
Identifying clones from high-throughput B cell repertoire sequencing
data

Nima Nouri, Jason Vander Heiden, Edel Aron, and Susanna Marquez

2026-01-08

Contents
Introduction . 1
Example data . 1
Identifying clones by sequence identity . 2
Identifying clones by hierarchical clustering . 3
Identifying clones by spectral clustering . 5

Introduction

A key step to higher-level quantitative analysis of Adaptive Immune Receptor Repertoire sequencing
(AIRR-Seq) data is the identification of B cell clones (sequences derived from cells descended from
a common ancestor) using computationally-driven approaches. Accurate identification of clonal
relationships is critical as these clonal groups form the fundamental basis for a wide range of
repertoire analyses, including diversity analysis, lineage reconstruction, and effector functionality.

scoper provides a computational framework for identification of B cell clones from AIRR-Seq data
among Ig (immunoglobulin, B cell receptor, BCR) sequences which share the same V gene, J gene
and junction length. It includes methods to infer clonal relationships using either a predefined
clustering threshold or an adaptive threshold.

Example data

A small example AIRR Rearrangement dataset is included in the scoper package. The dataset
consists of a subset of Ig sequencing data from an influenza vaccination study (Laserson and
Vigneault et al., PNAS, 2014). It includes sequences from multiple time-points before and after
the subject received an influenza vaccination. Identification of clones requires the following fields
(columns) to be present in the table:

• junction
• v_call
• j_call
• sequence_alignment
• germline_alignment_d_mask

1

Cells with multiple heavy chains in single cell data

When calling clones from single cell data, if any cell in the data contains multiple heavy chains,
SCOPer will throw an error message such as “xxx cell(s) with multiple heavy chains found. One
heavy chain per cell is expected” and then stop running. In the example data we provided in this
section, we have cleaned up and removed cells with multiple heavy chains. But if your data contains
cells with multiple heavy chains, you need to handle it before calling clones.

A simple solution is just removing cells with multiple heavy chains from the single cell data:

heavy_count <- table(dplyr::filter(ExampleDb, locus=="IGH")$cell_id)
multi_heavy_cells <- names(heavy_count)[heavy_count > 1]
ExampleDb <- dplyr::filter(ExampleDb, !cell_id %in% multi_heavy_cells)

Identifying clones by sequence identity

The simplest method for inferring clonal relationships is to define clones among identical junction
region sequences (the junction region is where the V, D, and J gene segments join). This can
be done using the identicalClones function at either the nucleotide level (method="nt") or the
amino acid level (method="aa"):

Imports
library(scoper)
library(dplyr)

Clonal assignment using identical nucleotide sequences
results <- identicalClones(ExampleDb, method="nt", summarize_clones = TRUE)

A modified input data.frame with clonal identifiers in the clone_id column is contained in the db slot
of the returned returned ScoperClones object, which can also be accessed by calling as.data.frame
on the result object.

Get results data.frame
results_db <- as.data.frame(results)
glimpse(results_db)

Rows: 2,000
Columns: 17
$ sequence_id <chr> "GN5SHBT02B1YTK", "GN5SHBT04A8IJV", "GN5SHBT~
$ sequence_alignment <chr> "GAGGTGCAGCTGGTGGAGTCTGGGGGA...GGCTTGGTCCAGC~
$ germline_alignment_d_mask <chr> "GAGGTGCAGCTGGTGGAGTCTGGGGGA...GGCTTGGTCCAGC~
$ v_call <chr> "Homsap IGHV3-72*01 F", "Homsap IGHV3-72*01 ~
$ v_call_genotyped <chr> "IGHV3-72*01", "IGHV3-72*01", "IGHV3-73*01",~
$ d_call <chr> "Homsap IGHD3-22*01 F", "Homsap IGHD6-13*01 ~
$ j_call <chr> "Homsap IGHJ4*02 F", "Homsap IGHJ5*01 F", "H~
$ junction <chr> "TGTGCTAGGGCCCAGATCGATTACTATGATAGTAGTGGTTATT~
$ junction_length <dbl> 72, 60, 51, 51, 51, 57, 57, 57, 39, 39, 39, ~
$ np1_length <dbl> 11, 10, 13, 10, 8, 6, 9, 9, 5, 9, 7, 8, 8, 7~
$ np2_length <dbl> 7, 20, 14, 1, 14, 8, 14, 6, 0, 2, 4, 7, 7, 4~
$ sample_id <chr> "-1h", "-1h", "-1h", "-1h", "-1h", "-1h", "-~
$ c_call <chr> "IGHM", "IGHA", "IGHM", "IGHD", "IGHM", "IGH~

2

$ duplicate_count <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,~
$ locus <chr> "IGH", "IGH", "IGH", "IGH", "IGH", "IGH", "I~
$ germline_alignment <chr> "GAGGTGCAGCTGGTGGAGTCTGGGGGA...GGCTTGGTCCAGC~
$ clone_id <chr> "1", "2", "3", "4", "5", "6", "7", "7", "8",~

A summary of the results can be plotted by calling plot on the returned ScoperClones object. This
will show the minimum inter (between) clonal distances. A detailed summary of clonal relationships
as a data.frame is also available through a call to summary on the results object.

Plot a histogram of inter clonal distances
plot(results, binwidth=0.02)

0

1

2

3

0.0 0.2 0.4 0.6 0.8

D
en

si
ty

minimum−distance between clones

Effective threshold not found

Get summary data.frame
glimpse(summary(results))

Rows: 156
Columns: 7
$ vjl_group <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,~
$ sequence_count <int> 20, 1, 1, 1, 12, 7, 3, 1, 12, 5, 37, 4, 5, 10, 6, 9, 5~
$ v_call <chr> "Homsap IGHV1-18*01 F", "Homsap IGHV1-46*01 F,Homsap I~
$ j_call <chr> "Homsap IGHJ4*03 F,Homsap IGHJ4*02 F,Homsap IGHJ4*01 F~
$ junction_length <int> 81, 81, 60, 102, 69, 66, 84, 96, 66, 75, 75, 84, 93, 6~
$ clone_count <int> 19, 1, 1, 1, 10, 7, 3, 1, 11, 4, 36, 4, 3, 8, 5, 9, 5,~
$ clone_id <chr> "518,519,520,521,522,523,524,525,526,527,528,529,530,5~

Identifying clones by hierarchical clustering

Most current studies uses a more sophisticated definition for clonal relationships. These studies
leverage the high diversity of the junction region as a fingerprint to identify each B cell clone. Since
it is unlikely that two separate recombination events would lead to identical junctions, sequences
with junction regions that are similar enough are determined to share a common B cell ancestor

3

(i.e., be clonally related) rather than to have arisen independently. Hierarchical clustering is a
widely used distance-based method for identify clonally related sequences. An implementation of
the hierarchical clustering approach is provided via the hierachicalClones function.

It is important to determine an appropriate threshold for trimming the hierarchical clustering into
B cell clones before using this method. The ideal threshold for separating clonal groups is the value
that separates the two modes of the nearest-neighbor distance distribution. The nearest-neighbor
distance distribution can be generated by using the distToNearest function in the shazam R
package. The threshold itself can be found using the findThreshold function in the same package.
The resulting distribution should be bimodal, with the first mode representing sequences with clonal
relatives in the dataset and the second mode representing singletons. For further details regarding
inferring an appropriate threshold for the hierarchical clustering method, see the Distance to Nearest
Neighbor vignette in the shazam package. Technical details can be found in:

Gupta NT, et al. (2017). Hierarchical clustering can identify B cell clones with
high confidence in Ig repertoire sequencing data.
The Journal of Immunology 198(6):2489-2499.

Identifying clonal groups using hierachicalClones is largely the same as the approach using the
identicalClones function, with the additional requirement of a distance threshold:

Clonal assignment using hierarchical clustering
results <- hierarchicalClones(ExampleDb, threshold=0.15, summarize_clones = TRUE)

The results data.frame, summary plots, and summary table are accessed in the same manner as
above. This will show the minimum inter (between) and maximum intra (within) clonal distances
along with an effective threshold, which is an explanatory value calculated to represent the cut-off
separating the inter and intra clonal distances. The effective threshold may differ from clustering
threshold provided as input to hierarchicalClones.

Get results data.frame
results_db <- as.data.frame(results)
glimpse(results_db)

Rows: 2,000
Columns: 17
$ sequence_id <chr> "GN5SHBT02B1YTK", "GN5SHBT04A8IJV", "GN5SHBT~
$ sequence_alignment <chr> "GAGGTGCAGCTGGTGGAGTCTGGGGGA...GGCTTGGTCCAGC~
$ germline_alignment_d_mask <chr> "GAGGTGCAGCTGGTGGAGTCTGGGGGA...GGCTTGGTCCAGC~
$ v_call <chr> "Homsap IGHV3-72*01 F", "Homsap IGHV3-72*01 ~
$ v_call_genotyped <chr> "IGHV3-72*01", "IGHV3-72*01", "IGHV3-73*01",~
$ d_call <chr> "Homsap IGHD3-22*01 F", "Homsap IGHD6-13*01 ~
$ j_call <chr> "Homsap IGHJ4*02 F", "Homsap IGHJ5*01 F", "H~
$ junction <chr> "TGTGCTAGGGCCCAGATCGATTACTATGATAGTAGTGGTTATT~
$ junction_length <dbl> 72, 60, 51, 51, 51, 57, 57, 57, 39, 39, 39, ~
$ np1_length <dbl> 11, 10, 8, 13, 10, 6, 9, 9, 5, 9, 12, 7, 7, ~
$ np2_length <dbl> 7, 20, 14, 14, 1, 8, 14, 6, 0, 2, 7, 4, 4, 4~
$ sample_id <chr> "-1h", "-1h", "-1h", "-1h", "-1h", "-1h", "-~
$ c_call <chr> "IGHM", "IGHA", "IGHM", "IGHM", "IGHD", "IGH~
$ duplicate_count <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,~
$ locus <chr> "IGH", "IGH", "IGH", "IGH", "IGH", "IGH", "I~

4

https://shazam.readthedocs.io
https://shazam.readthedocs.io/en/stable/vignettes/DistToNearest-Vignette
https://shazam.readthedocs.io/en/stable/vignettes/DistToNearest-Vignette
https://shazam.readthedocs.io

$ germline_alignment <chr> "GAGGTGCAGCTGGTGGAGTCTGGGGGA...GGCTTGGTCCAGC~
$ clone_id <chr> "1", "2", "3", "4", "5", "6", "7", "7", "8",~

Plot a histogram of inter and intra clonal distances
plot(results, binwidth=0.02)

0

3

6

9

0.0 0.2 0.4 0.6 0.8

D
en

si
ty

minimum−distance between clones maximum−distance within clones

Effective threshold= 0.22

Get summary data.frame
glimpse(summary(results))

Rows: 156
Columns: 7
$ vjl_group <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,~
$ sequence_count <int> 20, 1, 1, 1, 12, 7, 3, 1, 12, 5, 37, 4, 5, 10, 6, 9, 5~
$ v_call <chr> "Homsap IGHV1-18*01 F", "Homsap IGHV1-46*01 F,Homsap I~
$ j_call <chr> "Homsap IGHJ4*02 F,Homsap IGHJ4*03 F,Homsap IGHJ4*01 F~
$ junction_length <int> 81, 81, 60, 102, 69, 66, 84, 96, 66, 75, 75, 84, 93, 6~
$ clone_count <int> 19, 1, 1, 1, 5, 7, 3, 1, 11, 4, 36, 4, 3, 6, 5, 9, 5, ~
$ clone_id <chr> "491,492,493,494,495,496,497,498,499,500,501,502,503,5~

Identifying clones by spectral clustering

While the hierarchical clustering method groups sequences using a fixed distance supervised threshold,
the spectral clustering-based model uses an adaptive unsupervised threshold to tune the required
level of similarity among sequences in different local neighborhoods. It can be used as an alternative
if the nearest-neighbor distance distribution is unimodal, meaning that findThreshold wasn’t able
to find the threshold at which to cut the hierarchy.

There are two available spectral clustering methods provided by the spectralClones function:

1. method="novj": Infers clonal relationships using an adaptive threshold that indicates the
level of similarity among junction sequences in a local neighborhood

5

2. method="vj": Infers clonal relationships not only based on the junction region homology, but
also taking into account the mutation profiles in the V and J segments

It is not mandatory, but a fixed threshold can also be provided to spectralClones (threshold
argument) which will enforce an upper-limit cut-off. When specifying the threshold argument, any
sequence with distances above the threshold value from all sequences will become a singleton. The
threshold can be defined as discussed above using nearest-neighbor distance distribution methods
provided in the shazam. If method="vj", the threshold will be applied on the distances calculated
combining junction region homology and V/J mutation profiles. Technical details can be found in:

Nouri N and Kleinstein SH (2018). A spectral clustering-based method for
identifying clones from high-throughput B cell repertoire sequencing data.
Bioinformatics, 34(13):i341-i349.

Nouri N and Kleinstein SH (2020). Somatic hypermutation analysis for improved
identification of B cell clonal families from next-generation sequencing data,
PLoS Comput Biol 16(6): e1007977. https://doi.org/10.1371/journal.pcbi.1007977

The following examples calls the spectralClones function with(out) the same (optional) threshold
used previously to define clones using the hierarchical approach. The results data.frame, summary
plots, and summary table are accessed in the same manner as shown above using the hierarchical
approach.

Clonal assignment using the spectral clustering method novj
results <- spectralClones(ExampleDb, method="novj", summarize_clones = TRUE)
Plot a histogram of inter and intra clonal distances
plot(results, binwidth=0.02)

0

1

2

3

4

0.0 0.2 0.4 0.6

D
en

si
ty

minimum−distance between clones maximum−distance within clones

Effective threshold= 0.34

Clonal assignment using the spectral clustering method novj with threshold
results <- spectralClones(ExampleDb, method="novj",

threshold=0.15, summarize_clones = TRUE)
Plot a histogram of inter and intra clonal distances

6

https://shazam.readthedocs.io

plot(results, binwidth=0.02)

0

3

6

9

12

0.0 0.2 0.4 0.6 0.8

D
en

si
ty

minimum−distance between clones maximum−distance within clones

Effective threshold= 0.29

Clonal assignment using the spectral clustering method vj with threshold
results <- spectralClones(ExampleDb, method="vj",

threshold=0.15,
germline="germline_alignment_d_mask",
summarize_clones = TRUE)

Get results data.frame
results_db <- as.data.frame(results)
glimpse(results_db)

Rows: 2,000
Columns: 17
$ sequence_id <chr> "GN5SHBT02B1YTK", "GN5SHBT04A8IJV", "GN5SHBT~
$ sequence_alignment <chr> "GAGGTGCAGCTGGTGGAGTCTGGGGGA...GGCTTGGTCCAGC~
$ germline_alignment_d_mask <chr> "GAGGTGCAGCTGGTGGAGTCTGGGGGA...GGCTTGGTCCAGC~
$ v_call <chr> "Homsap IGHV3-72*01 F", "Homsap IGHV3-72*01 ~
$ v_call_genotyped <chr> "IGHV3-72*01", "IGHV3-72*01", "IGHV3-73*01",~
$ d_call <chr> "Homsap IGHD3-22*01 F", "Homsap IGHD6-13*01 ~
$ j_call <chr> "Homsap IGHJ4*02 F", "Homsap IGHJ5*01 F", "H~
$ junction <chr> "TGTGCTAGGGCCCAGATCGATTACTATGATAGTAGTGGTTATT~
$ junction_length <dbl> 72, 60, 51, 51, 51, 57, 57, 57, 39, 39, 39, ~
$ np1_length <dbl> 11, 10, 8, 13, 10, 6, 9, 9, 5, 9, 12, 7, 7, ~
$ np2_length <dbl> 7, 20, 14, 14, 1, 8, 14, 6, 0, 2, 7, 4, 4, 4~
$ sample_id <chr> "-1h", "-1h", "-1h", "-1h", "-1h", "-1h", "-~
$ c_call <chr> "IGHM", "IGHA", "IGHM", "IGHM", "IGHD", "IGH~
$ duplicate_count <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,~
$ locus <chr> "IGH", "IGH", "IGH", "IGH", "IGH", "IGH", "I~
$ germline_alignment <chr> "GAGGTGCAGCTGGTGGAGTCTGGGGGA...GGCTTGGTCCAGC~
$ clone_id <chr> "1", "2", "3", "4", "5", "6", "7", "7", "8",~

7

Plot a histogram of inter and intra clonal distances
plot(results, binwidth=0.02)

0

1

2

3

4

0.0 0.2 0.4 0.6 0.8

D
en

si
ty

minimum−distance between clones maximum−distance within clones

Effective threshold= 0.29

Get summary data.frame
glimpse(summary(results))

Rows: 156
Columns: 7
$ vjl_group <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,~
$ sequence_count <int> 20, 1, 1, 1, 12, 7, 3, 1, 12, 5, 37, 4, 5, 10, 6, 9, 5~
$ v_call <chr> "Homsap IGHV1-18*01 F", "Homsap IGHV1-46*01 F,Homsap I~
$ j_call <chr> "Homsap IGHJ4*02 F,Homsap IGHJ4*03 F,Homsap IGHJ4*01 F~
$ junction_length <int> 81, 81, 60, 102, 69, 66, 84, 96, 66, 75, 75, 84, 93, 6~
$ clone_count <int> 19, 1, 1, 1, 6, 7, 3, 1, 11, 4, 9, 4, 3, 6, 5, 9, 4, 3~
$ clone_id <chr> "438,439,440,441,442,443,444,445,446,447,448,449,450,4~

8

	Introduction
	Example data
	Identifying clones by sequence identity
	Identifying clones by hierarchical clustering
	Identifying clones by spectral clustering

