Package ‘rmake’

January 8, 2026
Type Package
Title Makefile Generator for R Analytical Projects
Version 1.2.2
Date 2026-01-08
Maintainer Michal Burda <michal.burda@osu.cz>

Description Creates and maintains a build process for complex analytic tasks in R.
Package allows to easily generate Make-
file for the (GNU) 'make' tool, which drives the build process
by (in parallel) executing build commands in order to update results accordingly to given depen-
dencies
on changed data or updated source files.

URL https://github.com/beerda/rmake, https://beerda.github.io/rmake/

BugReports https://github.com/beerda/rmake/issues
License GPL (>=3.0)

Encoding UTF-8

Imports tools, assertthat, rmarkdown, visNetwork, knitr
Suggests testthat

RoxygenNote 7.3.3

VignetteBuilder knitr

Language en-US

NeedsCompilation no

Author Michal Burda [aut, cre] (ORCID:
<https://orcid.org/0000-0002-4182-4407>)

Repository CRAN
Date/Publication 2026-01-08 13:30:02 UTC

https://github.com/beerda/rmake
https://beerda.github.io/rmake/
https://github.com/beerda/rmake/issues
https://orcid.org/0000-0002-4182-4407

2 copyRule
Contents
copyRule e 2
defaultVars e e e e e e 3
depRule e 4
expandTemplate L. 4
getParam L L e e e 6
hasGnuMake 7
inShell e 8
ISrule ..o e e e e 9
knitrRule e e 9
make e 11
makefile 12
markdownRule L 13
offineRule e 15
PIEreqUISItEs o o o i e e e e e e e 16
replaceSuffix L 17
replaceVariables L e 17
rmakeSkeleton e 18
rRule e 19
rule .o e e e 20
sanitizePath 22
SANILIZESPACES o e e e e e e e e e 22
subdirRule 23
visualizeRules e 23
Do>>T0 . . .o e e e e e e e 24
Index 26
copyRule Rule for copying a file to a new location
Description
This rule copies a file from one location to another. The rule executes the following command:
$(CP) depends[1] target
Usage
copyRule(target, depends, task = "all")
Arguments
target Target file name to copy the file to
depends Name of the file to copy from (only the first element of the vector is used)
task A character vector of parent task names. The mechanism of tasks allows group-

ing rules. Anything different from 'all' will cause the creation of a new task
depending on the given rule. Executing make taskname will then force building
this rule.

defaultVars 3

Value

Instance of S3 class rmake.rule

Author(s)

Michal Burda

See Also

rule(), makefile()

defaultVars Variables used within the Makefile generating process

Description

defaultVars is a reserved variable, a named vector that defines Makefile variables, i.e., shell vari-
ables that will exist during the execution of Makefile rules. The content of this variable is written to
the resulting Makefile during the execution of the makefile() function.

Usage

defaultVars

Format

An object of class character of length 4.

Author(s)

Michal Burda

See Also

makefile()

4 expandTemplate

depRule A rule that defines a dependency between targets without actually pro-
viding any execution script.

Description

This rule is useful when you want to specify that a target depends on another target but you do not
want to execute any script to build it.

Usage
depRule(target, depends = NULL, task = "all")

Arguments
target Target file name that depends on depends
depends A character vector of prerequisite file names that target depends on.
task A character vector of parent task names. The mechanism of tasks allows group-
ing rules. Anything different from 'all' will cause the creation of a new task
depending on the given rule. Executing make taskname will then force building
this rule.
Value

Instance of S3 class rmake.rule

Author(s)
Michal Burda

See Also
rule(), makefile()

expandTemplate Expand template rules into a list of rules by replacing rmake variables
with their values

Description

The functionality of expandTemplate() differs according to the type of the first argument. If
the first argument is a template job (i.e., a list of template rules) or a template rule, then a job is
created from templates by replacing rmake variables in templates with the values of these vari-
ables, as specified in the second argument. An rmake variable is a part of a string in the format
$[VARIABLE_NAME].

expandTemplate 5

Usage

expandTemplate(template, vars)

Arguments
template An instance of the S3 rmake. rule class, or a list of such objects, or a character
vector.
vars A named character vector, matrix, or data frame with variable definitions. For
character vector, names are variable names, values are variable values. For ma-
trix or data frame, colnames are variable names and column values are variable
values.
Details

If vars is a character vector, then all variables in vars are replaced in template so that the re-
sult will contain length(template) rules. If vars is a data frame or a character matrix, then
the replacement of variables is performed row-wise. That is, a new sequence of rules is created
from template for each row of variables in vars, so that the result will contain nrow(vars) *
length(template) rules.

If the first argument of expandTemplate() is a character vector, then the result is a character vector
created by row-wise replacements of rmake variables, similarly to the case of template jobs. See
examples.

Value

If template is an instance of the S3 rmake.rule class, or a list of such objects, a list of rules
created from template by replacing rmake variables is returned. If template is a character vector
then a character vector with all variants of rmake values is returned.

Author(s)
Michal Burda

See Also

replaceVariables(), rule()

Examples

Examples with template jobs and rules:
tmpl <- rRule('data-$[VERSION].csv', 'process-$[TYPE].R', 'output-$[VERSION]-$[TYPE].csv')

job <- expandTemplate(tmpl, c(VERSION='small', TYPE='a'))
is equivalent to
job <- list(rRule('data-small.csv', 'process-a.R', 'output-small-a.csv'))

job <- expandTemplate(tmpl, expand.grid(VERSION=c('small', 'big'), TYPE=c('a', 'b', 'c')))
is equivalent to
job <- list(rRule('data-small.csv', 'process-a.R', 'output-small-a.csv'),

getParam

rRule('data-big.csv', 'process-a.R', 'output-big-a.csv'),
rRule('data-small.csv', 'process-b.R', 'output-small-b.csv'),
rRule('data-big.csv', 'process-b.R', 'output-big-b.csv'),
rRule('data-small.csv', 'process-c.R', 'output-small-c.csv'),
rRule('data-big.csv', 'process-c.R', 'output-big-c.csv'))

Examples with template character vectors:

expandTemplate('data-$[MAJOR].$[MINOR].csv',
c(MAJOR=3, MINOR=1))

returns: c('data-3.1.csv')

expandTemplate('data-$[MAJOR].$[MINOR].csv',
expand.grid(MAJOR=c(3:4), MINOR=c(0:2)))

returns: c('data-3.0.csv', 'data-4.0.csv',
'data-3.1.csv', 'data-4.1.csv',
'data-3.2.csv', 'data-4.2.csv')
getParam Wrapper around the params global variable
Description

Returns an element of the global params variable that is normally used to send parameters to a
script from the Makefile generated by rmake. Script parameters may be defined with the params
argument of the rRule() or markdownRule () functions.

Usage

getParam(name, default = NA)

Arguments
name Name of the parameter
default Default value to be returned if the params global variable does not exist, which
typically occurs if the script is executed outside of the Makefile.
Value

The function returns an element of the given name from the params variable that is created inside the
Makefile recipe. If the params global variable does not exist (the script is likely being executed
directly, i.e., not from the Makefile generated by rmake), the default value is returned and a
warning is generated. If the params global variable exists but it is not a list or the name element
does not exist in it, an error is thrown.

Author(s)

Michal Burda

hasGnuMake 7

See Also

rRule(), markdownRule ()

Examples

task <- getParam('task', 'default')

hasGnuMake Check if GNU Make is available via the "'make’ command

Description
Function checks if GNU Make is installed and available in the system PATH via the *make’ com-

mand. It also verifies that the version of GNU Make is at least the minimum required version needed
by the package, which is currently set to 3.82.

Usage

hasGnuMake ()

Value

Logical value indicating if GNU Make is available

Author(s)

Michal Burda

Examples

if (hasGnuMake()) {
message("GNU Make is available")

}

8 inShell

inShell Convert R code to a character vector of shell commands evaluating
the given R code.

Description

The function takes R commands, deparses them, substitutes existing variables, and converts every-
thing to character strings, from which a shell command is created that sends the given R code to the
R interpreter. The function is used internally to print the commands of R rules into the Makefile.

Usage

inShell(...)

Arguments

R commands to be converted

Value

A character vector of shell commands that send the given R code by pipe to the R interpreter

Author(s)

Michal Burda

See Also

rRule(), markdownRule()

Examples

inShell ({
x <=1
y <=2
print(x+y)
»

is.rule 9

is.rule Check if the argument is a valid rule object.

Description

Function tests whether x is a valid rule object, i.e., whether it is a list and inherits from the
rmake.rule S3 class. Instances of rule represent an atomic building unit, i.e., a command that
must be executed, which optionally depends on some files or other rules — see rule() for more
details.

Usage

is.rule(x)

Arguments

X An argument to be tested

Value

TRUE if x is a valid rule object and FALSE otherwise.

Author(s)

Michal Burda

See Also

rule(), makefile(), rRule(), markdownRule(), offlineRule()

knitrRule Rule for building text documents using the knitr package

Description

This rule executes knitr to create a text file, as described in knitr: :knit().

Usage

knitrRule(target, script, depends = NULL, params = list(), task = "all")

10

Arguments

target
script
depends
params

task

Details

knitrRule

Name of the output file to be created

Name of the RNW file to be rendered

A vector of file names that the markdown script depends on, or NULL.

A list of R values that become available within the script in a params variable.

A character vector of parent task names. The mechanism of tasks allows group-
ing rules. Anything different from 'all' will cause the creation of a new task
depending on the given rule. Executing make taskname will then force building
this rule.

This rule executes the following command in a separate R process: library(knitr); params <- params; knitr

That is, the parameters given in the params argument are stored in the global variable and then the
script is processed with knitr. Note that the re-generation of the Makefile with any change to
params will not cause the re-execution of the recipe unless other script dependencies change.

Issuing make clean from the shell causes removal of all files specified in the target parameter.

Value

Instance of S3 class rmake.rule

Author(s)

Michal Burda

See Also

markdownRule(), rule(), makefile(), rRule()

Examples

r <- knitrRule(target='report.tex',

script='report.Rnw',
depends=c('datal.csv', 'data2.csv'))

generate the content of a makefile (as character vector)
makefile(list(r))

generate to file
tmp <- tempdir()
makefile(list(r), file.path(tmp, "Makefile"))

c:knit(sc

make 11

make Run make in the system

Description

This function executes the make command to rebuild all dependencies according to the Makefile
generated by makefile().

Usage
make(..., .stdout = "", .stderr = "", .stdin = "")
Arguments
Command-line arguments passed to the make command (see ?make in your shell
for details)
.stdout Where to direct standard output; see base: : system2().
.stderr Where to direct standard error; see base: :system2().
.stdin Where to get standard input; see base: : system2()
Value

Exit status of the command; see base: : system2() for details.

Author(s)

Michal Burda

See Also

makefile(), rmakeSkeleton()

Examples

Not run:
make () # make all
make('clean') # make the 'clean' task
make('-j', 4) # make with 4 processes in parallel

End(Not run)

12 makefile

makefile Generate Makefile from a given list of rules (job).

Description

In the (GNU) make jargon, a rule is a sequence of commands to build a result. In this package, a
rule should be understood similarly: It is a command or a sequence of commands that optionally
produces some files and depends on some other files (such as data files or scripts) or other rules.
Moreover, a rule contains a command for cleanup, i.e., for removal of generated files.

Usage

makefile(
job = list(),
fileName = NULL,
makeScript = "Makefile.R",

vars = NULL,
all = TRUE,

tasks = TRUE,
clean = TRUE,

makefile = TRUE,
depends = NULL

)
Arguments

job A list of rules (i.e., instances of the S3 class rmake.rule - see rule())

fileName A file to write to. If NULL, the result is returned as a character vector instead of
writing to a file.

makeScript The name of the file that calls this function (used to generate the makefile rule)

vars A named character vector of shell variables that will be declared in the resulting
Makefile (in addition to [defaultVars])

all TRUE if the all rule should be automatically created and added: the created all
rule has dependencies on all the other rules, which causes everything to be built
if make all is executed in the shell’s command line.

tasks TRUE if "task" rules should be automatically created and added — see rule() for
more details.

clean TRUE if the clean rule should be automatically created and added

makefile TRUE if the Makefile rule should be automatically created and added: this rule

ensures that any change in the R script that generates the Makefile (i.e., that
calls makefile()) triggers the re-generation of the Makefile at the beginning of
any build.

depends A character vector of file names that the makefile generating script depends on

markdownRule 13

Details

The makefile() function takes a list of rules (see rule()) and generates a Makefile from them.
Additionally, all and clean rules are optionally generated too, which can be executed from the
shell by issuing the make all or make clean command, respectively, to build everything or erase
all generated files.

If there is a need to group some rules together, it can be done either via dependencies or by using
the task mechanism. Each rule may be assigned one or more tasks (see task in rule()). Each
task is then created as a standalone rule depending on the assigned rules. That way, executing
make task_name will build all rules with the assigned task task_name. By default, all rules are
assigned to task all, which allows make all to build everything.

Value
If fileName is NULL, the function returns a character vector with the contents of the Makefile.
Otherwise, the content is written to the given fileName.

Author(s)
Michal Burda

See Also

rule(), rmakeSkeleton()

Examples

create some jobs

job <- list(
rRule('dataset.rds', 'preprocess.R', 'dataset.csv'),
markdownRule('report.pdf', 'report.Rmd', 'dataset.rds'),
markdownRule('details.pdf', 'details.Rmd', 'dataset.rds'))

generate Makefile (output as a character vector)
makefile(job)

generate to file
tmp <- tempdir()
makefile(job, file.path(tmp, "Makefile"))

markdownRule Rule for building text documents from Markdown files

Description

This rule executes Markdown rendering to create text files in various supported formats such as
PDF, DOCX, etc.

14 markdownRule

Usage

markdownRule(target, script, depends = NULL, params = list(), task = "all")

Arguments
target Name of the output file to be created
script Name of the markdown file to be rendered
depends A vector of file names that the markdown script depends on, or NULL.
params A list of R values that become available within the script in a params variable.
task A character vector of parent task names. The mechanism of tasks allows group-
ing rules. Anything different from 'all' will cause the creation of a new task
depending on the given rule. Executing make taskname will then force building
this rule.
Details

This rule executes the following command in a separate R process: params <- params; rmarkdown

That is, the parameters given in the params argument are stored in the global variable and then the
script is rendered with rmarkdown. Note that the re-generation of the Makefile with any change
to params will not cause the re-execution of the recipe unless other script dependencies change.

Issuing make clean from the shell causes removal of all files specified in the target parameter.

Value

Instance of S3 class rmake. rule

Author(s)
Michal Burda

See Also
rule(), makefile(), rRule()

Examples

r <- markdownRule(target="report.pdf',
script="report.Rmd"',
depends=c('datal.csv', 'data2.csv'))

generate the content of a makefile (as character vector)
makefile(list(r))

generate to file
tmp <- tempdir()
makefile(list(r), file.path(tmp, "Makefile"))

::render(script, outg

offlineRule 15

offlineRule Rule for requesting manual user action

Description

Instead of building the target, this rule simply issues the given error message. This rule is useful for
cases where the target target depends on depends but must be updated by some manual process.
So if target is older than any of its dependencies, make will throw an error until the user manually
updates the target.

Usage
offlineRule(target, message, depends = NULL, task = "all")

Arguments
target A character vector of target file names of the manual (offline) build command
message An error message to be issued if targets are older than dependencies in depends
depends A character vector of file names the targets depend on
task A character vector of parent task names. The mechanism of tasks allows group-
ing rules. Anything different from 'all' will cause the creation of a new task
depending on the given rule. Executing make taskname will then force building
this rule.
Value

Instance of S3 class rmake.rule

Author(s)
Michal Burda

See Also
rule(), makefile()

Examples

r <- offlineRule(target='offlinedata.csv',
message='Please re-generate manually offlinedata.csv',
depends=c('sourcel.csv', 'source2.csv'))

generate the content of a makefile (as character vector)
makefile(list(r))

generate to file
tmp <- tempdir()
makefile(list(r), file.path(tmp, "Makefile"))

16 prerequisites

prerequisites Return a given set of properties of all rules in a list

Description

targets() returns a character vector of all unique values of target properties, prerequisites()
returns depends and script properties, and tasks() returns task properties of the given rule()
or list of rules.

Usage

prerequisites(x)
targets(x)
tasks(x)

terminals(x)

Arguments

X An instance of the rmake. rule class or a list of such instances

Details

terminals() returns only such targets that are not prerequisites to any other rule.

Value

A character vector of unique values of the selected property obtained from all rules in x

Author(s)
Michal Burda

See Also
rule()

Examples

job <- 'data.csv' %>>%
rRule('process.R', task='basic') %>>%
'data.rds' %>>%
markdownRule('report.Rnw', task='basic') %>>%
'report.pdf’

prerequisites(job) # returns c('process.R', data.csv', 'report.Rnw', 'data.rds')
targets(job) # returns c('data.rds', 'report.pdf')

replaceSuffix 17

tasks(job) # returns 'basic'
replaceSuffix Replace the suffix of a given file name with a new extension (suffix)
Description

This helper function takes a file name fileName, removes its extension (suffix), and adds a new
extension newSuffix.

Usage

replaceSuffix(fileName, newSuffix)

Arguments

fileName A character vector with original filenames

newSuffix A new extension to replace old extensions in file names fileName
Value

A character vector with new file names with old extensions replaced with newSuffix

Author(s)
Michal Burda

Examples

replaceSuffix('filename.Rmd', '.pdf"') # 'filename.pdf"
replaceSuffix(c('a.x', 'b.y', 'c.z'), '.csv') # 'a.csv', 'b.csv', 'c.csv'

replaceVariables Replace rmake variables in a character vector

Description

This function searches for all rmake variables in the given vector x and replaces them with their val-
ues that are defined in the vars argument. An rmake variable is identified by the $[VARIABLE_NAME]
string.

Usage

replaceVariables(x, vars)

18 rmakeSkeleton

Arguments
X A character vector where to replace the rmake variables
vars A named character vector with variable definitions (names are variable names,
values are variable values)
Value

A character vector with rmake variables replaced with their values

Author(s)
Michal Burda

See Also

expandTemplate()

Examples

vars <- c(SIZE='small', METHOD='abc')
replaceVariables('result-$[SIZE]-$[METHOD].csv', vars) # returns 'result-small-abc.csv'

rmakeSkeleton Prepare an existing project for building with rmake.

Description

This function creates a Makefile.R with an empty rmake project and generates a basic Makefile
from it.

Usage

rmakeSkeleton(path)

Arguments

path Path to the target directory where to create files. Use "." for the current directory.

Author(s)
Michal Burda

See Also
makefile(), rule()

rRule 19

Examples

creates/overrides Makefile.R and Makefile in a temporary directory
rmakeSkeleton(path=tempdir())

rRule Rule for running R scripts

Description

This rule executes R scripts to create various file outputs.

Usage

rRule(
target,
script,
depends = NULL,
params = list(),
task = "all”,
preBuild = NULL,
postBuild = NULL

)
Arguments
target Name of output files to be created
script Name of the R script to be executed
depends A vector of file names that the R script depends on, or NULL.
params A list of R values that become available within the script in a params variable.
task A character vector of parent task names. The mechanism of tasks allows group-
ing rules. Anything different from 'all' will cause the creation of a new task
depending on the given rule. Executing make taskname will then force building
this rule.
preBuild A character vector of shell commands to be executed before building the target
postBuild A character vector of shell commands to be executed after building the target
Details

In detail, this rule executes the following command in a separate R process: params <- params; source(script)

That is, the parameters given in the params argument are stored in the global variable and then the
script is sourced. Note that the re-generation of the Makefile with any change to params will not
cause the re-execution of the recipe unless other script dependencies change.

Issuing make clean from the shell causes removal of all files specified in the target parameter.

20 rule

Value

Instance of S3 class rmake.rule

Author(s)

Michal Burda

See Also

rule(), makefile(), markdownRule()

Examples

r <- rRule(target='cleandata.csv',
script='clean.R',
depends=c('datal.csv', 'data2.csv'))

generate the content of a makefile (as character vector)
makefile(list(r))

generate to file
tmp <- tempdir()
makefile(list(r), file.path(tmp, "Makefile"))

rule General creator of an instance of the S3 rmake.rule class

Description

A rule is an atomic element of the build process. It defines a set of target file names to be built
with a given build command from a given set of depends files that the targets depend on, and
which can be removed by a given clean command.

Usage
rule(

target,
depends = NULL,
build = NULL,
clean = NULL,
task = "all”,
phony = FALSE,
type = "

rule

Arguments

target

depends
build
clean

task

phony

type

Details

21

A character vector of target file names that are created by the given build com-
mand

A character vector of file names the build command depends on
A shell command that runs the build of the given target
A shell command that erases all files produced by the build command

A character vector of parent task names. The mechanism of tasks allows group-
ing rules. Anything different from 'all' will cause the creation of a new task
depending on the given rule. Executing make taskname will then force building
this rule.

Whether the rule has a PHONY (i.e., non-file) target. A rule should be marked
with phony if the target is not a file name that would be generated by the build
commands. E.g., all or clean are phony targets. Also, all targets representing
tasks (see task above) are phony.

A string representing a type of rule used e.g. when printing a rule in an easily
readable format. For instance, rRule () uses R, markdownRule () uses markdown,
etc.

If there is a need to group some rules together, one can assign them the same task identifier in
the task argument. Each rule may be assigned one or more tasks. Tasks may then be built by
executing make task_name on the command line, which forces rebuilding of all rules assigned
to task 'task_name'. By default, all rules are assigned to task all, which causes the make all
command to build everything.

Value

Instance of S3 class rmake.rule

Author(s)

Michal Burda

See Also

makefile(), inShell()

Examples

r <- rule(target="'something.abc"',

depends=c('file.a', 'file.b', 'file.c'),
build="'myCompiler file.a file.b file.c -o something.abc',
clean="'$(RM) something.abc')

generate the content of a makefile (as character vector)

makefile(list(r))

22 sanitizeSpaces

generate to file
tmp <- tempdir()
makefile(list(r), file.path(tmp, "Makefile"))

sanitizePath Sanitize a file path for the current operating system

Description

This function replaces forward slashes with backslashes on Windows systems, and leaves the path
unchanged on Unix-like systems.

Usage

sanitizePath(path)
Arguments

path A character string representing the file path to be sanitized.
Value

A sanitized file path suitable for the current operating system.

Author(s)
Michal Burda

sanitizeSpaces Escape spaces in a string as needed in file names used in Makefile files

Description

Escape spaces in a string as needed in file names used in Makefile files

Usage

sanitizeSpaces(x)
Arguments

X A character vector to be sanitized
Value

A character vector with spaces replaced by \

Author(s)
Michal Burda

subdirRule 23

subdirRule Rule for running the make process in a subdirectory

Description

The subdirectory in the target argument is assumed to contain its own Makefile. This rule exe-
cutes make <targetTask> in this subdirectory (where <targetTask> is the value of the targetTask
argument).

Usage

subdirRule(target, depends = NULL, task = "all", targetTask = "all")

Arguments
target Name of the subdirectory
depends Must be NULL
task A character vector of parent task names. The mechanism of tasks allows group-
ing rules. Anything different from 'all' will cause the creation of a new task
depending on the given rule. Executing make taskname will then force building
this rule.
targetTask What task to execute in the subdirectory.
Value

An instance of S3 class rmake.rule

Author(s)
Michal Burda

See Also
rule(), makefile()

visualizeRules Visualize dependencies defined by a rule or a list of rules

Description

Visualize dependencies defined by a rule or a list of rules

Usage

visualizeRules(x, legend = TRUE)

24 %>>%

Arguments
X An instance of the S3 rmake. rule class or a list of such objects
legend Whether to draw a legend

Author(s)

Michal Burda

See Also

makefile(), rule()

Examples

job <- c('datal.csv', 'data2.csv') %>>%
rRule('process.R') %>>%
'data.rds' %>>%
markdownRule('report.Rmd') %>>%
'report.pdf’

Not run:
visualizeRules(job)

End(Not run)

%>>% A pipe operator for rmake rules

Description

This pipe operator simplifies the definition of multiple rmake rules that constitute a chain, that is, if
a first rule depends on the results of a second rule, which depends on the results of a third rule and
SO on.

Usage

lhs %>>% rhs

Arguments

lhs A dependency file name or a call to a function that creates a rmake. rule.

rhs A target file or a call to a function that creates a rmake.rule.

%>>% 25

Details

The format of proper usage is as follows: 'inFile' %>>% rule() %>>% 'outFile', which is equiv-
alent to the call rule(depends="inFile', target="outFile'). rule must be a function that ac-
cepts the named parameters depends and target and creates the rmake. rule object (see rule(),
rRule(), markdownRule(), etc.). inFile and outFile are file names.

Multiple rules may be pipe-lined as follows: 'inFile' %>>% rRule('script1.R") %>>% 'medFile’
%>>% rRule('script2.R") %>>% 'outFile', which is equivalent to a job of two rules created
with: rRule(script="script1.R', depends='inFile', target='medFile') and rRule(script="'script2.R",
depends="'medFile', target="'outFile').
Value

A list of instances of the rmake. rule class.

Author(s)
Michal Burda (%>>% operator is derived from the code of the magrittr package by Stefan Milton
Bache and Hadley Wickham)

See Also
rule(), makefile()

Examples

jobl <- 'data.csv' %>>%
rRule('preprocess.R') %>>%
'data.rds' %>>%
markdownRule('report.rnw') %>>%
'report.pdf’

is equivalent to

job2 <- list(rRule(target='data.rds', script='preprocess.R', depends='data.csv'),
markdownRule(target="report.pdf', script='report.rnw', depends='data.rds'))

Index

x datasets
defaultVars, 3
%>>%, 24

base: :system2(), 11
copyRule, 2

defaultVars, 3
depRule, 4

expandTemplate, 4
expandTemplate(), I8

getParam, 6
getters (prerequisites), 16

hasGnuMake, 7

inShell, 8
inShell(), 21
is.rule, 9

knitr::knit(), 9
knitrRule, 9

make, 11

makefile, 12
makefile(), 3, 4, 9-15, 18, 20, 21, 23-25
markdownRule, 13
markdownRule(), 6-10, 20, 21, 25

offlineRule, 15
offlineRule(), 9

prerequisites, 16

replaceSuffix, 17
replaceVariables, 17
replaceVariables(), 5
rmake.rule (rule), 20
rmakeSkeleton, 18

26

rmakeSkeleton(), /1, 13

rRule, 19

rRule(), 6-10, 14, 21, 25

rule, 20

rule(), 3-5, 9, 10, 12-16, 18, 20, 23-25

sanitizePath, 22
sanitizeSpaces, 22
subdirRule, 23

targets (prerequisites), 16
tasks (prerequisites), 16
terminals (prerequisites), 16

visualizeRules, 23

	copyRule
	defaultVars
	depRule
	expandTemplate
	getParam
	hasGnuMake
	inShell
	is.rule
	knitrRule
	make
	makefile
	markdownRule
	offlineRule
	prerequisites
	replaceSuffix
	replaceVariables
	rmakeSkeleton
	rRule
	rule
	sanitizePath
	sanitizeSpaces
	subdirRule
	visualizeRules
	>>
	Index

