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add_utm_columns Add UTM coordinates to a data frame

Description

Add UTM (Universal Transverse Mercator) coordinates to a data frame. This is useful since geo-
statistical modeling should generally be performed in an equal-distance projection. You can do this
yourself separately with the sf::st_as_sf(), sf::st_transform(), and sf::st_coordinates()
functions in the sf package.
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Usage

add_utm_columns(
dat,
ll_names = c("longitude", "latitude"),
ll_crs = 4326,
utm_names = c("X", "Y"),
utm_crs = get_crs(dat, ll_names),
units = c("km", "m")

)

get_crs(dat, ll_names = c("longitude", "latitude"))

Arguments

dat Data frame that contains longitude and latitude columns.

ll_names Longitude and latitude column names. Note the order.

ll_crs Input CRS value for ll_names.

utm_names Output column names for the UTM columns.

utm_crs Output CRS value for the UTM zone; tries to detect with get_crs() but can be
specified manually.

units UTM units.

Details

Note that longitudes west of the prime meridian should be encoded as running from -180 to 0
degrees.

You may wish to work in km’s rather than the standard UTM meters so that the range parameter
estimate is not too small, which can cause computational issues. This depends on the the scale of
your data.

Value

A copy of the input data frame with new columns for UTM coordinates.

Examples

d <- data.frame(lat = c(52.1, 53.4), lon = c(-130.0, -131.4))
get_crs(d, c("lon", "lat"))
add_utm_columns(d, c("lon", "lat"))
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cAIC Calculate conditional AIC

Description

Calculates the conditional Akaike Information criterion (cAIC).

Usage

cAIC(object, what = c("cAIC", "EDF"), ...)

Arguments

object Output from sdmTMB().

what Whether to return the cAIC or the effective degrees of freedom (EDF) for each
group of random effects.

... Other arguments for specific methods. Not used.

Details

cAIC is designed to optimize the expected out-of-sample predictive performance for new data that
share the same random effects as the in-sample (fitted) data, e.g., spatial interpolation. In this sense,
it should be a fast approximation to optimizing the model structure based on k-fold cross-validation.

By contrast, AIC() calculates the marginal Akaike Information Criterion, which is designed to
optimize expected predictive performance for new data that have new random effects, e.g., extrap-
olation, or inference about generative parameters.

cAIC also calculates the effective degrees of freedom (EDF) as a byproduct. This is the number of
fixed effects that would have an equivalent impact on model flexibility as a given random effect.

Both cAIC and EDF are calculated using Eq. 6 of Zheng, Cadigan, and Thorson (2024).

For models that include profiled fixed effects, these profiles are turned off.

Value

Either the cAIC or the effective degrees of freedom (EDF) by group of random effects depending
on the argument what.

References

Deriving the general approximation to cAIC used here:
Zheng, N., Cadigan, N., & Thorson, J. T. (2024). A note on numerical evaluation of conditional
Akaike information for nonlinear mixed-effects models (arXiv:2411.14185). arXiv. doi:10.48550/
arXiv.2411.14185

The utility of EDF to diagnose hierarchical model behaviour:
Thorson, J. T. (2024). Measuring complexity for hierarchical models using effective degrees of
freedom. Ecology, 105(7), e4327 doi:10.1002/ecy.4327

https://doi.org/10.48550/arXiv.2411.14185
https://doi.org/10.48550/arXiv.2411.14185
https://doi.org/10.1002/ecy.4327
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Examples

mesh <- make_mesh(dogfish, c("X", "Y"), cutoff = 15)
fit <- sdmTMB(catch_weight ~ s(log(depth)),

time_varying = ~1,
time_varying_type = "ar1",
time = "year",
spatiotemporal = "off",
mesh = mesh,
family = tweedie(),
data = dogfish,
offset = log(dogfish$area_swept)

)
cAIC(fit)
cAIC(fit, what = "EDF")
AIC(fit)

coef.sdmTMB Get fixed-effect coefficients

Description

Get fixed-effect coefficients

Usage

## S3 method for class 'sdmTMB'
coef(object, complete = FALSE, model = 1, ...)

Arguments

object The fitted sdmTMB model object

complete Currently ignored

model Linear predictor for delta models. Defaults to the first linear predictor.

... Currently ignored

cv_to_waywiser Convert sdmTMB_cv() objects to sf format for spatial assessment with
waywiser

Description

[Experimental] Converts cross-validation results to an sf::sf() object for use with spatial model
assessment tools such as those in the waywiser package. This enables multi-scale spatial assess-
ment of model predictions.
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Usage

cv_to_waywiser(
object,
ll_names = c("longitude", "latitude"),
ll_crs = 4326,
utm_crs = get_crs(object$data, ll_names)

)

Arguments

object An object of class sdmTMB_cv from sdmTMB_cv().

ll_names Column names for longitude and latitude in the original data. Note the order:
longitude first, then latitude.

ll_crs The coordinate reference system (CRS) for the ll_names columns. Defaults to
4326 (WGS84 lon/lat).

utm_crs The projected coordinate reference system (CRS) for the output sf object. By
default (if you’re feeling lucky!) automatically detected using get_crs() based
on ll_names. Can be manually specified as an EPSG code (e.g., 32609) or any
format accepted by sf::st_crs().

Details

This function is particularly useful for assessing spatial models at multiple scales using the way-
wiser package. After converting to sf format, you can use functions like waywiser::ww_multi_scale()
to evaluate how model performance changes when predictions are aggregated to different spatial
scales.

For delta/hurdle models, the combined predictions are returned (e.g., the product of the encounter
probability and positive catch rate).

Value

An sf::sf() object with POINT geometry containing:

truth The observed response values

estimate The cross-validated predictions

geometry Spatial point locations

See Also

sdmTMB_cv(), get_crs(), https://sdmTMB.github.io/sdmTMB/articles/cross-validation.
html

Examples

mesh <- make_mesh(pcod_2011, c("X", "Y"), cutoff = 12)

# Run cross-validation
set.seed(123)

https://sdmTMB.github.io/sdmTMB/articles/cross-validation.html
https://sdmTMB.github.io/sdmTMB/articles/cross-validation.html
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m_cv <- sdmTMB_cv(
density ~ depth_scaled,
data = pcod_2011,
mesh = mesh,
family = tweedie(),
k_folds = 2

)

# Convert with default auto-detected CRS based on lon/lat columns:
cv_sf <- cv_to_waywiser(m_cv, ll_names = c("lon", "lat"))

# Or manually specify the desired UTM CRS:
cv_sf <- cv_to_waywiser(m_cv, ll_names = c("lon", "lat"), utm_crs = 32609)

# Use with waywiser for multi-scale assessment
waywiser::ww_multi_scale(

cv_sf,
truth, # column name (unquoted)
estimate, # column name (unquoted)
n = list(c(5, 5), c(2, 2)) # 5x5 and 2x2 grid blocks

)

dharma_residuals DHARMa residuals

Description

Plot (and possibly return) DHARMa residuals. This is a wrapper function around DHARMa::createDHARMa()
to facilitate its use with sdmTMB() models. Note: It is recommended to set type = "mle-mvn" in
simulate.sdmTMB() for the resulting residuals to have the expected distribution. This is not the
default.

Usage

dharma_residuals(
simulated_response,
object,
plot = TRUE,
return_DHARMa = FALSE,
test_uniformity = FALSE,
test_outliers = FALSE,
test_dispersion = FALSE,
...

)



dharma_residuals 9

Arguments

simulated_response

Output from simulate.sdmTMB(). It is recommended to set type = "mle-mvn"
in the call to simulate.sdmTMB() for the residuals to have the expected distri-
bution.

object Output from sdmTMB().

plot Logical. Calls DHARMa::plotQQunif().

return_DHARMa Logical. Return object from DHARMa::createDHARMa()?
test_uniformity

Passed to testUniformity in DHARMa::plotQQunif().

test_outliers Passed to testOutliers in DHARMa::plotQQunif().
test_dispersion

Passed to testDispersion in DHARMa::plotQQunif().

... Other arguments to pass to DHARMa::createDHARMa().

Details

See the residuals vignette.

Advantages to these residuals over the ones from the residuals.sdmTMB() method are (1) they
work with delta/hurdle models for the combined predictions, not the just the two parts separately, (2)
they should work for all families, not the just the families where we have worked out the analytical
quantile function, and (3) they can be used with the various diagnostic tools and plots from the
DHARMa package.

Disadvantages are (1) they are slower to calculate since one must first simulate from the model, (2)
the stability of the distribution of the residuals depends on having a sufficient number of simulation
draws, (3) uniformly distributed residuals put less emphasis on the tails visually than normally
distributed residuals (which may or may not be desired).

Note that DHARMa returns residuals that are uniform(0, 1) if the data are consistent with the model
whereas randomized quantile residuals from residuals.sdmTMB() are expected to be normal(0, 1).

Value

A data frame of observed and expected values is invisibly returned so you can assign the output to
an object and plot the residuals yourself. See the examples.

If return_DHARMa = TRUE, the object from DHARMa::createDHARMa() is returned and any subse-
quent DHARMa functions can be applied.

See Also

simulate.sdmTMB(), residuals.sdmTMB()

Examples

# Try Tweedie family:
fit <- sdmTMB(density ~ as.factor(year) + s(depth, k = 3),

data = pcod_2011, mesh = pcod_mesh_2011,

https://sdmTMB.github.io/sdmTMB/articles/residual-checking.html
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family = tweedie(link = "log"), spatial = "on")

# The `simulated_response` argument is first so the output from
# simulate() can be piped to `dharma_residuals()`.

# We will work with 100 simulations for fast examples, but you'll
# likely want to work with more than this (enough that the results
# are stable from run to run).

# not great:
set.seed(123)
simulate(fit, nsim = 100, type = "mle-mvn") |>

dharma_residuals(fit)

# delta-lognormal looks better:
set.seed(123)
fit_dl <- update(fit, family = delta_lognormal())
simulate(fit_dl, nsim = 100, type = "mle-mvn") |>

dharma_residuals(fit)

# or skip the pipe:
set.seed(123)
s <- simulate(fit_dl, nsim = 100, type = "mle-mvn")
# and manually plot it:
r <- dharma_residuals(s, fit_dl, plot = FALSE)
head(r)
plot(r$expected, r$observed)
abline(0, 1)

# return the DHARMa object and work with the DHARMa methods
ret <- simulate(fit_dl, nsim = 100, type = "mle-mvn") |>

dharma_residuals(fit, return_DHARMa = TRUE)
plot(ret)

Effect.sdmTMB Calculate effects

Description

Used by effects package

Usage

Effect.sdmTMB(focal.predictors, mod, ...)
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Arguments

focal.predictors

a character vector of one or more predictors in the model in any order.

mod a regression model object. If no specific method exists for the class of mod,
Effect.default will be called.

... arguments to be passed down.

Value

Output from effects::effect(). Can then be plotted with with associated plot() method.

Examples

fit <- sdmTMB(present ~ depth_scaled, data = pcod_2011, family = binomial(),
spatial = "off")

effects::effect("depth_scaled", fit)
plot(effects::effect("depth_scaled", fit))

emmeans.sdmTMB Estimated marginal means with the emmeans package with sdmTMB

Description

Methods for using the emmeans package with sdmTMB. The emmeans package computes esti-
mated marginal means for the fixed effects.

For delta/hurdle models, you can specify which component to analyze using the model argument:
model = 1 for the binomial component (encounter probability) or model = 2 for the positive compo-
nent (e.g., gamma for delta_gamma()). By default, model = 1.

References

https://aosmith.rbind.io/2019/03/25/getting-started-with-emmeans/

Examples

mesh <- make_mesh(pcod_2011, c("X", "Y"), cutoff = 20)
fit <- sdmTMB(

present ~ as.factor(year),
data = pcod_2011, mesh = mesh,
family = binomial()

)
fit
emmeans::emmeans(fit, ~ year)
emmeans::emmeans(fit, pairwise ~ year)
emmeans::emmeans(fit, pairwise ~ year, type = "response")
emmeans::emmeans(fit, pairwise ~ year, adjust = "none")

https://aosmith.rbind.io/2019/03/25/getting-started-with-emmeans/
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e <- emmeans::emmeans(fit, ~ year)
plot(e)

e <- emmeans::emmeans(fit, pairwise ~ year)
confint(e)
summary(e, infer = TRUE)
as.data.frame(e)

# interaction of factor with continuous predictor:
fit2 <- sdmTMB(

present ~ depth_scaled * as.factor(year),
data = pcod_2011, mesh = mesh,
family = binomial()

)
fit2
# slopes for each level:
emmeans::emtrends(fit2, ~ year, var = "depth_scaled")
# test difference in slopes:
emmeans::emtrends(fit2, pairwise ~ year, var = "depth_scaled")
emmeans::emmip(fit2, year ~ depth_scaled,

at = list(depth_scaled = seq(-2.5, 2.5, length.out = 50)), CIs = TRUE)

# delta/hurdle models:
fit_delta <- sdmTMB(

density ~ as.factor(year),
data = pcod_2011, spatial = "off",
family = delta_gamma()

)
# binomial component (encounter probability):
emmeans::emmeans(fit_delta, ~ year, model = 1)
# positive component (gamma):
emmeans::emmeans(fit_delta, ~ year, model = 2)

get_index Extract a relative biomass/abundance index, center of gravity, effective
area occupied, or weighted average

Description

Extract a relative biomass/abundance index, center of gravity, effective area occupied, or weighted
average

Usage

get_index(obj, bias_correct = TRUE, level = 0.95, area = 1, silent = TRUE, ...)

get_index_split(
obj,
newdata,
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bias_correct = FALSE,
nsplit = 1,
level = 0.95,
area = 1,
silent = FALSE,
predict_args = list(),
...

)

get_cog(
obj,
bias_correct = FALSE,
level = 0.95,
format = c("long", "wide"),
area = 1,
silent = TRUE,
...

)

get_weighted_average(
obj,
vector,
bias_correct = FALSE,
level = 0.95,
area = 1,
silent = TRUE,
...

)

get_eao(obj, bias_correct = FALSE, level = 0.95, area = 1, silent = TRUE, ...)

Arguments

obj Output from predict.sdmTMB() with return_tmb_object = TRUE (the usual
case). Alternatively, if sdmTMB() was called with do_index = TRUE, or if using
get_index_split(), an object from sdmTMB().

bias_correct Should bias correction be implemented via TMB::sdreport()? Bias correction
accounts for the non-linear transformation of random effects when calculating
the index. Recommended to be TRUE for final analyses, but can be set to FALSE
for faster calculation while experimenting with models. See Thorson and Kris-
tensen (2016) in the References.

level The confidence level.

area Grid cell area for area weighting the index. Can be: (1) a numeric vector of
length nrow(newdata) with area for each grid cell, (2) a single numeric value
to apply to all grid cells, or (3) a character value giving the column name in
newdata containing areas.

silent Silent?
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... Passed to TMB::sdreport().

newdata New data (e.g., a prediction grid by year) to pass to predict.sdmTMB() in the
case of get_index_split().

nsplit The number of splits to do the calculation in. For memory intensive operations
(large grids and/or models), it can be helpful to do the prediction, area integra-
tion, and bias correction on subsets of time slices (e.g., years) instead of all at
once. If nsplit > 1, this will usually be slower but with reduced memory use.

predict_args A list of arguments to pass to predict.sdmTMB() in the case of get_index_split().

format Long or wide.

vector A numeric vector of the same length as the prediction data, containing the values
to be averaged (e.g., depth, temperature).

Value

For get_index(): A data frame with columns for time, estimate (area-weighted total abundance or
biomass), lower and upper confidence intervals, log estimate, and standard error of the log estimate.

For get_cog(): A data frame with columns for time, estimate (center of gravity: the abundance-
weighted mean x and y coordinates), lower and upper confidence intervals, and standard error of
center of gravity coordinates.

For get_eao(): A data frame with columns for time, estimate (effective area occupied: the area
required if the population was spread evenly at the arithmetic mean density), lower and upper con-
fidence intervals, log EAO, and standard error of the log EAO estimates.

For get_weighted_average(): A data frame with columns for time, estimate (weighted average
of the provided vector, weighted by predicted density), lower and upper confidence intervals, and
standard error of the estimates.

References

Geostatistical model-based indices of abundance (along with many newer papers):

Shelton, A.O., Thorson, J.T., Ward, E.J., and Feist, B.E. 2014. Spatial semiparametric models
improve estimates of species abundance and distribution. Canadian Journal of Fisheries and Aquatic
Sciences 71(11): 1655–1666. doi:10.1139/cjfas20130508

Thorson, J.T., Shelton, A.O., Ward, E.J., and Skaug, H.J. 2015. Geostatistical delta-generalized lin-
ear mixed models improve precision for estimated abundance indices for West Coast groundfishes.
ICES J. Mar. Sci. 72(5): 1297–1310. doi:10.1093/icesjms/fsu243

Geostatistical model-based centre of gravity:

Thorson, J.T., Pinsky, M.L., and Ward, E.J. 2016. Model-based inference for estimating shifts
in species distribution, area occupied and centre of gravity. Methods Ecol Evol 7(8): 990–1002.
doi:10.1111/2041210X.12567

Geostatistical model-based effective area occupied:

Thorson, J.T., Rindorf, A., Gao, J., Hanselman, D.H., and Winker, H. 2016. Density-dependent
changes in effective area occupied for sea-bottom-associated marine fishes. Proceedings of the
Royal Society B: Biological Sciences 283(1840): 20161853. doi:10.1098/rspb.2016.1853

Bias correction:

https://doi.org/10.1139/cjfas-2013-0508
https://doi.org/10.1093/icesjms/fsu243
https://doi.org/10.1111/2041-210X.12567
https://doi.org/10.1098/rspb.2016.1853
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Thorson, J.T., and Kristensen, K. 2016. Implementing a generic method for bias correction in
statistical models using random effects, with spatial and population dynamics examples. Fisheries
Research 175: 66–74. doi:10.1016/j.fishres.2015.11.016

See Also

get_index_sims()

Examples

library(ggplot2)

# use a small number of knots for this example to make it fast:
mesh <- make_mesh(pcod, c("X", "Y"), n_knots = 60)

# fit a spatiotemporal model:
m <- sdmTMB(
data = pcod,
formula = density ~ 0 + as.factor(year),
time = "year", mesh = mesh, family = tweedie(link = "log")

)

# prepare a prediction grid:
nd <- replicate_df(qcs_grid, "year", unique(pcod$year))

# Note `return_tmb_object = TRUE` and the prediction grid:
predictions <- predict(m, newdata = nd, return_tmb_object = TRUE)

# biomass index:
ind <- get_index(predictions, bias_correct = TRUE)
ind
ggplot(ind, aes(year, est)) + geom_line() +

geom_ribbon(aes(ymin = lwr, ymax = upr), alpha = 0.4) +
ylim(0, NA)

# do that in 2 chunks
# only necessary for very large grids to save memory
# will be slower but save memory
# note the first argument is the model fit object:
ind <- get_index_split(m, newdata = nd, nsplit = 2, bias_correct = TRUE)

# center of gravity:
cog <- get_cog(predictions, format = "wide")
cog
ggplot(cog, aes(est_x, est_y, colour = year)) +

geom_point() +
geom_linerange(aes(xmin = lwr_x, xmax = upr_x)) +
geom_linerange(aes(ymin = lwr_y, ymax = upr_y)) +
scale_colour_viridis_c()

# effective area occupied:

https://doi.org/10.1016/j.fishres.2015.11.016
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eao <- get_eao(predictions)
eao
ggplot(eao, aes(year, est)) + geom_line() +

geom_ribbon(aes(ymin = lwr, ymax = upr), alpha = 0.4) +
ylim(0, NA)

# weighted average (e.g., depth-weighted by biomass):
wa <- get_weighted_average(predictions, vector = nd$depth)
wa
ggplot(wa, aes(year, est)) + geom_line() +

geom_ribbon(aes(ymin = lwr, ymax = upr), alpha = 0.4)

get_index_sims Calculate a population index via simulation from the joint precision
matrix

Description

[Experimental]

Calculate a population index via simulation from the joint precision matrix. Compared to get_index(),
this version can be faster if bias correction was turned on in get_index() while being approx-
imately equivalent. This is an experimental function. This function usually works reasonably
well, but we make no guarantees. It is recommended to use get_index() with bias_correct =
TRUE for final inference.

Usage

get_index_sims(
obj,
level = 0.95,
return_sims = FALSE,
area = rep(1, nrow(obj)),
est_function = stats::median,
area_function = function(x, area) x + log(area),
agg_function = function(x) sum(exp(x))

)

Arguments

obj predict.sdmTMB() output with nsim > 0.

level The confidence level.

return_sims Logical. Return simulation draws? The default (FALSE) is a quantile summary
of those simulation draws.
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area A vector of grid cell/polyon areas for each year-grid cell (row of data) in obj.
Adjust this if cells are not of unit area or not all the same area (e.g., some cells
are partially over land/water). Note that the area vector is added as log(area)
to the raw values in obj. In other words, the function assumes a log link, which
typically makes sense.

est_function Function to summarize the estimate (the expected value). mean() would be an
alternative to median().

area_function Function to apply area weighting. Assuming a log link, the function(x, area)
x + log(area) default makes sense. If in natural space, function(x, area) x
* area makes sense.

agg_function Function to aggregate samples within each time slice. Assuming a log link, the
function(x) sum(exp(x)) default makes sense. If in natural space, function(x)
sum(x) makes sense.

Details

Can also be used to produce an index from a model fit with tmbstan.

This function does nothing more than summarize and reshape the matrix of simulation draws into a
data frame.

Value

A data frame. If return_sims = FALSE:

• name of column (e.g. year) that was supplied to sdmTMB() time argument

• est: estimate

• lwr: lower confidence interval value

• upr: upper confidence interval value

• log_est: log estimate

• se: standard error on the log estimate

If return_sims = TRUE, samples from the index values in a long-format data frame:

• name of column (e.g. year) that was supplied to sdmTMB() time argument

• .value: sample value

• .iteration: sample number

See Also

get_index()

Examples

m <- sdmTMB(density ~ 0 + as.factor(year),
data = pcod_2011, mesh = pcod_mesh_2011, family = tweedie(link = "log"),
time = "year"

)
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qcs_grid_2011 <- replicate_df(qcs_grid, "year", unique(pcod_2011$year))
p <- predict(m, newdata = qcs_grid_2011, nsim = 100)
x <- get_index_sims(p)
x_sims <- get_index_sims(p, return_sims = TRUE)

if (require("ggplot2", quietly = TRUE)) {
ggplot(x, aes(year, est, ymin = lwr, ymax = upr)) +
geom_line() +
geom_ribbon(alpha = 0.4)

ggplot(x_sims, aes(as.factor(year), .value)) +
geom_violin()

}

# Demo custom functions if working in natural space:
ind <- get_index_sims(

exp(p),
agg_function = function(x) sum(x),
area_function = function(x, area) x * area

)

get_pars Get TMB parameter list

Description

Get TMB parameter list

Usage

get_pars(object)

Arguments

object Fit from sdmTMB()

Value

A named list of parameter values

Examples

fit <- sdmTMB(present ~ 1, data = pcod_2011, family = binomial(), spatial = "off")
pars <- get_pars(fit)
names(pars)
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get_range_edge Calculate range edges via simulation from the joint precision matrix

Description

[Experimental]

Calculate range edges as density-weighted quantiles along a spatial axis. Range edges are calcu-
lated as the positions along a user-supplied spatial axis (e.g., latitude, coastal distance) where the
cumulative proportion of density equals specified quantiles (e.g., 0.01 and 0.99 for the lower and
upper 1% range edges). Uncertainty is calculated via simulation from the joint precision matrix.

Usage

get_range_edge(
obj,
axis,
quantiles = c(0.025, 0.975),
level = 0.95,
return_sims = FALSE

)

Arguments

obj predict.sdmTMB() output with nsim > 0. The prediction object should include
predictions on a spatial grid that covers the area of interest.

axis Numeric vector of the same length as the prediction data, representing the spatial
axis along which to calculate range edges (e.g., latitude, coastal distance values).
This should align with the rows of the prediction matrix.

quantiles Numeric vector of quantiles to calculate. Default is c(0.025, 0.975) for lower
and upper 1% range edges. Common alternatives include c(0.01, 0.99) for
1% edges or c(0.05, 0.5, 0.95) to include the median.

level The confidence level for uncertainty intervals.

return_sims Logical. Return simulation draws? The default (FALSE) returns a quantile sum-
mary of the simulation draws.

Details

This function implements a similar approach to VAST’s range edge calculations, following methods
from Fredston et al. (2021) and similar studies. The method:

1. Orders spatial locations by position along the specified axis

2. Calculates cumulative proportion of total density along that axis

3. Finds positions where cumulative proportion equals target quantiles

4. Uses simulation from the joint precision to quantify uncertainty
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To find the exact position where the cumulative proportion equals a target quantile, the function uses
linear interpolation between adjacent grid points. This provides more accurate range edge estimates
than selecting the closest grid point, especially on coarser grids or for extreme quantiles (e.g., 0.01,
0.99).

Value

A data frame. If return_sims = FALSE:

• name of time column (e.g., year) that was supplied to sdmTMB() time argument

• quantile: the quantile value (from quantiles argument)

• est: estimated range edge position

• lwr: lower confidence interval

• upr: upper confidence interval

• se: standard error

If return_sims = TRUE, simulation draws from range edge positions in long format:

• name of time column (e.g., year)

• quantile: the quantile value

• .value: simulated range edge position

• .iteration: simulation number

References

Fredston, A. L., Pinsky, M., Selden, R. L., Szuwalski, C., Thorson, J. T., Gaines, S. D., & Halpern,
B. S. (2021). Range edges of North American marine species are tracking temperature over decades.
Global Change Biology, 27(13), 3145-3156. doi:10.1111/gcb.15614

Examples

# Fit a spatiotemporal model
mesh <- make_mesh(pcod, c("X", "Y"), n_knots = 100)
m <- sdmTMB(

density ~ 0 + as.factor(year),
data = pcod, mesh = mesh, family = tweedie(link = "log"),
time = "year", spatiotemporal = "iid", spatial = "on"

)

# Create prediction grid
nd <- replicate_df(qcs_grid, "year", unique(pcod$year))

# Get predictions with simulations
p <- predict(m, newdata = nd, nsim = 100)

# Calculate range edges along latitude (Y coordinate)
edges <- get_range_edge(p, axis = nd$Y)
edges

https://doi.org/10.1111/gcb.15614
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# Plot range edges over time
if (require("ggplot2", quietly = TRUE)) {

ggplot(edges, aes(year, est, colour = as.factor(quantile))) +
geom_line() +
geom_ribbon(aes(ymin = lwr, ymax = upr, fill = as.factor(quantile)),

alpha = 0.2
) +
labs(y = "Latitude", colour = "Quantile", fill = "Quantile")

}

# Get simulation draws for further analysis
edges_sims <- get_range_edge(p, axis = nd$Y, return_sims = TRUE)

make_category_svc Set up spatially varying coefficients for category composition models

Description

This function helps set up the data structure, formula, and mapping needed for fitting spatially
varying coefficient models with categories (e.g., ages, length bins, species) that have both spatial and
spatiotemporal random fields. It’s particularly useful for age or length composition standardization
models.

Usage

make_category_svc(
data,
category_column,
time_column,
share_spatial_sd = TRUE,
share_spatiotemporal_sd = TRUE

)

Arguments

data Data frame containing the composition data.
category_column

Character. Name of the category column (e.g., "Age", "length_bin", "species").

time_column Character. Name of the time column (e.g., "Year").
share_spatial_sd

Logical. If TRUE, all categories share the same spatial SD. If FALSE, each cate-
gory gets its own spatial SD.

share_spatiotemporal_sd

Logical. If TRUE, all category-time combinations share the same spatiotemporal
SD. If FALSE, each gets its own.
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Details

This function creates spatially varying coefficient structures for composition models by setting up:

1. Spatial fields: One field per category (e.g., age-specific spatial fields) 2. Spatiotemporal
fields: One field per category-time combination (e.g., age-year fields)

The sharing of variance parameters is controlled by share_spatial_sd and share_spatiotemporal_sd.
When TRUE, all fields of that type share the same variance parameter, which is more parsimonious
but assumes similar variance magnitudes across categories.

The resulting model structure allows each category to have its own spatial pattern and temporal
variation while controlling parameter sharing for identifiability and computational efficiency.

Value

A list containing:

• data_expanded: Data frame with added model matrix columns for use in sdmTMB().

• svc_formula: Formula for the spatial_varying argument in sdmTMB().

• svc_map: Map list for the map argument in sdmTMBcontrol().

• info: List with summary information about the model structure.

Examples

set.seed(123)
data <- data.frame(

age = factor(rep(1:3, each = 20)),
year = rep(2020:2022, 20),
abundance = rnorm(60),
x = runif(60), y = runif(60)

)

# Set up model components
setup <- make_category_svc(

data = data,
category_column = "age",
time_column = "year",
share_spatial_sd = TRUE,
share_spatiotemporal_sd = TRUE

)

# Check the setup
setup$info

# See the age composition standardization vignette for more details
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make_mesh Construct an SPDE mesh for sdmTMB

Description

Construct an SPDE mesh for use with sdmTMB.

Usage

make_mesh(
data,
xy_cols,
type = c("kmeans", "cutoff", "cutoff_search"),
cutoff,
n_knots,
seed = 42,
mesh = NULL,
fmesher_func = fmesher::fm_rcdt_2d_inla,
convex = NULL,
concave = convex,
...

)

## S3 method for class 'sdmTMBmesh'
plot(x, ...)

Arguments

data A data frame.

xy_cols A character vector of x and y column names contained in data. These should
likely be in an equal distance projection. For a helper function to convert to
UTMs, see add_utm_columns().

type Method to create the mesh. Also see mesh argument to supply your own mesh.

cutoff An optional cutoff if type is "cutoff". The minimum allowed triangle edge
length.

n_knots The number of desired knots if type is not "cutoff".

seed Random seed. Affects stats::kmeans() determination of knot locations if
type = "kmeans".

mesh An optional mesh created via fmesher instead of using the above convenience
options.

fmesher_func Which fmesher function to use. Options include fmesher::fm_rcdt_2d_inla()
and fmesher::fm_mesh_2d_inla() along with version without the _inla on
the end.

convex If specified, passed to fmesher::fm_nonconvex_hull(). Distance to extend
non-convex hull from data.
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concave If specified, passed to fmesher::fm_nonconvex_hull(). "Minimum allowed
reentrant curvature". Defaults to convex.

... Passed to graphics::plot().

x Output from make_mesh().

Value

make_mesh(): A list of class sdmTMBmesh. The element mesh is the output from fmesher_func
(default is fmesher::fm_mesh_2d_inla()). See mesh$mesh$n for the number of vertices.

plot.sdmTMBmesh(): A plot of the mesh and data points. To make your own ggplot2 version, pass
your_mesh$mesh to inlabru::gg().

Examples

# Extremely simple cutoff:
mesh <- make_mesh(pcod, c("X", "Y"), cutoff = 5, type = "cutoff")
plot(mesh)

# Using a k-means algorithm to assign vertices:
mesh <- make_mesh(pcod, c("X", "Y"), n_knots = 50, type = "kmeans")
plot(mesh)

# But, it's better to develop more tailored meshes:

# Pass arguments via '...' to fmesher::fm_mesh_2d_inla():
mesh <- make_mesh(

pcod, c("X", "Y"),
fmesher_func = fmesher::fm_mesh_2d_inla,
cutoff = 8, # minimum triangle edge length
max.edge = c(20, 40), # inner and outer max triangle lengths
offset = c(5, 40) # inner and outer border widths

)
plot(mesh)

# Or define a mesh directly with fmesher (formerly in INLA):
inla_mesh <- fmesher::fm_mesh_2d_inla(

loc = cbind(pcod$X, pcod$Y), # coordinates
max.edge = c(25, 50), # max triangle edge length; inner and outer meshes
offset = c(5, 25), # inner and outer border widths
cutoff = 5 # minimum triangle edge length

)
mesh <- make_mesh(pcod, c("X", "Y"), mesh = inla_mesh)
plot(mesh)
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pcod Example fish survey data

Description

Various fish survey datasets.

Usage

pcod

pcod_2011

pcod_mesh_2011

qcs_grid

dogfish

yelloweye

hbll_s_grid

wcvi_grid

Format

pcod: Trawl survey data for Pacific Cod in Queen Charlotte Sound. A data frame.

pcod_2011: A version of pcod for years 2011 and after (smaller for speed). A data frame.

pcod_mesh_2011: A mesh pre-built for pcod_2011 for examples. A list of class sdmTMBmesh.

qcs_grid A 2x2km prediction grid for Queen Charlotte Sound. A data frame.

dogfish: Trawl survey data for Pacific Spiny Dogfish on West Coast Vancouver Island. A data
frame.

yelloweye: Survey data for Yelloweye Rockfish from the Hard Bottom Longline Survey (South)
off West Coast Vancouver Island.

hbll_s_grid: A survey domain grid to go with yelloweye. A data frame.

wcvi_grid: A survey domain grid to go with dogfish. A data frame.
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plot_anisotropy Plot anisotropy from an sdmTMB model

Description

Anisotropy is when spatial correlation is directionally dependent. In sdmTMB(), the default spatial
correlation is isotropic, but anisotropy can be enabled with anisotropy = TRUE. These plotting
functions help visualize that estimated anisotropy.

Usage

plot_anisotropy(object, return_data = FALSE)

plot_anisotropy2(object, model = 1)

Arguments

object An object from sdmTMB().

return_data Logical. Return a data frame? plot_anisotropy() only.

model Which model if a delta model (only for plot_anisotropy2(); plot_anisotropy()
always plots both).

Value

plot_anisotropy(): One or more ellipses illustrating the estimated anisotropy. The ellipses are
centered at coordinates of zero in the space of the X-Y coordinates being modeled. The ellipses
show the spatial and/or spatiotemporal range (distance at which correlation is effectively indepen-
dent) in any direction from zero. Uses ggplot2. If anisotropy was turned off when fitting the model,
NULL is returned instead of a ggplot2 object.

plot_anisotropy2(): A plot of eigenvectors illustrating the estimated anisotropy. A list of the
plotted data is invisibly returned. Uses base graphics. If anisotropy was turned off when fitting the
model, NULL is returned instead of a plot object.

References

Code adapted from VAST R package

Examples

mesh <- make_mesh(pcod_2011, c("X", "Y"), n_knots = 80, type = "kmeans")
fit <- sdmTMB(

data = pcod_2011,
formula = density ~ 1,
mesh = mesh,
family = tweedie(),
share_range = FALSE,
anisotropy = TRUE #<
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)
plot_anisotropy(fit)
plot_anisotropy2(fit)

plot_pc_matern Plot PC Matérn priors

Description

Plot PC Matérn priors

Usage

plot_pc_matern(
range_gt,
sigma_lt,
range_prob = 0.05,
sigma_prob = 0.05,
range_lims = c(range_gt * 0.1, range_gt * 10),
sigma_lims = c(0, sigma_lt * 2),
plot = TRUE

)

Arguments

range_gt A value one expects the spatial or spatiotemporal range is greater than with 1 -
range_prob probability.

sigma_lt A value one expects the spatial or spatiotemporal marginal standard deviation
(sigma_O or sigma_E internally) is less than with 1 - sigma_prob probability.

range_prob Probability. See description for range_gt.

sigma_prob Probability. See description for sigma_lt.

range_lims Plot range variable limits.

sigma_lims Plot sigma variable limits.

plot Logical controlling whether plot is drawn (defaults to TRUE).

Value

A plot from image(). Invisibly returns the underlying matrix data. The rows are the sigmas. The
columns are the ranges. Column and row names are provided.

See Also

pc_matern()
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Examples

plot_pc_matern(range_gt = 5, sigma_lt = 1)
plot_pc_matern(range_gt = 5, sigma_lt = 10)
plot_pc_matern(range_gt = 5, sigma_lt = 1, sigma_prob = 0.2)
plot_pc_matern(range_gt = 5, sigma_lt = 1, range_prob = 0.2)

plot_smooth Plot a smooth term from an sdmTMB model

Description

Deprecated: use visreg::visreg(). See visreg_delta() for examples.

Usage

plot_smooth(
object,
select = 1,
n = 100,
level = 0.95,
ggplot = FALSE,
rug = TRUE,
return_data = FALSE

)

Arguments

object An sdmTMB() model.

select The smoother term to plot.

n The number of equally spaced points to evaluate the smoother along.

level The confidence level.

ggplot Logical: use the ggplot2 package?

rug Logical: add rug lines along the lower axis?

return_data Logical: return the predicted data instead of making a plot?

Details

Note:

• Any numeric predictor is set to its mean

• Any factor predictor is set to its first-level value

• The time element (if present) is set to its minimum value

• The x and y coordinates are set to their mean values
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Value

A plot of a smoother term.

Examples

d <- subset(pcod, year >= 2000 & density > 0)
pcod_spde <- make_mesh(d, c("X", "Y"), cutoff = 30)
m <- sdmTMB(

data = d,
formula = log(density) ~ s(depth_scaled) + s(year, k = 5),
mesh = pcod_spde

)
plot_smooth(m)

predict.sdmTMB Predict from an sdmTMB model

Description

Make predictions from an sdmTMB model; can predict on the original or new data.

Usage

## S3 method for class 'sdmTMB'
predict(
object,
newdata = NULL,
type = c("link", "response"),
se_fit = FALSE,
re_form = NULL,
re_form_iid = NULL,
nsim = 0,
sims_var = "est",
model = c(NA, 1, 2),
offset = NULL,
mcmc_samples = NULL,
return_tmb_object = FALSE,
return_tmb_report = FALSE,
return_tmb_data = FALSE,
...

)

Arguments

object A model fitted with sdmTMB().

newdata A data frame to make predictions on. This should be a data frame with the same
predictor columns as in the fitted data and a time column (if this is a spatiotem-
poral model) with the same name as in the fitted data.
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type Should the est column be in link (default) or response space?
se_fit Should standard errors on predictions be calculated? Warning: can be slow for

large datasets or high-resolution projections when random fields are included.
For faster uncertainty estimation, either use re_form = NA to exclude random
fields or use the nsim argument to simulate from the joint precision matrix.

re_form NULL to include all spatial/spatiotemporal random fields in predictions. ~0 or NA
for population-level predictions (predictions from fixed effects only, marginal-
izing over random fields). Often used with se_fit = TRUE to visualize marginal
effects. Does not affect get_index() calculations.

re_form_iid NULL to specify including all random intercepts in the predictions. ~0 or NA for
population-level predictions. No other options (e.g., some but not all random
intercepts) are implemented yet. Only affects predictions with newdata. This
does affects get_index().

nsim If > 0, simulate from the joint precision matrix with nsim draws. Returns a
matrix of nrow(newdata) by nsim with each column representing one draw of
the linear predictor (in link space). Simulating from the joint precision matrix
accounts for uncertainty in both fixed and random effects. Use this to derive
uncertainty on predictions (e.g., apply(x, 1, sd)) or propagate uncertainty to
derived quantities. This is the fastest way to characterize spatial uncertainty with
sdmTMB.

sims_var Experimental: Which TMB reported variable from the model should be ex-
tracted from the joint precision matrix simulation draws? Defaults to link-
space predictions. Options include: "omega_s", "zeta_s", "epsilon_st", and
"est_rf" (as described below). Other options will be passed verbatim.

model Which component to predict from delta/hurdle models when nsim > 0 or mcmc_samples
is supplied. NA (default) returns the combined prediction from both components;
1 returns the binomial component only; 2 returns the positive component only.
Predictions are on the link or response scale depending on type. For regular
predictions (without simulation), both components are returned. See the delta-
model vignette.

offset A numeric vector of optional offset values. If left at default NULL, the offset is
implicitly left at 0.

mcmc_samples See extract_mcmc() in the sdmTMBextra package for more details and the
Bayesian vignette. If specified, the predict function will return a matrix of a
similar form as if nsim > 0 but representing Bayesian posterior samples from
the Stan model.

return_tmb_object

Logical. If TRUE, will include the TMB object in a list format output. Necessary
for the get_index() or get_cog() functions.

return_tmb_report

Logical: return the output from the TMB report? For regular prediction, this is
all the reported variables at the MLE parameter values. For nsim > 0 or when
mcmc_samples is supplied, this is a list where each element is a sample and the
contents of each element is the output of the report for that sample.

return_tmb_data

Logical: return formatted data for TMB? Used internally.
... Not implemented.

https://sdmTMB.github.io/sdmTMB/articles/delta-models.html
https://sdmTMB.github.io/sdmTMB/articles/delta-models.html
https://github.com/sdmTMB/sdmTMBextra
https://sdmTMB.github.io/sdmTMB/articles/bayesian.html
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Value

If return_tmb_object = FALSE (and nsim = 0 and mcmc_samples = NULL):

A data frame:

• est: Estimate in link space (everything included)

• est_non_rf: Estimate from everything except random fields (fixed effects, random intercepts,
time-varying effects, etc.)

• est_rf: Estimate from all random fields combined

• omega_s: Spatial random field (models consistent spatial patterns)

• zeta_s: Spatially varying coefficient field (models how effects vary across space)

• epsilon_st: Spatiotemporal random field (models spatial patterns that vary over time)

If return_tmb_object = TRUE (and nsim = 0 and mcmc_samples = NULL):

A list:

• data: The data frame described above

• report: The TMB report on parameter values

• obj: The TMB object returned from the prediction run

• fit_obj: The original TMB model object

In this case, you likely only need the data element as an end user. The other elements are included
for other functions.

If nsim > 0 or mcmc_samples is not NULL:

A matrix:

• Columns represent samples

• Rows represent predictions with one row per row of newdata

Examples

d <- pcod_2011
mesh <- make_mesh(d, c("X", "Y"), cutoff = 30) # a coarse mesh for example speed
m <- sdmTMB(
data = d, formula = density ~ 0 + as.factor(year) + depth_scaled + depth_scaled2,
time = "year", mesh = mesh, family = tweedie(link = "log")
)

# Predictions at original data locations -------------------------------

predictions <- predict(m)
head(predictions)

predictions$resids <- residuals(m) # randomized quantile residuals

library(ggplot2)
ggplot(predictions, aes(X, Y, col = resids)) + scale_colour_gradient2() +
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geom_point() + facet_wrap(~year)
hist(predictions$resids)
qqnorm(predictions$resids);abline(a = 0, b = 1)

# Predictions onto new data --------------------------------------------

qcs_grid_2011 <- replicate_df(qcs_grid, "year", unique(pcod_2011$year))
predictions <- predict(m, newdata = qcs_grid_2011)

# A short function for plotting our predictions:
plot_map <- function(dat, column = est) {

ggplot(dat, aes(X, Y, fill = {{ column }})) +
geom_raster() +
facet_wrap(~year) +
coord_fixed()

}

plot_map(predictions, exp(est)) +
scale_fill_viridis_c(trans = "sqrt") +
ggtitle("Prediction (fixed effects + all random effects)")

plot_map(predictions, exp(est_non_rf)) +
ggtitle("Prediction (fixed effects and any time-varying effects)") +
scale_fill_viridis_c(trans = "sqrt")

plot_map(predictions, est_rf) +
ggtitle("All random field estimates") +
scale_fill_gradient2()

plot_map(predictions, omega_s) +
ggtitle("Spatial random effects only") +
scale_fill_gradient2()

plot_map(predictions, epsilon_st) +
ggtitle("Spatiotemporal random effects only") +
scale_fill_gradient2()

# Visualizing a marginal effect ----------------------------------------

# See the visreg package or the ggeffects::ggeffect() or
# ggeffects::ggpredict() functions
# To do this manually:

nd <- data.frame(depth_scaled =
seq(min(d$depth_scaled), max(d$depth_scaled), length.out = 100))

nd$depth_scaled2 <- nd$depth_scaled^2

# Because this is a spatiotemporal model, you'll need at least one time
# element. If time isn't also a fixed effect then it doesn't matter what you pick:
nd$year <- 2011L # L: integer to match original data
p <- predict(m, newdata = nd, se_fit = TRUE, re_form = NA)
ggplot(p, aes(depth_scaled, exp(est),
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ymin = exp(est - 1.96 * est_se), ymax = exp(est + 1.96 * est_se))) +
geom_line() + geom_ribbon(alpha = 0.4)

# Plotting marginal effect of a spline ---------------------------------

m_gam <- sdmTMB(
data = d, formula = density ~ 0 + as.factor(year) + s(depth_scaled, k = 5),
time = "year", mesh = mesh, family = tweedie(link = "log")

)
if (require("visreg", quietly = TRUE)) {

visreg::visreg(m_gam, "depth_scaled")
}

# or manually:
nd <- data.frame(depth_scaled =

seq(min(d$depth_scaled), max(d$depth_scaled), length.out = 100))
nd$year <- 2011L
p <- predict(m_gam, newdata = nd, se_fit = TRUE, re_form = NA)
ggplot(p, aes(depth_scaled, exp(est),

ymin = exp(est - 1.96 * est_se), ymax = exp(est + 1.96 * est_se))) +
geom_line() + geom_ribbon(alpha = 0.4)

# Forecasting ----------------------------------------------------------
mesh <- make_mesh(d, c("X", "Y"), cutoff = 15)

unique(d$year)
m <- sdmTMB(

data = d, formula = density ~ 1,
spatiotemporal = "AR1", # using an AR1 to have something to forecast with
extra_time = 2019L, # `L` for integer to match our data
spatial = "off",
time = "year", mesh = mesh, family = tweedie(link = "log")

)

# Add a year to our grid:
grid2019 <- qcs_grid_2011[qcs_grid_2011$year == max(qcs_grid_2011$year), ]
grid2019$year <- 2019L # `L` because `year` is an integer in the data
qcsgrid_forecast <- rbind(qcs_grid_2011, grid2019)

predictions <- predict(m, newdata = qcsgrid_forecast)
plot_map(predictions, exp(est)) +

scale_fill_viridis_c(trans = "log10")
plot_map(predictions, epsilon_st) +

scale_fill_gradient2()

# Estimating local trends ----------------------------------------------

d <- pcod
d$year_scaled <- as.numeric(scale(d$year))
mesh <- make_mesh(pcod, c("X", "Y"), cutoff = 25)
m <- sdmTMB(data = d, formula = density ~ depth_scaled + depth_scaled2,

mesh = mesh, family = tweedie(link = "log"),
spatial_varying = ~ 0 + year_scaled, time = "year", spatiotemporal = "off")



34 project

nd <- replicate_df(qcs_grid, "year", unique(pcod$year))
nd$year_scaled <- (nd$year - mean(d$year)) / sd(d$year)
p <- predict(m, newdata = nd)

plot_map(subset(p, year == 2003), zeta_s_year_scaled) + # pick any year
ggtitle("Spatial slopes") +
scale_fill_gradient2()

plot_map(p, est_rf) +
ggtitle("Random field estimates") +
scale_fill_gradient2()

plot_map(p, exp(est_non_rf)) +
ggtitle("Prediction (fixed effects only)") +
scale_fill_viridis_c(trans = "sqrt")

plot_map(p, exp(est)) +
ggtitle("Prediction (fixed effects + all random effects)") +
scale_fill_viridis_c(trans = "sqrt")

project Project from an sdmTMB model using simulation

Description

[Experimental]

The function enables projecting forward in time from an sdmTMB model using a simulation ap-
proach for computational efficiency. This can be helpful for calculating predictive intervals for long
projections where including those time elements in extra_time during model estimation can be
slow.

Inspiration for this approach comes from the VAST function project_model().

Usage

project(
object,
newdata,
nsim = 1,
uncertainty = c("both", "random", "none"),
silent = FALSE,
sims_var = "eta_i",
sim_re = c(0, 1, 0, 0, 1, 0),
return_tmb_report = FALSE,
...

)
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Arguments

object A fitted model from sdmTMB().

newdata A new data frame to predict on. Should contain both historical and any new time
elements to predict on.

nsim Number of simulations.

uncertainty How to sample uncertainty for the fitted parameters: "both" for the joint fixed
and random effect precision matrix, "random" for the random effect precision
matrix (holding the fixed effects at their MLE), or "none" for neither.

silent Silent?

sims_var Element to extract from the TMB report. Also see return_tmb_report.

sim_re A vector of 0s and 1s representing which random effects to simulate in the pro-
jection. Generally, leave this untouched. Order is: spatial fields, spatiotemporal
fields, spatially varying coefficient fields, random intercepts, time-varying coef-
ficients, smoothers. The default is to simulate spatiotemporal fields and time-
varying coefficients, if present.

return_tmb_report

Return the TMB report from simulate()? This lets you parse out whatever
elements you want from the simulation including grabbing multiple elements
from one set of simulations. See examples.

... Passed to predict.sdmTMB().

Value

Default: a list with elements est and epsilon_st (if spatiotemporal effects are present). Each list
element includes a matrix with rows corresponding to rows in newdata and nsim columns. For
delta models, the components are est1, est2, epsilon_st, and epsilon_st2 for the 1st and 2nd
linear predictors. In all cases, these returned values are in link space.

If return_tmb_report = TRUE, a list of TMB reports from simulate(). Run names() on the
output to see the options.

Author(s)

J.T. Thorson wrote the original version in the VAST package. S.C. Anderson wrote this version
inspired by the VAST version with help from A.J. Allyn.

References

project_model() in the VAST package.

Examples

library(ggplot2)

mesh <- make_mesh(dogfish, c("X", "Y"), cutoff = 25)
historical_years <- 2004:2022
to_project <- 10
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future_years <- seq(max(historical_years) + 1, max(historical_years) + to_project)
all_years <- c(historical_years, future_years)
proj_grid <- replicate_df(wcvi_grid, "year", all_years)

# we could fit our model like this, but for long projections, this becomes slow:
if (FALSE) {

fit <- sdmTMB(
catch_weight ~ 1,
time = "year",
offset = log(dogfish$area_swept),
extra_time = all_years, #< note that all years here
spatial = "on",
spatiotemporal = "ar1",
data = dogfish,
mesh = mesh,
family = tweedie(link = "log")

)
}

# instead, we could fit our model like this and then take simulation draws
# from the projection time period:
fit2 <- sdmTMB(

catch_weight ~ 1,
time = "year",
offset = log(dogfish$area_swept),
extra_time = historical_years, #< does *not* include projection years
spatial = "on",
spatiotemporal = "ar1",
data = dogfish,
mesh = mesh,
family = tweedie(link = "log")

)

# we will only use 20 `nsim` so this example runs quickly
# you will likely want many more (> 200) in practice so the result
# is relatively stable

set.seed(1)
out <- project(fit2, newdata = proj_grid, nsim = 20)
names(out)
est_mean <- apply(out$est, 1, mean) # summarize however you'd like
est_se <- apply(out$est, 1, sd)

# visualize:
proj_grid$est_mean <- est_mean
ggplot(subset(proj_grid, year > 2021), aes(X, Y, fill = est_mean)) +

geom_raster() +
facet_wrap(~year) +
coord_fixed() +
scale_fill_viridis_c() +
ggtitle("Projection simulation (mean)")

# visualize the spatiotemporal random fields:
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proj_grid$eps_mean <- apply(out$epsilon_st, 1, mean)
proj_grid$eps_se <- apply(out$epsilon_st, 1, sd)
ggplot(subset(proj_grid, year > 2021), aes(X, Y, fill = eps_mean)) +

geom_raster() +
facet_wrap(~year) +
scale_fill_gradient2() +
coord_fixed() +
ggtitle("Projection simulation\n(spatiotemporal fields)")

ggplot(subset(proj_grid, year > 2021), aes(X, Y, fill = eps_se)) +
geom_raster() +
facet_wrap(~year) +
scale_fill_viridis_c() +
coord_fixed() +
ggtitle("Projection simulation\n(spatiotemporal fields standard error)")

replicate_df Replicate a prediction data frame over time

Description

Useful for replicating prediction grids across time slices used in model fitting.

Usage

replicate_df(dat, time_name, time_values)

Arguments

dat Data frame.

time_name Name of time column in output.

time_values Time values to replicate dat over.

Value

A data frame replicated over time_values with a new column based on time_name.

Examples

df <- data.frame(variable = c("a", "b"))
replicate_df(df, time_name = "year", time_values = 1:3)

head(qcs_grid)
nd <- replicate_df(qcs_grid, "year", unique(pcod$year))
head(nd)
table(nd$year)
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residuals.sdmTMB Residuals method for sdmTMB models

Description

See the residual-checking vignette: browseVignettes("sdmTMB") or on the documentation site.
See notes about types of residuals in ’Details’ section below.

Usage

## S3 method for class 'sdmTMB'
residuals(
object,
type = c("mle-mvn", "mle-eb", "mle-mcmc", "response", "pearson", "deviance"),
model = c(1, 2),
mcmc_samples = NULL,
qres_func = NULL,
...

)

Arguments

object An sdmTMB() model.

type Residual type. See details.

model Which delta/hurdle model component?

mcmc_samples A vector of MCMC samples of the linear predictor in link space. See the
predict_mle_mcmc() function in the sdmTMBextra package.

qres_func A custom quantile residuals function. Function should take the arguments object, y, mu, ...
and return a vector of length length(y).

... Passed to custom qres_func function. Unused.

Details

Randomized quantile residuals:
mle-mvn, mle-eb, and mle-mcmc are all implementations of randomized quantile residuals (Dunn &
Smyth 1996), which are also known as probability integral transform (PIT) residuals (Smith 1985).
If the data are consistent with model assumptions, these residuals should be distributed as normal(0,
1). Randomization is added to account for integer or binary response observations. For example,
for a Poisson observation likelihood with observations y and mean predictions mu, we would create
randomized quantile residuals as:

a <- ppois(y - 1, mu)
b <- ppois(y, mu)
u <- runif(n = length(y), min = a, max = b)
qnorm(u)

https://sdmTMB.github.io/sdmTMB/articles/residual-checking.html
https://github.com/sdmTMB/sdmTMBextra
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Types of residuals:
Acronyms:

• EB: Empirical Bayes

• MCMC: Markov chain Monte Carlo

• MLE: Maximum Likelihood Estimate

• MVN: Multivariate normal

mle-mvn: Fixed effects are held at their MLEs and random effects are taken from a single ap-
proximate posterior sample. The "approximate" part refers to the sample being taken from the
random effects’ assumed MVN distribution. In practice, the sample is obtained based on the
mode and Hessian of the random effects taking advantage of sparsity in the Hessian for compu-
tational efficiency. This sample is taken with obj$MC(), where obj is the TMB object created
with TMB::MakeADFun(). See Waagepetersen (2006) and the description in the source code for the
internal TMB function TMB:::oneSamplePosterior(). Residuals are converted to randomized
quantile residuals as described above.

mle-eb: Fixed effects are held at their MLEs and random effects are taken as their EB estimates.
These used to be the default residuals in sdmTMB (and were called mle-laplace). They are
available for backwards compatibility and for research purposes but they are not recommended for
checking goodness of fit. Residuals are converted to randomized quantile residuals as described
above.

mle-mcmc: Fixed effects are held at their MLEs and random effects are taken from a single posterior
sample obtained with MCMC. These are an excellent option since they make no assumption about
the distribution of the random effects (compared to the mle-mvn option) but can be slow to obtain.
See Waagepetersen (2006) and Thygesen et al. (2017). Residuals are converted to randomized
quantile residuals as described above.

See the sdmTMBextra package for the function predict_mle_mcmc(), which can generate the
MCMC samples to pass to the mcmc_samples argument. Ideally MCMC is run until convergence
and then the last iteration can be used for residuals. The defaults may not be sufficient for many
models.

response: These are simple observed minus predicted residuals.

pearson: These are Pearson residuals: response residuals scaled by the standard deviation. If
weights are present, the residuals are then multiplied by sqrt(weights).

Value

A vector of residuals. Note that randomization from any single random effect posterior sample
and from any randomized quantile routines will result in different residuals with each call. It is
suggested to set a randomization seed and to not go "fishing" for the perfect residuals or to present
all inspected residuals.

References

Dunn, P.K. & Smyth, G.K. (1996). Randomized Quantile Residuals. Journal of Computational and
Graphical Statistics, 5, 236–244.

Smith, J.Q. (1985). Diagnostic checks of non-standard time series models. Journal of Forecasting,
4, 283–291.

https://github.com/sdmTMB/sdmTMBextra
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Waagepetersen, R. (2006). A simulation-based goodness-of-fit test for random effects in general-
ized linear mixed models. Scandinavian Journal of Statistics, 33(4), 721-731.

Thygesen, U.H., Albertsen, C.M., Berg, C.W., Kristensen, K., and Nielsen, A. 2017. Validation of
ecological state space models using the Laplace approximation. Environ Ecol Stat 24(2): 317–339.
doi:10.1007/s1065101703724

Rufener, M.-C., Kristensen, K., Nielsen, J.R., and Bastardie, F. 2021. Bridging the gap between
commercial fisheries and survey data to model the spatiotemporal dynamics of marine species.
Ecological Applications. e02453. doi:10.1002/eap.2453

See Also

simulate.sdmTMB(), dharma_residuals()

Examples

mesh <- make_mesh(pcod_2011, c("X", "Y"), cutoff = 10)
fit <- sdmTMB(

present ~ as.factor(year) + poly(depth, 2),
data = pcod_2011, mesh = mesh,
family = binomial()

)

# the default "mle-mvn" residuals use fixed effects at their MLE and a
# single sample from the approximate random effect posterior:
set.seed(9283)
r <- residuals(fit, type = "mle-mvn")
qqnorm(r)
abline(0, 1)

# response residuals will be not be normally distributed unless
# the family is Gaussian:
r <- residuals(fit, type = "response")
qqnorm(r)
abline(0, 1)

# "mle-eb" are quick but are not expected to be N(0, 1); not recommended:
set.seed(2321)
r <- residuals(fit, type = "mle-eb")
qqnorm(r)
abline(0, 1)

# see also "mle-mcmc" residuals with the help of the sdmTMBextra package
# we can fake them here by taking a single sample from the joint precision
# matrix and pretending they are MCMC samples:
set.seed(82728)
p <- predict(fit, nsim = 1) # pretend these are from sdmTMBextra::predict_mle_mcmc()
r <- residuals(fit, mcmc_samples = p)
qqnorm(r)
abline(0, 1)

https://doi.org/10.1007/s10651-017-0372-4
https://doi.org/10.1002/eap.2453
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run_extra_optimization

Run extra optimization on an already fitted object

Description

[Experimental]

Usage

run_extra_optimization(object, nlminb_loops = 0, newton_loops = 1)

Arguments

object An object from sdmTMB().

nlminb_loops How many extra times to run stats::nlminb() optimization. Sometimes restart-
ing the optimizer at the previous best values aids convergence.

newton_loops How many extra Newton optimization loops to try with stats::optimHess().
Sometimes aids convergence.

Value

An updated model fit of class sdmTMB.

Examples

# Run extra optimization steps to help convergence:
# (Not typically needed)
fit <- sdmTMB(density ~ 0 + poly(depth, 2) + as.factor(year),

data = pcod_2011, mesh = pcod_mesh_2011, family = tweedie())
fit_1 <- run_extra_optimization(fit, newton_loops = 1)
max(fit$gradients)
max(fit_1$gradients)

sanity Sanity check of an sdmTMB model

Description

Sanity check of an sdmTMB model

Usage

sanity(object, big_sd_log10 = 2, gradient_thresh = 0.001, silent = FALSE)
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Arguments

object Fitted model from sdmTMB().

big_sd_log10 Value to check size of standard errors against. A value of 2 would indicate that
standard errors greater than 10^2 (i.e., 100) should be flagged.

gradient_thresh

Gradient threshold to issue warning.

silent Logical: suppress messages? Useful to set to TRUE if running large numbers of
models and just interested in returning sanity list objects.

Details

If object is NA, NULL, or of class "try-error", sanity() will return FALSE. This is to facilitate
using sanity() on models with try() or tryCatch(). See the examples section.

Value

An invisible named list of checks.

Examples

fit <- sdmTMB(
present ~ s(depth),
data = pcod_2011, mesh = pcod_mesh_2011,
family = binomial()

)
sanity(fit)

s <- sanity(fit)
s

# If fitting many models in a loop, you may want to wrap
# sdmTMB() in try() to handle errors. sanity() will take an object
# of class "try-error" and return FALSE.
# Here, we will use stop() to simulate a failed sdmTMB() fit:
failed_fit <- try(stop())
s2 <- sanity(failed_fit)
all(unlist(s))
all(unlist(s2))

sdmTMB Fit a spatial or spatiotemporal GLMM with TMB

Description

Fit a spatial or spatiotemporal generalized linear mixed effects model (GLMM) with the TMB (Tem-
plate Model Builder) R package. Spatial and spatiotemporal random fields are approximated using
the SPDE (stochastic partial differential equation) approach, which allows for efficient modeling of
data that are correlated in space and/or time. See the model description vignette for details.

https://sdmTMB.github.io/sdmTMB/articles/model-description.html
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Usage

sdmTMB(
formula,
data,
mesh,
time = NULL,
family = gaussian(link = "identity"),
spatial = c("on", "off"),
spatiotemporal = c("iid", "ar1", "rw", "off"),
share_range = TRUE,
time_varying = NULL,
time_varying_type = c("rw", "rw0", "ar1"),
spatial_varying = NULL,
weights = NULL,
offset = NULL,
extra_time = NULL,
reml = FALSE,
silent = TRUE,
anisotropy = FALSE,
control = sdmTMBcontrol(),
priors = sdmTMBpriors(),
knots = NULL,
bayesian = FALSE,
previous_fit = NULL,
do_fit = TRUE,
do_index = FALSE,
predict_args = NULL,
index_args = NULL,
experimental = NULL

)

Arguments

formula Model formula. IID random intercepts and slopes are possible using lme4 syn-
tax, e.g., + (1 | g) or + (0 + depth | g) or + (1 + depth | g) where g is a col-
umn of class character or factor representing groups. Penalized splines are possi-
ble via mgcv with s(). Optionally a list for delta (hurdle) models. See examples
and details below.

data A data frame.

mesh An object from make_mesh().

time An optional time column name (as character). Can be left as NULL for a model
with only spatial random fields; however, if the data are actually spatiotemporal
and you wish to use get_index() or get_cog() downstream, supply the time
argument.

family The family and link. Supports gaussian(), Gamma(), binomial(), poisson(),
Beta(), betabinomial(), nbinom2(), truncated_nbinom2(), nbinom1(), truncated_nbinom1(),
censored_poisson(), gamma_mix(), lognormal_mix(), student(), tweedie(),
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and gengamma(). Delta/hurdle models (for zero-inflated data) include: delta_beta(),
delta_gamma(), delta_gamma_mix(), delta_lognormal_mix(), delta_lognormal(),
and delta_truncated_nbinom2(). See the delta-model vignette for details.
For binomial family options, see ’Binomial families’ in the Details section be-
low.

spatial Estimate spatial random fields? Options are 'on' / 'off' or TRUE / FALSE.
Optionally, a list for delta models, e.g. list('on', 'off').

spatiotemporal Estimate the spatiotemporal random fields as 'iid' (independent and identi-
cally distributed; default), stationary 'ar1' (first-order autoregressive), a ran-
dom walk ('rw'), or fixed at 0 'off'. Will be set to 'off' if time = NULL. If
a delta model, can be a list. E.g., list('off', 'ar1'). Guidance: Use 'iid'
if temporal correlation is negligible or already accounted for in fixed effects;
'ar1' if correlation between consecutive time steps decays gradually; 'rw' if
changes between time steps are cumulative (each step builds on the last). If
the AR1 correlation coefficient (rho) is estimated close to 1 (say > 0.99), con-
sider switching to 'rw'. See the model description vignette for mathematical
details. Capitalization is ignored. TRUE gets converted to 'iid' and FALSE gets
converted to 'off'.

share_range Logical: estimate a shared spatial and spatiotemporal range parameter (TRUE,
default) or independent range parameters (FALSE). If a delta model, can be a list.
E.g., list(TRUE, FALSE).

time_varying An optional one-sided formula describing covariates that should be modelled as
a time-varying process. Set the type of process with time_varying_type. See
the help for time_varying_type for warnings about modelling the first time
step. Structure shared in delta models.

time_varying_type

Type of time-varying process to apply to time_varying formula. Options: 'rw'
(random walk, default), 'rw0' (random walk with mean-zero prior on first time
step), or 'ar1' (autoregressive, for coefficients that fluctuate around a mean).
For 'rw0' and 'ar1', the coefficient starts at zero in the first time step. For
'rw' (default), the first time step is estimated separately—in this case, avoid
including the same covariates in both formula and time_varying to prevent
non-identifiability (use ~ 0 or ~ -1 in at least one). Structure shared in delta
models.

spatial_varying

An optional one-sided formula of coefficients that should vary in space as ran-
dom fields. Allows the effect of a covariate to differ spatially. You likely want
to include the same variable as a fixed effect in formula to estimate the average
effect—the spatial field then represents deviations from that average (since it has
mean zero). For example, use formula = y ~ depth and spatial_varying = ~
0 + depth to model an average depth effect plus spatially varying deviations.
If a (scaled) time column is used, this creates a local-time-trend model. See
doi:10.1111/ecog.05176 and the spatial trends vignette. Predictors should usu-
ally be centered to have mean zero and standard deviation approximately 1. The
spatial intercept is controlled by the spatial argument; set spatial = 'on'
or 'off' to include or exclude it. For factor predictors, if spatial_varying
excludes the intercept (~ 0 or ~ -1), set spatial = 'off' to match. Structure
must be shared in delta models.

https://sdmTMB.github.io/sdmTMB/articles/delta-models.html
https://sdmTMB.github.io/sdmTMB/articles/model-description.html
https://doi.org/10.1111/ecog.05176
https://sdmTMB.github.io/sdmTMB/articles/spatial-trend-models.html


sdmTMB 45

weights A numeric vector representing optional likelihood weights for the conditional
model. Implemented as in glmmTMB: weights do not have to sum to one and
are not internally modified. Can also be used for trials with the binomial family;
the weights argument needs to be a vector and not a name of the variable in the
data frame. See the Details section below.

offset A numeric vector representing the model offset or a character value representing
the column name of the offset. In delta/hurdle models, this applies only to the
positive component. Usually a log transformed variable.

extra_time Optional extra time slices (e.g., years) to include for interpolation or forecasting
with the predict function. See the Details section below.

reml Logical: use REML (restricted maximum likelihood) estimation rather than
maximum likelihood? REML accounts for uncertainty in estimating fixed ef-
fects and can reduce bias in variance parameter estimates, but prevents likelihood-
based model comparison (e.g., AIC) between models with different fixed effects.
Use TRUE if your focus is on random effect variance parameters; use FALSE
(default) if comparing models with different fixed effects or performing index
standardization.

silent Silent or include optimization details? Helpful to set to FALSE for models that
take a while to fit.

anisotropy Logical: allow for anisotropy (spatial correlation that is directionally depen-
dent)? See plot_anisotropy(). Must be shared across delta models.

control Optimization control options via sdmTMBcontrol().
priors Optional penalties/priors via sdmTMBpriors(). Must currently be shared across

delta models.
knots Optional named list containing knot values to be used for basis construction of

smoothing terms. See mgcv::gam() and mgcv::gamm(). E.g., s(x, bs = 'cc', k = 4), knots = list(x = c(1, 2, 3, 4))

bayesian Logical indicating if the model will be passed to tmbstan. If TRUE, Jacobian
adjustments are applied to account for parameter transformations when priors
are applied.

previous_fit A previously fitted sdmTMB model to initialize the optimization with. Can
greatly speed up fitting. Note that the model must be set up exactly the same
way. However, the data and weights arguments can change, which can be useful
for cross-validation.

do_fit Fit the model (TRUE) or return the processed data without fitting (FALSE)?
do_index Do index standardization calculations while fitting? Saves memory and time

when working with large datasets or projection grids since the TMB object
doesn’t have to be rebuilt with predict.sdmTMB() and get_index(). If TRUE,
then predict_args must have a newdata element supplied and area can be
supplied to index_args. Most users can ignore this option. The fitted object
can be passed directly to get_index().

predict_args A list of arguments to pass to predict.sdmTMB() if do_index = TRUE. Most
users can ignore this option.

index_args A list of arguments to pass to get_index() if do_index = TRUE. Currently, only
area is supported. Bias correction can be done when calling get_index() on
the resulting fitted object. Most users can ignore this option.

experimental A named list for esoteric or in-development options. Here be dragons.
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Details

Model description

sdmTMB fits GLMMs with spatial and/or spatiotemporal random fields, which account for corre-
lation in the data due to spatial proximity, or alternatively, latent spatial and spatiotemporal effects.
Spatial fields represent consistent spatial patterns, while spatiotemporal fields represent spatial pat-
terns that vary over time. See the model description vignette for mathematical details and the paper:
doi:10.1101/2022.03.24.485545

Binomial families

Following the structure of stats::glm() and glmmTMB, a binomial family can be specified in one
of 4 ways: (1) the response may be a factor (and the model classifies the first level versus all others),
(2) the response may be binomial (0/1), (3) the response can be a matrix of form cbind(success,
failure), and (4) the response may be the observed proportions, and the ’weights’ argument is
used to specify the Binomial size (N) parameter (prob ~ ..., weights = N).

Smooth terms

Smooth terms can be included following GAMs (generalized additive models) using + s(x), which
implements a smooth from mgcv::s(). sdmTMB uses penalized smooths, constructed via mgcv::smooth2random().
This is a similar approach implemented in gamm4 and brms, among other packages. Within these
smooths, the same syntax commonly used in mgcv::s() or mgcv::t2() can be applied, e.g. 2-
dimensional smooths may be constructed with + s(x, y) or + t2(x, y); smooths can be specific
to various factor levels, + s(x, by = group); the basis function dimensions may be specified, e.g.
+ s(x, k = 4); and various types of splines may be constructed such as cyclic splines to model
seasonality (perhaps with the knots argument also be supplied).

Threshold models

A linear break-point relationship for a covariate can be included via + breakpt(variable) in the
formula, where variable is a single covariate corresponding to a column in data. In this case, the
relationship is linear up to a point and then constant (hockey-stick shaped).

Similarly, a logistic-function threshold model can be included via + logistic(variable). This
option models the relationship as a logistic function of the 50% and 95% values. This is similar to
length- or size-based selectivity in fisheries, and is parameterized by the points at which f(x) = 0.5
or 0.95. See the threshold vignette.

Note that only a single threshold covariate can be included and the same covariate is included in
both components for the delta families.

Extra time: forecasting or interpolating

Extra time slices (e.g., years) can be included for interpolation or forecasting with the predict func-
tion via the extra_time argument. The predict function requires all time slices to be defined when
fitting the model to ensure the various time indices are set up correctly. Be careful if including ex-
tra time slices that the model remains identifiable. For example, including + as.factor(year) in
formula will render a model with no data to inform the expected value in a missing year. sdmTMB()
makes no attempt to determine if the model makes sense for forecasting or interpolation. The op-
tions time_varying, spatiotemporal = "rw", spatiotemporal = "ar1", or a smoother on the
time column provide mechanisms to predict over missing time slices with process error.

extra_time can also be used to fill in missing time steps for the purposes of a random walk or
AR(1) process if the gaps between time steps are uneven.

https://sdmTMB.github.io/sdmTMB/articles/model-description.html
https://doi.org/10.1101/2022.03.24.485545
https://sdmTMB.github.io/sdmTMB/articles/threshold-models.html
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extra_time can include only extra time steps or all time steps including those found in the fitted
data. This latter option may be simpler.

Regularization and priors

You can achieve regularization via penalties (priors) on the fixed effect parameters. See sdmTMBpriors().
You can fit the model once without penalties and look at the output of print(your_model) or
tidy(your_model) or fit the model with do_fit = FALSE and inspect head(your_model$tmb_data$X_ij[[1]])
if you want to see how the formula is translated to the fixed effect model matrix. Also see the
Bayesian vignette.

Delta/hurdle models

Delta models (also known as hurdle models) can be fit as two separate models or at the same time
by using an appropriate delta family. E.g.: delta_gamma(), delta_beta(), delta_lognormal(),
and delta_truncated_nbinom2(). If fit with a delta family, by default the formula, spatial, and
spatiotemporal components are shared. Some elements can be specified independently for the two
models using a list format. These include formula, spatial, spatiotemporal, and share_range.
The first element of the list is for the binomial component and the second element is for the positive
component (e.g., Gamma). Other elements must be shared for now (e.g., spatially varying coef-
ficients, time-varying coefficients). Furthermore, there are currently limitations if specifying two
formulas as a list: the two formulas cannot have smoothers or threshold effects. For now, these must
be specified through a single formula that is shared across the two models.

The main advantage of specifying such models using a delta family (compared to fitting two separate
models) is (1) coding simplicity and (2) calculation of uncertainty on derived quantities such as
an index of abundance with get_index() using the generalized delta method within TMB. Also,
selected parameters can be shared across the models.

See the delta-model vignette.

Index standardization

For index standardization, you may wish to include 0 + as.factor(year) (or whatever the time
column is called) in the formula. See a basic example of index standardization in the relevant
package vignette. You will need to specify the time argument. See get_index().

Value

An object (list) of class sdmTMB. Useful elements include:

• sd_report: output from TMB::sdreport()

• gradients: marginal log likelihood gradients with respect to each fixed effect

• model: output from stats::nlminb()

• data: the fitted data

• spde: the object that was supplied to the mesh argument

• family: the family object, which includes the inverse link function as family$linkinv()

• tmb_params: The parameters list passed to TMB::MakeADFun()

• tmb_map: The ’map’ list passed to TMB::MakeADFun()

• tmb_data: The data list passed to TMB::MakeADFun()

• tmb_obj: The TMB object created by TMB::MakeADFun()

https://sdmTMB.github.io/sdmTMB/articles/bayesian.html
https://sdmTMB.github.io/sdmTMB/articles/delta-models.html
https://sdmTMB.github.io/sdmTMB/articles/index-standardization.html
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Examples

library(sdmTMB)

# Build a mesh to implement the SPDE approach:
mesh <- make_mesh(pcod_2011, c("X", "Y"), cutoff = 20)

# - this example uses a fairly coarse mesh so these examples run quickly
# - 'cutoff' is the minimum distance between mesh vertices in units of the
# x and y coordinates
# - 'cutoff = 10' might make more sense in applied situations for this dataset
# - or build any mesh in 'fmesher' and pass it to the 'mesh' argument in make_mesh()`
# - the mesh is not needed if you will be turning off all
# spatial/spatiotemporal random fields

# Quick mesh plot:
plot(mesh)

# Fit a Tweedie spatial random field GLMM with a smoother for depth:
fit <- sdmTMB(

density ~ s(depth),
data = pcod_2011, mesh = mesh,
family = tweedie(link = "log")

)
fit

# Extract coefficients:
tidy(fit, conf.int = TRUE)
tidy(fit, effects = "ran_par", conf.int = TRUE)

# Perform several 'sanity' checks:
sanity(fit)

# Predict on the fitted data; see ?predict.sdmTMB
p <- predict(fit)

# Predict on new data:
p <- predict(fit, newdata = qcs_grid)
head(p)

# Visualize the depth effect with ggeffects:
ggeffects::ggpredict(fit, "depth [all]") |> plot()

# Visualize depth effect with visreg: (see ?visreg_delta)
visreg::visreg(fit, xvar = "depth") # link space; randomized quantile residuals
visreg::visreg(fit, xvar = "depth", scale = "response")
visreg::visreg(fit, xvar = "depth", scale = "response", gg = TRUE, rug = FALSE)

# Add spatiotemporal random fields:
fit <- sdmTMB(

density ~ 0 + as.factor(year),
time = "year", #<
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data = pcod_2011, mesh = mesh,
family = tweedie(link = "log")

)
fit

# Make the fields AR1:
fit <- sdmTMB(

density ~ s(depth),
time = "year",
spatial = "off",
spatiotemporal = "ar1", #<
data = pcod_2011, mesh = mesh,
family = tweedie(link = "log")

)
fit

# Make the fields a random walk:
fit <- sdmTMB(

density ~ s(depth),
time = "year",
spatial = "off",
spatiotemporal = "rw", #<
data = pcod_2011, mesh = mesh,
family = tweedie(link = "log")

)
fit

# Depth smoothers by year:
fit <- sdmTMB(

density ~ s(depth, by = as.factor(year)), #<
time = "year",
spatial = "off",
spatiotemporal = "rw",
data = pcod_2011, mesh = mesh,
family = tweedie(link = "log")

)
fit

# 2D depth-year smoother:
fit <- sdmTMB(

density ~ s(depth, year), #<
spatial = "off",
data = pcod_2011, mesh = mesh,
family = tweedie(link = "log")

)
fit

# Turn off spatial random fields:
fit <- sdmTMB(

present ~ poly(log(depth)),
spatial = "off", #<
data = pcod_2011, mesh = mesh,
family = binomial()
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)
fit

# Which, matches glm():
fit_glm <- glm(

present ~ poly(log(depth)),
data = pcod_2011,
family = binomial()

)
summary(fit_glm)
AIC(fit, fit_glm)

# Delta/hurdle binomial-Gamma model:
fit_dg <- sdmTMB(

density ~ poly(log(depth), 2),
data = pcod_2011, mesh = mesh,
spatial = "off",
family = delta_gamma() #<

)
fit_dg

# Delta model with different formulas and spatial structure:
fit_dg <- sdmTMB(

list(density ~ depth_scaled, density ~ poly(depth_scaled, 2)), #<
data = pcod_2011, mesh = mesh,
spatial = list("off", "on"), #<
family = delta_gamma()

)
fit_dg

# Delta/hurdle truncated NB2:
pcod_2011$count <- round(pcod_2011$density)
fit_nb2 <- sdmTMB(

count ~ s(depth),
data = pcod_2011, mesh = mesh,
spatial = "off",
family = delta_truncated_nbinom2() #<

)
fit_nb2

# Regular NB2:
fit_nb2 <- sdmTMB(

count ~ s(depth),
data = pcod_2011, mesh = mesh,
spatial = "off",
family = nbinom2() #<

)
fit_nb2

# IID random intercepts by year:
pcod_2011$fyear <- as.factor(pcod_2011$year)
fit <- sdmTMB(

density ~ s(depth) + (1 | fyear), #<
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data = pcod_2011, mesh = mesh,
family = tweedie(link = "log")

)
fit

# IID random slopes and intercepts (implicit) by year:
fit <- sdmTMB(

density ~ (depth | fyear), #<
data = pcod_2011, mesh = mesh,
family = tweedie(link = "log")

)

# Spatially varying coefficient of year:
pcod_2011$year_scaled <- as.numeric(scale(pcod_2011$year))
fit <- sdmTMB(

density ~ year_scaled,
spatial_varying = ~ 0 + year_scaled, #<
data = pcod_2011, mesh = mesh, family = tweedie(), time = "year"

)
fit

# Time-varying effects of depth and depth squared:
fit <- sdmTMB(

density ~ 0 + as.factor(year),
time_varying = ~ 0 + depth_scaled + depth_scaled2, #<
data = pcod_2011, time = "year", mesh = mesh,
family = tweedie()

)
print(fit)
# Extract values:
est <- as.list(fit$sd_report, "Estimate")
se <- as.list(fit$sd_report, "Std. Error")
est$b_rw_t[, , 1]
se$b_rw_t[, , 1]

# Linear break-point effect of depth:
fit <- sdmTMB(

density ~ breakpt(depth_scaled), #<
data = pcod_2011,
mesh = mesh,
family = tweedie()

)
fit

sdmTMBcontrol Optimization control options

Description

sdmTMB() and stats::nlminb() control options.
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Usage

sdmTMBcontrol(
eval.max = 2000L,
iter.max = 1000L,
normalize = FALSE,
nlminb_loops = 1L,
newton_loops = 1L,
getsd = TRUE,
quadratic_roots = FALSE,
start = NULL,
map = NULL,
lower = NULL,
upper = NULL,
censored_upper = NULL,
multiphase = TRUE,
profile = FALSE,
get_joint_precision = TRUE,
parallel = getOption("sdmTMB.cores", 1L),
suppress_nlminb_warnings = TRUE,
collapse_spatial_variance = FALSE,
collapse_threshold = 0.01,
...

)

Arguments

eval.max Maximum number of evaluations of the objective function allowed.

iter.max Maximum number of iterations allowed.

normalize Logical: use TMB::normalize() to normalize the process likelihood using the
Laplace approximation? Can result in a substantial speed boost in some cases.
This used to default to FALSE prior to May 2021. Currently not working for
models fit with REML or random intercepts.

nlminb_loops How many times to run stats::nlminb() optimization. Sometimes restarting
the optimizer at the previous best values aids convergence. If the maximum
gradient is still too large, try increasing this to 2.

newton_loops How many Newton optimization steps to try after running stats::nlminb().
This sometimes aids convergence by further reducing the log-likelihood gradient
with respect to the fixed effects. This calculates the Hessian at the current MLE
with stats::optimHess() using a finite-difference approach and uses this to
update the fixed effect estimates.

getsd Logical indicating whether to call TMB::sdreport().
quadratic_roots

Experimental feature for internal use right now; may be moved to a branch.
Logical: should quadratic roots be calculated? Note: on the sdmTMB side, the
first two coefficients are used to generate the quadratic parameters. This means
that if you want to generate a quadratic profile for depth, and depth and depth^2
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are part of your formula, you need to make sure these are listed first and that an
intercept isn’t included. For example, formula = cpue ~ 0 + depth + depth2 +
as.factor(year).

start A named list specifying the starting values for parameters. You can see the nec-
essary structure by fitting the model once and inspecting your_model$tmb_obj$env$parList().
Elements of start that are specified will replace the default starting values.

map A named list with factor NAs specifying parameter values that should be fixed
at a constant value. See the documentation in TMB::MakeADFun(). This should
usually be used with start to specify the fixed value.

lower An optional named list of lower bounds within the optimization. Parameter
vectors with the same name (e.g., b_j or ln_kappa in some cases) can be spec-
ified as a numeric vector. E.g. lower = list(b_j = c(-5, -5)). Note that
stats::optimHess() does not implement lower and upper bounds, so you must
set newton_loops = 0 if setting limits.

upper An optional named list of upper bounds within the optimization.

censored_upper An optional vector of upper bounds for sdmTMBcontrol(). Values of NA indi-
cate an unbounded right-censored to distribution, values greater that the obser-
vation indicate and upper bound, and values equal to the observation indicate no
censoring.

multiphase Logical: estimate the fixed and random effects in phases? Phases are usually
faster and more stable.

profile Logical: should population-level/fixed effects be profiled out of the likelihood?
These are then appended to the random effects vector without the Laplace ap-
proximation. See TMB::MakeADFun(). This can dramatically speed up model fit
if there are many fixed effects but is experimental at this stage.

get_joint_precision

Logical. Passed to getJointPrecision in TMB::sdreport(). Must be TRUE to
use simulation-based methods in predict.sdmTMB() or [get_index_sims()].
If not needed, setting this FALSE will reduce object size.

parallel Argument currently ignored. For parallel processing with 3 cores, as an exam-
ple, use TMB::openmp(n = 3, DLL = "sdmTMB"). But be careful, because it’s not
always faster with more cores and there is definitely an upper limit.

suppress_nlminb_warnings

Suppress uninformative warnings from stats::nlminb() arising when a func-
tion evaluation is NA, which are then replaced with Inf and avoided during esti-
mation?

collapse_spatial_variance

Logical: should spatial and/or spatiotemporal random fields be automatically
dropped if their estimated standard deviation is effectively zero (i.e., below
collapse_threshold)? This helps prevent overfitting and numerical instability
when the data provide little evidence for spatial or spatiotemporal variation. I.e.,
when the variance parameter is estimated on or near the boundary of zero. When
enabled, the model will be automatically refitted via update.sdmTMB() with the
corresponding field(s) disabled. This adds a computational cost (a single model
refit if collapsing occurs) but can yield a simpler, more stable model and more
reliable inference. Default is FALSE for backwards compatibility.
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collapse_threshold

Numeric: the standard deviation threshold below which random fields are con-
sidered to be collapsing to zero. Only used when collapse_spatial_variance
= TRUE. Values are on the standard deviation scale (i.e., square root of variance).
Default is 0.01.

... Anything else. See the ’Control parameters’ section of stats::nlminb().

Details

Usually used within sdmTMB(). For example:

sdmTMB(..., control = sdmTMBcontrol(newton_loops = 2))

Value

A list of control arguments

Examples

sdmTMBcontrol()

sdmTMBpriors Prior distributions

Description

[Experimental]
Optional priors/penalties on model parameters. This results in penalized likelihood within TMB or
can be used as priors if the model is passed to tmbstan (see the Bayesian vignette).

Note that Jacobian adjustments are only made if bayesian = TRUE when the sdmTMB() model is
fit. I.e., the final model will be fit with tmbstan and priors are specified then bayesian should be
set to TRUE. Otherwise, leave bayesian = FALSE.

pc_matern() is the Penalized Complexity prior for the Matern covariance function.

Usage

sdmTMBpriors(
matern_s = pc_matern(range_gt = NA, sigma_lt = NA),
matern_st = pc_matern(range_gt = NA, sigma_lt = NA),
phi = halfnormal(NA, NA),
ar1_rho = normal(NA, NA),
tweedie_p = normal(NA, NA),
b = normal(NA, NA),
sigma_V = gamma_cv(NA, NA),
threshold_breakpt_slope = normal(NA, NA),
threshold_breakpt_cut = normal(NA, NA),
threshold_logistic_s50 = normal(NA, NA),
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threshold_logistic_s95 = normal(NA, NA),
threshold_logistic_smax = normal(NA, NA)

)

normal(location = 0, scale = 1)

halfnormal(location = 0, scale = 1)

gamma_cv(location, cv)

mvnormal(location = 0, scale = diag(length(location)))

pc_matern(range_gt, sigma_lt, range_prob = 0.05, sigma_prob = 0.05)

Arguments

matern_s A PC (Penalized Complexity) prior (pc_matern()) on the spatial random field
Matérn parameters.

matern_st Same as matern_s but for the spatiotemporal random field. Note that you will
likely want to set share_fields = FALSE if you choose to set both a spatial and
spatiotemporal Matérn PC prior since they both include a prior on the spatial
range parameter.

phi A halfnormal() prior for the dispersion parameter in the observation distribu-
tion.

ar1_rho A normal() prior for the AR1 random field parameter. Note the parameter has
support -1 < ar1_rho < 1.

tweedie_p A normal() prior for the Tweedie power parameter. Note the parameter has
support 1 < tweedie_p < 2 so choose a mean appropriately.

b normal() priors for the main population-level ’beta’ effects.

sigma_V gamma_cv() priors for any time-varying parameter SDs.
threshold_breakpt_slope

A normal() prior for the slope of the linear (hockey stick) function.
threshold_breakpt_cut

A normal() prior for the cutoff of the linear (hockey stick) function.
threshold_logistic_s50

A normal() prior for the parameter at which f(x) = 0.5.
threshold_logistic_s95

A normal() prior for the parameter at which f(x) = 0.95.
threshold_logistic_smax

A normal() prior for the parameter at which f(x) is maximized.

location Location parameter(s). Typically the mean.

scale Scale parameter. For normal()/halfnormal(): standard deviation(s). For
mvnormal(): variance-covariance matrix.

cv Coefficient of variation (SD/mean).
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range_gt A value one expects the spatial or spatiotemporal range is greater than with 1 -
range_prob probability.

sigma_lt A value one expects the spatial or spatiotemporal marginal standard deviation
(sigma_O or sigma_E internally) is less than with 1 - sigma_prob probability.

range_prob Probability. See description for range_gt.

sigma_prob Probability. See description for sigma_lt.

Details

Meant to be passed to the priors argument in sdmTMB().

normal() and halfnormal() define normal and half-normal priors that, at this point, must have a
location (mean) parameter of 0. halfnormal() is the same as normal() but can be used to make
the syntax clearer. It is intended to be used for parameters that have support > 0.

See https://arxiv.org/abs/1503.00256 for a description of the PC prior for Gaussian random
fields. Quoting the discussion (and substituting the argument names in pc_matern()): "In the
simulation study we observe good coverage of the equal-tailed 95% credible intervals when the
prior satisfies P(sigma > sigma_lt) = 0.05 and P(range < range_gt) = 0.05, where sigma_lt is
between 2.5 to 40 times the true marginal standard deviation and range_gt is between 1/10 and
1/2.5 of the true range."

Keep in mind that the range is dependent on the units and scale of the coordinate system. In practice,
you may choose to try fitting the model without a PC prior and then constraining the model from
there. A better option would be to simulate from a model with a given range and sigma to choose
reasonable values for the system or base the prior on knowledge from a model fit to a similar system
but with more spatial information in the data.

Value

A named list with values for the specified priors.

References

Fuglstad, G.-A., Simpson, D., Lindgren, F., and Rue, H. (2016) Constructing Priors that Penalize
the Complexity of Gaussian Random Fields. arXiv:1503.00256

Simpson, D., Rue, H., Martins, T., Riebler, A., and Sørbye, S. (2015) Penalising model component
complexity: A principled, practical approach to constructing priors. arXiv:1403.4630

See Also

plot_pc_matern()

Examples

normal(0, 1)
halfnormal(0, 1)
gamma_cv(0.5, 0.2)
mvnormal(c(0, 0))
pc_matern(range_gt = 5, sigma_lt = 1)
plot_pc_matern(range_gt = 5, sigma_lt = 1)

https://arxiv.org/abs/1503.00256
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d <- subset(pcod, year > 2011)
pcod_spde <- make_mesh(d, c("X", "Y"), cutoff = 30)

# - no priors on population-level effects (`b`)
# - halfnormal(0, 10) prior on dispersion parameter `phi`
# - Matern PC priors on spatial `matern_s` and spatiotemporal
# `matern_st` random field parameters
m <- sdmTMB(density ~ s(depth, k = 3),

data = d, mesh = pcod_spde, family = tweedie(),
share_range = FALSE, time = "year",
priors = sdmTMBpriors(
phi = halfnormal(0, 10),
matern_s = pc_matern(range_gt = 5, sigma_lt = 1),
matern_st = pc_matern(range_gt = 5, sigma_lt = 1)

)
)

# - no prior on intercept
# - normal(0, 1) prior on depth coefficient
# - no prior on the dispersion parameter `phi`
# - Matern PC prior
m <- sdmTMB(density ~ depth_scaled,

data = d, mesh = pcod_spde, family = tweedie(),
spatiotemporal = "off",
priors = sdmTMBpriors(
b = normal(c(NA, 0), c(NA, 1)),
matern_s = pc_matern(range_gt = 5, sigma_lt = 1)

)
)

# You get a prior, you get a prior, you get a prior!
# (except on the annual means; see the `NA`s)
m <- sdmTMB(density ~ 0 + depth_scaled + depth_scaled2 + as.factor(year),

data = d, time = "year", mesh = pcod_spde, family = tweedie(link = "log"),
share_range = FALSE, spatiotemporal = "AR1",
priors = sdmTMBpriors(
b = normal(c(0, 0, NA, NA, NA), c(2, 2, NA, NA, NA)),
phi = halfnormal(0, 10),
# tweedie_p = normal(1.5, 2),
ar1_rho = normal(0, 1),
matern_s = pc_matern(range_gt = 5, sigma_lt = 1),
matern_st = pc_matern(range_gt = 5, sigma_lt = 1))

)

sdmTMB_cv Cross validation with sdmTMB models
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Description

Performs k-fold or leave-future-out cross validation with sdmTMB models. Returns the sum of log
likelihoods of held-out data (log predictive density), which can be used to compare models—higher
values indicate better out-of-sample prediction. By default, creates folds randomly and stratified by
time (set a seed for reproducibility), but folds can be manually assigned via fold_ids. See Ward
and Anderson (2025) in the References and the cross-validation vignette.

Usage

sdmTMB_cv(
formula,
data,
mesh_args,
mesh = NULL,
time = NULL,
k_folds = 8,
fold_ids = NULL,
lfo = FALSE,
lfo_forecast = 1,
lfo_validations = 5,
parallel = TRUE,
use_initial_fit = FALSE,
save_models = TRUE,
future_globals = NULL,
...

)

Arguments

formula Model formula.

data A data frame.

mesh_args Arguments for make_mesh(). If supplied, the mesh will be reconstructed for
each fold.

mesh Output from make_mesh(). If supplied, the same mesh will be used for all folds.
This is faster and usually what you want.

time The name of the time column. Leave as NULL if this is only spatial data.

k_folds Number of folds.

fold_ids Optional vector containing user fold IDs. Can also be a single string, e.g.
"fold_id" representing the name of the variable in data. Ignored if lfo is
TRUE

lfo Logical. Use leave-future-out (LFO) cross validation? If TRUE, data from earlier
time steps are used to predict future time steps. The time argument must be
specified. See Details section below.

lfo_forecast If lfo = TRUE, number of time steps ahead to forecast. For example, lfo_forecast
= 1 means fitting to time steps 1 to T and validating on T + 1. See Details section
below.

https://sdmTMB.github.io/sdmTMB/articles/cross-validation.html
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lfo_validations

If lfo = TRUE, number of times to step through the LFO process (i.e., number of
validation folds). Defaults to 5. See Details section below.

parallel If TRUE and a future::plan() is supplied, will be run in parallel.
use_initial_fit

Fit the first fold and use those parameter values as starting values for subsequent
folds? Can be faster with many folds.

save_models Logical. If TRUE (default), the fitted model object for each fold is stored in the
output. If FALSE, models are not saved, which can substantially reduce memory
usage for large datasets or many folds. When FALSE, functions that require
access to the fitted models (e.g., tidy(), cv_to_waywiser()) will not work.

future_globals A character vector of global variables used within arguments if an error is re-
turned that future.apply can’t find an object. This vector is appended to TRUE
and passed to the argument future.globals in future.apply::future_lapply().
Useful if global objects are used to specify arguments like priors, families, etc.

... All other arguments required to run the sdmTMB() model. The weights ar-
gument is supported and will be combined with the internal fold-assignment
mechanism (held-out data are assigned weight 0).

Details

Parallel processing

Parallel processing can be used by setting a future::plan().

For example:

library(future)
plan(multisession)
# now use sdmTMB_cv() ...

Leave-future-out cross validation (LFOCV)

An example of LFOCV with 9 time steps, lfo_forecast = 1, and lfo_validations = 2:

• Fit data to time steps 1 to 7, predict and validate step 8.

• Fit data to time steps 1 to 8, predict and validate step 9.

An example of LFOCV with 9 time steps, lfo_forecast = 2, and lfo_validations = 3:

• Fit data to time steps 1 to 5, predict and validate step 7.

• Fit data to time steps 1 to 6, predict and validate step 8.

• Fit data to time steps 1 to 7, predict and validate step 9.

Note these are time steps as they are presented in order in the data. For example, in the pcod
data example below steps between data points are not always one year but an lfo_forecast = 2
forecasts 2 time steps as presented not two years.

See example below.
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Value

A list:

• data: Original data plus columns for fold ID (cv_fold), CV predicted value (cv_predicted),
CV log likelihood (cv_loglik), and CV deviance residuals (cv_deviance_resid).

• models: A list of fitted models, one per fold. NULL if save_models = FALSE.

• fold_loglik: Sum of log likelihoods of held-out data per fold (log predictive density per
fold). More positive values indicate better out-of-sample prediction.

• sum_loglik: Sum of fold_loglik across all folds (total log predictive density). Use this to
compare models—more positive values are better.

• pdHess: Logical vector: was the Hessian positive definite for each fold?

• converged: Logical: did all folds converge (all pdHess TRUE)?

• max_gradients: Maximum absolute gradient for each fold.

References

Ward, E.J., and S.C. Anderson. 2025. Approximating spatial processes with too many knots de-
grades the quality of probabilistic predictions. bioRxiv 2025.11.14.688354. doi:10.1101/2025.11.14.688354.

Examples

mesh <- make_mesh(pcod, c("X", "Y"), cutoff = 25)

# Set parallel processing first if desired with the future package.
# See the Details section above.

m_cv <- sdmTMB_cv(
density ~ 0 + depth_scaled + depth_scaled2,
data = pcod, mesh = mesh, spatial = "off",
family = tweedie(link = "log"), k_folds = 2

)

m_cv$fold_loglik
m_cv$sum_loglik

head(m_cv$data)
m_cv$models[[1]]
m_cv$max_gradients

# Create mesh each fold:
m_cv2 <- sdmTMB_cv(

density ~ 0 + depth_scaled + depth_scaled2,
data = pcod, mesh_args = list(xy_cols = c("X", "Y"), cutoff = 20),
family = tweedie(link = "log"), k_folds = 2

)

# Use fold_ids:

https://doi.org/10.1101/2025.11.14.688354
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m_cv3 <- sdmTMB_cv(
density ~ 0 + depth_scaled + depth_scaled2,
data = pcod, mesh = mesh,
family = tweedie(link = "log"),
fold_ids = rep(seq(1, 3), nrow(pcod))[seq(1, nrow(pcod))]

)

# LFOCV:
m_lfocv <- sdmTMB_cv(

present ~ s(year, k = 4),
data = pcod,
lfo = TRUE,
lfo_forecast = 2,
lfo_validations = 3,
family = binomial(),
mesh = mesh,
spatial = "off", # fast example
spatiotemporal = "off", # fast example
time = "year" # must be specified

)

# See how the LFOCV folds were assigned:
fold_table <- table(m_lfocv$data$cv_fold, m_lfocv$data$year)
fold_table

sdmTMB_simulate Simulate from a spatial/spatiotemporal model

Description

sdmTMB_simulate() uses TMB to simulate new data given specified parameter values. simulate.sdmTMB(),
on the other hand, takes an existing model fit and simulates new observations and optionally new
random effects.

Usage

sdmTMB_simulate(
formula,
data,
mesh,
family = gaussian(link = "identity"),
time = NULL,
B = NULL,
range = NULL,
rho = NULL,
sigma_O = NULL,
sigma_E = NULL,
sigma_Z = NULL,
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phi = NULL,
tweedie_p = NULL,
df = NULL,
threshold_coefs = NULL,
fixed_re = list(omega_s = NULL, epsilon_st = NULL, zeta_s = NULL),
previous_fit = NULL,
seed = sample.int(1e+06, 1),
time_varying = NULL,
time_varying_type = c("rw", "rw0", "ar1"),
sigma_V = NULL,
rho_time = NULL,
...

)

Arguments

formula A one-sided formula describing the fixed-effect structure. Random intercepts
are not (yet) supported. Fixed effects should match the corresponding B argu-
ment vector of coefficient values.

data A data frame containing the predictors described in formula and the time col-
umn if time is specified.

mesh Output from make_mesh().

family Family as in sdmTMB(). Delta families are not supported. Instead, simulate the
two component models separately and combine.

time The time column name.

B A vector of beta values (fixed-effect coefficient values).

range Parameter that controls the decay of spatial correlation. If a vector of length 2,
share_range will be set to FALSE and the spatial and spatiotemporal ranges will
be unique.

rho Spatiotemporal correlation between years; should be between -1 and 1.

sigma_O SD of spatial process (Omega).

sigma_E SD of spatiotemporal process (Epsilon).

sigma_Z SD of spatially varying coefficient field (Zeta).

phi Observation error scale parameter (e.g., SD in Gaussian).

tweedie_p Tweedie p (power) parameter; between 1 and 2.

df Student-t degrees of freedom.
threshold_coefs

An optional vector of threshold coefficient values if the formula includes breakpt()
or logistic(). If breakpt(), these are slope and cut values. If logistic(),
these are the threshold at which the function is 50% of the maximum, the thresh-
old at which the function is 95% of the maximum, and the maximum. See the
model description vignette for details.

fixed_re A list of optional random effects to fix at specified (e.g., previously estimated)
values. Values of NULL will result in the random effects being simulated.
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previous_fit (Deprecated; please use simulate.sdmTMB()). An optional previous sdmTMB()
fit to pull parameter values. Will be over-ruled by any non-NULL specified
parameter arguments.

seed Seed number.

time_varying An optional one-sided formula describing time-varying covariates passed through
to sdmTMB() for building a time-varying random effect design matrix.

time_varying_type

Type of temporal process applied to time_varying. Must be one of 'rw',
'rw0', or 'ar1'.

sigma_V SD(s) of the time-varying process. Provide a single value or a vector matching
the number of time-varying coefficients.

rho_time Autoregressive correlation(s) for time-varying parameters when time_varying_type
= "ar1". Values must lie between -1 and 1 and may be supplied as a single value
or a vector the same length as sigma_V.

... Any other arguments to pass to sdmTMB().

Value

A data frame where:

• The 1st column is the time variable (if present).

• The 2nd and 3rd columns are the spatial coordinates.

• omega_s represents the simulated spatial random effects (only if present).

• zeta_s represents the simulated spatial varying covariate field (only if present).

• epsilon_st represents the simulated spatiotemporal random effects (only if present).

• eta is the true value in link space

• mu is the true value in inverse link space.

• observed represents the simulated process with observation error.

• The remaining columns are the fixed-effect model matrix.

See Also

simulate.sdmTMB()

Examples

set.seed(123)

# make fake predictor(s) (a1) and sampling locations:
predictor_dat <- data.frame(

X = runif(300), Y = runif(300),
a1 = rnorm(300), year = rep(1:6, each = 50)

)
mesh <- make_mesh(predictor_dat, xy_cols = c("X", "Y"), cutoff = 0.1)

sim_dat <- sdmTMB_simulate(
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formula = ~ 1 + a1,
data = predictor_dat,
time = "year",
mesh = mesh,
family = gaussian(),
range = 0.5,
sigma_E = 0.1,
phi = 0.1,
sigma_O = 0.2,
seed = 42,
B = c(0.2, -0.4) # B0 = intercept, B1 = a1 slope

)
head(sim_dat)

if (require("ggplot2", quietly = TRUE)) {
ggplot(sim_dat, aes(X, Y, colour = observed)) +

geom_point() +
facet_wrap(~year) +
scale_color_gradient2()

}

# fit to the simulated data:
fit <- sdmTMB(observed ~ a1, data = sim_dat, mesh = mesh, time = "year")
fit

sdmTMB_stacking Perform stacking with log scores on sdmTMB_cv() output

Description

[Experimental]

This approach is described in Yao et al. (2018) doi:10.1214/17BA1091. The general method mini-
mizes (or maximizes) some quantity across models. For simple models with normal error, this may
be the root mean squared error (RMSE), but other approaches include the log score. We adopt the
latter here, where log scores are used to generate the stacking of predictive distributions

Usage

sdmTMB_stacking(model_list, include_folds = NULL)

Arguments

model_list A list of models fit with sdmTMB_cv() to generate estimates of predictive densi-
ties. You will want to set the seed to the same value before fitting each model or
manually construct the fold IDs so that they are the same across models.

include_folds An optional numeric vector specifying which folds to include in the calculations.
For example, if 5 folds are used for k-fold cross validation, and the first 4 are
needed to generate these weights, include_folds = 1:4.

https://doi.org/10.1214/17-BA1091
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Value

A vector of model weights.

References

Yao, Y., Vehtari, A., Simpson, D., and Gelman, A. 2018. Using Stacking to Average Bayesian Pre-
dictive Distributions (with Discussion). Bayesian Analysis 13(3): 917–1007. International Society
for Bayesian Analysis. doi:10.1214/17BA1091

Examples

# Set parallel processing if desired. See 'Details' in ?sdmTMB_cv

# Depth as quadratic:
set.seed(1)
m_cv_1 <- sdmTMB_cv(

density ~ 0 + depth_scaled + depth_scaled2,
data = pcod_2011, mesh = pcod_mesh_2011,
family = tweedie(link = "log"), k_folds = 2

)
# Depth as linear:
set.seed(1)
m_cv_2 <- sdmTMB_cv(

density ~ 0 + depth_scaled,
data = pcod_2011, mesh = pcod_mesh_2011,
family = tweedie(link = "log"), k_folds = 2

)

# Only an intercept:
set.seed(1)
m_cv_3 <- sdmTMB_cv(

density ~ 1,
data = pcod_2011, mesh = pcod_mesh_2011,
family = tweedie(link = "log"), k_folds = 2

)

models <- list(m_cv_1, m_cv_2, m_cv_3)
weights <- sdmTMB_stacking(models)
weights

set_delta_model Set delta model for ggeffects::ggpredict()

Description

Set a delta model component to predict from with ggeffects::ggpredict().

https://doi.org/10.1214/17-BA1091
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Usage

set_delta_model(x, model = c(NA, 1, 2))

Arguments

x An sdmTMB() model fit with a delta family such as delta_gamma().

model Which delta/hurdle linear predictor to predict/plot with. NA does the combined
prediction, 1 does the binomial part, and 2 does the positive part.

Details

A complete version of the examples below would be:

fit <- sdmTMB(density ~ poly(depth_scaled, 2), data = pcod_2011,
spatial = "off", family = delta_gamma())

# binomial part:
set_delta_model(fit, model = 1) |>
ggeffects::ggpredict("depth_scaled [all]")

# gamma part:
set_delta_model(fit, model = 2) |>
ggeffects::ggpredict("depth_scaled [all]")

# combined:
set_delta_model(fit, model = NA) |>
ggeffects::ggpredict("depth_scaled [all]")

But cannot be run on CRAN until the next version of ggeffects is available on CRAN. For now, you
can install the GitHub version of ggeffects. https://github.com/strengejacke/ggeffects.

Value

The fitted model with a new attribute named delta_model_predict. We suggest you use set_delta_model()
in a pipe (as in the examples) so that this attribute does not persist. Otherwise, predict.sdmTMB()
will choose this model component by default. You can also remove the attribute yourself after:

attr(fit, "delta_model_predict") <- NULL

Examples

fit <- sdmTMB(density ~ poly(depth_scaled, 2), data = pcod_2011,
spatial = "off", family = delta_gamma())

# binomial part:
set_delta_model(fit, model = 1)

# gamma part:
set_delta_model(fit, model = 2)

https://github.com/strengejacke/ggeffects
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# combined:
set_delta_model(fit, model = NA)

sigma.sdmTMB Extract residual standard deviation or dispersion parameter

Description

Extract residual standard deviation or dispersion parameter

Usage

## S3 method for class 'sdmTMB'
sigma(object, ...)

Arguments

object The fitted sdmTMB model object

... Currently ignored

simulate.sdmTMB Simulate from a fitted sdmTMB model

Description

simulate.sdmTMB is an S3 method for producing a matrix of simulations from a fitted model. This
is similar to lme4::simulate.merMod() and glmmTMB::simulate.glmmTMB(). It can be used with
the DHARMa package among other uses.

Usage

## S3 method for class 'sdmTMB'
simulate(
object,
nsim = 1L,
seed = sample.int(1e+06, 1L),
type = c("mle-eb", "mle-mvn"),
model = c(NA, 1, 2),
newdata = NULL,
re_form = NULL,
mle_mvn_samples = c("single", "multiple"),
mcmc_samples = NULL,
return_tmb_report = FALSE,
observation_error = TRUE,
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size = NULL,
silent = FALSE,
...

)

Arguments

object sdmTMB model

nsim Number of response lists to simulate. Defaults to 1.

seed Random number seed

type How parameters should be treated. "mle-eb": fixed effects are at their max-
imum likelihood (MLE) estimates and random effects are at their empirical
Bayes (EB) estimates. "mle-mvn": fixed effects are at their MLEs but ran-
dom effects are taken from a single approximate sample. This latter option is a
suggested approach if these simulations will be used for goodness of fit testing
(e.g., with the DHARMa package).

model If a delta/hurdle model, which model to simulate from? NA = combined, 1 = first
model, 2 = second mdoel.

newdata Optional new data frame from which to simulate.

re_form NULL to specify a simulation conditional on fitted random effects (this only sim-
ulates observation error). ~0 or NA to simulate new random affects (smoothers,
which internally are random effects, will not be simulated as new).

mle_mvn_samples

Applies if type = "mle-mvn". If "single", take a single MVN draw from the
random effects. If "multiple", take an MVN draw from the random effects for
each of the nsim.

mcmc_samples An optional matrix of MCMC samples. See extract_mcmc() in the sdmTM-
Bextra package.

return_tmb_report

Return the TMB report from simulate()? This lets you parse out whatever
elements you want from the simulation. Not usually needed.

observation_error

Logical. Simulate observation error?

size A vector of size (trials) in the case of a binomial family with newdata specified.
If left NULL with newdata, will be assumed to be a vector of 1s.

silent Logical. Silent?

... Extra arguments passed to predict.sdmTMB(). E.g., one may wish to pass an
offset argument if newdata are supplied in a model with an offset.

Value

Returns a matrix; number of columns is nsim.

See Also

sdmTMB_simulate()

https://github.com/sdmTMB/sdmTMBextra
https://github.com/sdmTMB/sdmTMBextra
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Examples

# start with some data simulated from scratch:
set.seed(1)
predictor_dat <- data.frame(X = runif(300), Y = runif(300), a1 = rnorm(300))
mesh <- make_mesh(predictor_dat, xy_cols = c("X", "Y"), cutoff = 0.1)
dat <- sdmTMB_simulate(

formula = ~ 1 + a1,
data = predictor_dat,
mesh = mesh,
family = poisson(),
range = 0.5,
sigma_O = 0.2,
seed = 42,
B = c(0.2, -0.4) # B0 = intercept, B1 = a1 slope

)
fit <- sdmTMB(observed ~ 1 + a1, data = dat, family = poisson(), mesh = mesh)

# simulate from the model:
s1 <- simulate(fit, nsim = 300)
dim(s1)

# test whether fitted models are consistent with the observed number of zeros:
sum(s1 == 0)/length(s1)
sum(dat$observed == 0) / length(dat$observed)

# simulate with random effects sampled from their approximate posterior
s2 <- simulate(fit, nsim = 1, params = "mle-mvn")
# these may be useful in conjunction with DHARMa simulation-based residuals

# simulate with new random fields:
s3 <- simulate(fit, nsim = 1, re_form = ~ 0)

spread_sims Extract parameter simulations from the joint precision matrix

Description

spread_sims() returns a wide-format data frame. gather_sims() returns a long-format data
frame. The format matches the format in the tidybayes spread_draws() and gather_draws()
functions.

Usage

spread_sims(object, nsim = 200)

gather_sims(object, nsim = 200)
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Arguments

object Output from sdmTMB().

nsim The number of simulation draws.

Value

A data frame. gather_sims() returns a long-format data frame:

• .iteration: the sample ID

• .variable: the parameter name

• .value: the parameter sample value

spread_sims() returns a wide-format data frame:

• .iteration: the sample ID

• columns for each parameter with a sample per row

Examples

m <- sdmTMB(density ~ depth_scaled,
data = pcod_2011, mesh = pcod_mesh_2011, family = tweedie())

head(spread_sims(m, nsim = 10))
head(gather_sims(m, nsim = 10))
samps <- gather_sims(m, nsim = 1000)

if (require("ggplot2", quietly = TRUE)) {
ggplot(samps, aes(.value)) + geom_histogram() +
facet_wrap(~.variable, scales = "free_x")

}

tidy.sdmTMB Turn sdmTMB model output into a tidy data frame

Description

Turn sdmTMB model output into a tidy data frame

Usage

## S3 method for class 'sdmTMB'
tidy(
x,
effects = c("fixed", "ran_pars", "ran_vals", "ran_vcov"),
model = 1,
conf.int = TRUE,
conf.level = 0.95,
exponentiate = FALSE,
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silent = FALSE,
...

)

## S3 method for class 'sdmTMB_cv'
tidy(x, ...)

Arguments

x Output from sdmTMB().

effects A character value. One of "fixed" (’fixed’ or main-effect parameters), "ran_pars"
(standard deviations, spatial range, and other random effect and dispersion-
related terms), "ran_vals" (individual random intercepts or slopes, if included;
behaves like ranef()), or "ran_vcov" (list of variance covariance matrices for
the random effects, by model and group).

model Which model to tidy if a delta model (1 or 2). The model will be ignored when
effects is "ran_vals" (all returned in a single dataframe)

conf.int Include a confidence interval?

conf.level Confidence level for CI.

exponentiate Whether to exponentiate the fixed-effect coefficient estimates and confidence
intervals.

silent Omit any messages?

... Extra arguments (not used).

Details

Follows the conventions of the broom and broom.mixed packages.

Currently, effects = "ran_pars" also includes dispersion-related terms (e.g., phi), which are not
actually associated with random effects.

Standard errors for spatial variance terms fit in log space (e.g., variance terms, range, or parameters
associated with the observation error) are omitted to avoid confusion. Confidence intervals are still
available.

Value

A data frame

Examples

fit <- sdmTMB(density ~ poly(depth_scaled, 2, raw = TRUE),
data = pcod_2011, mesh = pcod_mesh_2011,
family = tweedie()

)
tidy(fit)
tidy(fit, conf.int = TRUE)
tidy(fit, "ran_pars", conf.int = TRUE)
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pcod_2011$fyear <- as.factor(pcod_2011$year)
fit <- sdmTMB(density ~ poly(depth_scaled, 2, raw = TRUE) + (1 | fyear),

data = pcod_2011, mesh = pcod_mesh_2011,
family = tweedie()

)
tidy(fit, "ran_vals")

update.sdmTMB Update an sdmTMB model

Description

This method updates an sdmTMB model with new arguments, automatically handling the mesh
object to avoid environment issues when loading models from saved files.

Usage

## S3 method for class 'sdmTMB'
update(object, formula., ..., evaluate = TRUE)

Arguments

object An sdmTMB model object

formula. Optional updated formula

... Other arguments to update in the model call

evaluate If TRUE (default), the updated call is evaluated; if FALSE, the call is returned
unevaluated

Value

An updated sdmTMB model object (if evaluate = TRUE) or an unevaluated call (if evaluate =
FALSE)

Examples

mesh <- make_mesh(pcod_2011, c("X", "Y"), cutoff = 20)
fit <- sdmTMB(density ~ 1, data = pcod_2011, mesh = mesh,

family = tweedie(link = "log"))
fit2 <- update(fit, family = delta_gamma())
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visreg_delta Plot sdmTMB models with the visreg package

Description

sdmTMB models fit with regular (non-delta) families can be passed to visreg::visreg() or
visreg::visreg2d() directly. Examples are shown below. Delta models can use the helper func-
tions visreg_delta() or visreg2d_delta() described here.

Usage

visreg_delta(object, ..., model = c(1, 2))

visreg2d_delta(object, ..., model = c(1, 2))

Arguments

object Fit from sdmTMB()

... Any arguments passed to visreg::visreg() or visreg::visreg2d()

model 1st or 2nd delta model

Details

Note the residuals are currently randomized quantile residuals, not deviance residuals as is usual
for GLMs with visreg.

Value

A plot from the visreg package. Optionally, the data plotted invisibly if plot = FALSE. This is useful
if you want to make your own plot after.

Examples

if (require("ggplot2", quietly = TRUE) &&
require("visreg", quietly = TRUE)) {

fit <- sdmTMB(
density ~ s(depth_scaled),
data = pcod_2011,
spatial = "off",
family = tweedie()

)
visreg::visreg(fit, xvar = "depth_scaled")

visreg::visreg(fit, xvar = "depth_scaled", scale = "response")
v <- visreg::visreg(fit, xvar = "depth_scaled")
head(v$fit)
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# now use ggplot2 etc. if desired

# Delta model example:
fit_dg <- sdmTMB(

density ~ s(depth_scaled, year, k = 8),
data = pcod_2011, mesh = pcod_mesh_2011,
spatial = "off",
family = delta_gamma()

)
visreg_delta(fit_dg, xvar = "depth_scaled", model = 1, gg = TRUE)
visreg_delta(fit_dg, xvar = "depth_scaled", model = 2, gg = TRUE)
visreg_delta(fit_dg,

xvar = "depth_scaled", model = 1,
scale = "response", gg = TRUE

)
visreg_delta(fit_dg,

xvar = "depth_scaled", model = 2,
scale = "response"

)
visreg_delta(fit_dg,

xvar = "depth_scaled", model = 2,
scale = "response", gg = TRUE, rug = FALSE

)
visreg2d_delta(fit_dg,

xvar = "depth_scaled", yvar = "year",
model = 2, scale = "response"

)
visreg2d_delta(fit_dg,

xvar = "depth_scaled", yvar = "year",
model = 1, scale = "response", plot.type = "persp"

)
visreg2d_delta(fit_dg,

xvar = "depth_scaled", yvar = "year",
model = 2, scale = "response", plot.type = "gg"

)

}
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