

Package ‘rtpcr’

January 8, 2026

Type Package

Title qPCR Data Analysis

Version 2.1.1

Description Tools for qPCR data analysis using Delta Ct and Delta Delta Ct methods, including t-tests, ANOVA, ANCOVA, repeated-measures models, and publication-ready visualizations. The package supports multiple target, and multiple reference genes, and uses a calculation framework adopted from Ganger et al. (2017) <[doi:10.1186/s12859-017-1949-5](https://doi.org/10.1186/s12859-017-1949-5)> and Taylor et al. (2019) <[doi:10.1016/j.tibtech.2018.12.002](https://doi.org/10.1016/j.tibtech.2018.12.002)>, covering both the Livak and Pfaffl methods.

URL <https://mirzaghdaderi.github.io/rtpcr/>,
<https://github.com/mirzaghdaderi/rtpcr>

License GPL-3

Imports multcomp, ggplot2, lmerTest, purrr, reshape2, tidyverse, dplyr, grid, emmeans

Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

NeedsCompilation no

Depends R (>= 3.5.0)

Suggests knitr, rmarkdown, multcompView

VignetteBuilder knitr

Author Ghader Mirzaghdaderi [aut, cre, cph]

Maintainer Ghader Mirzaghdaderi <gh.mirzaghdaderi@uok.ac.ir>

Repository CRAN

Date/Publication 2026-01-08 05:20:07 UTC

Contents

ANOVA_DCt	2
ANOVA_DDCt	3

efficiency	6
Means_DDCt	7
meanTech	8
multiplot	9
plotFactor	11
REPEATED_DDCt	13
TTEST_DDCt	15

Index **18**

ANOVA_DCT	<i>Delta Ct ANOVA analysis</i>
-----------	--------------------------------

Description

Performs ΔC_T analysis for target genes by applying ΔC_T method to each target gene. Target genes must be provided as paired efficiency (E) and Ct columns followed by the the reference gene(s) columns. See "Input data structure and column arrangement" in vignettes for details about data structure.

Usage

```
ANOVA_DCT(
  x,
  numFactors,
  numberRefGenes,
  block,
  alpha = 0.05,
  p.adj = "none",
  analyseAllTarget = TRUE
)
```

Arguments

x	A data frame containing experimental design columns, target gene E/Ct column pairs, and reference gene E/Ct column pairs. Reference gene columns must be located at the end of the data frame.
numFactors	Integer. Number of experimental factor columns (excluding rep and optional block).
numberRefGenes	Integer. Number of reference genes. Each reference gene must be represented by two columns (E and Ct).
block	Character or NULL. Name of the blocking factor column. When a qPCR experiment is done in multiple qPCR plates, variation resulting from the plates may interfere with the actual amount of gene expression. One solution is to conduct each plate as a randomized block so that at least one replicate of each treatment and control is present on a plate. Block effect is usually considered as random and its interaction with any main effect is not considered.

alpha statistical level for comparisons
p.adj Method for p-value adjustment. See [p.adjust](#).
analyseAllTarget Logical or character. If TRUE (default), all detected target genes are analysed. Alternatively, a character vector specifying the names (names of their Efficiency columns) of target genes to be analysed.

Value

An object containing expression table, lm models, ANOVA tables, residuals, raw data and ANOVA table for each gene.

ΔC_T combined expression table object\$combinedResults
ANOVA table for treatments object\$perGene\$gene_name\$ANOVA_T
ANOVA table factorial object\$perGene\$gene_name\$ANOVA_factorial
lm ANOVA for treatments object\$perGene\$gene_name\$lm_T
lm ANOVA factorial object\$perGene\$gene_name\$lm_factorial
Residuals resid(object\$perGene\$gene_name\$lm_T)

Examples

```

data <- read.csv(system.file("extdata", "data_3factor.csv", package = "rtpcr"))
res <- ANOVA_DDCT(
  data,
  numOffFactors = 3,
  numberOfrefGenes = 1,
  block = NULL)
  
```

ANOVA_DDCT

Delta Delta Ct ANOVA analysis

Description

Apply $\Delta\Delta C_T$ analysis to each target gene in the input data frame. Target and reference genes must be provided as paired efficiency (E) and Ct columns located after the experimental design columns. columns.

Usage

```

ANOVA_DDCT(
  x,
  numOffFactors,
  numberOfrefGenes,
  mainFactor.column,
  block,
  analysisType = "anova",
  
```

```

  mainFactor.level.order = NULL,
  p.adj = "none",
  plot = FALSE,
  plotType = "RE",
  analyseAllTarget = TRUE
)

```

Arguments

<code>x</code>	A data frame containing experimental design columns, target gene E/Ct column pairs, and reference gene E/Ct column pairs. Reference gene columns must be located at the end of the data frame.
<code>numOfFactors</code>	Integer. Number of experimental factor columns (excluding <code>rep</code> and optional <code>block</code>).
<code>numberOfrefGenes</code>	Integer. Number of reference genes. Each reference gene must be represented by two columns (E and Ct).
<code>mainFactor.column</code>	Column index or name of the factor for which relative expression is calculated. When <code>analysisType = "ancova"</code> , remaining factors are treated as covariates.
<code>block</code>	Character or NULL. Name of the blocking factor column. When a qPCR experiment is done in multiple qPCR plates, variation resulting from the plates may interfere with the actual amount of gene expression. One solution is to conduct each plate as a randomized block so that at least one replicate of each treatment and control is present on a plate. Block effect is usually considered as random and its interaction with any main effect is not considered.
<code>analysisType</code>	Character string specifying the analysis type; one of "anova" (default) or "ancova".
<code>mainFactor.level.order</code>	Optional character vector specifying the order of levels for the main factor. If NULL, the first observed level is used as the calibrator. If provided, the first element of the vector is used as the calibrator level.
<code>p.adj</code>	Method for p-value adjustment. See p.adjust .
<code>plot</code>	Logical; if FALSE, per gene-plots are not generated.
<code>plotType</code>	Plot scale to use: "RE" for relative expression or "log2FC" for log2 fold change.
<code>analyseAllTarget</code>	Logical or character. If TRUE (default), all target genes are analysed. Alternatively, a character vector specifying the names (names of their Efficiency columns) of target genes to be analysed.

Details

$\Delta\Delta C_T$ analysis is performed for the `mainFactor.column` based on a full model factorial experiment by default. However, if `ancova`, the `analysisType` argument, analysis of covariance is performed for the levels of the `mainFactor.column` and the other factors are treated as covariates. If the interaction between the main factor and the covariate is significant, ANCOVA is not appropriate. ANCOVA is basically used when a factor is affected by uncontrolled quantitative covariate(s). For

example, suppose that wDCt of a target gene in a plant is affected by temperature. The gene may also be affected by drought. Since we already know that temperature affects the target gene, we are interested to know if the gene expression is also altered by the drought levels. We can design an experiment to understand the gene behavior at both temperature and drought levels at the same time. The drought is another factor (the covariate) that may affect the expression of our gene under the levels of the first factor i.e. temperature. The data of such an experiment can be analyzed by ANCOVA or using ANOVA based on a factorial experiment. ANCOVA is done even there is only one factor (without covariate or factor variable).

Value

An object containing expression table, lm models, residuals, raw data and ANOVA table for each gene.

```
ΔΔCT combined expression table object$combinedFoldChange
ANOVA table object$perGene$gene_name$ANOVA_table
lm ANOVA object$perGene$gene_name$lm_ANOVA
lm ANCOVA object$perGene$gene_name$lm_ANCOVA
Residuals resid(object$perGene$gene_name$lm_ANOVA)
log2FC_Plot object$perGene$gene_name$log2FC_Plot
RE_Plot object$perGene$gene_name$RE_Plot
```

Examples

```
data1 <- read.csv(system.file("extdata", "data_2factorBlock3ref.csv", package = "rtpcr"))
ANOVA_DDCt(x = data1,
            numOffFactors = 2,
            numberOffrefGenes = 2,
            block = "block",
            mainFactor.column = 2,
            plot = FALSE,
            p.adj = "none")

data2 <- read.csv(system.file("extdata", "data_1factor_one_ref.csv", package = "rtpcr"))
ANOVA_DDCt(
            x = data2,
            numOffFactors = 1,
            numberOffrefGenes = 1,
            block = NULL,
            mainFactor.column = 1,
            plot = FALSE,
            p.adj = "none")
```

efficiency*Amplification efficiency statistics and standard curves*

Description

The **efficiency** function calculates amplification efficiency (E) and related statistics, including slope and coefficient of determination (R^2), and generates standard curves for qPCR assays.

Usage

```
efficiency(df)
```

Arguments

df A data frame containing dilution series and corresponding Ct values. The first column should represent dilution levels, and the remaining columns should contain Ct values for different genes.

Details

Amplification efficiency is estimated from standard curves generated by regressing Ct values against the logarithm of template dilution. For each gene, the function reports the slope of the standard curve, amplification efficiency (E), and R^2 as a measure of goodness of fit. The function also provides graphical visualization of the standard curves.

Value

A list with the following components:

efficiency A data frame containing slope, amplification efficiency (E), and R^2 statistics for each gene.

Slope_compare A table comparing slopes between genes.

plot A ggplot2 object showing standard curves for all genes.

Author(s)

Ghader Mirzaghdari

Examples

```
# Load example efficiency data
data <- read.csv(system.file("extdata", "data_efficiency.csv", package = "rtpcr"))

# Calculate amplification efficiency and generate standard curves
efficiency(data)
```

Means_DDCT	<i>Delta Ct or Delta Delta Ct pairwise comparisons using a fitted model</i>
------------	---

Description

Performs relative expression (fold change) analysis based on the ΔC_T or $\Delta\Delta C_T$ methods using a fitted model object produced by ANOVA_DDCT(), ANOVA_DDCT() or REPEATED_DDCT().

Usage

```
Means_DDCT(model, specs, p.adj = "none")
```

Arguments

model	A fitted model object (typically an <code>lmer</code> or <code>lm</code> object) created by ANOVA_DDCT(), ANOVA_DDCT() or REPEATED_DDCT().
specs	A character string or character vector specifying the predictors or combinations of predictors over which relative expression values are desired. This argument follows the specification syntax used by <code>emmeans::emmeans()</code> (e.g., "Factor", "Factor1 Factor2").
p.adj	Character string specifying the method for adjusting p-values. See <code>p.adjust</code> for available options.

Details

The `Means_DDCT` function performs pairwise comparisons of relative expression values for all combinations using estimated marginal means derived from a fitted model. For ANOVA models, relative expression values can be obtained for main effects, interactions, and sliced (simple) effects. For ANCOVA models returned by the `rtpcr` package, only simple effects are supported.

Internally, this function relies on the `emmeans` package to compute marginal means and contrasts, which are then back-transformed to fold change values using the $\Delta\Delta C_T$ framework.

Value

A data frame containing estimated relative expression values, confidence intervals, p-values, and significance levels derived from the fitted model.

Author(s)

Ghader Mirzaghdari

Examples

```

# Obtain a fitted model from ANOVA_DDCT
res <- ANOVA_DDCT(
  data_3factor,
  numOffFactors = 3,
  numberOfrefGenes = 1,
  mainFactor.column = 1,
  block = NULL)

# Relative expression values for Type main effect
Means_DDCT(res$perGene$E_P0$lm_ANOVA, specs = "Type")

# Relative expression values for Concentration main effect
Means_DDCT(res$perGene$E_P0$lm_ANOVA, specs = "Conc")

# Relative expression values for Concentration sliced by Type
Means_DDCT(res$perGene$E_P0$lm_ANOVA, specs = "Conc | Type")

# Relative expression values for Concentration sliced by Type and SA
Means_DDCT(res$perGene$E_P0$lm_ANOVA, specs = "Conc | Type * SA")



---


data <- read.csv(system.file("extdata", "data_3factor.csv", package = "rtpcr"))
res <- ANOVA_DCt(
  data,
  numOffFactors = 3,
  numberOfrefGenes = 1,
  block = NULL)

# lm <- res$perGene$PO$lm_factorial
# Means_DDCT(lm, specs = "Type * Conc * SA", p.adj = "none")

```

meanTech

Calculate mean of technical replicates

Description

Computes the arithmetic mean of technical replicates for each sample or group. This is often performed before ANOVA or other statistical analyses to simplify comparisons between experimental groups.

Usage

```
meanTech(x, groups)
```

Arguments

- | | |
|--------|---|
| x | A raw data frame containing technical replicates. |
| groups | An integer vector or character vector specifying the column(s) to group by before calculating the mean of technical replicates. |

Details

The `meanTech` function calculates the mean of technical replicates based on one or more grouping columns. This reduces the dataset to a single representative value per group, facilitating downstream analysis such as fold change calculation or ANOVA.

Value

A data frame with the mean of technical replicates for each group.

Author(s)

Ghader Mirzaghdari

Examples

```
# Example input data frame with technical replicates
data1 <- read.csv(system.file("extdata", "data_withTechRep.csv", package = "rtpcr"))

# Calculate mean of technical replicates using first four columns as groups
meanTech(data1, groups = 1:4)

# Another example using different dataset and grouping columns
data2 <- read.csv(system.file("extdata", "Lee_etal2020qPCR.csv", package = "rtpcr"))
meanTech(data2, groups = 1:3)
```

multiplot

Combine multiple ggplot objects into a single layout

Description

The `multiplot` function arranges multiple `ggplot2` objects into a single plotting layout with a specified number of columns.

Usage

```
multiplot(..., cols = 1)
```

Arguments

- | | |
|------|---|
| ... | One or more <code>ggplot2</code> objects. |
| cols | Integer specifying the number of columns in the layout. |

Details

Multiple `ggplot2` objects can be provided either as separate arguments via `...`. The function uses the `grid` package to control the layout.

Value

A grid object displaying multiple plots arranged in the specified layout.

Author(s)

Pedro J. (adapted from <https://gist.github.com/pedroj/ffe89c67282f82c1813d>)

Examples

```
# Example using output from TTEST_DDCT
data1 <- read.csv(system.file("extdata", "data_1factor_one_ref.csv", package = "rtpcr"))
a <- TTEST_DDCT(
  data1,
  numberOfrefGenes = 1,
  plotType = "log2FC")
p1 <- a$plot

# Example using output from ANOVA_DCT
data2 <- read.csv(system.file("extdata", "data_1factor.csv", package = "rtpcr"))
out2 <- ANOVA_DCT(
  data2,
  numOfFactors = 1,
  numberOfrefGenes = 1,
  block = NULL)

df <- out2$combinedResults

p2 <- plotFactor(
  df,
  x_col = "SA",
  y_col = "RE",
  Lower.se_col = "Lower.se.RE",
  Upper.se_col = "Upper.se.RE",
  letters_col = "sig",
  letters_d = 0.1,
  col_width = 0.7,
  err_width = 0.15,
  fill_colors = "skyblue",
  alpha = 1,
  base_size = 16)

# Combine plots into a single layout
multiplot(p1, p2, cols = 2)

multiplot(p1, p2, cols = 1)
```

plotFactor	<i>Bar plot of gene expression for 1-, 2-, or 3-factor experiments</i>
------------	--

Description

Creates a bar plot of relative gene expression (fold change) values from 1-, 2-, or 3-factor experiments, including error bars and statistical significance annotations.

Usage

```
plotFactor(  
  data,  
  x_col,  
  y_col,  
  Lower.se_col,  
  Upper.se_col,  
  group_col = NULL,  
  facet_col = NULL,  
  letters_col = NULL,  
  letters_d = 0.2,  
  col_width = 0.8,  
  err_width = 0.15,  
  dodge_width = 0.8,  
  fill_colors = NULL,  
  alpha = 1,  
  base_size = 12,  
  legend_position = "right",  
  ...  
)
```

Arguments

data	Data frame containing expression results
x_col	Character. Column name for x-axis
y_col	Character. Column name for bar height
Lower.se_col	Character. Column name for lower SE
Upper.se_col	Character. Column name for upper SE
group_col	Character. Column name for grouping bars (optional)
facet_col	Character. Column name for faceting (optional)
letters_col	Character. Column name for significance letters (optional)
letters_d	Numeric. Vertical offset for letters (default 0.2)
col_width	Numeric. Width of bars (default 0.8)
err_width	Numeric. Width of error bars (default 0.15)
dodge_width	Numeric. Width of dodge for grouped bars (default 0.8)

```

  fill_colors      Optional vector of fill colors
  alpha            Numeric. Transparency of bars (default 1)
  base_size        Numeric. Base font size for theme (default 12)
  legend_position  Character or numeric vector. Legend position (default right)
  ...              Additional ggplot2 layer arguments

```

Value

ggplot2 plot object

Author(s)

Ghader Mirzaghdari

Examples

```

data <- read.csv(system.file("extdata", "data_2factorBlock.csv", package = "rtpcr"))
res <- ANOVA_DCt(data,
  numOffFactors = 2,
  block = "block",
  numberOfrefGenes = 1)

df <- res$combinedResults

p1 <- plotFactor(
  data = df,
  x_col = "factor2",
  y_col = "RE",
  group_col = "factor1",
  Lower.se_col = "Lower.se.RE",
  Upper.se_col = "Upper.se.RE",
  letters_col = "sig",
  letters_d = 0.2,
  fill_colors = c("aquamarine4", "gold2"),
  alpha = 1,
  col_width = 0.7,
  dodge_width = 0.7,
  base_size = 16,
  legend_position = c(0.2, 0.8))

p1

```

```

data <- read.csv(system.file("extdata", "data_3factor.csv", package = "rtpcr"))
#Perform analysis first
res <- ANOVA_DCt(
  data,
  numOffFactors = 3,
  numberOfrefGenes = 1,

```

```

block = NULL)

df <- res$combinedResults
df
# Generate three-factor bar plot
p <- plotFactor(
  df,
  x_col = "SA",
  y_col = "log2FC",
  group_col = "Type",
  facet_col = "Conc",
  Lower.se_col = "Lower.se.log2FC",
  Upper.se_col = "Upper.se.log2FC",
  letters_col = "sig",
  letters_d = 0.3,
  col_width = 0.7,
  dodge_width = 0.7,
  fill_colors = c("blue", "brown"),
  base_size = 14,
  alpha = 1,
  legend_position = c(0.1, 0.2))
p
library(ggplot2)
p + theme(
  panel.border = element_rect(color = "black", linewidth = 0.5))

```

REPEATED_DDCT

Delta Delta Ct ANOVA analysis on repeated measure data

Description

REPEATED_DDCT function performs $\Delta\Delta C_T$ method analysis of observations repeatedly taken over different time courses. Data may be obtained over time from a uni- or multi-factorial experiment. Target genes must be provided as paired efficiency (E) and Ct columns followed by the E/Ct column pairs of reference genes.

Usage

```

REPEATED_DDCT(
  x,
  numOfFactors,
  number0frefGenes,
  repeatedFactor,
  calibratorLevel,
  block,
  p.adj = "none",
  plot = FALSE,
  analyseAllTarget = TRUE
)

```

Arguments

x	input data frame in which the first column is <code>id</code> , followed by the factor column(s) which include at least <code>time</code> . The first level of <code>time</code> in data frame is used as calibrator or reference level. Additional factor(s) may also be present. Other columns are efficiency and <code>Ct</code> values of target and reference genes. In the <code>id</code> column, a unique number is assigned to each individual from which samples have been taken over time, for example see <code>data_repeated_measure_1</code> , all the three number 1 indicate one individual which has been sampled over three different time courses. See example data sets or refer vignettes, section "Input data structure" for details.
numOfFactors	Integer. Number of experimental factor columns (excluding optional <code>block</code>).
numberOfrefGenes	Integer. Number of reference genes. Each reference gene must be represented by two columns (<code>E</code> and <code>Ct</code>).
repeatedFactor	Character string specifying the factor for which fold changes are analysed (commonly "time").
calibratorLevel	A level of <code>repeatedFactor</code> to be used as the calibrator (reference level) which is the reference level or sample that all others are compared to. Examples are untreated or time 0.
block	Character or <code>NULL</code> . Name of the blocking factor column. When a qPCR experiment is done in multiple qPCR plates, variation resulting from the plates may interfere with the actual amount of gene expression. One solution is to conduct each plate as a randomized block so that at least one replicate of each treatment and control is present on a plate. Block effect is usually considered as random and its interaction with any main effect is not considered.
p.adj	Method for p-value adjustment. See <code>p.adjust</code> .
plot	Logical; if <code>FALSE</code> , plots are not produced.
analyseAllTarget	Logical or character. If <code>TRUE</code> (default), all detected target genes are analysed. Alternatively, a character vector specifying the names (names of their Efficiency columns) of target genes to be analysed.

Details

Column layout requirements for `x`:

- Target gene columns: `E/Ct` column pairs located between design and reference columns
- Reference gene columns: `E/Ct` column pairs located at the end

Value

An object containing expression table, lm models, residuals, raw data and ANOVA table for each gene.

$\Delta\Delta C_T$ **combined expression table** `object$Relative_Expression_table`

```

ANOVA table object$perGene$gene_name$ANOVA_table
lm ANOVA object$perGene$gene_name$lm
Residuals resid(object$perGene$gene_name$lm)
log2FC_Plot object$perGene$gene_name$log2FC_Plot
RE_Plot object$perGene$gene_name$RE_Plot

```

Examples

```

data1 <- read.csv(system.file("extdata", "data_repeated_measure_1.csv", package = "rtpcr"))
REPEATED_DDCT(
  data1,
  numOffFactors = 1,
  numberOffrefGenes = 1,
  repeatedFactor = "time",
  calibratorLevel = "1",
  block = NULL)

data2 <- read.csv(system.file("extdata", "data_repeated_measure_2.csv", package = "rtpcr"))
REPEATED_DDCT(
  data2,
  numOffFactors = 2,
  numberOffrefGenes = 1,
  repeatedFactor = "time",
  calibratorLevel = "1",
  block = NULL,
  p.adj = "none",
  plot = FALSE,
  analyseAllTarget = TRUE)

```

TTEST_DDCT

Delta Delta Ct method t-test analysis

Description

The TTEST_DDCT function performs fold change expression analysis based on the $\Delta\Delta C_T$ method using Student's t-test. It supports analysis of one or more target genes evaluated under two experimental conditions (e.g. control vs treatment).

Usage

```

TTEST_DDCT(
  x,
  numberOffrefGenes,
  Factor.level.order = NULL,
  paired = FALSE,

```

```

  var.equal = TRUE,
  p.adj = "none",
  order = "none",
  plotType = "RE"
)

```

Arguments

x	A data frame containing experimental conditions, biological replicates, and amplification efficiency and Ct values for target and reference genes. The number of biological replicates must be equal across genes. If this is not true, or there are NA values use ANODA_DDCT function for independent samples or REPEATED_DDCT for paired samples. See the package vignette for details on the required data structure.
numberOfrefGenes	Integer specifying the number of reference genes used for normalization.
Factor.level.order	Optional character vector specifying the order of factor levels. If NULL, the first level of the factor column is used as the calibrator.
paired	Logical; if TRUE, a paired t-test is performed.
var.equal	Logical; if TRUE, equal variances are assumed and a pooled variance estimate is used. Otherwise, Welch's t-test is applied.
p.adj	Method for p-value adjustment. One of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", or "none". See p.adjust .
order	Optional character vector specifying the order of genes in the output plot.
plotType	Plot scale to use: "RE" for relative expression or "log2FC" for log2 fold change.

Details

Relative expression values are computed using one or more reference genes for normalization. Both paired and unpaired experimental designs are supported.

Paired samples in quantitative PCR refer to measurements collected from the same individuals under two different conditions (e.g. before vs after treatment), whereas unpaired samples originate from different individuals in each condition. Paired designs allow within-individual comparisons and typically reduce inter-individual variability.

The function returns numerical summaries as well as bar plots based on either relative expression (RE) or log2 fold change (log2FC).

Value

A list with the following components:

Result Table containing RE values, log2FC, p-values, significance codes, confidence intervals, standard errors, and lower/upper SE limits.

RE_Plot Bar plot of relative expression values.

log2FC_Plot Bar plot of log2 fold change values.

Author(s)

Ghader Mirzaghdari

References

- Livak, K. J. and Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the Double Delta CT Method. *Methods*, 25(4), 402–408. doi:10.1006/meth.2001.1262
- Ganger, M. T., Dietz, G. D., and Ewing, S. J. (2017). A common base method for analysis of qPCR data and the application of simple blocking in qPCR experiments. *BMC Bioinformatics*, 18, 1–11.
- Yuan, J. S., Reed, A., Chen, F., and Stewart, N. (2006). Statistical Analysis of Real-Time PCR Data. *BMC Bioinformatics*, 7, 85.

Examples

```
# Example data structure
data1 <- read.csv(system.file("extdata", "data_1factor_one_ref.csv", package = "rtpcr"))

# Unpaired t-test
TTEST_DDCT(
  data1,
  paired = FALSE,
  var.equal = TRUE,
  numberOfrefGenes = 1)

# With amplification efficiencies
data2 <- read.csv(system.file("extdata", "data_1factor_one_ref_Eff.csv", package = "rtpcr"))

TTEST_DDCT(
  data2,
  paired = FALSE,
  var.equal = TRUE,
  numberOfrefGenes = 1)

# Two reference genes
data3 <- read.csv(system.file("extdata", "data_1factor_Two_ref.csv", package = "rtpcr"))
TTEST_DDCT(
  data3,
  numberOfrefGenes = 2,
  var.equal = TRUE,
  p.adj = "BH")
```

Index

ANOVA_DCT, [2](#)
ANOVA_DDCT, [3](#)
efficiency, [6](#)
Means_DDCT, [7](#)
meanTech, [8](#)
multiplot, [9](#)
p.adjust, [3, 4, 7, 14, 16](#)
plotFactor, [11](#)
REPEATED_DDCT, [13](#)
TTEST_DDCT, [15](#)