examples

quo <- quo(my_quosure)
quo

Access and set the components of a quosure:
quo_get_expr(quo)
quo_get_env(quo)

quo <- quo_set_expr(quo, quote(baz))
quo <- quo_set_env(quo, empty_env())
quo

Test wether an object is a quosure:
is_quosure(quo)

If it is a quosure, you can use the specialised type predicates
to check what is inside it:

quo_is_symbol (quo)

quo_is_call(quo)

quo_is_null(quo)

quo_is_missing() checks for a special kind of quosure, the one
that contains the missing argument:

quo()
quo_is_missing(quo())

quo_squash 135

fn <- function(arg) enquo(arg)
fnQ)
quo_is_missing(fn())

quo_squash Squash a quosure

Description

quo_squash () flattens all nested quosures within an expression. For example it transforms *foo(*bar (), “baz)
to the bare expression foo(bar(), baz).

This operation is safe if the squashed quosure is used for labelling or printing (see as_label(),
but note that as_label() squashes quosures automatically). However if the squashed quosure is
evaluated, all expressions of the flattened quosures are resolved in a single environment. This is
a source of bugs so it is good practice to set warn to TRUE to let the user know about the lossy
squashing.

Usage

quo_squash(quo, warn = FALSE)

Arguments
quo A quosure or expression.
warn Whether to warn if the quosure contains other quosures (those will be collapsed).
This is useful when you use quo_squash() in order to make a non-tidyeval API
compatible with quosures. In that case, getting rid of the nested quosures is
likely to cause subtle bugs and it is good practice to warn the user about it.
Examples

Quosures can contain nested quosures:
quo <- quo(wrapper(!!quo(wrappee)))
quo

quo_squash() flattens all the quosures and returns a simple expression:
quo_squash(quo)

136 rlang_backtrace_on_error

rep_along Create vectors matching the length of a given vector

Description

These functions take the idea of seq_along() and apply it to repeating values.

Usage

rep_along(along, x)

rep_named(names, Xx)

Arguments
along Vector whose length determine how many times x is repeated.
X Values to repeat.
names Names for the new vector. The length of names determines how many times x
is repeated.
See Also
new-vector
Examples
x <- @:5

rep_along(x, 1:2)
rep_along(x, 1)

Create fresh vectors by repeating missing values:
rep_along(x, na_int)
rep_along(x, na_chr)

rep_named() repeats a value along a names vectors
rep_named(c("foo", "bar"), list(letters))

rlang_backtrace_on_error
Display backtrace on error

rlang_backtrace_on_error 137

Description

rlang errors carry a backtrace that can be inspected by calling last_error(). You can also control
the default display of the backtrace by setting the option rlang_backtrace_on_error to one of
the following values:

* "none” show nothing.

* "reminder”, the default in interactive sessions, displays a reminder that you can see the back-
trace with last_error().

* "branch” displays a simplified backtrace.

e "full”, the default in non-interactive sessions, displays the full tree.

rlang errors are normally thrown with abort (). If you promote base errors to rlang errors with
global_entrace(), rlang_backtrace_on_error applies to all errors.

Promote base errors to rlang errors

You can use options(error =rlang: :entrace) to promote base errors to rlang errors. This does
two things:

* It saves the base error as an rlang object so you can call last_error() to print the backtrace
or inspect its data.

o It prints the backtrace for the current error according to the rlang_backtrace_on_error
option.

Warnings and errors in RMarkdown

The display of errors depends on whether they’re expected (i.e. chunk option error = TRUE) or
unexpected:

* Expected errors are controlled by the global option "rlang_backtrace_on_error_report”
(note the _report suffix). The default is "none” so that your expected errors don’t include
a reminder to run rlang::last_error(). Customise this option if you want to demonstrate
what the error backtrace will look like.
You can also use last_error() to display the trace like you would in your session, but it
currently only works in the next chunk.

» Unexpected errors are controlled by the global option "rlang_backtrace_on_error”. The
default is "branch” so you’ll see a simplified backtrace in the knitr output to help you figure
out what went wrong.

When knitr is running (as determined by the knitr.in.progress global option), the default top
environment for backtraces is set to the chunk environment knitr: :knit_global(). This ensures
that the part of the call stack belonging to knitr does not end up in backtraces. If needed, you can
override this by setting the rlang_trace_top_env global option.

Similarly to rlang_backtrace_on_error_report, you can set rlang_backtrace_on_warning_report
inside RMarkdown documents to tweak the display of warnings. This is useful in conjunction

with global_entrace(). Because of technical limitations, there is currently no corresponding
rlang_backtrace_on_warning option for normal R sessions.

To get full entracing in an Rmd document, include this in a setup chunk before the first error or
warning is signalled.

138 rlang_error

T {r setup}

rlang::global_entrace()

options(rlang_backtrace_on_warning_report = "full")

options(rlang_backtrace_on_error_report = "full")
See Also

rlang_backtrace_on_warning

Examples

Display a simplified backtrace on error for both base and rlang

errors:

options(

rlang_backtrace_on_error = "branch”,
error = rlang::entrace

#)

stop("foo")

rlang_error Errors of class rlang_error

Description

abort () and error_cnd() create errors of class "rlang_error". The differences with base errors
are:

* Implementing conditionMessage () methods for subclasses of "rlang_error” is undefined
behaviour. Instead, implement the cnd_header () method (and possibly cnd_body() and
cnd_footer()). These methods return character vectors which are assembled by rlang when
needed: when conditionMessage.rlang_error() is called (e.g. via try()), when the error
is displayed through print() or format(), and of course when the error is displayed to the
user by abort().

* cnd_header (), cnd_body (), and cnd_footer () methods can be overridden by storing clo-
sures in the header, body, and footer fields of the condition. This is useful to lazily generate
messages based on state captured in the closure environment.

» [Experimental] The use_cli_format condition field instructs whether to use cli (or rlang’s
fallback method if cli is not installed) to format the error message at print time.
In this case, the message field may be a character vector of header and bullets. These are
formatted at the last moment to take the context into account (starting position on the screen
and indentation).

See local_use_cli() for automatically setting this field in errors thrown with abort()
within your package.

scalar-type-predicates 139

scalar-type-predicates
Scalar type predicates

Description

These predicates check for a given type and whether the vector is "scalar”, that is, of length 1.

In addition to the length check, is_string() and is_bool () return FALSE if their input is missing.
This is useful for type-checking arguments, when your function expects a single string or a single
TRUE or FALSE.

Usage

is_scalar_list(x)
is_scalar_atomic(x)
is_scalar_vector(x)
is_scalar_integer(x)
is_scalar_double(x)
is_scalar_complex(x)
is_scalar_character(x)
is_scalar_logical(x)
is_scalar_raw(x)
is_string(x, string = NULL)

is_scalar_bytes(x)

is_bool(x)
Arguments
X object to be tested.
string A string to compare to x. If a character vector, returns TRUE if at least one
element is equal to x.
See Also

type-predicates, bare-type-predicates

140 set_names

seq2 Increasing sequence of integers in an interval

Description

These helpers take two endpoints and return the sequence of all integers within that interval. For
seq2_along(), the upper endpoint is taken from the length of a vector. Unlike base: : seq(), they
return an empty vector if the starting point is a larger integer than the end point.

Usage

seq2(from, to)

seqg2_along(from, x)

Arguments

from The starting point of the sequence.

to The end point.

X A vector whose length is the end point.
Value

An integer vector containing a strictly increasing sequence.

Examples
seq2(2, 10)
seq2(10, 2)
seq(10, 2)

seq2_along(10, letters)

set_names Set names of a vector

Description

This is equivalent to stats: : setNames (), with more features and stricter argument checking.

Usage

set_names(x, nm = x, ...)

splice 141

Arguments

X Vector to name.

nm, ... Vector of names, the same length as x. If length 1, nm is recycled to the length
of x following the recycling rules of the tidyverse..
You can specify names in the following ways:

* If not supplied, x will be named to as.character(x).

* If x already has names, you can provide a function or formula to transform
the existing names. In that case, . . . is passed to the function.

e Otherwise if . . . is supplied, x is named to c(nm, ...).
* If nmis NULL, the names are removed (if present).

Life cycle

set_names() is stable and exported in purrr.

Examples

set_names(1:4, c("a", "b", "c", "d"))
set_names(1:4, letters[1:4])
set_names(1:4, "a", "b", "c", "d")

If the second argument is omitted a vector is named with itself
set_names(letters[1:5])

Alternatively you can supply a function
set_names(1:10, ~ letters[seqg_along(.)]1)
set_names(head(mtcars), toupper)

If the input vector is unnamed, it is first named after itself
before the function is applied:
set_names(letters, toupper)

~... 7 is passed to the function:
set_names(head(mtcars), paste@d, "_foo")

If length 1, the second argument is recycled to the length of the first:
set_names(1:3, "foo")
set_names(list(), "")

splice Splice values at dots collection time

Description

splice() is an advanced feature of dynamic dots. It is rarely needed but can solve performance
issues in edge cases.

142 splice

The splicing operator ! ! ! operates both in values contexts like 1ist2() and dots_list(), and in
metaprogramming contexts like expr (), enquos(), or inject(). While the end result looks the
same, the implementation is different and much more efficient in the value cases. This difference in
implementation may cause performance issues for instance when going from:

xs <- list(2, 3)

list2(1, !!lxs, 4)
to:
inject(list2(1, !!!xs, 4))

In the former case, the performant value-splicing is used. In the latter case, the slow metaprogram-
ming splicing is used.

A common practical case where this may occur is when code is wrapped inside a tidyeval context
like dplyr: :mutate(). In this case, the metaprogramming operator !!! will take over the value-
splicing operator, causing an unexpected slowdown.

To avoid this in performance-critical code, use splice() instead of !!!:

These both use the fast splicing:
list2(1, splice(xs), 4)
inject(list2(1, splice(xs), 4))

Note that splice() behaves differently than !!!. The splicing happens later and is processed by

list2() ordots_list(). It does not work in any other tidyeval context than these list collectors.
Usage

splice(x)

is_spliced(x)

is_spliced_bare(x)

Arguments

X A list or vector to splice non-eagerly.

splice-operator 143

splice-operator Splice operator !!'!

Description
The splice operator !'!' ! implemented in dynamic dots injects a list of arguments into a function call.
It belongs to the family of injection operators and provides the same functionality as do.call().
The two main cases for splice injection are:

* Turning a list of inputs into distinct arguments. This is especially useful with functions that
take data in . . ., such as base: :rbind().

dfs <- list(mtcars, mtcars)
inject(rbind(!!!dfs))

* Injecting defused expressions like symbolised column names.

For tidyverse APIs, this second case is no longer as useful since dplyr 1.0 and the across()
operator.

Where does !!! work?

!'1'! does not work everywhere, you can only use it within certain special functions:

* Functions taking dynamic dots like 1ist2().

* Functions taking defused and data-masked arguments, which are dynamic by default.

e Inside inject().
Most tidyverse functions support ! ! ! out of the box. With base functions you need to use inject ()
to enable !'!!.

Using the operator out of context may lead to incorrect results, see What happens if I use injection
operators out of context?.
Splicing a list of arguments

Take a function like base: :rbind() that takes data in This sort of functions takes a variable
number of arguments.

df1 <- data.frame(x
df2 <- data.frame(x

b}
2)

rbind(df1, df2)
#> X
#> 11
#> 2 2

Passing individual arguments is only possible for a fixed amount of arguments. When the arguments
are in a list whose length is variable (and potentially very large), we need a programmatic approach
like the splicing syntax !!!:

144 splice-operator

dfs <- list(df1, df2)

inject(rbind(!!!dfs))

#> X

#> 11

#> 2 2

Because rbind() is a base function we used inject() to explicitly enable !!!. However, many
functions implement dynamic dots with !'!'! implicitly enabled out of the box.

tidyr::expand_grid(x = 1:2, y = c("a", "b"))
#> # A tibble: 4 x 2

#> Xy
#> <int> <chr>
#> 1 1 a
#> 2 1b
#> 3 2 a
#> 4 2 b

xs <= list(x = 1:2, y = c("a", "b"))
tidyr::expand_grid(!!!xs)
#> # A tibble: 4 x 2

#> Xy
#> <int> <chr>
#> 1 1 a
#> 2 1b
#> 3 2 a
#> 4 2 b

Note how the expanded grid has the right column names. That’s because we spliced a named list.
Splicing causes each name of the list to become an argument name.

tidyr::expand_grid(!!!set_names(xs, toupper))
#> # A tibble: 4 x 2

#> XY
#> <int> <chr>
#> 1 1 a
#> 2 1b
#> 3 2 a
#> 4 2b

Splicing a list of expressions

Another usage for !!'! is to inject defused expressions into data-masked dots. However this usage
is no longer a common pattern for programming with tidyverse functions and we recommend using
other patterns if possible.

First, instead of using the defuse-and-inject pattern with . . ., you can simply pass them on as you
normally would. These two expressions are completely equivalent:

splice-operator 145

my_group_by <- function(.data, ...) {
.data %>% dplyr::group_by(!!!enquos(...))
}
This equivalent syntax is preferred
my_group_by <- function(.data, ...) {
.data %>% dplyr::group_by(...)
}
Second, more complex applications such as transformation patterns can be solved with the across ()
operation introduced in dplyr 1.0. Say you want to take the mean () of all expressions in Before
across(), you had to defuse the ... expressions, wrap them in a call to mean(), and inject them

in summarise().

my_mean <- function(.data, ...) {
Defuse dots and auto-name them
exprs <- enquos(..., .named = TRUE)

Wrap the expressions in a call to “mean()”
exprs <- purrr::map(exprs, ~ call("mean”, .x, na.rm = TRUE))

Inject them
.data %>% dplyr::summarise(!!!exprs)

b

It is much easier to use across() instead:

my_mean <- function(.data, ...) {
.data %>% dplyr::summarise(across(c(...), ~ mean(.x, na.rm = TRUE)))

}

Performance of injected dots and dynamic dots

Take this dynamic dots function:

n_args <- function(...) {
length(list2(...))

}

Because it takes dynamic dots you can splice with !!'! out of the box.
n_args(1, 2)

[1] 2

n_args(!!!mtcars)
#> [11 11

Equivalently you could enable !'!! explicitly with inject().

146 stack

inject(n_args(!!!mtcars))
#> [11 11

While the result is the same, what is going on under the hood is completely different. 1ist2() is
a dots collector that special-cases !!! arguments. On the other hand, inject() operates on the
language and creates a function call containing as many arguments as there are elements in the
spliced list. If you supply a list of size 1e6, inject() is creating one million arguments before
evaluation. This can be much slower.

xs <- rep(list(1), 1e6)

system. time(
n_args(!!!xs)
)

#> user system elapsed
#> 0.009 0.000 0.009

system. time(
inject(n_args(!!!xs))
)

#> user system elapsed
#> 0.445 0.012 0.457

The same issue occurs when functions taking dynamic dots are called inside a data-masking func-
tion like dplyr: :mutate(). The mechanism that enables !!! injection in these arguments is the
same as in inject().

See Also
* Injecting with !!, !!!, and glue syntax
* inject()

e exec()

stack Get properties of the current or caller frame

Description

These accessors retrieve properties of frames on the call stack. The prefix indicates for which frame
a property should be accessed:

¢ From the current frame with current_ accessors.
* From a calling frame with caller_ accessors.

* From a matching frame with frame_ accessors.

The suffix indicates which property to retrieve:

sym 147
* _fn accessors return the function running in the frame.

e _call accessors return the defused call with which the function running in the frame was
invoked.

* _env accessors return the execution environment of the function running in the frame.

Usage

current_call()

current_fn()

current_env()

caller_call(n = 1)

caller_fn(n = 1)

caller_env(n = 1)
frame_call(frame = caller_env())

frame_fn(frame = caller_env())

Arguments
n The number of callers to go back.
frame A frame environment of a currently running function, as returned by caller_env ().
NULL is returned if the environment does not exist on the stack.
See Also

caller_env() and current_env()

sym Create a symbol or list of symbols

Description
Symbols are a kind of defused expression that represent objects in environments.

* sym() and syms () take strings as input and turn them into symbols.

» data_sym() and data_syms() create calls of the form .data$foo instead of symbols. Sub-
setting the . data pronoun is more robust when you expect a data-variable. See The data mask
ambiguity.

Only tidy eval APIs support the . data pronoun. With base R functions, use simple symbols created
with sym() or syms().

148 sym
Usage

sym(x)

syms(x)

data_sym(x)

data_syms(x)

Arguments
X For sym() and data_sym(), a string. For syms() and data_syms(), a list of
strings.
Value

For sym() and syms(), a symbol or list of symbols. For data_sym() and data_syms(), calls of
the form .data$foo.

See Also

* Defusing R expressions

* Metaprogramming patterns

Examples

Create a symbol
sym("cyl™)

Create a list of symbols
syms(c("cyl”, "am"))

Symbolised names refer to variables
eval(sym("cyl"”), mtcars)

Beware of scoping issues
Cyl <- "wrong"
eval(sym("Cyl"), mtcars)

Data symbols are explicitly scoped in the data mask
try(eval_tidy(data_sym("Cyl"), mtcars))

These can only be used with tidy eval functions
try(eval(data_sym("Cyl"), mtcars))

The empty string returns the missing argument:
sym("™)

This way sym() and as_string() are inverse of each other:
as_string(missing_arg())
sym(as_string(missing_arg()))

trace_back

149

trace_back

Capture a backtrace

Description

A backtrace captures the sequence of calls that lead to the current function (sometimes called the
call stack). Because of lazy evaluation, the call stack in R is actually a tree, which the print()
method for this object will reveal.

Users rarely need to call trace_back() manually. Instead, signalling an error with abort () or set-
ting up global_entrace() is the most common way to create backtraces when an error is thrown.
Inspect the backtrace created for the most recent error with last_error().

trace_length() returns the number of frames in a backtrace.

Usage

trace_back(top = NULL, bottom = NULL)

trace_length(trace)

Arguments

top

bottom

trace

Examples

The first frame environment to be included in the backtrace. This becomes the
top of the backtrace tree and represents the oldest call in the backtrace.

This is needed in particular when you call trace_back() indirectly or from
a larger context, for example in tests or inside an RMarkdown document where
you don’t want all of the knitr evaluation mechanisms to appear in the backtrace.
If not supplied, the rlang_trace_top_env global option is consulted. This
makes it possible to trim the embedding context for all backtraces created while
the option is set. If knitr is in progress, the default value for this option is
knitr::knit_global() so that the knitr context is trimmed out of backtraces.

The last frame environment to be included in the backtrace. This becomes the
rightmost leaf of the backtrace tree and represents the youngest call in the back-
trace.

Set this when you would like to capture a backtrace without the capture context.
Can also be an integer that will be passed to caller_env().

A backtrace created by trace_back().

Trim backtraces automatically (this improves the generated

documentation for the rlang website and the same trick can be
useful within knitr documents):

options(rlang_trace_top_env = current_env())

150 try_fetch

f <= function() gQ
g <- function() h(Q)
h <- function() trace_back()

When no lazy evaluation is involved the backtrace is linear
(i.e. every call has only one child)

fO

Lazy evaluation introduces a tree like structure
identity(identity(f()))

identity(try(f()))

try(identity(f()))

When printing, you can request to simplify this tree to only show
the direct sequence of calls that lead to “trace_back()"

x <- try(identity(f()))

X

print(x, simplify = "branch”)

With a little cunning you can also use it to capture the
tree from within a base NSE function

x <- NULL
with(mtcars, {x <<- f(); 10})
X

Restore default top env for next example
options(rlang_trace_top_env = NULL)

When code is executed indirectly, i.e. via source or within an

RMarkdown document, you'll tend to get a lot of guff at the beginning
related to the execution environment:

conn <- textConnection(”summary(f())")

source(conn, echo = TRUE, local = TRUE)

close(conn)

To automatically strip this off, specify which frame should be
the top of the backtrace. This will automatically trim off calls
prior to that frame:

top <- current_env()

h <- function() trace_back(top)

conn <- textConnection(”summary(f())")
source(conn, echo = TRUE, local = TRUE)
close(conn)

try_fetch Try an expression with condition handlers

try_fetch

151

Description

[Experimental]

non non

try_fetch() establishes handlers for conditions of a given class ("error”, "warning”, "message"”,
...). Handlers are functions that take a condition object as argument and are called when the corre-
sponding condition class has been signalled.

A condition handler can:

* Recover from conditions with a value. In this case the computation of expr is aborted and

the recovery value is returned from try_fetch(). Error recovery is useful when you don’t
want errors to abruptly interrupt your program but resume at the catching site instead.

Recover with the value 0
try_fetch(1 + "", error = function(cnd) 0)

Rethrow conditions, e.g. using abort(msg, parent = cnd). See the parent argument of
abort(). This is typically done to add information to low-level errors about the high-level
context in which they occurred.

try_fetch(1 + "", error = function(cnd) abort("Failed.”, parent = cnd))

Inspect conditions, for instance to log data about warnings or errors. In this case, the handler
must return the zap() sentinel to instruct try_fetch() to ignore (or zap) that particular han-
dler. The next matching handler is called if any, and errors bubble up to the user if no handler
remains.

log <- NULL

try_fetch(1 + "", error = function(cnd) {
log <<- cnd
zap()

b))

Whereas tryCatch() catches conditions (discarding any running code along the way) and then calls
the handler, try_fetch() first calls the handler with the condition on top of the currently running
code (fetches it where it stands) and then catches the return value. This is a subtle difference that has
implications for the debuggability of your functions. See the comparison with tryCatch() section
below.

Another difference between try_fetch() and the base equivalent is that errors are matched across
chains, see the parent argument of abort(). This is a useful property that makes try_fetch()
insensitive to changes of implementation or context of evaluation that cause a classed error to sud-
denly get chained to a contextual error. Note that some chained conditions are not inherited, see the
.inherit argument of abort() or warn(). In particular, downgraded conditions (e.g. from error
to warning or from warning to message) are not matched across parents.

Usage

try_fetch(expr, ...)

152 type-predicates

Arguments

expr An R expression.

<dynamic-dots> Named condition handlers. The names specify the condition
class for which a handler will be called.

Stack overflows

A stack overflow occurs when a program keeps adding to itself until the stack memory (whose size
is very limited unlike heap memory) is exhausted.

A function that calls itself indefinitely causes stack overflows
f <= function() f()

fO
#> Error: C stack usage 9525680 is too close to the limit

Because memory is very limited when these errors happen, it is not possible to call the handlers on
the existing program stack. Instead, error conditions are first caught by try_fetch() and only then
error handlers are called. Catching the error interrupts the program up to the try_fetch() context,
which allows R to reclaim stack memory.

The practical implication is that error handlers should never assume that the whole call stack is
preserved. For instance a trace_back() capture might miss frames.

Note that error handlers are only run for stack overflows on R >= 4.2. On older versions of
R the handlers are simply not run. This is because these errors do not inherit from the class
stackOverflowError before R 4.2. Consider using tryCatch() instead with critical error han-
dlers that need to capture all errors on old versions of R.

Comparison with tryCatch()

try_fetch() generalises tryCatch() and withCallingHandlers() in a single function. It re-
produces the behaviour of both calling and exiting handlers depending on the return value of the
handler. If the handler returns the zap() sentinel, it is taken as a calling handler that declines to
recover from a condition. Otherwise, it is taken as an exiting handler which returns a value from
the catching site.

The important difference between tryCatch() and try_fetch() is that the program in expr is
still fully running when an error handler is called. Because the call stack is preserved, this makes
it possible to capture a full backtrace from within the handler, e.g. when rethrowing the error with
abort(parent = cnd). Technically, try_fetch() is more similar to (and implemented on top of)
base: :withCallingHandlers() than tryCatch().

type-predicates Type predicates

Description

These type predicates aim to make type testing in R more consistent. They are wrappers around
base: : typeof (), so operate at a level beneath S3/54 etc.

type-predicates 153

Usage

is_list(x, n = NULL)

is_atomic(x, n = NULL)

is_vector(x, n = NULL)
is_integer(x, n = NULL)
is_double(x, n = NULL, finite = NULL)
is_complex(x, n = NULL, finite = NULL)

is_character(x, n = NULL)

NULL)

is_logical(x, n
is_raw(x, n = NULL)

is_bytes(x, n = NULL)

is_null(x)
Arguments
X Object to be tested.
n Expected length of a vector.
finite Whether all values of the vector are finite. The non-finite values are NA, Inf,
-Inf and NaN. Setting this to something other than NULL can be expensive be-
cause the whole vector needs to be traversed and checked.
Details

Compared to base R functions:

* The predicates for vectors include the n argument for pattern-matching on the vector length.

* Unlike is.atomic() in R <4.4.0, is_atomic() does not return TRUE for NULL. Starting in R
4.4.0 is.atomic(NULL) returns FALSE.

* Unlike is.vector(), is_vector () tests if an object is an atomic vector or a list. is.vector
checks for the presence of attributes (other than name).

See Also

bare-type-predicates scalar-type-predicates

154 vector-construction

vector-construction Create vectors

Description

[Questioning]
The atomic vector constructors are equivalent to c() but:
* They allow you to be more explicit about the output type. Implicit coercions (e.g. from integer
to logical) follow the rules described in vector-coercion.

* They use dynamic dots.

Usage

1gl(...)

int(...)

dbl(...)

cpl(...)

chr(...)

bytes(...)
Arguments

Components of the new vector. Bare lists and explicitly spliced lists are spliced.

Life cycle

* All the abbreviated constructors such as 1g1() will probably be moved to the vctrs package
at some point. This is why they are marked as questioning.

* Automatic splicing is soft-deprecated and will trigger a warning in a future version. Please
splice explicitly with !'!'!.

Examples

These constructors are like a typed version of c():
c(TRUE, FALSE)
1g1(TRUE, FALSE)

They follow a restricted set of coercion rules:
int(TRUE, FALSE, 20)

Lists can be spliced:
dbl(ie, !!! list(1, 2L), TRUE)

wref_key 155

They splice names a bit differently than c(). The latter
automatically composes inner and outer names:
c(a=c(A=10), b =c(B =20, C=30))

On the other hand, rlang's constructors use the inner names and issue a
warning to inform the user that the outer names are ignored:

dbl(a = c(A =10), b = c(B = 20, C = 30))

dbl(a = c(1, 2))

As an exception, it is allowed to provide an outer name when the
inner vector is an unnamed scalar atomic:
dbl(a = 1)

Spliced lists behave the same way:
dbl(!!! list(a = 1))
dbl(!!! list(a = c(A = 1)))

bytes() accepts integerish inputs
bytes(1:10)
bytes(0x01, Oxff, c(0x03, 0x05), list(10, 20, 30L))

wref_key Get key/value from a weak reference object

Description

Get key/value from a weak reference object

Usage

wref_key(x)

wref_value(x)

Arguments

X A weak reference object.

See Also

is_weakref () and new_weakref ().

156 zap_srcref

zap Create zap objects

Description

zap() creates a sentinel object that indicates that an object should be removed. For instance, named
zaps instruct env_bind() and call_modify() to remove those objects from the environment or the
call.

The advantage of zap objects is that they unambiguously signal the intent of removing an object.
Sentinels like NULL or missing_arg() are ambiguous because they represent valid R objects.
Usage

zap()

is_zap(x)

Arguments

X An object to test.

Examples

Create one zap object:
zap()

Create a list of zaps:

rep(list(zap()), 3)
rep_named(c("foo"”, "bar"), list(zap()))

zap_srcref Zap source references

Description

There are a number of situations where R creates source references:
* Reading R code from a file with source() and parse() might save source references inside
calls to function and {.
* sys.call() includes a source reference if possible.
* Creating a closure stores the source reference from the call to function, if any.

These source references take up space and might cause a number of issues. zap_srcref () recur-
sively walks through expressions and functions to remove all source references.

zap_srcref

Usage

zap_srcref(x)

Arguments

X

An R object. Functions and calls are walked recursively.

157

Index

'l (injection-operator), 91

11l (splice-operator), 143

* datasets
dot-data, 43

* dots checking functions
check_dots_empty, 33
check_dots_unnamed, 34
check_dots_used, 35

* experimental
local_options, 116
new_weakref, 125

.Internal(), 99

.Primitive(), 99

.data, 14, 147

.data (dot-data), 43

.env, 91, 92

.env (dot-data), 43

.onLoad(), 126

:=(dyn-dots), 44

%<~% (env_bind), 52

%&&% (op—null-continuation), 129

abort, 4

abort(), 10, 11, 17,33-35, 37, 38, 40-42, 46,
101,107,113, 114, 137, 138, 149,
151

active bindings, 14

add_backtrace
(rlang_backtrace_on_error), 136

Advanced defusal operators, 49, 72

arg_match, 11

arg_match(), 38

arg_match@ (arg_match), 11

args_error_context, 10

argument defusal, 123, 134

as_box, 12

as_box_if (as_box), 12

as_bytes (bytes-class), 23

as_data_mask, 13

as_data_mask(), 51, 69, 70

158

as_data_pronoun (as_data_mask), 13
as_environment, 16
as_function, 17

as_function(), 52

as_label, 18

as_label (), 19, 20, 46, 48, 73, 85, 110, 135
as_name, 19

as_name(), 18, 19, 21

as_quosure (new_quosure), 123
as_quosure(), 124, 134

as_quosures (new_quosures), 124
as_string, 20

as_string(), 20

bang-bang (injection-operator), 91
bare-type-predicates, 21, 139, 153
base environment, /31
base::.Internal(), 99
base::as.call(), 24

base: :as.name(), 19, 20

base: :as.symbol(), 19, 20
base::assign(), 52

base: :body(), 75

base: :bquote(), 72
base::call(), 24

base: :delayedAssign(), 52
base::eval(), 14,49, 67,69, 70, 72
base::I(), 22
base::inherits(), 89
base::interactive(), 103
base::is.integer(), 102

base: :makeActiveBinding(), 52
base: :match.arg(), 11
base::match.call(), 27

base: :message(), 4, 41

base: :missing(), 117

base: :parse(), 130, 131

base: :quote(), 122

base: :rbind(), 143
base::stop(), 4, 8, 41

INDEX

base: :structure(), 23

base: : suppressMessages(), 8
base: :suppressWarnings(), 8
base: :topenv(), 59

base: :typeof (), 152
base::warning(), 4, 41
base::withCallingHandlers(), 152
base_env(), 96

box, 22

boxed, 42

browser(), 70

bytes (vector-construction), 154
bytes-class, 23

c(), 44, 154

call, 93

call2, 24

call2(), 72

call_args, 26
call_args(), 77
call_args_names (call_args), 26
call_args_names(), 77
call_inspect, 27
call_match, 28
call_match(), 29
call_modify, 29
call_modify(), 25, 156
call_name, 31
call_ns(call_name), 31
callable, 25

callcc(), 39

caller function, /1
caller_arg, 26
caller_arg(), 10
caller_call (stack), 146
caller_env (stack), 146
caller_env(), 113, 147, 149
caller_fn (stack), 146
calling handler, 101
catch_cnd, 32

chained condition, 5
check_dots_empty, 33, 34, 36
check_dots_unnamed, 33, 34, 36
check_dots_used, 33, 34, 35
check_exclusive, 36
check_installed (is_installed), 100
check_installed(), 84
check_required, 37
check_required(), 12

159

chr (vector-construction), 154
class(), 38

cnd(), 41

cnd_body (cnd_message), 40
cnd_body(), 6, 78, 138

cnd_footer (cnd_message), 40
cnd_footer(), 138

cnd_header (cnd_message), 40
cnd_header (), 6, 78, 138
cnd_inherits, 38
cnd_inherits(), 7

cnd_message, 40

cnd_signal, 41

cnd_type(), 42
conditionMessage.rlang_error(), 138
constructed calls, 77

cpl (vector-construction), 154
curly-curly (embrace-operator), 45
current_call (stack), 146
current_env (stack), 146
current_env(), 147

current_fn (stack), 146
Customising condition messages, 5

data mask, 13, 69

data mask ambiguity, 69

Data mask programming patterns, 45, 48

data-masked, 43, 84, 85, 91, 143, 144

data-masking, 45, 48

data_sym (sym), 147

data_syms (sym), 147

dbl (vector-construction), 154

defuse, 48, 90

defuse-and-inject, 48

defuse-and-inject pattern, 92, 144

defused, 91, 143

defused expression, 92, 133, 147

defused expressions, 91, 143, 144

defused function call, 6

defuses, 46, 72, 85

Defusing R expressions, 49, 70, 72, 148

do.call(), 143

doc_dots_dynamic (dyn-dots), 44

Does curly-curly work on regular
objects?, 86

done, 42

dot-data, 43

dots_list (list2), 110

dots_list(), 44, 142

160

dyn-dots, 44

dynamic, 24, 29, 50, 52, 71, 110, 130

Dynamic dots, 84

dynamic dots, 25, 46, 71, 110, 130, 143-145,
154

embrace-operator, 45

empty environment, 25, 51, 58, 134
empty_env, 45
empty_env(), 16, 64
enexpr(), 91

englue, 46

englue(), 85, 86

enquo, 48

enquo(), 45,72,91,123,131, 134
enquo@(), 49, 90

enquos (enquo), 48
enquos(), 131, 142
enquos@(), 49

ensym(), 26

env, 50

env(), 53,58, 64, 76
env_bind, 52
env_bind(), 51, 65, 66, 156
env_bind_active (env_bind), 52
env_bind_lazy (env_bind), 52
env_browse, 55

env_cache, 56
env_cache(), 59, 65
env_clone, 57

env_coalesce (env_clone), 57
env_depth, 58

env_get, 58

env_get(), 56

env_get_list (env_get), 58
env_has, 60
env_has(), 51, 88
env_inherits, 60
env_is_browsed (env_browse), 55
env_is_user_facing, 61
env_label (env_name), 62
env_length (env_names), 63
env_name, 62

env_name(), 64

env_names, 63

env_parent, 64

env_parents (env_parent), 64
env_poke, 65
env_poke(), 53, 56

INDEX

env_poke_parent (get_env), 81
env_print, 66

env_tail (env_parent), 64
env_unbind, 66
error_cnd(), 138
eval_bare, 67
eval_bare(), 49, 70, 72
eval_tidy, 69
eval_tidy(), 13, 14, 68, 131
exec, 71

exec(), 146

expr, 72

expr(), 49, 142
expr_deparse (expr_print), 74
expr_label(), 80
expr_print, 74
expr_text(), 80
expression, 69, 131
expression(), 95
exprs(), 52, 122
exprs_auto_name, 73
exprs_auto_name(), 48, 110

f_env (f_rhs), 79
f_env<-(f_rhs), 79

f_label (f_text), 80

f_lhs (f_rhs), 79
f_lhs<-(f_rhs), 79

f_name (f_text), 80
f_rhs, 79
f_rhs<-(f_rhs), 79
f_text, 80

fancy bindings, 66
fag-options, 75

fn_body, 75

fn_body<- (fn_body), 75
fn_env, 76

fn_env<- (fn_env), 76
fn_fmls, 77
fn_fmls(), 27, 99
fn_fmls<- (fn_fmls), 77
fn_fmls_names (fn_fmls), 77
fn_fmls_names(), 27
fn_fmls_names<- (fn_fmls), 77
fn_fmls_syms (fn_fmls), 77
formals(), 99
format(), 138
format_error_bullets, 78
format_error_bullets(), 40

INDEX

Formatting messages with cli, 6, 7
frame_call (stack), 146
frame_fn (stack), 146

get_env, 81

get_env(), 66, 81

global environment, 131
global_entrace, 82
global_entrace(), 83, 84, 107, 137, 149
global_handle, 83
global_prompt_install, 84
global_prompt_install(), 83, 84
glue operators, 46

glue syntax, 44
glue-operators, 84

has_name, 88

hash, 87

hash_file (hash), 87
have_name (is_named), 103

imports environments, 62

Including contextual information with
error chains, 7,9

Including function calls in error
messages, 0, 9

inform (abort), 4

inform(), 38, 41, 42

inherits(), 38

inherits_all (inherits_any), 89

inherits_all(), 23

inherits_any, 89

inherits_only (inherits_any), 89

inject, 90

inject(), 91, 142-146

injected expressions, 132

injection, 44,49, 69, 72, 90, 91, 143

injection operators, 132

injection-operator, 91

install.packages(), 84

int (vector-construction), 154

interrupt(), 41

is_atomic (type-predicates), 152

is_atomic(), 22

is_bare_atomic (bare-type-predicates),
21

is_bare_bytes (bare-type-predicates), 21

is_bare_character
(bare-type-predicates), 21

161

is_bare_complex (bare-type-predicates),
21

is_bare_double (bare-type-predicates),
21

is_bare_environment (is_environment), 95

is_bare_formula (is_formula), 97

is_bare_integer (bare-type-predicates),
21

is_bare_integerish (is_integerish), 102

is_bare_list (bare-type-predicates), 21

is_bare_logical (bare-type-predicates),
21

is_bare_numeric (bare-type-predicates),
21

is_bare_numeric(), 102

is_bare_raw (bare-type-predicates), 21

is_bare_string (bare-type-predicates),
21

is_bare_vector (bare-type-predicates),
21

is_bool (scalar-type-predicates), 139

is_box (box), 22

is_bytes (type-predicates), 152

is_call, 93

is_call(), 96

is_call_simple (call_name), 31

is_character (type-predicates), 152

is_closure (is_function), 98

is_complex (type-predicates), 152

is_done_box (done), 42

is_double (type-predicates), 152

is_empty, 94

is_environment, 95

is_expression, 95

is_expression(), 63, 93

is_false (is_true), 106

is_formula, 97

is_function, 98

is_installed, 100

is_integer (type-predicates), 152

is_integerish, 102

is_interactive, 103

is_interactive(), 75

is_lambda (as_function), 17

is_list (type-predicates), 152

is_logical (type-predicates), 152

is_missing (missing_arg), 117

is_named, 103

162

is_named2 (is_named), 103
is_namespace, 105
is_null (type-predicates), 152
is_primitive (is_function), 98
is_primitive_eager (is_function), 98
is_primitive_lazy (is_function), 98
is_quosure (new_quosure), 123
is_quosure(), 133
is_quosures (new_quosures), 124
is_raw (type-predicates), 152
is_scalar_atomic
(scalar-type-predicates), 139
is_scalar_bytes
(scalar-type-predicates), 139
is_scalar_character
(scalar-type-predicates), 139
is_scalar_complex
(scalar-type-predicates), 139
is_scalar_double
(scalar-type-predicates), 139
is_scalar_integer
(scalar-type-predicates), 139
is_scalar_integerish (is_integerish),
102
is_scalar_list
(scalar-type-predicates), 139
is_scalar_logical
(scalar-type-predicates), 139
is_scalar_raw (scalar-type-predicates),
139
is_scalar_vector
(scalar-type-predicates), 139
is_spliced (splice), 141
is_spliced_bare (splice), 141
is_string (scalar-type-predicates), 139
is_symbol, 105
is_symbolic (is_expression), 95
is_syntactic_literal (is_expression), 95
is_true, 106
is_vector (type-predicates), 152
is_weakref, 106
is_weakref (), 125, 155
is_zap (zap), 156

label, 66

lambda-formula, 4/

lapply(), 71

last_error, 107
last_error(), 8,82, 107, 109, 137, 149

INDEX

last_messages (last_warnings), 107
last_messages(), 82, 107
last_trace (last_error), 107
last_warnings, 107
last_warnings(), 82, 107

1gl (vector-construction), 154
list(), 44

list2, 110
list2(), 44, 142, 143, 146

11 (1ist2), 110

loadNamespace(), 84
local_bindings, 112
local_error_call, 113
local_error_call(), 10
local_interactive (is_interactive), 103
local_options, 116
local_use_cli(), 7, 138

locked, 66

match.call(), 28

maybe_missing (missing_arg), 117
Metaprogramming patterns, 92, 148
missing argument, /34
missing(), 118

missing_arg, 117
missing_arg(), 110, 156

names injection, 48
names2, 120
names2(), 103

names2<- (names2), 120
new_box (box), 22
new_box(), 12
new_data_mask (as_data_mask), 13
new_data_mask(), 69, 70
new_environment (env), 50
new_formula, 121
new_function, 122
new_quosure, 123
new_quosure(), 121, 134
new_quosures, 124
new_weakref, 125
new_weakref (), 155
ns_env(), 66

on.exit(), 35

on_load, 126

on_package_load (on_load), 126
op-get-attr, 128

INDEX

op-null-continuation, 129
op-null-default, 729, 129

package environments, 62
pairlist2, 130

pairlist2(), 122

parse_bytes (bytes-class), 23
parse_expr, 130
parse_expr(), 95, 96

parse_exprs (parse_expr), 130
parse_quo (parse_expr), 130
parse_quos (parse_expr), 130
peek_option (local_options), 116
peek_options (local_options), 116
pkg_env(), 16

print(), 138

Pronouns, 69

push_options (local_options), 116

gq_show, 132

quo(), 123, 134

quo_get_env (quosure-tools), 133
quo_get_env(), 81

quo_get_expr (quosure-tools), 133
quo_get_expr(), 70

quo_is_call (quosure-tools), 133
quo_is_missing (quosure-tools), 133
quo_is_null (quosure-tools), 133
quo_is_symbol (quosure-tools), 133
quo_is_symbolic (quosure-tools), 133
quo_set_env (quosure-tools), 133
quo_set_env(), 81

quo_set_expr (quosure-tools), 133
quo_squash, 135

quos(), 134

quos_auto_name (exprs_auto_name), 73
quos_auto_name(), 124
quosure, 19,49, 69, 123, 131

quosure (quosure-tools), 133
quosure-tools, 133

Quosures, 69
quosures, 14, 74, 92, 133

quoting, 24

recover(), 83

rep_along, 136

rep_named (rep_along), 136
reset_message_verbosity (abort), 4
reset_warning_verbosity (abort), 4

163

rlang_backtrace_on_error, 8, 75, 82, 107,
136
rlang_backtrace_on_error_report, 83
rlang_backtrace_on_error_report
(rlang_backtrace_on_error), 136
rlang_backtrace_on_warning_report, 83
rlang_backtrace_on_warning_report
(rlang_backtrace_on_error), 136
rlang_error, 138
run_on_load (on_load), 126

scalar-type-predicates, 22, 139, 153
scoping ambiguity, 91
search_envs(), 45
seq2, 140

seg2_along (seq2), 140
seg_along(), 136
serialize(), 88
set_env (get_env), 81
set_env(), 81
set_names, 140

signal (abort), 4
splice, 141
splice-operator, 143
Splicing, 90
squashed, 18

stack, 146

stats: :setNames(), 140
sym, 147

sym(), 72, 93
symbolic, 24
symbolise-and-inject pattern, 92
symbolised, 91, 143
symbols, /9, 20

syms (sym), 147
sys.call(), 113, 156

The data mask ambiguity, 91, 147
tidy eval framework, 43
tidy-dots (dyn-dots), 44
tidyeval-data (dot-data), 43
trace_back, 149
trace_back(), 6, 75, 152
trace_length (trace_back), 149
traceback(), 25
transformation patterns, 145
try(), 138

try_fetch, 150
try_fetch(), 6, 7, 33-35, 39, 42

164

tryCatch(), 7, 38, 39, 152
type-predicates, 22, 139, 152

unbox (box), 22
uncopyable, 51, 81
utils::install.packages(), 100

vector-coercion, 154
vector-construction, 154

warn (abort), 4

warn(), 38,41, 42, 151

What are quosures and when are they
needed?, 70, 123, 134

What happens if I use injection
operators out of context?, 9/
143

What is data-masking and why do I need
curly-curly?, 45, 70

withQ), 91, 92

with_bindings (local_bindings), 112

with_interactive (is_interactive), 103

with_options (local_options), 116

withCallingHandlers(), 39

wref_key, 155

wref_key(), 125

wref_value (wref_key), 155

wref_value(), 125

zap, 156

zap sentinel, 65

zap(), 29, 39, 52, 151, 152
zap_srcref, 156

INDEX

	abort
	args_error_context
	arg_match
	as_box
	as_data_mask
	as_environment
	as_function
	as_label
	as_name
	as_string
	bare-type-predicates
	box
	bytes-class
	call2
	caller_arg
	call_args
	call_inspect
	call_match
	call_modify
	call_name
	catch_cnd
	check_dots_empty
	check_dots_unnamed
	check_dots_used
	check_exclusive
	check_required
	cnd_inherits
	cnd_message
	cnd_signal
	done
	dot-data
	dyn-dots
	embrace-operator
	empty_env
	englue
	enquo
	env
	env_bind
	env_browse
	env_cache
	env_clone
	env_depth
	env_get
	env_has
	env_inherits
	env_is_user_facing
	env_name
	env_names
	env_parent
	env_poke
	env_print
	env_unbind
	eval_bare
	eval_tidy
	exec
	expr
	exprs_auto_name
	expr_print
	faq-options
	fn_body
	fn_env
	fn_fmls
	format_error_bullets
	f_rhs
	f_text
	get_env
	global_entrace
	global_handle
	global_prompt_install
	glue-operators
	hash
	has_name
	inherits_any
	inject
	injection-operator
	is_call
	is_empty
	is_environment
	is_expression
	is_formula
	is_function
	is_installed
	is_integerish
	is_interactive
	is_named
	is_namespace
	is_symbol
	is_true
	is_weakref
	last_error
	last_warnings
	list2
	local_bindings
	local_error_call
	local_options
	missing_arg
	names2
	new_formula
	new_function
	new_quosure
	new_quosures
	new_weakref
	on_load
	op-get-attr
	op-null-continuation
	op-null-default
	pairlist2
	parse_expr
	qq_show
	quosure-tools
	quo_squash
	rep_along
	rlang_backtrace_on_error
	rlang_error
	scalar-type-predicates
	seq2
	set_names
	splice
	splice-operator
	stack
	sym
	trace_back
	try_fetch
	type-predicates
	vector-construction
	wref_key
	zap
	zap_srcref
	Index

