
Package ‘secrdesign’
January 9, 2026

Type Package

Title Sampling Design for Spatially Explicit Capture-Recapture

Version 2.10.1

Date 2026-01-09

Description Tools for designing spatially explicit capture-recapture studies of animal popula-
tions. This is primarily a simulation manager for package 'secr'. Extensions in version 2.5.0 in-
clude costing and evaluation of detector spacing.

Depends R (>= 3.5.0), secr (>= 5.3.0)

Imports abind, kofnGA, parallel, sf, Rcpp (>= 0.12.14)

LinkingTo BH, Rcpp, RcppArmadillo

Suggests secrlinear, ipsecr (>= 1.4.0), testthat (>= 0.11.0), openCR

License GPL (>= 2)

URL https://www.otago.ac.nz/density/,

https://github.com/MurrayEfford/secrdesign/

NeedsCompilation yes

Author Murray Efford [aut, cre] (ORCID:
<https://orcid.org/0000-0001-5231-5184>),

Ian Durbach [ctb] (ORCID: <https://orcid.org/0000-0003-0769-2153>)

Maintainer Murray Efford <murray.efford@otago.ac.nz>

Repository CRAN

Date/Publication 2026-01-08 23:50:02 UTC

Contents
secrdesign-package . 2
costing . 4
count . 6
estimateSummary . 7
expand.arg . 11
GAoptim . 12

1

https://www.otago.ac.nz/density/
https://github.com/MurrayEfford/secrdesign/
https://orcid.org/0000-0001-5231-5184
https://orcid.org/0000-0003-0769-2153

2 secrdesign-package

getdetectpar . 16
Internal . 17
Lambda . 18
make.array . 20
make.scenarios . 21
minsimRSE . 23
optimalSpacing . 25
plot.optimalSpacing . 28
predict.fittedmodels . 29
rbind.estimatetables . 30
run.scenarios . 32
saturation . 38
scenariosFromStatistics . 40
scenarioSummary . 41
select.stats . 43
summary.secrdesign . 45
transformOutput . 47
validate . 48

Index 50

secrdesign-package Spatially Explicit Capture–Recapture Study Design

Description

Tools to assist the design of spatially explicit capture–recapture studies of animal populations.

Details

Package: secr
Type: Package
Version: 2.10.1
Date: 2026-01-09
License: GNU General Public License Version 2 or later

The primary use of secrdesign is to predict by Monte Carlo simulation the precision or bias of
density estimates from different detector layouts, given pilot values for density and the detection
parameters lambda0/g0 and sigma.

Tools are also provided for predicting the performance of detector layouts without simulation, and
for optimising layouts to meet various criteria, particularly expected counts.

The simulation functions in secrdesign are:

make.scenarios generate dataframe of parameter values etc.
run.scenarios perform simulations, with or without model fitting

secrdesign-package 3

fit.models fit SECR model(s) to rawdata output from run.scenarios
predict.fittedmodels infer ‘real’ parameter estimates from fitted models
select.stats collect output for a particular parameter
summary.selectedstatistics numerical summary of results
plot.selectedstatistics histogram or CI plot for each scenario

Fig. Core simulation functions in secrdesign (yellow) and their main inputs and outputs. Output
from the simulation function run.scenarios() may be saved as whole fitted models, predicted values
(parameter estimates), or selected statistics. Each form of output requires different subsequent han-
dling. The default path is shown by solid blue arrows.

Other functions not used exclusively for simulation are:

Enrm expected numbers of individuals n, re-detections r and movements m
En2 expected number of individuals detected at two or more detectors
minnrRSE approximate RSE(D-hat) given sample size (n, r) (Efford and Boulanger 2019)
GAoptim optimization of detector placement using genetic algorithm (Durbach et al. 2021)
costing various cost components
saturation expected detector saturation (trap success)
scenarioSummary applies Enrm, minnrRSE, and other summaries to each scenario in a dataframe
optimalSpacing optimal detector spacing by rule-of-thumb and simulation RSE(D-hat)

4 costing

A vignette documenting the simulation functions is provided separately (secrdesign-vignette.pdf).
An Appendix in that vignette has code for various examples that should help get you started.

Documentation for expected counts is in secrdesign-Enrm.pdf.

Another vignette secrdesign-tools.pdf demonstrates other tools. These include the optimalSpacing
function, for finding the detector spacing that yields the greatest precision for a given detector
geometry, number of sampling occasions, density and detection parameters.

The help pages are also available as a pdf.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Durbach, I., Borchers, D., Sutherland, C. and Sharma, K. (2021) Fast, flexible alternatives to reg-
ular grid designs for spatial capture–recapture. Methods in Ecology and Evolution 12, 298–310.
doi:10.1111/2041210X.13517

Efford, M. G., and Boulanger, J. (2019) Fast evaluation of study designs for spatially explicit
capture–recapture. Methods in Ecology and Evolution, 10, 1529–1535. doi:10.1111/2041210X.13239

See Also

make.grid, sim.popn, sim.capthist, secr.fit

costing Cost of SECR design

Description

The cost of implementing a spatially explicit capture–recapture design depends on the detector
layout, the number of detections and the various unit costs.

Usage

costing(traps, nr, noccasions, unitcost = list(), nrepeats = 1, routelength = NULL,
setupoccasion = TRUE)

https://www.otago.ac.nz/density/pdfs/secrdesign-vignette.pdf
https://www.otago.ac.nz/density/pdfs/secrdesign-Enrm.pdf
https://www.otago.ac.nz/density/pdfs/secrdesign-tools.pdf
https://CRAN.R-project.org/package=secrdesign/secrdesign.pdf
https://doi.org/10.1111/2041-210X.13517
https://doi.org/10.1111/2041-210X.13239

costing 5

Arguments

traps traps object for detector array

nr numeric vector with E(n) and E(r) as first two elements

noccasions integer number of sampling occasions

unitcost list with unit costs (see Details)

nrepeats integer number of repeated arrays

routelength numeric route length (km)

setupoccasion logical; if TRUE then the cost of a setup visit is included (noccasions+1)

Details

nr is a vector with the expected sample sizes (numbers of individuals and recaptures), usually the
output from Enrm.

unitcost should be a list with at least one of the components ‘perkm’, ‘perarray’, ‘perdetector’,
‘pervisit’ and ‘perdetection’.

The number of occasions (noccasions) is incremented by 1 if setupoccasion is TRUE.

Component Unit cost Costing
Arrays perarray perarray x nrepeats
Detectors perdetector perdetector x nrow(traps) x nrepeats
Travel perkm perkm x routelength x noccasions x nrepeats
Visits pervisit sum(pervisit x trapcost) x noccasions x nrepeats
Detections perdetection perdetection x total detections (E(n) + E(r))

‘Travel’ and ‘Visits’ are alternative ways to cost field time. The variable ‘routelength’ represents
the length of a path followed to visit all detectors; if not specified it is approximated by the sum
of the nearest-trap distances. The variable ‘trapcost’ is a vector of length equal to the number of
detectors. By default it is a vector of 1’s, but detector- specific values may be provided as trap
covariate ‘costpervisit’. In the latter case the value of ‘pervisit’ should probably be 1.0.

‘Arrays’ and ‘Detectors‘ represent one-off costs.

‘Detections’ includes costs such as handling time and laboratory DNA analysis.

See secrdesign-tools.pdf for more.

Value

A named numeric vector

See Also

Enrm, scenarioSummary

https://www.otago.ac.nz/density/pdfs/secrdesign-tools.pdf

6 count

Examples

tr <- make.grid(8, 8, spacing = 25)
msk <- make.mask(tr, buffer = 100, type = 'trapbuffer')
nrm <- Enrm(D = 5, tr, msk, list(lambda0 = 0.2, sigma = 20), 5)
costing (tr, nrm, 5, unitcost = list(pervisit = 5, perdetection = 15))

count Extract Summaries

Description

Reshape results from run.scenarios(..., extractfn = summary) so that they may be passed to
the usual summary functions of secrdesign.

Usage

count(object, ...)

S3 method for class 'summary'
predict(object, ...)
S3 method for class 'summary'
coef(object, ...)
S3 method for class 'summary'
count(object, ...)

Arguments

object summary simulation output from run.scenarios

... other arguments (not used)

Details

The aim is to extract numerical results from simulations performed using run.scenarios(...,
extractfn = summary). The results may then be passed to the summary method for ‘secrdesign’
objects, possibly via select.stats (see Examples).

Value

An object of class c("estimatetables", "secrdesign", "list") in which the output compo-
nent for each scenario is a list of dataframes, one per replicate. The structure of each dataframe
is indicated in the following table (parameters may vary with model); ‘parameters’ and ‘statistics’
correspond to arguments of select.stats.

Function Row(s) Columns
(parameters) (statistics)

estimateSummary 7

count Number Animals, Detections, Moves
coef D, g0, sigma estimate, SE.estimate, lcl, ucl
predict D, g0, sigma estimate, SE.estimate, lcl, ucl

See Also

predict.secr, coef.secr,

Examples

generate some simulations
scen1 <- make.scenarios(D = c(5,10), sigma = 25, g0 = 0.2)
traps1 <- make.grid(6, 6, spacing = 25)
sims1 <- run.scenarios(nrepl = 2, trapset = traps1, scenarios =

scen1, seed = 345, fit = TRUE, extractfn = summary)

view the results
count(sims1)$output
predict(sims1)$output

summary(sims1) ## header only

summary(count(sims1)) # equivalent to following
summary(select.stats(count(sims1), parameter = 'Number'))

summary(predict(sims1)) # default select.stats parameter = 'D'
summary(select.stats(predict(sims1), parameter = 'sigma'))

estimateSummary Direct summary of estimate tables

Description

An alternative approach to summarising output from run.scenarios (cf summary.estimatetables).
estimateSummary is especially useful when extractfn = predict or extractfn = coef, and all
scenarios have group structure.

countSummary summarises the raw data when the default extractfn is used with a fitted model
(counts are then stored as an attribute of the ’predict’ output). The same results may be obtained by
running the simulations without fitting a model and using summary(..., fields = c('n','mean','se','sd','min','max')).

Usage

estimateArray(object)

estimateSummary(object, parameter = "D", statistics = c("true", "nvalid",
"EST", "seEST", "RB", "seRB", "RSE", "RMSE", "rRMSE", "COV"), true,

8 estimateSummary

validrange = c(0, Inf), checkfields = c('estimate','SE.estimate'),
format = c('data.frame', 'list'), cols = NULL)

countSummary(object, verbose = FALSE, dec = 3)

Arguments

object secrdesign object of class "estimatetables"

parameter character name of parameter (row in estimate table)

statistics character choice of outputs

true numeric vector of true values, one per scenario and group

validrange numeric allowed for estimates or other checkfields

checkfields character choice of columns in each estimate table that will be checked against
validrange

format character choice of output

cols indices of scenario columns to include when format = "data.frame"

verbose logical; if TRUE then the mean, SD, minimum and maximum are tabulated

dec integer number of decimal places in output (verbose only)

Details

When ’predict(fittedmodel)’ in run.scenarios generates more than one estimate table (i.e. when
the model uses groups, mixture classes or multiple sessions), the default extract function retains
only the first. This is often OK, but it can be frustrating if you care about group- or session-specific
estimates.

The alternative is to use ’predict’ as the run.scenarios extractfn, which retains all estimate tables.
This requires a different function for summarisation; estimateSummary will suffice for many pur-
poses.

estimateSummary internally calls estimateArray to pre-process the output from run.scenarios.

The code should be examined for the precise definition of each statistic.

True parameter values are required for RB, RMSE and COV, and these are computed even if later
dropped from the output. If provided, the argument true should have length equal to the number
of parameter tables in each replicate, i.e. (number of scenarios) * (number of groups), ordered by
scenario. Otherwise, true values will be taken from rows of the data frame object$scenarios.

Replicates are rejected (parameter set to NA and ’nvalid’ reduced by 1) if any of the checkfields
falls outside validrange or is missing (NA).

Output statistics ‘EST’, ‘RB’, and ‘RSE’ are means across replicates, and ‘seEST’, ‘seRB’ the
corresponding standard errors.

The output list may optionally be formatted as a data.frame with pre-pended columns from ob-
ject$scenarios. Set cols to 0 or NULL for no scenario columns.

cols defaults to c("scenario", "group") if groups are present and "scenario" otherwise.

estimateSummary 9

Value

estimateArray – array with dimensions (Parameter, statistic, Group, Scenario, Replicate)

estimateSummary –

If groups present and format = "list" - a list of matrices (group x scenario), one for each statistic:

true.X true value of parameter (X)

nvalid number of valid replicates used in later summaries

EST mean of parameter estimates

seEST standard error of estimates (across replicates)

RB relative bias

seRB standard error of replicate-specific RB (across replicates)

RSE relative standard error (SE.estimate/estimate)

RMSE root mean squared error

rRMSE RMSE/true.X

COV coverage of confidence intervals (usually 95% intervals).

If groups absent and format = "list" - a list of vectors (one element per scenario) with statistics as
above.

If format = "data.frame" - a data frame with rows corresponding to group x scenario (or session x
scenario) combinations and columns corresponding to statistics as above.

countSummary –

A matrix (verbose = FALSE) or list of matrices, one per scenario (verbse = TRUE).

Columns are defined as

n number of individuals detected

r number of recaptures (total detections - n)

nmov number of movements

dpa detectors per animal

rse approximate RSE(D̂) from 1 / sqrt(min(n,r))

rpsv spatial variance computed with RPSV, CC = TRUE

Note

These functions were introduced in version 2.8.1. They may change in later versions. The default
format was changed to ‘data.frame’ in 2.8.3.

Results may be confusing when scenarios have group structure and groups are not used in the fitted
model.

It is assumed that all scenarios (and all models in a multi-model fit) report the same parameters.

See Also

run.scenarios, header, summary.estimatetables, summary.selectedstatistics, validate

10 estimateSummary

Examples

2-scenario, 2-group simulation
scen8 <- make.scenarios (D = 8, g0 = 0.3, sigma = 30,

noccasions = c(4,8), groups = c('F','M'))

replace density and sigma values of males to make it interesting
male <- scen8$group == 'M'
scen8$D[male] <- 4
scen8$sigma[male] <- 40

grid <- make.grid(8, 8, spacing = 30)
mask <- make.mask(grid, buffer = 160, type = 'trapbuffer')

old <- options(digits = 3)
setNumThreads(2)

#--
run a few simulations

model groups
sims <- run.scenarios(10, scen8, trapset = grid, fit = TRUE,

fit.args = list(model = list(D~g, g0~1, sigma~g), groups = 'group'),
extractfn = predict, maskset = mask)

format as list, selecting statistics
default summary uses true = c(8,4,8,4)
estimateSummary(sims, 'D', c("true", "nvalid", "EST", "RB", "seRB"))

format as data.frame by scenario and group, all statistics
estimateSummary(sims, 'D', format = 'data.frame')

#--
try with default extractfn (single table per replicate, despite groups)
sims2 <- run.scenarios(10, scen8, trapset = grid, fit = TRUE,

maskset = mask)

Fails with "Error in estimateSummary(sims2, "D") : incongruent 'true'""
estimateSummary(sims2, 'D')

OK if manually provide scenario-specific true density
estimateSummary(sims2, 'D', true = c(12,12))

reformat by scenario
estimateSummary(sims2, 'D', true = c(12,12), format = 'data.frame')

compare standard summary
summary(sims2)$OUTPUT

#--

expand.arg 11

multiple estimate tables also arise from multi-session simulations
argument 'true' must be specified manually
interpret with care: sessions are (probably) not independent
this example uses the previous grid and mask

scen9 <- make.scenarios (D = 8, g0 = 0.3, sigma = 30, noccasions = 5)
poparg <- list(nsessions = 3, details = list(lambda = 1.2)) # for sim.popn
detarg <- list(renumber = FALSE) # for sim.capthist
fitarg <- list(model = D~Session) # for secr.fit

sims3 <- run.scenarios(5, scen9, trapset = grid, fit = TRUE,
maskset = mask, pop.args = poparg, det.args = detarg,
fit.args = fitarg, extractfn = predict)

estimateSummary(sims3, parameter = 'D', format = 'data.frame',
true = 8 * 1.2^(0:2))

#--

extractfn = coef results in a single estimate table per replicate,
so the usual summary method is sufficent. For completeness we show
that estimateSummary can also be used. Coefficients are often negative,
so relative values (e.g., RB, RSE) may be meaningless.

sims4 <- run.scenarios(5, scen9, trapset = grid, fit = TRUE,
maskset = mask, pop.args = poparg, det.args = detarg,
fit.args = fitarg, extractfn = coef)

estimateSummary(sims4, parameter = 'D', c("nvalid", "EST", "seEST", "RMSE", "COV"),
format = 'data.frame', true = log(8), checkfields = 'beta',
validrange = log(c(2,20)))

estimateSummary(sims4, parameter = 'D.Session', c("nvalid", "EST", "seEST",
"RMSE", "COV"), format = "data.frame", true = log(1.2), checkfields = "beta",
validrange = log(c(0.5,2)))

#--

options(old)

expand.arg Expand Argument List

Description

Generate a list of lists from vectors of argument values.

12 GAoptim

Usage

expand.arg(..., sublist = list())

Arguments

... named vectors of argument values

sublist named list of character vectors

Details

The full ’pop.args’, ’det.args’ and ’fit.args’ arguments of run.scenarios are lists of lists corre-
sponding to the popindex, detindex and fitindex columns in scenarios.

expand.arg constructs such lists from all possible combinations of specified arguments, with in-
variant arguments appended.

sublist may be specified to shift one or more named subsets of . . . arguments to a sub-list such as
’detectpar’ (see Examples).

Value

A list of lists. A flat dataframe of combinations is returned as the attribute ’comb’.

See Also

run.scenarios

Examples

generate some arguments for sim.capthist
noccasions is constant

expand.arg(detectfn = c('HN','EX'), noccasions = 5)

detectpar sub-list

expand.arg(lambda0 = c(0.1, 0.2), sigma = 20, detectfn = c('HHN','HEX'),
sublist = list(detectpar = c('lambda0','sigma')))

GAoptim SECR detector placement by maximisation of a simple criterion

GAoptim 13

Description

Implements the approach of Durbach et al. (2021) for optimization of detector placement using
a genetic algorithm to maximize the lesser of E(n) and E(r), where n is the number of distinct
individuals and r is the total number of recaptures. This criterion predicts the relative standard error
of the density estimate (Efford and Boulanger 2019).

Users may choose the criterion to be maximised. The number of individuals detected at two or more
detectors is an alternative of particular interest (Dupont et al. 2021).

Usage

GAoptim(mask, alltraps, ntraps, detectpar, noccasions,
detectfn = c("HHN", "HHR", "HEX", "HAN", "HCG"), D = NULL,
criterion = 4, penalty = NULL, seed = NULL, ...)

Arguments

mask mask object

alltraps traps object with all possible trap locations

ntraps number of required trap locations

detectpar list values of detection parameters lambd0, sigma etc.

detectfn integer code or character string for shape of detection function - see detectfn

noccasions integer number of sampling occasions

D numeric density animals per hectare (0.01 km^2)

criterion integer code for criterion to maximise, or function (see Details)

penalty list defining penalty for layout in relation to reference grid (optional)

seed set a random seed for reproducibility of GA

... other arguments passed to kofnGA

Details

detectpar is a named list with values of the detection parameters for the chosen detectfn. Usually
this will be just lambda0 (baseline hazard of detection) and sigma (spatial scale of detection).

The genetic algorithm is provided by function kofnGA from package kofnGA (Wolters 2015). The
first three arguments of kofnGA (i.e., n, k, OF) are set by GAoptim. Others may be adjusted by the
user via the . . . argument. Specifically,

Argument Default Description
ngen 500 number of generations to run
popsize 200 size of the population; equivalently, the number of offspring produced each generation
mutprob 0.01 mutation rate
verbose 0 integer controlling the display of progress during search. If a positive value, then the iteration number and best objective function value are displayed at the console every ’verbose’ generations. Otherwise nothing is displayed. The default gives no display.
cluster NULL number of parallel cores or a prebuilt parallel cluster

14 GAoptim

The default for ngen may (or may not) be larger than is needed for routine use. Durbach et al.
(2021) used ngen = 50, popsize = 1000 and mutprob = 0.01.

Density D may be a scalar or a vector of length equal to the number of mask cells. No value need
be specified if the sole aim is to optimize trap placement, but D is required for predictions of E(n)
and E(r).

Pathological detector layouts (sensu Efford and Boulanger 2019) may be avoided by adding a
penalty to the objective. No penalty is applied by default. To apply a penalty, penalty should
be a list with named components pen_wt>0 and pen_gridsigma). If a penalty is applied, the default
compares the number of trap pairs with close spacing (2.5-3.5 sigma, 3.5-4.5 sigma) to the number
in a compact sample from a regular grid with spacing sigma * pen_gridsigma (see internal functions
GApenfn and compactSample and the vignette). An alternative penalty function may be supplied as
component ‘pen_fn’ of penalty.

The default criterion is the minimum of E(n) and E(r) as used by Durbach et al. (2021). The full
list of builtin possibilities is:

Code Description Note
1 E(n) number of distinct individuals
2 E(r) number of recaptures
3 E(m) number of movement recaptures
4 min(E(n), E(r)) minimum E(n), E(r)
5 E(n2) expected number of animals detected at 2 or more sites (cf Qpm Dupont et al. 2021)
6 E(n) + E(n2) (1) + (5) (cf Qpb Dupont et al. 2021)

Criteria 1–4 are computed with function Enrm (see also Efford and Boulanger 2019). Criteria 5–6
are computed with function En2. Any penalty is applied only when criterion = 4.

The criterion may also be a function that returns a single numeric value to be maximised. Arguments
of the function should match those of En2, although . . . may suffice for some or all (see Examples).

Value

An object of class "GAoptim" that is a list with components

mask saved input

alltraps saved input

detectpar saved input

noccasions saved input

detectfn saved input

D saved input

penalty saved input

criterion saved input

des kofnGA() output object

optimaltraps traps object with optimized layout

optimalenrms E(n), E(r), E(m) evaluated with optimized layout

GAoptim 15

Warnings

Spatial representativeness is not considered, so designs ‘optimised’ with GAoptim are not robust to
unmodelled variation in density or detection parameters.

Author(s)

Ian Durbach and Murray Efford.

References

Dupont, G., Royle, J. A., Nawaz, M. A. and Sutherland, C. (2021) Optimal sampling design for
spatial capture–recapture. Ecology 102 e03262.

Durbach, I., Borchers, D., Sutherland, C. and Sharma, K. (2021) Fast, flexible alternatives to reg-
ular grid designs for spatial capture–recapture. Methods in Ecology and Evolution 12, 298–310.
doi:10.1111/2041210X.13517

Efford, M. G., and Boulanger, J. (2019) Fast evaluation of study designs for spatially explicit
capture–recapture. Methods in Ecology and Evolution, 10, 1529–1535. doi:10.1111/2041210X.13239

Wolters, M. A. (2015) A genetic algorithm for selection of fixed-size subsets with application to de-
sign problems. Journal of Statistical Software, Code Snippets, 68, 1–18. doi:10.18637/jss.v068.c01

See Also

Enrm, En2, minnrRSE, GApenfn, compactSample

Examples

an artificial example
msk <- make.mask(type = 'rectangular', spacing = 10, nx = 30, ny = 20, buffer = 0)
alltrps <- make.grid(nx = 29, ny = 19, origin = c(10,10), spacing = 10)
set.seed(123)

50 generations for demonstration, use more in practice
opt <- GAoptim(msk, alltrps, ntraps = 20, detectpar = list(lambda0 = 0.5, sigma = 20),

detectfn = 'HHN', D = 10, noccasions = 5, ngen = 50, verbose = 1)

plot(msk)
plot(opt$optimaltraps, add = TRUE)
minnrRSE(opt, distribution = 'binomial')

Using a criterion function
En2 is unsuitable as a criterion function as it returns 2 values
This function selects the second as the (unique) criterion
fn <- function(...) En2(...)[2]
opt2 <- GAoptim(msk, alltrps, ntraps = 20, detectpar = list(lambda0 = 0.5, sigma = 20),

detectfn = 'HHN', D = 10, noccasions = 5, ngen = 50, verbose = 1, criterion = fn)

https://doi.org/10.1111/2041-210X.13517
https://doi.org/10.1111/2041-210X.13239
https://doi.org/10.18637/jss.v068.c01

16 getdetectpar

getdetectpar Ballpark Detection Parameters

Description

Detection parameters for an animal population may be guessed from some basic inputs (population
density, a coefficent of home-range overlap, and the expected number of detections on a given
detector array). These values are useful as a starting point for study design. They are not ’estimates’.

Usage

getdetectpar(D, C, sigma = NULL, k = 0.5, ...)

Arguments

D population density animals / hectare; may be scalar or vector of length nrow(mask)

C integer expected total number of detections
sigma numeric spatial scale parameter of chosen detection function, in metres (op-

tional)
k coefficient of overlap - typically in range 0.3 to 1.1
... named arguments passed to Enrm and Lambda (traps, mask, noccasions, detectfn)

Details

If sigma is missing and detectfn = ‘HHN’ then sigma is first inferred from the relationship σ =
100k

√
D (D in animals per hectare and σ in metres). Other detectfn give an error.

A numerical search is then conducted for the value of lambda0 that results in C expected detections
for the given density and design. The calculation takes account of the detector array, the habitat
mask and the number of sampling occasions (all specified in the . . . argument - see example).
Only hazard detection functions are supported (‘HHN’, ‘HHR’, ‘HEX’, ‘HAN’, ‘HCG’). The de-
fault is ‘HHN’.

Value

A list with one component for each detection parameter.

See Also

Enrm, Lambda

Examples

tr <- traps(captdata)
detector(tr) <- "multi"
msk <- make.mask(tr, buffer = 100, type = 'trapbuffer')
getdetectpar(D = 5.48, C = 235, traps = tr, mask = msk, noccasions = 5)

Internal 17

Internal Internal Functions

Description

Functions that are called internally by secrdesign. These are exported and may be called separately
for testing etc.

Usage

compactSample (traps, n)

GApenfn(traps, sigma)

'outputtype<-'(object, value)

Arguments

traps secr trapsobject

n integer number in sample (0 < n ≤ ntraps)

sigma numeric sparial scale parameter

object object output from run.scenarios

value replacement value for outputtype of object

Details

compactSample selects a detector at random and returns the a compact subset of surrounding de-
tectors.

GApenfn is the default pen_fn used by GAoptim When called with a non-null penalty argument.

Values of outputtype map to class of the run.scenarios output as follows

Output type Class
secrfit c("fittedmodels", "secrdesign", "list")
ipsecrfit c("fittedmodels", "secrdesign", "list")
predicted c("estimatetables", "secrdesign", "list")
derived c("estimatetables", "secrdesign", "list")
regionN c("estimatetables", "secrdesign", "list")
coef c("estimatetables", "secrdesign", "list")
user c("estimatetables", "secrdesign", "list")
secrsummary c("summary", "secrdesign", "list")
capthist c("rawdata", "secrdesign", "list")
selectedstatistics c("selectedstatistics", "secrdesign", "list")

18 Lambda

Calling the replacement function automatically changes the class of the output object as appropriate.
This determines how the output is handled by downstream functions such as summary. Using a
custom extractfn or post-processing the output sometimes requires the outputtype to be set manually
(see example in the Multi-model section of secrdesign-vignette.pdf).

Value

GApenfn – a numeric vector with the number of trap pairs separated by 2.5-3.5 sigma and 3.5-4.5
sigma.

compactSample – an object like traps, but with only n rows.

References

Durbach, I., Borchers, D., Sutherland, C. and Sharma, K. (2021) Fast, flexible alternatives to reg-
ular grid designs for spatial capture–recapture. Methods in Ecology and Evolution 12, 298–310.
doi:10.1111/2041210X.13517

See Also

GAoptim,

Examples

CStraps <- compactSample(traps(captdata), n = 20)

plot(traps(captdata))
plot(CStraps, add = TRUE, detpar = list(fg = 'blue',pch = 16))

GApenfn(CStraps, sigma = 25)

Lambda Expected Detections

Description

Compute the expected number of detections as a function of location (Lambda), and the expected
total numbers of individuals n, recaptures r and movements m for a population sampled with an
array of detectors (Enrm) or the number of individuals detected at two or more detectors (En2).

Usage

Lambda(traps, mask, detectpar, noccasions, detectfn = c("HHN", "HHR", "HEX",
"HAN", "HCG", 'HN', 'HR', 'EX'))

Enrm(D, ...)

minnrRSE(D, ..., CF = 1.0, distribution = c("poisson","binomial"))

https://doi.org/10.1111/2041-210X.13517

Lambda 19

En2(D, traps, mask, detectpar, noccasions, detectfn = c("HHN", "HHR", "HEX",
"HAN", "HCG", "HN", "HR", "EX"))

Qpm(D, traps, mask, detectpar, noccasions, detectfn = c("HHN", "HHR", "HEX",
"HAN", "HCG", "HN", "HR", "EX"))

Arguments

traps traps object

mask mask object

detectpar a named list giving a value for each parameter of detection function

noccasions integer number of sampling occasions

detectfn integer code or character string for shape of detection function – see detectfn

D population density animals / hectare; may be scalar or vector of length nrow(mask)

... arguments passed to Lambda

CF numeric correction factor

distribution character distribution of n

Details

The detector attribute of traps may be ‘multi’, ‘proximity’ or ‘count’. It is assumed that detectpar
and detector type do not differ among occasions.

The calculation is based on an additive hazard model. If detectfn is not a hazard function (‘HHN’,
‘HEX’, ‘HHR’, ‘HAN’ and ‘HCG’) then an attempt is made to approximate one of the hazard
functions (HN -> HHN, HR -> HHR, EX -> HEX). The default is ‘HHN’.

For hazard function λ(d) and S occasions, we define Λ(x) =
∑

s

∑
k λ(dk(x)).

Formulae for expected counts are given in secrdesign-Enrm.pdf.

minnrRSE has mostly the same inputs as Enrm but returns sqrt(CF/min(n,r)). The correction factor
CF may be used to adjust for systematic bias (e.g., for a line of detectors CF = 1.4 may be ap-
propriate). The default distribution = 'poisson' is for Poisson-distributed N and n. To adjust
the prediction for fixed N (binomial n) use distribution = 'binomial' (see secrdesign-tools.pdf
Appendix 2).

From 2.7.0, the first argument of minnrRSE may also be the output from GAoptim.

En2 is defined for detectors ‘multi’, ‘proximity’ and ‘count’.

Qpm returns the optimisation criteria Qp and Qpm
of Dupont et al. (2021), defined only for ‘prox-

imity’ and ‘count’ detectors. The criteria are mask-dependent, and En2 is generally preferred. For
‘proximity’ and ‘count’ detectors the following expressions give the same result:

En2(D, trp, msk, dp)

Qpm(D, trp, msk, dp) * maskarea(msk) * D

given constant density ‘D’, detectors ‘trp’, mask ‘msk’ and detection parameters ‘dp’.

https://www.otago.ac.nz/density/pdfs/secrdesign-Enrm.pdf
https://www.otago.ac.nz/density/pdfs/secrdesign-tools.pdf

20 make.array

Value

Lambda – mask object with covariates ‘Lambda’ (Λ(x)), ‘sumpk’ and ‘sumq2’ (intermediate values
for computation of expected counts)

Enrm – numeric vector of length 3, the values of E(n), E(r) and E(m)

minnrRSE – rule-of-thumb RSE(D-hat) Efford and Boulanger (2019)

En2 – numeric vector comprising the values E(n) and E(number of animals detected at 2 or more
sites)

Qpm – numeric vector comprising the criteria Qp and Qpm
of Dupont et al. (2021)

References

Dupont, G., Royle, J. A., Nawaz, M. A. and Sutherland, C. (2021) Optimal sampling design for
spatial capture–recapture. Ecology 102 e03262.

Efford, M. G., and Boulanger, J. (2019) Fast evaluation of study designs for spatially explicit
capture–recapture. Methods in Ecology and Evolution, 10, 1529–1535. doi:10.1111/2041210X.13239

See Also

getdetectpar, optimalSpacing, scenarioSummary, GAoptim

Examples

tr <- traps(captdata)
detector(tr) <- "multi"
msk <- make.mask(tr, buffer = 100, type = 'trapbuffer')

L <- Lambda(tr, msk, list(lambda0 = 0.2, sigma = 20), 5)
nrm <- Enrm(D = 5, tr, msk, list(lambda0 = 0.2, sigma = 20), 5)
nrm

En2(D = 5, tr, msk, list(lambda0 = 0.2, sigma = 20), 5)

plot(L, cov = "Lambda", dots = FALSE)
plot(tr, add = TRUE)
mtext(side = 3, paste(paste(names(nrm), round(nrm,1)), collapse = ", "))

make.array Re-cast Simulated Statistical Output as Array

Description

This function is used internally by summary.secrdesign, and may occasionally be of general use.

Usage

make.array(object)

https://doi.org/10.1111/2041-210X.13239

make.scenarios 21

Arguments

object secrdesign object containing numerical values for a particular parameter (i.e.
output from select.stats inheriting from ‘selectedstatistics’)

Details

make.array converts a particular simulated numerical output into an array with one dimension for
each varying input.

Value

A numeric array with dimensions corresponding to the varying inputs.

See Also

run.scenarios

Examples

collect raw counts
scen1 <- make.scenarios(D = c(5,10), sigma = 25, g0 = 0.2)
traps1 <- make.grid()
tmp1 <- run.scenarios(nrepl = 50, trapset = traps1, scenarios = scen1,

fit = FALSE)
make.array(tmp1)

make.scenarios Construct Scenario Data Frame

Description

This function prepares a dataframe in which each row specifies a simulation scenario. The dataframe
is used as input to run.scenarios.

Usage

make.scenarios(trapsindex = 1, noccasions = 3, nrepeats = 1,
D, g0, sigma, lambda0, epsilon, tau, z,
detectfn = 0, recapfactor = 1, popindex = 1, detindex = 1, fitindex = 1,
groups, crosstraps = TRUE)

22 make.scenarios

Arguments

trapsindex integer vector determining the traps object to use

noccasions integer vector for the number of sampling occasions

nrepeats integer vector of multipliers for D (see Details)

D numeric vector of values for the density parameter (animals / hectare)

g0 numeric vector of values for the g0 parameter

sigma numeric vector of values for the sigma parameter (m)

lambda0 numeric vector of values for the lambda0 parameter

epsilon numeric vector of values for the epsilon parameter (m)

tau numeric vector of values for the tau parameter (OU correlation)

z numeric vector of values for the z parameter

detectfn vector of valid detection function codes (numeric or character)

recapfactor numeric vector of values for recapfactor (sim.capthist)

popindex integer vector determining which population model is used

detindex integer vector determining which detection options are used

fitindex integer vector determining which model is fitted

groups character vector of group labels (optional)

crosstraps logical; if TRUE the output includes all combinations of trapsindex, noccasions
and nrepeats

Details

The index in trapsindex is used in run.scenarios to select particular detector arrays from the
list of arrays provided as an argument to that function.

The function generates all combinations of the given parameter values using expand.grid. By
default, it also generates all combinations of the parameters with trapsindex and the number of
sampling occasions. If crosstraps is FALSE then trapsindex, noccasions, and nrepeats are
merely used to fill in these columns in the output dataframe.

Use the detection parameters (g0, sigma, lambda0, epsilon, tau, z) that apply for the chosen detec-
tion function (detectfn). Others will be ignored.

Detectfn 20 (Ornstein-Uhlenbeck) is currently available in secrdesign but not in secr (see simOU.capthist).
It uses epsilon, sigma and tau (= 1/beta).

Designs may use multiple detector arrays with the same internal geometry (e.g., number and spacing
of traps). The number of such arrays is varied with the nrepeats argument. For example, you may
compare designs with many small arrays or a few large ones. In practice, run.scenarios simulates
a single layout with density D * nrepeats. This shortcut is not appropriate when animals compete
for traps (detector = ‘single’).

fitindex allows a choice of different models when the argument fit.args of run.scenarios is
a compound list.

If groups is provided each scenario is replicated to the length of groups and a column ‘group’ is
added.

minsimRSE 23

Value

Dataframe with one row per scenario (or sub-scenario) and the columns

scenario a number identifying the scenario

group (optional)

trapsindex

noccasions

nrepeats

D

...
[parameters appropriate to detectfn]

...

detectfn see detectfn; always numeric

recapfactor

popindex

detindex

fitindex

An attribute ‘inputs’ is saved for possible use in make.array.

See Also

run.scenarios, scenarioSummary, sim.capthist

Examples

make.scenarios(trapsindex = 1, nrepeats = 1, D = c(5,10), sigma = 25,
g0 = 0.2)

minsimRSE Optimal Spacing by Simulation

Description

A method to obtain a unique ‘optimal’ spacing from previously simulated scenaios for detector
spacing.

Usage

S3 method for class 'optimalSpacing'
minsimRSE(object, cut = 0.2, plt = FALSE, verbose = FALSE, incr = 0.1, ...)

24 minsimRSE

Arguments

object optimalSpacing object

cut numeric maximum ∆ RSE to include

plt logical; if TRUE a plot is generated

verbose logical; if TRUE then output includes fitted model

incr numeric spacing of computed points (R)

... other arguments passed to plot.optimalSpacing

Details

A quadratic is fitted to the simulated RSE (y) vs simulationR (x), including only values of x and y
for which y ≤ min(y)× (1 + cut). The restriction allows the user to exclude extreme x-values for
which the quadratic is a poor fit.

The optimum is the minimum of the quadratic ax2 + bx+ c, given by −b/2a.

The quadratic is fitted with lm (lm(RSE.mean ~ R + I(R^2)).

Value

When verbose = FALSE, a numeric vector with optimum R (multiple of sigma) and corresponding
RSE.

When verbose = TRUE, a list with components –

model fitted model from lm

fitted dataframe of points on fitted curve

R optimum R

RSE minimum RSE

See Also

optimalSpacing

Examples

grid <- make.grid(8, 8, spacing = 20, detector = 'proximity')

method = "none" uses the shortcut variance
tmp <- optimalSpacing(D = 5, traps = grid, detectfn = "HHN", detectpar =

list(lambda0 = 1, sigma = 20), noccasions = 1, nx = 32,
fit.function = "secr.fit", method = "none", simulationR = seq(1.2,2.2,0.2))

minsimRSE(tmp, plt = TRUE)

optimalSpacing 25

optimalSpacing Optimal Detector Spacing

Description

Estimate the detector spacing that yields the greatest precision (lowest RSE D-hat) for a given
detector geometry, number of sampling occasions, density and detection parameters. By default
this uses only the approximate RSE of Efford and Boulanger (2019), but simulations may also be
performed and the optimum found later with minsimRSE.

Usage

optimalSpacing (D, traps, detectpar, noccasions, nrepeats = 1,
detectfn = c('HHN', 'HHR', 'HEX','HAN','HCG', 'HN', 'HR', 'EX'),
fittedmodel = NULL, xsigma = 4, R = seq(0.2, 4, 0.2), CF = 1.0,
distribution = c("poisson", "binomial"),
fit.function = c("none", "secr.fit"),
simulationR = seq(0.4, 4, 0.4), nrepl = 10,
plt = FALSE, ...)

Arguments

D population density animals / hectare (constant)

traps traps object

detectpar named list giving a value for each parameter of detection function (sigma not
needed)

noccasions integer number of sampling occasions

nrepeats integer number of replicate arrays (not yet used)

detectfn integer code or character string for shape of detection function – see detectfn

fittedmodel secr fitted model (instead of preceding arguments)

xsigma numeric buffer width as multiple of sigma

R numeric vector of relative spacings at which to plot rule-of-thumb RSE(D-hat)

CF numeric correction factor for rule-of-thumb RSE

distribution character distribution of number of individuals detected

fit.function character function to use for model fitting

simulationR numeric vector of relative spacings at which to simulate

nrepl integer number of replicate simulations

plt logical; if TRUE then results are plotted

... other arguments passed to various functions (see Details)

26 optimalSpacing

Details

A numerical search over possible spacings uses the rule-of-thumb RSE(D-hat) given by minnrRSE
as the objective function.

traps provides the geometry of the detector layout and the initial spacing s. Function optimize is
used to search for a solution (minimum RSE) in the range of R x s.

The computation emulates variation in detector spacing by inverse variation in sigma (sigma’ =
sigma / R) with compensating variation in density. Mask buffer width and spacing are also scaled
by R.

If fit.function is "secr.fit" then simulations are also performed for the relative spacings in simulationR.
Density, sigma and mask attributes are scaled as for the rule-of-thumb calculations. Using ‘method
= "none"‘ gives fast prediction of RSE (from the Hessian evaluated at the known parameter values),
but does not estimate bias.

Simulation results are not summarised as a unique ‘optimal’ spacing. For this apply the method
minsimRSE to the resulting object.

The . . . argument may be used to set the values of these arguments:

Function Arguments
make.mask ‘nx’, ‘type’, ‘poly’,‘poly.habitat’
run.scenarios ‘seed’, ‘ncores’, ‘method’
plot.optimalSpacing ‘add’, . . .

The argument CF may be set to NA to suppress rule-of-thumb RSE, including optimisation. range(R)
specifies the search interval for optimisation.

A plot method is provided, with options for plotting different components.

Value

List of two components, one for the rule-of-thumb optimisation (rotRSE) and the other for simula-
tion results, if requested (simRSE).

The optimisation results are

values dataframe with E(n), E(r) and the rule-of-thumb RSE for each requested R
optimum.spacing

the absolute spacing that yields maximum precision (minimum rule-of-thumb
RSE(D-hat))

optimum.R spacing relative to sigma

minimum.RSE final value of the objective function (minimum rule-of-thumb RSE(D-hat))

The simulation results in the dataframe simRSE are the mean and SE of the simulated RSE(D-hat)
for each level of simulationR, with added columns for the relative bias (RB) and relative root-
mean-square-error (rRMSE) of D-hat.

Results are returned invisibly if plt = TRUE.

optimalSpacing 27

Warnings

For single-catch traps, use of a maximum likelihood estimate of lambda0 from a fitted multi-catch
model results in negative bias.

Only hazard-based detection functions are supported. The meaning of the ‘sigma’ parameter de-
pends on the function, and so will the optimal spacing in sigma units.

Note

fit.function = ’openCR.fit’ was deprecated from 2.5.8 and has been removed as an option

References

Efford, M. G., and Boulanger, J. (2019) Fast evaluation of study designs for spatially explicit
capture–recapture. Methods in Ecology and Evolution, 10, 1529–1535. doi:10.1111/2041210X.13239

See Also

minnrRSE, minsimRSE plot.optimalSpacing,

Examples

grid <- make.grid(7, 7) # default multi-catch detector
optimalSpacing(D = 5, traps = grid, detectpar = list(lambda0 = 0.2, sigma = 20),

noccasions = 5, plt = TRUE)

Not run:

optimalSpacing(D = 5, traps = grid, detectpar = list(lambda0 = 0.4, sigma = 20),
detectfn = 'HEX', R = seq(1,6,0.4), noccasions = 10, plt = TRUE, col = "blue")

with simulations
grid <- make.grid(8, 8, spacing = 20, detector = 'proximity')
optimalSpacing(D = 5, traps = grid, detectfn = "HHN", detectpar =

list(lambda0 = 0.2, sigma = 20), noccasions = 5, nrepl = 20, nx = 32,
fit.function = "secr.fit", ncores = 4, plt = TRUE, col = "blue")

manual check
grid <- make.grid(8, 8, spacing = 60, detector = 'proximity')
scen <- make.scenarios(D = 5, detectfn = 14, lambda0 = 0.2, sigma = 20,

noccasions = 5)
sim1 <- run.scenarios(nrepl = 20, scen, trapset = list(grid), fit = TRUE,

fit.args = list(detectfn = 14), ncores = 4, byscenario = FALSE)
summary(sim1)

End(Not run)

https://doi.org/10.1111/2041-210X.13239

28 plot.optimalSpacing

plot.optimalSpacing Plot and print methods for optimalSpacing object

Description

Plotsor print results from optimalSpacing.

Usage

S3 method for class 'optimalSpacing'
plot(x, add = FALSE, plottype = c("both", "RSE", "nrm", "RB", "RMSE"),

xtype = c('relative','absolute'), xoffset = 0, ...)
S3 method for class 'optimalSpacing'
print(x, ...)

Arguments

x object from optimalSpacing

add logical; if TRUE will add to existing plot

plottype character code

xtype character scale of x-axis

xoffset numeric offset of points on x-axis

... other arguments for plot, lines or points

Details

If plottype = "RSE" then RSE(D-hat) is plotted against R (relative detector spacing).
If plottype = "nrm" then the expected numbers of individuals, recaptures and movements are plot-
ted against R.
If plottype = "RB" then the simulated relative bias of D-hat is plotted against R.
If plottype = "rRMSE" then the simulated relative root-mean-square-error of D-hat is plotted against
R.

plottype = "both" then both the simulated and approximate RSE are plotted.

If xtype = "absolute" then the scale of the x-axis is R * sigma (from the detectpar attribute of x).

xoffset is used to slightly displace added points to avoid overlap.

The . . . argument may be used to pass other plotting arguments to override defaults:

Function Arguments Note
plot ‘xlab’, ‘ylab’, ‘xlim’, ‘ylim’, ‘las’, ‘xaxs’, ‘yaxs’ add = FALSE
points ‘col’, ‘cex’, ‘pch’ optimum and simulated RSE
lines ‘col’, ‘lwd’, ‘lty’ rule-of-thumb RSE

The print method removes attributes before printing.

predict.fittedmodels 29

Value

None

See Also

optimalSpacing

predict.fittedmodels Extract Estimates From Fitted Models

Description

If simulations have been saved from run.scenarios as fitted secr models it is necessary to use one
of these functions to extract estimates for later summarization.

Usage

S3 method for class 'fittedmodels'
predict(object, ...)

S3 method for class 'fittedmodels'
coef(object, ...)

S3 method for class 'fittedmodels'
derived(object, ...)

S3 method for class 'fittedmodels'
region.N(object, ...)

Arguments

object fitted model simulation output from run.scenarios

... other arguments passed to predict, coef, derived or region.N

Details

These functions are used when output from run.scenarios has been saved as fitted models.
derived and region.N require a full fit (including the mask and design0 objects) whereas a trimmed
model is sufficient for predict and coef.

derived is used to compute the Horvitz-Thompson-like estimate of density when secr.fit has
been used with CL = TRUE; it is roughly equivalent to predict.

region.N predicts the realised number (R.N) or expected number (E.N) in a masked area. When
detector layouts and/or sigma vary, the masked area will also vary (arbitrarily, depending on the
buffer argument ‘xsigma’) unless a mask is provided by the user; this may be done either in
run.scenarios or in region.N.

30 rbind.estimatetables

Value

An object with class (‘estimatetables’, ‘secrdesign’, ‘list’) with appropriate outputtype (‘predicted’,
‘coef’, ‘derived’, ‘regionN’; see also run.scenarios).

Note

From secrdesign 2.5.3 the methods described here replace the functions derived.SL and regionN.SL.
This is for compatibility with secr.

See Also

run.scenarios coef.secr predict.secr derived.secr region.N.secr

Examples

Not run:
scen1 <- make.scenarios(D = c(3,6), sigma = 25, g0 = 0.2)
traps1 <- make.grid() ## default 6 x 6 grid of multi-catch traps
tmp1 <- run.scenarios(nrepl = 10, trapset = traps1, scenarios = scen1,

fit = TRUE, extractfn = trim)
tmp2 <- predict(tmp1)
tmp3 <- select.stats(tmp2, 'D', c('estimate','RB','RSE'))
summary(tmp3)

for derived and region.N need more than just 'trimmed' secr object
use argument 'keep' to save mask and design0 usually discarded by trim
tmp4 <- run.scenarios(nrepl = 10, trapset = traps1, scenarios = scen1,

fit = TRUE, extractfn = trim, keep = c('mask','design0'))

summary(derived(tmp4))

for region.N we must specify the parameter for which we want statistics
(default 'D' not relevant)
tmp5 <- select.stats(region.N(tmp4), parameter = 'E.N')
summary(tmp5)

End(Not run)

rbind.estimatetables Combine Simulation Output

Description

Methods to combine output from separate executions of run.scenarios.

rbind.estimatetables 31

Usage

S3 method for class 'estimatetables'
rbind(..., deparse.level = 1)

S3 method for class 'selectedstatistics'
rbind(..., deparse.level = 1)

S3 method for class 'estimatetables'
c(...)

S3 method for class 'selectedstatistics'
c(...)

Arguments

... estimatetables or selectedstatistics output from run.scenarios

deparse.level not used (required by generic method rbind)

Details

rbind assumes all inputs used exactly the same scenarios. Replicate estimate tables are combined
across executions for each scenario in turn. This is useful to increase the number of replicates by
combining two batches of simulations with different random seeds. The ‘scenarios’ component
remains unchanged.

c combines outputs from run.scenarios that may differ in their scenarios. The ‘output’ component
of the result is a concatenation of the output lists in the input. The ‘scenarios’ component of the
result comprises the input scenarios stacked with rbind.data.frame.

The compatibility of the inputs is checked, but the checks are not exhaustive. Users should be wary.

Value

‘estimatetables’ or ‘selectedstatistics’ object combining the inputs

See Also

make.scenarios run.scenarios

Examples

Simple example: generate and summarise trapping data at two densities
result inherits from 'selectedstatistics'

scen1 <- make.scenarios(D = c(5,10), sigma = 25, g0 = 0.2, noccasions = 5)
traps1 <- make.grid() ## default 6 x 6 trap grid
tmp1 <- run.scenarios(nrepl = 5, trapset = traps1, scenarios = scen1,

fit = FALSE, seed = 123)
tmp2 <- run.scenarios(nrepl = 15, trapset = traps1, scenarios = scen1,

fit = FALSE, seed = 127)

32 run.scenarios

summary(rbind(tmp1,tmp2))
summary(c(tmp1,tmp2))

run.scenarios Simulate Sampling Designs

Description

This function performs simulations to predict the precision of density and other estimates from
simple 1-session SECR designs. Scenarios are specified via an input dataframe that will usually
be constructed with make.scenarios. Each scenario comprises an index to a detector layout, the
number of sampling occasions, and specified density (D) and detection parameters (usually g0 and
σ).

Detector layouts are provided in a separate list trapset. This may comprise an actual field design
input with read.traps or ‘traps’ objects constructed with make.grid etc., as in the Examples.
Even a single layout must be presented as a component of a list (e.g., list(make.grid())).

Alternative approaches are offered for predicting precision. Both start by generating a pseudoran-
dom dataset under the design using the parameter values for a particular scenario. The first estimates
the parameter values and their standard errors from each dataset by maximizing the full likelihood,
as usual in secr.fit. The second takes the short cut of computing variances and SE from the Hes-
sian estimated numerically at the known expected values of the parameters, without maximizing the
likelihood. Set method = "none" in fit.args for this shortcut.

Usage

run.scenarios(nrepl, scenarios, trapset, maskset, xsigma = 4, nx = 32,
pop.args, CH.function = c("sim.capthist", "simOU.capthist", "simCH"), det.args,
fit = FALSE, fit.function = c("secr.fit", "ipsecr.fit", "openCR.fit"),
fit.args, chatnsim = 0, extractfn = NULL, multisession = FALSE,
joinsessions = FALSE, ncores = NULL, byscenario = FALSE, seed = 123,
trap.args, prefix = NULL, ...)

fit.models(rawdata, fit = FALSE, fit.function = c("secr.fit", "ipsecr.fit", "openCR.fit"),
fit.args, chatnsim, extractfn = NULL, ncores = NULL, byscenario = FALSE,
scen, repl, ...)

Arguments

nrepl integer number of replicate simulations

scenarios dataframe of simulation scenarios

trapset secr traps object or a list of traps objects or functions

maskset secr mask object or a list of mask objects (optional)

xsigma numeric buffer width as multiple of sigma (alternative to maskset)

run.scenarios 33

nx integer number of cells in mask in x direction (alternative to maskset)

pop.args list of named arguments to sim.popn (optional)

CH.function character name of function to simulate capthist

det.args list of named arguments to sim.capthist (optional)

fit logical or character; if TRUE a model is fitted with fit.function, otherwise
data are generated but no model is fitted
(see also Multi-model fit and Design-only statistics in Details)

fit.function character name of function to use for model fitting

fit.args list of named arguments to fit.function (optional)

chatnsim integer number of simulations for overdispersion of mark-resight models

extractfn function to extract a vector of statistics from secr model

multisession logical; if TRUE groups are treated as additional sessions

joinsessions logical; if TRUE function join is applied to multisession capthist

ncores integer number of cores for parallel processing or NULL

byscenario logical; if TRUE then each scenario is sent to a different core

seed integer pseudorandom number seed

trap.args list of arguments for trapset components if using function option

prefix character to name files saving output of each scenario

... other arguments passed to extractfn

rawdata ‘rawdata’ object from previous call to run.scenarios

scen integer vector of scenario subscripts

repl integer vector of subscripts in range 1:nrepl

Details

Designs are constructed from the trap layouts in trapset, the numbers of grids in ngrid, and the
numbers of sampling occasions (secondary sessions) in noccasions. These are not crossed: the
number of designs is the maximum length of any of these arguments. Any of these arguments
whose length is less than the maximum will be replicated to match.

pop.args is used to customize the simulated population distribution. It will usually comprise a
single list, but may be a list of lists (one per popindex value in scenarios).

det.args may be used to customize some aspects of the detection modelling in sim.capthist, but
not traps, popn, detectpar, detectfn, and noccasions, which are controlled directly by the
scenarios. It will usually comprise a single list, but may be a list of lists (one per detindex value in
scenarios).

fit.args is used to customize the fitted model; it will usually comprise a single list. If you are
interested in precision alone, use fit.args=list(method = 'none') to obtain variance estimates
from the hessian evaluated at the parameter estimates. This is much faster than a complete model
fit, and usually accurate enough.

If no extractfn is supplied then a default is used - see Examples. Replacement functions should
follow this pattern i.e. test for whether the single argument is an secr object, and if not supply a
named vector of NA values of the correct length.

34 run.scenarios

Using extractfn = summary has the advantage of allowing both model fits and raw statistics to be
extracted from one set of simulations. However, this approach requires an additional step to retrieve
the desired numeric results from each replicate (see count.summary and predict.summary).

Parallel processing:
If byscenario = TRUE then by default each scenario will be run in a separate worker process
using parLapply from parallel (see also Parallel). The number of scenarios should not exceed
the available number of cores (set by the ’ncores’ argument or a prior call to ‘setNumThreads‘).
If byscenario = FALSE then from secrdesign 2.6.0 onwards the usual multithreading of secr 4.5
is applied. The number of cores should usually be preset with ‘setNumThreads‘. If ncores
is provided then the environment variable RCPP_PARALLEL_NUM_THREADS is reset. The
default behaviour of the fitting functions (secr.fit, ipsecr.fit, openCR.fit) is to use this value (unless
specified in fit.args).
When ‘byscenario = TRUE‘ the L’Ecuyer pseudorandom generator is used with a separate random
number stream for each core (see clusterSetRNGStream).
For ncores > 1 it pays to keep an eye on the processes from the Performance page of Windows
Task Manager (<ctrl><alt>), or ‘top’ in linux OS. If you interrupt run.scenarios (<Esc>
from Windows) you may occasionally find some processes do not terminate and have to be man-
ually terminated from the Task Manager - they appear as Rscript.exe on the Processes page.

Alternate functions for simulation and fitting:
The default is to use functions sim.capthist and secr.fit from secr. Either may be substi-
tuted by the corresponding function (simCH or ipsecr.fit) from package ipsecr if that has been
installed.

Multi-model fit:
Multiple models may be fitted to the same simulated data for multi-model inference. This requires
both (i) ‘fit = "multifit"’, and (ii) ’fit.args’ should be a nested list (fit arguments within models
within fit.index) with a separate specification for each model fit. See the vignette for examples.

Design-only statistics:
Designs for distance sampling were evaluated by Fewster and Buckland (2004) by computing
statistics from simulated detections without fitting a model to estimate the detection parameters.
An analogous procedure for SECR is implemented by setting fit = 'design'. A new default
extractfn (designextractfn) computes the effective sampling area with the secr function pdot and
returns a vector of values -

n number of individuals detected
r number of recaptures
esa effective sampling area, given the known detection parameters
D D = n/esa

The resulting simulation object is of type ’selectedstatistics’ for which the summary method works
as usual.
A similar effect may be achieved by providing a custom extractfn and passing arguments to it via
the dots argument of run.scenarios.

run.scenarios 35

Miscellaneous:
From 2.2.0, two or more rows in scenarios may share the same scenario number. This is used to
generate multiple population subclasses (e.g. sexes) differing in density and/or detection parame-
ters. If multisession = TRUE the subclasses become separate sessions in a multi-session capthist
object (this may require a custom extractfn). multisession is ignored with a warning if each
scenario row has a unique number.
From 2.7.0, each component of ‘trapset’ may be a function that constructs a detector layout. This
allows layouts to be constructed dynamically at the time each capthist is generated; arguments of
each function are provided in the ‘trap.args’ list which should be of the same length as ‘trapset’
The primary purpose is to allow systematic grids, laceworks etc. to be constructed with a unique
random origin for each replicate. The ‘maskset’ argument must be provided - it should cover all
potential layouts, regardless of origins.
In fit.models the arguments scen and repl may be used to select a subset of datasets for model
fitting.

Mark-resight: chatnsim controls an additional quasi-likelihood model step to adjust for overdis-
persion of sighting counts. No adjustment happens when chatnsim = 0; otherwise abs(chatnsim)
gives the number of simulations to perform to estimate overdispersion. If chatnsim < 0 then the
quasilikelihood is used only to re-estimate the variance at the previous MLE (method = "none").

Intermediate output: If ’prefix’ is provided than results will be saved for each scenario sep-
arately. The filename of scenario 1 is of the form ’prefix1.RDS’. The prefix may include a file
path.

Further processing: A summary method is provided (see summary.secrdesign). It is usually
necessary to process the simulation results further with predict.fittedmodels and/or select.stats
before summarization.

Value

An object of class (x, ‘secrdesign’, ‘list’), where x is one of ‘fittedmodels’, ‘estimatetables’, ‘se-
lectedstatistics’ or ‘rawdata’, with components

call function call

version character string including the software version number

starttime character string for date and time of run

proctime processor time for simulations, in seconds

scenarios dataframe as input

trapset list of trap layouts as input

maskset list of habitat masks (input or generated)

xsigma from input

nx from input

pop.args from input

CH.function from input

det.args from input

36 run.scenarios

fit from input

fit.function from input

fit.args from input

extractfn function used to extract statistics from each simulation

seed from input

nrepl from input

output list with one component per scenario

outputtype character code - see vignette

If fit = FALSE and extractfn = identity the result is of class (‘rawdata’, ‘secrdesign’, ‘list’).
This may be used as input to fit.models, which interprets each model specification in fit.args
as a new ‘sub-scenario’ of each input scenario (i.e. all models are fitted to every dataset). The
output possibilities are the same as for run.scenarios.

If subclasses have been defined (i.e. scenarios has multiple rows with the same scenario ID), each
simulated capthist object has covariates with a character-valued column named "group" ("1", "2"
etc.) (there is also a column "sex" generated automatically by sim.popn).

Note

100 ha = 1 km^2.

fit.function = ’openCR.fit’ was deprecated from 2.5.8 and has been removed.

Author(s)

Murray Efford

References

Fewster, R. M. and Buckland, S. T. 2004. Assessment of distance sampling estimators. In: S.
T. Buckland, D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers and L. Thomas (eds)
Advanced distance sampling. Oxford University Press, Oxford, U. K. Pp. 281–306.

See Also

expand.arg,

select.stats,

summary.secrdesign,

summary.estimatetables,

summary.selectedstatistics,

estimateSummary,

countSummary

Miscellaneous –

predict.fittedmodels,

scenarioSummary,

run.scenarios 37

count.summary,

predict.summary

secr functions used internally –

sim.popn,

sim.capthist,

secr.fit

To combine output –

rbind.estimatetables,

rbind.selectedstatistics,

c.estimatetables,

c.selectedstatistics

Examples

Simple example: generate and summarise trapping data
at two densities and for two levels of sampling frequency
scen1 <- make.scenarios(D = c(5,10), sigma = 25, g0 = 0.2, noccasions =

c(5,10))
traps1 <- make.grid() ## default 6 x 6 trap grid
tmp1 <- run.scenarios(nrepl = 20, trapset = traps1, scenarios = scen1,

fit = FALSE)
summary(tmp1)

Not run:

setNumThreads(7)

##
new summary method (secrdesign >= 2.8.1)
assumes fit = TRUE, extractfn = predict

tmp2 <- run.scenarios(nrepl = 10, trapset = traps1, scenarios = scen1,
fit = TRUE, extractfn = predict)

estimateSummary(tmp2, format = "data.frame",
cols = c('scenario', 'noccasions'))

###########################
2-phase example
first make and save rawdata
scen1 <- make.scenarios(D = c(5,10), sigma = 25, g0 = 0.2)
traps1 <- make.grid() ## default 6 x 6 trap grid
tmp1 <- run.scenarios(nrepl = 20, trapset = traps1, scenarios = scen1,

fit = FALSE, extractfn = identity)

review rawdata
summary(tmp1)

then fit and summarise models

38 saturation

tmp2 <- fit.models(tmp1, fit.args = list(list(model = g0~1),
list(model = g0~T)), fit = TRUE)

summary(tmp2)
###########################

Construct a list of detector arrays
Each is a set of 5 parallel lines with variable between-line spacing;
the argument that we want to vary (spacey) follows nx, ny and spacex
in the argument list of make.grid().

spacey <- seq(2000,5000,500)
names(spacey) <- paste('line', spacey, sep = '.')
trapset <- lapply(spacey, make.grid, nx = 101, ny = 5, spacex = 1000,

detector = 'proximity')

Make corresponding set of masks with constant spacing (1 km)
maskset <- lapply(trapset, make.mask, buffer = 8000, spacing = 1000,

type = 'trapbuffer')

Generate scenarios
scen <- make.scenarios (trapsindex = 1:length(spacey), nrepeats = 8,

noccasions = 2, D = 0.0002, g0 = c(0.05, 0.1), sigma = 1600, cross = TRUE)

RSE without fitting model
sim <- run.scenarios (50, scenarios = scen, trapset = trapset, maskset = maskset,

fit = TRUE, fit.args = list(method = 'none'), seed = 123)

Extract statistics for predicted density
sim <- select.stats(sim, parameter = 'D')

Plot to compare line spacing
summ <- summary (sim, type='array', fields = c('mean','lcl','ucl'))$OUTPUT
plot(0,0,type='n', xlim=c(1.500,5.500), ylim = c(0,0.36), yaxs = 'i',

xaxs = 'i', xlab = 'Line spacing km', ylab = 'RSE (D)')
xv <- seq(2,5,0.5)
points(xv, summ$mean[,1,'RSE'], type='b', pch=1)
points(xv, summ$mean[,2,'RSE'], type='b', pch=16)
segments(xv, summ$lcl[,1,'RSE'], xv, summ$ucl[,1,'RSE'])
segments(xv, summ$lcl[,2,'RSE'], xv, summ$ucl[,2,'RSE'])
legend(4,0.345, pch=c(1,16), title = 'Baseline detection',

legend = c('g0 = 0.05', 'g0 = 0.1'))

End(Not run)

saturation Detector saturation

Description

Computes the expected proportion of successful detectors (i.e., ‘trap success’). The calculation
does not allow for local variation in realised density (number of animals centred near each detector)

saturation 39

and the predictions are therefore slightly higher than simulations with Poisson local density. The
discrepancy is typically less than 1%.

Usage

saturation(traps, mask, detectpar, detectfn =
c("HHN", "HHR", "HEX", "HAN", "HCG", 'HN', 'HR', 'EX'),
D, plt = FALSE, add = FALSE, ...)

Arguments

traps secr traps object

mask secr mask object

detectpar a named list giving a value for each parameter of detection function

detectfn integer code or character string for shape of detection function – see detectfn

D population density animals / hectare; may be scalar or vector of length nrow(mask)

plt logical; if TRUE then a colour plot is produced

add logical; if TRUE any plot is added to the existing plot

... other arguments passed to plot.mask when plt = TRUE

Details

The calculation is based on an additive hazard model. If detectfn is not a hazard function (‘HHN’,
‘HEX’, ‘HHR’, ‘HAN’ and ‘HCG’) then an attempt is made to approximate one of the hazard
functions (HN -> HHN, HR -> HHR, EX -> HEX). The default is ‘HHN’.

Computation is not possible for single-catch traps.

An empirical estimate of saturation is the total number of detectors visited divided by the total
number of detectors used. These are outputs from the summary method for capthist objects. See
Examples.

Value

A list with components

bydetector expected saturation for each detector

mean average over detectors

The list is returned invisibly if plt = TRUE.

See Also

Enrm

40 scenariosFromStatistics

Examples

tr <- traps(captdata)
detector(tr) <- 'multi'
mask <- make.mask(tr, buffer = 100)
saturation(tr, mask, detectpar = list(lambda0 = 0.27, sigma = 29),

detectfn = 'HHN', D = 5.5, plt = TRUE)
plotMaskEdge(as.mask(tr), add = TRUE) ## boundary line

empirical - useful for extractfn argument of secrdesign::run.scenarios
satfn <- function(CH) {

sumCH <- summary(CH)$counts
sumCH['detectors visited', 'Total'] / sumCH['detectors used', 'Total']

}
satfn(captdata)

scenariosFromStatistics

Make Scenarios to Match Capture Statistics

Description

The make.scenarios function requires prior knowledge of population density and the intercept
of the detection function (g0). This function provides an alternative mechanism for generating
scenarios from a value of sigma and target values for the numbers of individuals n and recaptures
r. Only a halfnormal detection function is supported (probability, not hazard), and many options in
make.scenarios have yet to be implemented. Only a single detector layout and single mask may
be specified.

Usage

scenariosFromStatistics(sigma, noccasions, traps, mask, nval, rval,
g0.int = c(0.001, 0.999))

Arguments

sigma numeric vector of one or more values for sigma

noccasions integer vector of number of sampling occasions

traps traps object

mask mask object

nval integer vector of values of n

rval integer vector of values of r

g0.int numeric vector defining the interval to be searched for g0

scenarioSummary 41

Details

The algorithm is based on R code in Appendix B of Efford, Dawson and Borchers (2009).

Value

A scenario dataframe with one row for each combination of sigma, noccasions, nval and rval.

References

Efford, M. G., Dawson, D. K. and Borchers, D. L. (2009) Population density estimated from loca-
tions of individuals on a passive detector array. Ecology 90, 2676–2682.

See Also

make.scenarios

Examples

grid36 <- make.grid(nx = 6, ny = 6, spacing = 200)
mask <- make.mask(grid36, buffer = 2000)
scen <- scenariosFromStatistics (sigma = c(200,400), noccasions = 44,

traps = grid36, mask = mask, nval = 14, rval = 34)
sim <- run.scenarios(scen, nrepl = 5, traps = grid36, mask = mask)
summary(sim)

scenarioSummary Summary of Scenarios

Description

Compute various deterministic summaries for scenarios generated by make.scenarios

Usage

scenarioSummary(scenarios, trapset, maskset, xsigma = 4, nx = 64, CF = 1.0,
costing = FALSE, ..., ncores = 1)

Arguments

scenarios dataframe of simulation scenarios

trapset secr traps object or a list of traps objects

maskset secr mask object or a list of mask objects (optional)

xsigma numeric buffer width as multiple of sigma (alternative to maskset)

nx integer number of cells in mask in x direction (alternative to maskset)

CF numeric correction factor for rule-of-thumb RSE (see minnrRSE)

42 scenarioSummary

costing logical; if TRUE then costings will be appended

... arguments passed to costing

ncores integer number of cores for parallel processing

Details

Not all scenarios from make.scenarios() are suitable. Grouped (multi-line) scenarios are ex-
cluded. Hazard detection functions are preferred (‘HHN’, ‘HHR’, ‘HEX’, ‘HAN’, ‘HCG’). ‘HN’,
‘HR’ and ‘EX’ are converted approximately to ‘HHN’, ‘HHR’ and ‘HEX’ respectively, with a
warning; other functions are rejected.

CF may be a vector of values that is recycled across the components of trapset. The correction
factor is a multiplier applied after all other calculations.

The approximate RSE(D-hat) is rotRSE = CF/ sqrt(min(E(n), E(r))). This assumes n is Poisson-
distributed. For binomial n an ad hoc adjustment is rotRSEB = sqrt(rotRSE^2 - 1 / (D x A)) where
A is the mask area.

The default ncores = 1 (new in 2.7.0) is usually faster than setting ncores>1 because of the over-
heads in setting up a parallel cluster.

The . . . argument is for inputs to costing, including unitcost (required) and routelength (op-
tional).

Value

A dataframe including the first 8 columns from scenarios and the computed columns –

En expected number of individuals

Er expected number of recaptures

Em expected number of movement recaptures

En2 expected number of individuals detected at two or more sites

esa effective sampling area (ha)

CF rule-of-thumb correction factor

rotRSE rule-of-thumb relative standard error of density estimate

rotRSEB rotRSE with adjustment for fixed N in region defined by mask (i.e. Binomial n
rather than Poisson n)

arrayN number of detectors in each array

arrayspace array spacing in sigma units

arrayspan largest dimension of array in sigma units

saturation expected proportion of detectors at which detection occurs (trap success)

travel travel cost

arrays cost of each repeated array

detectors fixed cost per detector

visits cost per detector per visit

detections cost per detection

select.stats 43

totalcost summed costs

detperHR median number of detectors per 95% home range

k overlap index k = σ
√
D/100 from secr kfn

Costings (the last 6 columns) are omitted if costing = FALSE.

See Also

make.scenarios, Enrm, costing, minnrRSE

Examples

scen <- make.scenarios(D = c(5,10), sigma = 25, lambda0 = 0.2, detectfn = 'HHN')
grid <- make.grid(6,6, detector = 'multi')
scenarioSummary(scen, list(grid), costing = TRUE, unitcost = list(perkm = 10))

select.stats Select Statistics to Summarize

Description

When the results of each simulation with run.scenarios are saved as a dataframe (e.g. from
predict()) it is necessary to select estimates of just one parameter for numerical summarization.
This does the job. find.param is a helper function to quickly display the parameters available for
summarisation.

Usage

select.stats(object, parameter = "D", statistics, true)
find.param(object)
find.stats(object)

Arguments

object ‘estimatetables’ object from run.scenarios

parameter character name of parameter to extract

statistics character vector of statistic names

true numeric vector of ‘’true’ values of parameter, one per scenario

44 select.stats

Details

select.stats is used to select a particular vector of numeric values for summarization. The ‘pa-
rameter’ argument indexes a row in the data.frame for one replicate (i.e., one ‘real’ parameter).
Each ‘statistic’ is either a column in that data.frame or a statistic derived from a column.

If statistics is not specified, the default is to use all numeric columns in the input (i.e., c(‘estimate’,
‘SE.estimate’, ‘lcl’, ‘ucl’) for predict and c(‘beta’, ‘SE.beta’, ‘lcl’, ‘ucl’) for coef).

statistics may include any of ‘estimate’, ‘SE.estimate’, ‘lcl’, ‘ucl’, ’true’, ‘RB’, ‘RSE’, ‘COV’
and ‘ERR’ (for outputtype ‘coef’ use ‘beta’ and ‘SE.beta’ instead of ‘estimate and ‘SE.estimate’).
‘true’ refers to the known parameter value used to generate the data.

The computed statistics are:

Statistic Name Value
RB Relative bias (estimate - true) / true
RSE Relative SE SE.estimate / estimate
ERR Absolute deviation abs(estimate - true)
COV Coverage (estimate > lcl) & (estimate < ucl)

‘RB’, ‘COV’ and ‘ERR’ relate an estimate to the known (true) value of the parameter in object$scenarios.
They are computed only when a model has been fitted without method = ‘none’.

‘COV’ remains binary (0/1) in the output from select.stats; the result of interest is the mean of
this statistic across replicates (see summary.secrdesign). Similarly, ‘ERR’ is used with field ‘rms’
in summary.secrdesign to compute the root-mean-squared-error RMSE.

find.param and find.stats may be used to ‘peek’ at objects of class ‘estimatetables’ and ‘select-
edstatistics’ respectively to recall the available parameter estimates or ‘statistics’.

An attempt is made to extract true automatically if it is not provided. This does not always work
(e.g. with extractfn region.N, region differing from the mask, and a heterogeneous density model).
Check this by including “true” as a statistic to summarise (see Examples).

Value

For select.stats, an object with class c(‘selectedstatistics’,‘secrdesign’, ‘list’) suitable for nu-
merical summarization with summary.selectedstatistics. The value of ‘parameter’ is stored as
an attribute.

For find.param, a character vector of the names of parameters with estimates in object.

See Also

run.scenarios, validate

Examples

using nrepl = 2 just for checking
scen1 <- make.scenarios(D = c(5,10), sigma = 25, g0 = 0.2)
traps1 <- make.grid()
tmp1 <- run.scenarios(nrepl = 2, trapset = traps1, scenarios = scen1,

summary.secrdesign 45

fit = TRUE, extractfn = secr::trim)
tmp2 <- predict(tmp1)
tmp3 <- select.stats(tmp2, 'D', c('estimate','true','RB','RSE','COV'))
summary(tmp3)

summary.secrdesign Generic Methods for secrdesign Objects

Description

Methods to summarize simulated datasets.

Usage

S3 method for class 'secrdesign'
summary(object, ...)

S3 method for class 'rawdata'
summary(object, ...)

S3 method for class 'estimatetables'
summary(object, ...)

S3 method for class 'selectedstatistics'
summary(object, fields = c('n', 'mean',
'se'), dec = 5, alpha = 0.05, type = c('list','dataframe','array'), ...)

S3 method for class 'selectedstatistics'
plot(x, scenarios, statistic, type =
c('hist', 'CI'), refline, xlab = NULL, ...)

header(object)

Arguments

object object of class simulations from run.scenarios

dec number of decimal places in output

fields character vector; names of required summary statistics (see Details)

alpha alpha level for confidence intervals and quantiles

type character code for type of output (see Details)

... other arguments – not currently used by summary but passed to hist by the plot
method

x object of class ‘selectedstatistics’ from run.scenarios

scenarios integer indices of scenarios to plot (all plotted if not specified)

46 summary.secrdesign

statistic integer or character indices of the statistics in x for which histograms are re-
quested

refline logical; if TRUE a reference line is plotted at the true value of a parameter

xlab character; optional label for x-axis

Details

If object inherits from ‘selectedstatistics’ then the numeric results from replicate simulations are
summarized using the chosen ‘fields’ (by default, the number of non-missing values, mean and
standard error), along with header information describing the simulations. Otherwise the header
alone is returned.

fields is a vector of any selection from c(‘n’, ‘mean’, ‘sd’, ‘se’, ‘min’, ‘max’, ‘lcl’, ‘ucl’, ‘median’,
‘q’, ‘rms’, ‘var’), or the character value ‘all’.

Field ‘q’ provides 1000 alpha/2 and 1000[1 - alpha/2] quantiles qxxx and qyyy.

‘lcl’ and ‘ucl’ refer to the upper and lower limits of a 100(1 - alpha)% confidence interval for the
statistic, across replicates.

‘rms’ gives the root-mean-square of the statistic - most useful for the statistic ‘ERR’ (see select.stats)
when it represents the overall accuracy or RMSE.

The plot method plots either (i) histograms of the selected statistics (type = ‘hist’) or (ii) the
estimate and confidence interval for each replicate (type = ‘CI’). The default for type = ‘hist’ is
to plot the first statistic - this is usually ‘n’ (number of detected animals) when fit = FALSE, and
‘estimate’ (parameter estimate) when fit = TRUE. If length(statistic) > 1 then more than one plot
will be produced, so a multi-column or multi-row layout should be prepared with par arguments
‘mfcol’ or ‘mfrow’.

For type = ‘CI’ the statistics must include ‘estimate’, ‘lcl’ and ‘ucl’ (or ‘beta’, ‘lcl’ and ‘ucl’ if
outputtype = ‘coef’).

estimateSummary is a simpler approach that provides full output for models with groups or multi-
ple sessions simulated in run.scenarios with extractfn predict or coef).

Value

List with components ‘header’

call original function call

starttime from object

proctime from object

constants small dataframe with values of non-varying inputs

varying small dataframe with values of varying inputs

fit.args small dataframe with values arguments for secr.fit, if specified

and ‘OUTPUT’, a list with one component for each field. Each component may be a list or an array.

See Also

run.scenarios, make.array, select.stats validate estimateSummary

transformOutput 47

Examples

collect raw counts
scen1 <- make.scenarios(D = c(5,10), sigma = 25, g0 = 0.2)
traps1 <- make.grid()
tmp1 <- run.scenarios(nrepl = 50, trapset = traps1, scenarios = scen1,

fit = FALSE)

opar <- par(mfrow=c(2,3))
plot(tmp1, statistic = 1:3)
par(opar)

summary(tmp1)

summary(tmp1, field=c('q025', 'median', 'q975'))

transformOutput Transform Simulation Output

Description

Transform output component of simulation output from run.scenarios. Typically this replaces an
entire saved model fit with a table of estimates from that fit.

Usage

transformOutput(object, extractfn, outputtype = "predicted", ...)

Arguments

object output from run.scenarios

extractfn function such as the ‘extractfn’ argument of run.scenarios

outputtype character (see Details)

... other arguments passed to extractfn

Details

Each replicate of each scenario is transformed using ‘extractfn’, which should accept as input the
object returned by the extractfn of the original call to run.scenarios. As a typical example, sims
<- run.scenarios(..., fit = TRUE, extractfn = identity) returns outputs of class ‘secr’ and
could be followed by sims2 <- transformOutput(sims, predict); sims2 may be used as input
to estimateSummary and other summary functions.

Value

An object resembling the output from run.scenarios but with transformed output. The outputtype
and class of the object are changed to match ‘outputtype’.

48 validate

See Also

run.scenarios, estimateSummary, outputtype<-

validate Reject Implausible Statistics

Description

Simulation output may contain rogue values due to idiosyncracies of model fitting. For example,
nonidentifiability due to inadequate data can result in spurious extreme ‘estimates’ of the sampling
variance, and the corresponding parameter estimates are unreliable. Undue influence of rogue repli-
cates can be reduced by using the median as a summary field rather than the mean.

This function is another way to deal with the problem. Selected statistics from replicates for which
some ‘test’ statistic is out-of-range are set to NA.

Alternatively, out-of-range values may be excluded using the ‘validrange’ argument of the summary
function estimateSummary. This is often simpler.

Usage

validate(x, test, validrange = c(0, Inf), targets = test, quietly = FALSE)

Arguments

x object that inherits from ‘selectedstatistics’

test character; name of statistic to check

validrange numeric vector comprising the minimum and maximum permitted values of
‘test’, or a matrix (see details)

targets character vector with names of one or more statistics to set to missing (NA)
when test is out-of-range

quietly logical; if TRUE messages are suppressed

Details

Values of ‘test’ and ‘targets’ should be columns in each component ‘replicate x statistic’ matrix
(i.e., scenario) of x$output. You can check for these with find.stats.

If validrange is a matrix its first and second columns are interpreted as scenario-specific bounds
(minima and maxima), and the number of rows must match the number of scenarios.

If all non-missing values of ‘test’ are in the valid range, the effect is to force the target statistics to
NA wherever ‘test’ is NA.

The default is to change only the test field itself. If the value of ‘test’ does not appear in ‘targets’
then the test field is unchanged.

If targets = "all" then all columns are set to NA when the test fails.

validate 49

Value

An object of class c(‘selectedstatistics’, secrdesign’, ‘list’) with the same structure and header in-
formation as the input, but possibly with some values in the ‘output’ component converted to NA.

See Also

select.stats, find.stats, estimateSummary

Examples

Not run:

generate some data
scen1 <- make.scenarios(D = c(5,10), sigma = 25, g0 = 0.2)
traps1 <- make.grid()
tmp1 <- run.scenarios(nrepl = 5, trapset = traps1, scenarios = scen1,

fit = TRUE, extractfn = trim)
tmp2 <- predict(tmp1)
tmp3 <- select.stats(tmp2, 'D', c('estimate','RB','RSE','COV'))

just for demonstration --
apply scenario-specific +/- 20% bounds for estimated density
set RB, RSE and COV to NA when estimate is outside this range
permitted <- outer(tmp3$scenarios$D, c(0.8,1.2))
permitted ## a 2 x 2 matrix
tmp4 <- validate(tmp3, 'estimate', permitted, c('RB', 'RSE','COV'))

what have we done?!
tmp4$output
summary(tmp4)

End(Not run)

Index

∗ Datagen
run.scenarios, 32

∗ Generic
summary.secrdesign, 45

∗ datagen
count, 6
getdetectpar, 16
scenariosFromStatistics, 40

∗ design
optimalSpacing, 25

∗ hplot
plot.optimalSpacing, 28

∗ manip
Lambda, 18
make.array, 20
make.scenarios, 21
predict.fittedmodels, 29
saturation, 38
select.stats, 43
validate, 48

∗ package
secrdesign-package, 2

c.estimatetables, 37
c.estimatetables

(rbind.estimatetables), 30
c.selectedstatistics, 37
c.selectedstatistics

(rbind.estimatetables), 30
clusterSetRNGStream, 34
coef (predict.fittedmodels), 29
coef.secr, 7, 30
coef.summary (count), 6
compactSample, 14, 15
compactSample (Internal), 17
costing, 3, 4, 42, 43
count, 6
count.summary, 34, 37
countSummary, 36
countSummary (estimateSummary), 7

derived (predict.fittedmodels), 29
derived.secr, 30
detectfn, 13, 19, 22, 23, 25, 39

En2, 3, 14, 15
En2 (Lambda), 18
Enrm, 3, 5, 14–16, 39, 43
Enrm (Lambda), 18
estimateArray (estimateSummary), 7
estimateSummary, 7, 36, 46–49
expand.arg, 11, 36
expand.grid, 22

find.param (select.stats), 43
find.stats, 48, 49
find.stats (select.stats), 43
fit.models, 3
fit.models (run.scenarios), 32

GAoptim, 3, 12, 17–20
GApenfn, 14, 15
GApenfn (Internal), 17
getdetectpar, 16, 20

header, 9
header (summary.secrdesign), 45
hist, 45

Internal, 17
ipsecr.fit, 34

join, 33

kfn, 43
kofnGA, 13

Lambda, 16, 18
lm, 24

make.array, 20, 23, 46
make.grid, 4, 32

50

INDEX 51

make.scenarios, 2, 21, 31, 32, 40, 41, 43
mask, 19, 20
minnrRSE, 3, 15, 26, 27, 41, 43
minnrRSE (Lambda), 18
minsimRSE, 23, 26, 27

optimalSpacing, 3, 20, 24, 25, 28, 29
optimize, 26
outputtype (Internal), 17
outputtype<- (Internal), 17

Parallel, 34
pdot, 34
plot.optimalSpacing, 27, 28
plot.selectedstatistics, 3
plot.selectedstatistics

(summary.secrdesign), 45
predict (predict.fittedmodels), 29
predict.fittedmodels, 3, 29, 35, 36
predict.secr, 7, 30
predict.summary, 34, 37
predict.summary (count), 6
print.optimalSpacing

(plot.optimalSpacing), 28

Qpm (Lambda), 18

rbind, 31
rbind.data.frame, 31
rbind.estimatetables, 30, 37
rbind.selectedstatistics, 37
rbind.selectedstatistics

(rbind.estimatetables), 30
read.traps, 32
region.N (predict.fittedmodels), 29
region.N.secr, 30
RPSV, 9
run.scenarios, 2, 6, 8, 9, 12, 17, 21–23,

29–31, 32, 43, 44, 46–48

saturation, 3, 38
scenariosFromStatistics, 40
scenarioSummary, 3, 5, 20, 23, 36, 41
secr.fit, 4, 29, 34, 37
secrdesign (secrdesign-package), 2
secrdesign-package, 2
select.stats, 3, 6, 21, 35, 36, 43, 46, 49
sim.capthist, 4, 22, 23, 33, 34, 37
sim.popn, 4, 33, 37

simCH, 34
simOU.capthist, 22
summary.estimatetables, 7, 9, 36
summary.estimatetables

(summary.secrdesign), 45
summary.rawdata (summary.secrdesign), 45
summary.secrdesign, 20, 35, 36, 44, 45
summary.selectedstatistics, 3, 9, 36, 44
summary.selectedstatistics

(summary.secrdesign), 45

transformOutput, 47
traps, 19, 25

validate, 9, 44, 46, 48

	secrdesign-package
	costing
	count
	estimateSummary
	expand.arg
	GAoptim
	getdetectpar
	Internal
	Lambda
	make.array
	make.scenarios
	minsimRSE
	optimalSpacing
	plot.optimalSpacing
	predict.fittedmodels
	rbind.estimatetables
	run.scenarios
	saturation
	scenariosFromStatistics
	scenarioSummary
	select.stats
	summary.secrdesign
	transformOutput
	validate
	Index

