Package ‘sequoia’

January 9, 2026

Type Package

Title Pedigree Inference from SNPs

Version 3.2.0

Date 2025-12-30

Author Jisca Huisman [aut, cre]

Maintainer Jisca Huisman <jisca.huisman@gmail.com>

Description Multi-generational pedigree inference from incomplete data on
hundreds of SNPs, including parentage assignment and sibship clustering.
See Huisman (2017) (<DOI:10.1111/1755-0998.12665>) for more information.

License GPL-2

URL https://jiscah.github.io/

LazyData TRUE

Imports plyr (>= 1.8.0), stats, utils, graphics, cli
RoxygenNote 7.3.3

Suggests openxlsx, knitr, rmarkdown, bookdown, kinship2, R.rsp,
hexbin, data.table, vcfR, adegenet

VignetteBuilder knitr, R.rsp
NeedsCompilation yes

Depends R (>=3.5.0)
SystemRequirements Fortran95
Repository CRAN

Date/Publication 2026-01-09 16:40:02 UTC

Contents

CalcBYprobs e
CalcMaxMismatch e e e
CalcOHLLR e e e e e
CalcPairLL e

https://doi.org/10.1111/1755-0998.12665
https://jiscah.github.io/

Contents

CalcParentProbs e e e 16
CalcRped e 18
CheckGeno e 18
ComparePairs 20
Conf_griffin e 24
CountOH e 25
DyadCompare e e 26
ErrToM . . . o e e e e e 27
Err_RADseq e 30
EstConf e 31
FieldMums_griffin L 35
FindFamilies e e 36
GenoConvert e e e e 37
Geno_griffin 40
Geno_HSg5 e e 41
GEtANCESLOIS v v o v e e e e e e e e e e 41
getAssignCat 42
GetDescendants e e e e e e 43
getGenerations e e e e e e 44
GetLLRAgE e e 45
GetMaybeRel 46
GetRelM e e e e e 50
Inherit_patterns L e e 52
LHConvert e e 53
LH_griffin e e e 54
LH_HSES . . . o e e 55
LLtoProb e 55
MakeAgePrior. 56
MaybeRel_griffin L 60
MkGenoErrors e e e 61
PedCompare 62
PedPolish e 66
PedStripFID e 68
Ped_griffin 69
Ped_HSgS e 69
PlotAgePrior e 70
PlotPairLL e 71
PlotPedComp e 72
PlotPropAssigned L. e 73
PlotRelPairs e 73
PlotSeqSum 75
SeqOUT _griffin o e 76
SeqOUT_HSES o e 77
SEQUOIA .+ v vt e e e e e e e e e e e e 77
SIMGeno e 85
SimGeno_example e e e 88
SnpStatso e e 89

SummarySeq oL e e e e e 90

CalcBYprobs 3

writeColumns e 92
WIESEq . . . o o o e e 93
Index 95
CalcBYprobs Birth year probabilities
Description

Estimate the probability that an individual with unknown birth year is born in year y, based on
BirthYears or BY.min and/or BY . max of its parents, offspring, and siblings, combined with AgePrior
(the age distribution of other parent-offspring pairs), and/or Year.last of its parents.

Usage

CalcBYprobs(Pedigree = NULL, LifeHistData = NULL, AgePrior = NULL)

Arguments

Pedigree dataframe with columns id-dam-sire.
LifeHistData data.frame with up to 6 columns:

ID max. 30 characters long

Sex 1 =female, 2 = male, 3 = unknown, 4 = hermaphrodite, other numbers or
NA = unknown

BirthYear birth or hatching year, integer, with missing values as NA or any
negative number.

BY.min minimum birth year, only used if BirthYear is missing
BY.max maximum birth year, only used if BirthYear is missing
Yearlast Last year in which individual could have had offspring. Can e.g. in

mammals be the year before death for females, and year after death for
males.

"Birth year" may be in any arbitrary discrete time unit relevant to the species
(day, month, decade), as long as parents are never born in the same time unit as
their offspring, and only integers are used. Individuals do not need to be in the
same order as in ‘GenoM’, nor do all genotyped individuals need to be included.

AgePrior a matrix with probability ratios for individuals with age difference A to have
relationship R, as generated by MakeAgePrior. If NULL, MakeAgePrior is called
using its default values.

Details

This function assists in estimating birth years of individuals for which these are unknown, provided
they have at least one parent or one offspring in the pedigree. It is not a substitute for field-based
estimates of age, only a method to summarise the pedigree + birth year based information.

4 CalcMaxMismatch

Value

A matrix with for each individual (rows) in the pedigree that has a missing birth yearin LifeHistData,
or that is not included in LifeHistData, the probability that it is born in y (columns). Probabilities
are rounded to 3 decimal points and may therefore not sum exactly to 1.

WARNING

Any errors in the pedigree or lifehistory data will cause errors in the birth year probabilities of their
parents and offspring, and putatively also of more distant ancestors and descendants. If the ageprior
is based on the same erroneous pedigree and lifehistory data, all birth year probabilities will be
affected.

See Also

MakeAgePrior to estimate effect of age on relationships.

Examples

exclude 20 random individuals from LH_griffin, then estimate their birth
years from the birth years of their parents and/or offspring:
BYprobs <- CalcBYprobs(Pedigree = Ped_griffin,

LifeHistData = LH_griffin[-sample(1:200, 20),1)
utils::head(BYprobs)
For some individuals, the most-likely birth year will not be the actual
birth year. But with sufficient quantity and quality of information, the
actual birth year will be among the plausible ones, and be close to the
most-likely birth year.
Not run:
heatmap
lattice::levelplot(t(BYprobs), aspect="fill", col.regions=hcl.colors)

End(Not run)

CalcMaxMismatch Maximum Number of Mismatches

Description
Calculate the maximum expected number of mismatches for duplicate samples, parent-offspring
pairs, and parent-parent-offspring trios.

Usage

CalcMaxMismatch(
Err,
MAF,

CalcMaxMismatch 5

ErrFlavour = "version2.9",
gntl = 1 - 1e-05,
Return = "Counts”
)
Arguments

Err estimated genotyping error rate, as a single number or 3x3 matrix (averaged
value(s) across SNPs), or a vector with the same length as MAF, or a nSnp x
3 x 3 array. If a matrix, this should be the probability of observed genotype
(columns) conditional on actual genotype (rows). Each row must therefore sum
to 1. If an array, each 3x3 slice should abide this rule.

MAF vector with minor allele frequency at each SNP.

ErrFlavour function that takes Err as input, and returns a 3x3 matrix of observed (columns)
conditional on actual (rows) genotypes, or choose from inbuilt ones as used in
sequoia ’version2.0’, *versionl.3’, or ’versionl.1’. Ignored if Err is a matrix.
See ErrToM.

gntl quantile of binomial distribution to be used as the maximum, of individual-

level probability. For a desired dataset-level probability quantile (), use gntl=
QW/N) where N is the number of individuals.

Return Either ’Counts’ to return the threshold counts (default), or *Probs’ to return the
mismatch probabilities from which these counts are calculated.

Details

The thresholds for maximum number of mismatches calculated here aim to minimise false nega-
tives, i.e. to minimise the chance that any true duplicates or true parent-offspring pairs are already
excluded during the filtering steps where these MaxMismatch values are used. Consequently, there
is a high probability of false positives, i.e. it is likely that some sample pairs with fewer mismatches
than the MaxMismatch threshold, are in fact not duplicate samples or parent-offspring pairs. Use of
these MaxMismatch thresholds is therefore only the first step of pedigree reconstruction by sequoia.

Value

A vector with three integers:

DUP Maximum number of differences between 2 samples from the same individual
OH Maximum number of Opposing Homozygous SNPs between a true parent-offspring
pair
ME Maximum number of Mendelian Errors among a true parent-parent- offspring
trio
See Also

SnpStats.

6 CalcOHLLR

Examples

CalcMaxMismatch(Err = 0.05, MAF = runif(n=100, min=0.3, max=0.5))

in sequoia() gntl depends on the number of genotyped individuals, to get an
approximately constant false exclusion rate at dataset-level
sts <- SnpStats(Geno_griffin, Plot=FALSE, quiet=TRUE, calc_HWE=FALSE)
MAF <- ifelse(sts[,'AF'] < 0.5, sts[,'AF'], 1-sts[,'AF'])
sequoia::CalcMaxMismatch(Err = 0.001,

MAF = MAF,

gntl = 0.9999*(1/nrow(Geno_griffin)))

CalcOHLLR Calculate OH and LLR for a pedigree

Description

Count opposite homozygous (OH) loci between parent-offspring pairs and Mendelian errors (ME)
between parent-parent-offspring trios, and calculate the parental log-likelihood ratios (LLR).

Usage
CalcOHLLR(
Pedigree = NULL,
GenoM = NULL,

CalcLLR = TRUE,
LifeHistData = NULL,
AgePrior = FALSE,
SegList = NULL,

Err = 1e-04,

ErrFlavour = "version2.9",
Tassign = 0.5,

Tfilter = -2,

Complex = "full”,

Herm = "no",

useMaxOH = TRUE,
quiet = FALSE

)
Arguments
Pedigree dataframe with columns id-dam-sire. May include non-genotyped individu-
als, which will be treated as dummy individuals. If provided, any pedigree in
SeqgList is ignored.
GenoM numeric matrix with genotype data: One row per individual, one column per

SNP, coded as 0, 1, 2, missing values as a negative number or NA. Row names
must be individual IDs, column names are ignored. You can reformat data with

CalcOHLLR 7

GenoConvert, or use other packages to get it into a genlight object and then use
as.matrix.

CalcLLR calculate log-likelihood ratios for all assigned parents (genotyped + dummy/non-
genotyped; parent vs. otherwise related). If FALSE, only number of mismatching
SNPs are counted (OH & ME), and parameters LifeHistData, AgePrior, Err,
Tassign, and Complex are ignored. Note also that calculating likelihood ratios
is much more time consuming than counting OH & ME.

LifeHistData data.frame with up to 6 columns:

ID max. 30 characters long

Sex 1 = female, 2 = male, 3 = unknown, 4 = hermaphrodite, other numbers or
NA = unknown

BirthYear birth or hatching year, integer, with missing values as NA or any
negative number.

BY.min minimum birth year, only used if BirthYear is missing

BY.max maximum birth year, only used if BirthYear is missing

Year.last Last year in which individual could have had offspring. Can e.g. in
mammals be the year before death for females, and year after death for
males.

"Birth year" may be in any arbitrary discrete time unit relevant to the species
(day, month, decade), as long as parents are never born in the same time unit as
their offspring, and only integers are used. Individuals do not need to be in the
same order as in ‘GenoM’, nor do all genotyped individuals need to be included.

AgePrior logical (TRUE/FALSE) whether to estimate the ageprior from Pedigree and LifeHistData,
or a matrix as generated by MakeAgePrior and included in the sequoia output.
The AgePrior affects which relationships are considered possible: only those
where P(A|R)/P(A) > 0. When TRUE, MakeAgePrior is called using its de-
fault values. When FALSE, all relationships are considered possible for all age
differences, except that parent-offspring pairs cannot have age difference zero,
and grand-parental pairs have an age difference of at least two.

SeqlList list with output from sequoia. If input parameter Pedigree=NULL, SeqList$Pedigree
will be used if present, and SeqList$PedigreePar otherwise. If SeqList$Specs
is present, input parameters with the same name as its items are ignored, except
’CalcLLR’ and *AgePriors=FALSE’. The list elements ‘LifeHist’, ‘AgePriors’,
and ‘ErrtM’ are also used if present, and override the corresponding input pa-
rameters.

Err assumed per-locus genotyping error rate, as a single number, or a length 3 vec-
tor with P(homlhom), P(hetthom), P(homlhet), or a 3x3 matrix. See details
below. The error rate is presumed constant across SNPs, and missingness is
presumed random with respect to actual genotype. Using Err >5% is not rec-
ommended, and Err >10% strongly discouraged. See Err_RADseq to convert
per-allele rates at homozygous and heterozygous sites to the required length-3
vector, and ErrToM for further genotyping error details.

ErrFlavour function that takes Err (single number) as input, and returns a length 3 vector
or 3x3 matrix, or choose from inbuilt options ’version2.9’, ’version2.0’, "ver-
sionl.3’, or *versionl.1’, referring to the sequoia version in which they were the
default. Ignored if Err is a vector or matrix.

8 CalcOHLLR

Tassign minimum LLR required for acceptance of proposed relationship, relative to next
most likely relationship. Higher values result in more conservative assignments.
Must be zero or positive.

Tfilter threshold log10-likelihood ratio (LLR) between a proposed relationship versus
unrelated, to select candidate relatives. Typically a negative value, related to the
fact that unconditional likelihoods are calculated during the filtering steps. More
negative values may decrease non-assignment, but will increase computational
time.

Complex Breeding system complexity. Either "full" (default), "simp" (simplified, no ex-
plicit consideration of inbred relationships), "mono" (monogamous).

Herm Hermaphrodites, either "no", "A" (distinguish between dam and sire role, default
if at least 1 individual with sex=4), or "B" (no distinction between dam and sire
role). Both of the latter deal with selfing.

useMaxOH when calculating likelihoods, skip any parent-offspring pairs for which the op-
posite homozygote count exceeds the maximum, which is calculated from the
genotyping error rate by CalcMaxMismatch.

quiet logical, suppress messages

Details

Any individual in Pedigree that does not occur in GenoM is substituted by a dummy individual;
these can be recognised by the value 0’ in columns *SNPd.id.dam’ and ‘SNPd.id.sire‘ in the output.
For non-genotyped individuals the parental log-likelihood ratio can be calculated if they have at
least one genotyped offspring (see also getAssignCat).

The birth years in LifeHistData and the AgePrior are not used in the calculation and do not affect
the value of the likelihoods for the various relationships, but they _are_ used during some filtering
steps, and may therefore affect the likelihood _ratio_. The default (AgePrior=FALSE) assumes all
age-relationship combinations are possible, which may mean that some additional alternatives are
considered compared to the sequoia default, resulting in somewhat lower LLR values.

A negative LLR for A’s parent B indicates either that B is not truly the parent of A, or that B’s
parents are incorrect. The latter may cause B’s presumed true, unobserved genotype to divert from
its observed genotype, with downstream consequences for its offspring. In rare cases it may also be
due to *weird’, non-implemented double or triple relationships between A and B.

Value
The Pedigree dataframe with additional columns:

LLRdam Log10-Likelihood Ratio (LLR) of this female being the mother, versus the next
most likely relationship between the focal individual and this female (see Details
for relationships considered)

LLRsire idem, for male parent

LLRpair LLR for the parental pair, versus the next most likely configuration between the
three individuals (with one or neither parent assigned)

OHdam Number of loci at which the offspring and mother are opposite homozygotes

OHsire idem, for father

CalcOHLLR

MEpair

SNPd. id
SNPd. id.dam
SNPd.id.sire
Sexx

BY.est

BY.lo

BY.hi

Number of Mendelian errors between the offspring and the parent pair, includes
OH as well as e.g. parents being opposing homozygotes, but the offspring not
being a heterozygote. The offspring being OH with both parents is counted as 2
erTors.

Number of SNPs scored (non-missing) for the focal individual

Number of SNPs scored (non-missing) for both individual and dam

Number of SNPs scored for both individual and sire

Sex in LifeHistData, or inferred Sex when assigned as part of parent-pair
mode of birth year probability distribution

lower limit of 95% highest density region of birth year probability distribution
higher limit

The columns 'LLRdam’, "LLRsire’ and 'LLRpair’ are only included when CalcLLR=TRUE. When
a parent or parent-pair is incompatible with the lifehistory data or presumed genotyping error rate,
the error value *777 may be given.

The columns ’Sexx’, 'BY.est’, 'BY.lo’ and "BY.hi’ are only included when LifeHistData is pro-
vided, and at least one genotyped individual has an unknown birth year or unknown sex.

See Also

SummarySeq for visualisation of OH & LLR distributions; CalcPairLL for the likelihoods under-
lying the LLR, GenoConvert to read in various genotype data formats, CheckGeno; PedPolish to
check and ’polish’ the pedigree; getAssignCat to find which id-parent pairs are both genotyped or
can be substituted by dummy individuals; sequoia for pedigree reconstruction.

Examples

count Mendelian
Ped.OH <- CalcOHL

Ped.OH[50:55,]
view histograms
SummarySeq(Ped.OH

errors in an existing pedigree
LR(Pedigree = Ped_HSg5, GenoM = SimGeno_example,
CalcLLR = FALSE)

, Panels="0H")

Parent likelihood ratios in an existing pedigree, including for
non-genotyped parents. Incorrect parents will have negative LLR.

PedZ <- Ped_HSg5[

41:50, 1 # small example subset

Pedz$dam[1] <- Pedz$dam[10]
CalcOHLLR(PedZ, GenoM = SimGeno_example, CalcLLR = TRUE)

Not run:
with age data:

makes some alternative relationships impossible, and thereby

changes LLR(parent/not-parent)
Ped.LLR <- CalcOHLLR(PedZ, GenoM = SimGeno_example, CalcLLR = TRUE,

SummarySeq(Ped.LL

likelihood rati

LifeHistData=LH_HSg5, AgePrior=TRUE)
R, Panels="LLR")

os change with presumed genotyping error rate:

Ped.LLR.B <- CalcOHLLR(Pedigree = Ped_HSg5, GenoM = SimGeno_example,

10 CalcPairLL

CalcLLR = TRUE, LifeHistData=LH_HSg5, AgePrior=TRUE,
Err = 0.005)
SummarySeq(Ped.LLR.B, Panels="LLR")

run sequoia with CalcLLR=FALSE, and add OH + LLR later:
SeqOUT <- sequoia(Geno_griffin, LH_griffin, CalcLLR=FALSE,quiet=TRUE,
Plot=FALSE)
PedA <- CalcOHLLR(Pedigree = SeqOUT[["Pedigree"]1[, 1:3], GenoM=Geno_griffin,
LifeHistData = LH_griffin, AgePrior = TRUE, Complex = "full")
SummarySeq(PedA, Panels=c("LLR", "OH"))

End(Not run)

CalcPairlLL Calculate Likelihoods for Alternative Relationships

Description
For each specified pair of individuals, calculate the log10-likelihoods of being PO, FS, HS, GP, FA,
HA, U (see Details). Individuals must be genotyped or have at least one genotyped offspring.
NOTE: values > 0 are various NA types, see ’Likelihood special codes’ in *Value’ section below.

NOTE 2: Relationship between a dummy/non-genotyped individual and another are expressed as
relationships with that dummies offspring. So, if e.g. IDI1=F0001 and ID2=i003_2001_M, and
TopRel=FA, that means that dummy female FOOO1 is likely a full sibling of i003_2001_M. For
further details see below.

Usage
CalcPairLL(
Pairs = NULL,
GenoM = NULL,

Pedigree = NULL,
LifeHistData = NULL,
AgePrior = TRUE,
SegList = NULL,

Module = "ped”,

Complex = "full”,

Herm = "no",

InclDup = FALSE,

Err = 1e-04,

ErrFlavour = "version2.9",
Tassign = 0.5,

Tfilter = -2,

quiet = FALSE,

Plot = TRUE

CalcPairLL 11

Arguments

Pairs dataframe with columns ID1 and ID2, and optionally

Sex1 Sex of ID1, 1=female, 2=male, 3=unknown, or NA to take from LifeHistData.
The sex of individuals occurring as parent in Pedigree cannot be altered.

Sex2 Sex of ID2

AgeDif Age difference in whole time units, BirthYear] - BirthYear2 (i.e. posi-
tive if ID2 is born before ID1). If NA, calculated from LifeHistData. Use
999’ to explicitly specify ‘unknown’.

focal relationship character abbreviation; PO, FS, HS, GP or U. See Details for
its effect and explanation of abbreviations. Default: U.

patmat 1=maternal relatives, 2=paternal relatives. Only relevant for HS & GP,
for which it defaults to Sex1, or 1 if Sex1=3, but is currently only pre-
dictably implemented for pairs of two genotyped individuals. Always equal
to Sex2 for PO pairs when Sex?2 is known.

dropParl Drop the parents of ID1 before calculating the pair likelihood, rather
than conditioning on them; choose from none’, ’dam’, ’sire’, or "both’. See
example. If e.g. the pair shares a common mother, ‘none’ and ’sire’ will
condition on this shared mother and not calculate the likelihood that they
are maternal siblings, while dropParl="dam’ or ’both’ will calculate that
likelihood, and the other likelihoods as if the mother of ID1 were unknown.

dropPar2 as dropPar1, for ID2

GenoM numeric matrix with genotype data: One row per individual, one column per
SNP, coded as 0, 1, 2, missing values as a negative number or NA. Row names
must be individual IDs, column names are ignored. You can reformat data with
GenoConvert, or use other packages to get it into a genlight object and then use
as.matrix.

Pedigree dataframe with columns id-dam-sire; likelihoods will be calculated conditional
on the pedigree. May include non-genotyped individuals, which will be treated
as dummy individuals.

LifeHistData data.frame with up to 6 columns:

ID max. 30 characters long

Sex 1 =female, 2 = male, 3 = unknown, 4 = hermaphrodite, other numbers or
NA = unknown

BirthYear birth or hatching year, integer, with missing values as NA or any
negative number.

BY.min minimum birth year, only used if BirthYear is missing

BY.max maximum birth year, only used if BirthYear is missing

Year.last Last year in which individual could have had offspring. Can e.g. in

mammals be the year before death for females, and year after death for
males.

"Birth year" may be in any arbitrary discrete time unit relevant to the species
(day, month, decade), as long as parents are never born in the same time unit as
their offspring, and only integers are used. Individuals do not need to be in the
same order as in ‘GenoM’, nor do all genotyped individuals need to be included.

12 CalcPairLL

AgePrior logical (TRUE/FALSE) whether to estimate the ageprior from Pedigree and LifeHistData,
or a matrix as generated by MakeAgePrior and included in the sequoia output.
The AgePrior affects which relationships are considered possible: only those
where P(A|R)/P(A) > 0. When TRUE, MakeAgePrior is called using its de-
fault values. When FALSE, all relationships are considered possible for all age
differences, except that parent-offspring pairs cannot have age difference zero,
and grand-parental pairs have an age difference of at least two.

SeqlList list with output from sequoia. If input parameter Pedigree=NULL, SeqList$Pedigree
will be used if present, and SeqList$PedigreePar otherwise. If SeqList$Specs
is present, input parameters with the same name as its items are ignored. The
list elements ’LifeHist’, *AgePriors’, and "ErrM’ are also used if present, and
override the corresponding input parameters.

Module if ped (full pedigree), turn any non-genotyped parents in Pedigree into dum-
mies to condition upon. If par, ignore any non-genotyped parents.

Complex Breeding system complexity. Either "full" (default), "simp" (simplified, no ex-
plicit consideration of inbred relationships), "mono" (monogamous).

Herm Hermaphrodites, either "no", "A" (distinguish between dam and sire role, default
if at least 1 individual with sex=4), or "B" (no distinction between dam and sire
role). Both of the latter deal with selfing.

InclDup logical, include the likelihood for the two samples to be duplicates (originating
from the same individual) in the output?

Err assumed per-locus genotyping error rate, as a single number, or a length 3 vec-
tor with P(homlhom), P(hetthom), P(homlhet), or a 3x3 matrix. See details
below. The error rate is presumed constant across SNPs, and missingness is
presumed random with respect to actual genotype. Using Err >5% is not rec-
ommended, and Err >10% strongly discouraged. See Err_RADseq to convert
per-allele rates at homozygous and heterozygous sites to the required length-3
vector, and ErrToM for further genotyping error details.

ErrFlavour function that takes Err (single number) as input, and returns a length 3 vector
or 3x3 matrix, or choose from inbuilt options ’version2.9’, ’version2.0’, 'ver-
sionl.3’, or ’versionl.1’, referring to the sequoia version in which they were the
default. Ignored if Err is a vector or matrix.

Tassign minimum LLR required for acceptance of proposed relationship, relative to next
most likely relationship. Higher values result in more conservative assignments.
Must be zero or positive.

Tfilter threshold log10-likelihood ratio (LLR) between a proposed relationship versus
unrelated, to select candidate relatives. Typically a negative value, related to the
fact that unconditional likelihoods are calculated during the filtering steps. More
negative values may decrease non-assignment, but will increase computational

time.
quiet logical, suppress messages
Plot logical, display scatter plots by PlotPairLL.

Details

The same pair may be included multiple times, e.g. with different sex, age difference, or focal rela-
tionship, to explore their effect on the likelihoods. Likelihoods are only calculated for relationships

CalcPairLL 13

that are possible given the age difference, e.g. PO (parent-offspring) is not calculated for pairs with
an age difference of 0.

Non-genotyped individuals can be included if they have at least one genotyped offspring and can
be turned into a dummy (see getAssignCat); to establish this a pedigree must be provided.

Warning 1: There is no check whether the input pedigree is genetically sensible, it is simply
conditioned upon. Checking whether a pedigree is compatible with the SNP data can be done with
CalcOHLLR.

Warning 2: Conditioning on a Pedigree can make computation orders of magnitude slower.

Value

The Pairs dataframe including all optional columns listed above, plus the additional columns:

XX Log10-Likelihood of this pair having relationship xx, with xx being the relation-
ship abbreviations listed below.

TopRel Abbreviation of most likely relationship

LLR Logl0-Likelihood ratio between most-likely and second most likely relation-
ships. Other LLRs, e.g. between most-likely and unrelated, can easily be com-
puted.

Relationship abbreviations:

PO Parent - offspring

FS Full siblings

HS Half siblings

GP Grandparent

FA Full avuncular

HA Half avuncular and other 3rd degree relationships

u Unrelated

2nd Unclear which type of 2nd degree relatives (HS, GP, or FA)
?? Unclear which type of 1st, 2nd or 3rd degree relatives

Likelihood special codes:

222 Maybe (via) other parent (e.g. focal="GP", but as likely to be maternal as pater-
nal grandparent, and therefore not assignable)

333 Excluded from comparison (shouldn’t occur)

444 Not implemented (e.g. would create an odd double/triple relationship in combi-
nation with the provided pedigree)

777 Impossible (e.g. a male (Sex2=2) cannot be mother (patmat=1))

888 Already assigned in the provided pedigree (see dropPar arguments)

999 NA. If all values for the pair are 999, one or both individuals are not genotyped

and not dummifiable.

14 CalcPairLL

Why does it say 444 (no can do) for all relationships?

This happens when the pair does not pass the initial check which prevents impossible configurations
in combination with Pedigree. Specifically, it happens when either or both individuals are a parent
in the pedigree, but

¢ the sex in Pairs is not consistent with that

* Pairs changes the age differences; it is too complex to check whether or not this still makes
all pedigree links valid. Only setting the age difference to 'unknown’ via Pairs is possible.

Why does it say 777 (impossible)?

This function uses the same machinery as sequoia, which will to save time not calculate the likeli-
hood when it is quickly obvious that the pair cannot be related in the specified manner.

For PO (putative parent-offspring pairs) this is the case when:

* the sex of the candidate parent, via Pairs$Sex2 or LifeHistData, does not match Pairs$patmat,
which defaults to 1 (maternal relatives, i.e. dam)

* a dam is already assigned via Pedigree and Pairs$dropPar1 ='none', and Pairs$patmat
=1

* the age difference is zero or otherwise impossible according to the age prior. It is either cal-
culated from LifeHistData or specified via Pairs$AgeDif. The AgePrior can be specified
directly, be taken from SeqlList, or calculated automatically by MakeAgePrior when both
Pedigree and LifeHistData are provided.

Double relationships & focal relationship

Especially when Complex="full’, not only the seven relationship alternatives listed above are con-
sidered, but a whole range of possible double and even triple relationships. For example, mother A
and offspring B (PO) may also be paternal half-siblings (HS, A and A’s mother mated with same
male), grandmother and grand-offspring (GP, B’s father is A’s son), or paternal aunt (B’s father is a
full or half sib of A).

The likelihood reported as "LL_PO’ is the most-likely one of the possible alternatives, among those
that are not impossible due to age differences or due to the pedigree (as reconstructed up to that
point). Whether e.g. the likelihood to be both PO & HS is counted as PO or as HS, depends on the
situation and is determined by the variable ’focal’: During parentage assignment, it is counted as
PO but not HS, while during sibship clustering, it is counted as HS but not PO — not omitting from
the alternative relationship would result in a deadlock.

Dummy individuals

For historical reasons, the relationships between a dummy ID1 and ID2 are reported *between the
sibship and ID2*. So,

* PO: ID2 replaces dummy ID1; or merge dummy ID2 with dummy ID1

* FS, HS: ID1 parent of ID2

* GP: ID2 parent of ID1

* FA,HA: ID2 FS resp. HS of ID1

CalcPairLL 15

If ID1 is genotyped and ID2 is a dummy, the relationships are as when ID2 is genotyped.

If you wish to retrieve likelihoods for a different set of relationships, please contact me at <jisca.huisman@gmail.com>

See Also

PlotPairLL to plot alternative relationship pairs from the output; LLtoProb to transform likeli-
hoods to probabilities; CalcParentProbs which uses this function to calculate parental probabil-
ities; GetRelM to find all pairwise relatives according to the pedigree; GetMaybeRel to get likely
relative pairs based on the genetic data.

Examples

Likelihoods depend on the presumed genotyping error rate:
CalcPairLL(Pairs = data.frame(ID1='1042_2003_F', ID2='iQ15_2001_F"),
GenoM = Geno_griffin, Err = 1e-7, Plot=FALSE)
CalcPairLL(Pairs = data.frame(ID1='1042_2003_F', ID2='iQ15_2001_F'),
GenoM = Geno_griffin, Err = 1e-3, Plot=FALSE)

likelihoods underlying parent LLR in pedigree:
Example: dams for bottom 3 individuals
tail(SeqOUT_griffin$PedigreePar, n=3)
set up dataframe with these pairs. LLRdam & LLRsire ignore any co-parent
Pairs_d <- data.frame(ID1 = SeqOUT_griffin$PedigreePar$id[140:142],
ID2 = SeqOUT_griffin$PedigreePar$dam[140:142],
focal = "PO",
dropPar1 = 'both')

Calculate LL's, conditional on the rest of the pedigree + age differences
CalcPairLL(Pairs_d, GenoM = Geno_griffin, Err = 1e-04,
LifeHistData = LH_griffin, Pedigree = SeqOUT_griffin$PedigreePar)

LLR changes when ignoring age and/or pedigree, as different relationships
become (im)possible
CalcPairLL(Pairs_d, GenoM = Geno_griffin, Err = 1e-04)

LLRpair is calculated conditional on co-parent, and min. of dam & sire LLR
Pairs_d$dropPar1 <- 'dam'
Pairs_s <- data.frame(ID1 = SeqOUT_griffin$PedigreePar$id[141:142],
ID2 = SeqOUT_griffin$PedigreePar$sire[141:142],
focal = "PO",
dropPar1 = 'sire')
CalcPairLL(rbind(Pairs_d, Pairs_s), GenoM = Geno_griffin, Err = 1e-04,
LifeHistData = LH_griffin, Pedigree = SeqOUT_griffin$PedigreePar)

likelihoods underlying LLR in getMaybeRel output:

MaybeRel_griffin$MaybePar[1:5,]

FivePairs <- MaybeRel_griffin$MaybePar[1:5, c("ID1", "ID2", "Sex1", "Sex2")]

PairLL <- CalcPairLL(Pairs = rbind(cbind(FivePairs, focal = "PQ0"),
cbind(FivePairs, focal = "HS"),

16

CalcParentProbs

cbind(FivePairs, focal = "GP")),
GenoM = Geno_griffin, Plot=FALSE)

PairLL[PairLL$ID1=="1121_2007_M",]

LL(FS)==222 :

HSHA, HSGP, and/or FAHA more likely than FS

LL(GP) higher when focal=HS: GP via 'other' parent also considered
LL(FA) higher when focal=PQO: FAHA, or FS of 'other' parent

CalcParentProbs

Calculate assignment probabilities

Description

For each assigned offspring-parent pair, calculate the probability they are parent-offspring vs oth-
erwise related. Probabilities are scaled to sum to one across all possible* relationships between the
pair or trio; see Details.

Usage
CalcParentProbs(Pedigree = NULL, GenoM = NULL, quiet = FALSE, nCores =1, ...)
Arguments

Pedigree dataframe with columns id-dam-sire. By default, any non-genotyped individuals
are ’”dummified’; use Module="par' to ignore them.

GenoM numeric matrix with genotype data: One row per individual, one column per
SNP, coded as 0, 1, 2, missing values as a negative number or NA. You can
reformat data with GenoConvert, or use other packages to get it into a genlight
object and then use as.matrix.

quiet logical, suppress messages. No progress is printed when >1 core is used.

nCores number of computer cores to use. If 2 or 4, package parallel is used (other
values are not applicable).

Additional arguments passed to CalcPairLL, such as the genotyping error rate
Err, age information in LifeHistData and AgePrior, or InclDup to include
the probability that the two samples are duplicates.

Details

The returned probabilities are calculated from the likelihoods used throughout the rest of this pack-
age, by scaling them to sum to one across all possible relationships. For Complex="simp' these are
PO=parent-offspring, FS=full siblings, HS=half siblings, GP=grand-parental, FA=full avuncular,
HA-=third degree relatives (incl half avuncular), and U=unrelated. For Complex="'full' there are
numerous double relationship considered (PO & HS, HS & HA, etc), making both numerator and
denominator in the scaling step less unambiguous, and the returned probabilities an approximation.

The likelihoods are calculated by calling CalcPairLL once or twice for each id-dam and id-sire
pair: once not conditioning on the co-parent, and once conditional on the co-parent, if any. For
genotyped individuals this is done with focal="'P0', and for dummy individuals with focal="'GP'.

CalcParentProbs 17

For relationships between a genotyped and a dummy individual, it may only be possible to deter-
mine that the genotyped individual is a second degree relative (GP, HS, or FA) to the dummy’s
offspring. This then results in a probability of at most 0.33, even when the two are indeed parent
and offspring.

See CalcPairLL and the vignettes for further details.

Note that for large pedigrees this function can be fairly slow, especially when using CalcPairlLL’s
default Module="'ped' and Complex="'full'.

Subsetting the genotype data may give different results, as the likelihoods and thus the probabilities
depend on the allele frequencies in the sample.

Value

the Pedigree dataframe with the three applicable columns renamed to id-dam-sire, and 7 additional

columns:

Probdam Probability that individual in dam column is the maternal parent, rather than
otherwise related (LL(PO)/sum(LL))

Probsire Analogous for sire

Probpair Probability for id-dam-sire trio. Approximated as the minimum of dam condi-

tional on sire and sire conditional on dam, thus not including e.g. both being
siblings (those other configurations are considered by sequoia during pedigree
reconstruction, but can (currently) not be accessed directly)

dam_alt, sire_alt
Most likely alternative (not PO) relationship between id-dam and id-sire, respec-
tively

Probdam_alt, Probsire_alt
Probability of most likely alternative relationship

Warning

The probabilities will be less reliable with close inbreeding and double relationships. This function
has not been tested yet with hermaphrodites, and is unlikely to give reliable results without further
code updates.

See Also

CalcPairlLL, LLtoProb

Examples

test_ped <- Ped_griffin[21:25,]

add an incorrect sire to illustrate

test_ped$sire <- as.character(test_ped$sire)

test_ped$sire[5] <- 'i057_2003_M'

Ped_with_probs <- CalcParentProbs(test_ped, Geno_griffin)
print(Ped_with_probs, digits=2)

Any non-genotyped non-'dummifiable' individuals are automatically skipped

18

To get likelihoods for 'all' relationships, not just probabilities for
PO & (next-)most-likely:
LL_sire_single <- CalcPairLL(
Pairs = data.frame(idl=test_ped$id,
id2=test_ped$sire,
dropPar1="both', # drop both -> id2 as single parent
focal='P0"'),
Pedigree = Ped_griffin, # pedigree to condition on
GenoM = Geno_griffin, Plot=FALSE)

CheckGeno

CalcRped Calculate Pedigree Relatedness

Description

Morph pedigree into a kinship2 compatible format and use kinship to calculate kinship coeffi-

cients; relatedness = 2*kinship.

Usage

CalcRped(Pedigree, OUT = "DF")

Arguments
Pedigree dataframe with columns id-dam-sire.
ouT desired output format, "M’ for matrix or 'DF’ for dataframe with columns IID1
- [ID2 - R.ped.
Value

A matrix or dataframe.

CheckGeno Check Genotype Matrix

Description

Check that the provided genotype matrix is in the correct format, and check for low call rate samples

and SNPs.

CheckGeno 19

Usage

CheckGeno(
GenoM,
quiet = FALSE,
Plot = FALSE,
Return = "GenoM",
Strict = TRUE,
DumPrefix = c("F@", "M@")

)
Arguments

GenoM the genotype matrix.

quiet suppress messages.

Plot display the plots of SnpStats.

Return either ’GenoM’ to return the cleaned-up genotype matrix, or ’excl’ to return a
list with excluded SNPs and individuals (see Value).

Strict Exclude any individuals genotyped for <5 genotyped for <5 up to version 2.4.1.
Otherwise only excluded are (very nearly) monomorphic SNPs, SNPs scored for
fewer than 2 individuals, and individuals scored for fewer than 2 SNPs.

DumPrefix length 2 vector, to check if these don’t occur among genotyped individuals.

Value

If Return="excl"' alist with, if any are found:

ExcludedSNPs SNPs scored for <10 excluded when running sequoia
ExcludedSnps-mono

monomorphic (fixed) SNPs; automatically excluded when running sequoia.
This includes nearly-fixed SNPs with MAF = 1/2N. Column numbers are
after removal of ExcludedSNPs, if any.

ExcludedIndiv Individuals scored for <5 reliably included during pedigree reconstruction. In-
dividual call rate is calculated after removal of ’Excluded SNPs’
Snps-LowCallRate
SNPs scored for 10 recommended to be filtered out
Indiv-LowCallRate
individuals scored for <50 recommended to be filtered out

When Return="excl' the returnis invisible,i.e. a check is run and warnings or errors are always
displayed, but nothing may be returned.

Thresholds

Appropriate call rate thresholds for SNPs and individuals depend on the total number of SNPs,
distribution of call rates, genotyping errors, and the proportion of candidate parents that are SNPd
(sibship clustering is more prone to false positives). Note that filtering first on SNP call rate tends
to keep more individuals in.

20 ComparePairs

See Also

SnpStats to calculate SNP call rates; CalcOHLLR to count the number of SNPs scored in both focal
individual and parent.

Examples

GenoM <- SimGeno(Ped_HSg5, nSnp=400, CallRate = runif(400, 0.2, 0.8))
the quick way:
GenoM. checked <- CheckGeno(GenoM, Return="GenoM")

the user supervised way:
Excl <- CheckGeno(GenoM, Return = "excl")
GenoM.orig <- GenoM # make a 'backup' copy
if ("ExcludedSnps"” %in% names(Excl))
GenoM <- GenoM[, -Excl[["ExcludedSnps"]1]
if ("ExcludedSnps-mono” %in% names(Excl))
GenoM <- GenoM[, -Excl[["ExcludedSnps-mono"]]]
if ("ExcludedIndiv” %in% names(Excl))
GenoM <- GenoM[!rownames(GenoM) %in% Excl[["ExcludedIndiv"]], 1]

warning about SNPs scored for <50% of individuals ?
note: this is not necessarily a problem, and sometimes unavoidable.
SnpCallRate <- apply(GenoM, MARGIN=2,

FUN = function(x) sum(x!=-9)) / nrow(GenoM)
hist(SnpCallRate, breaks=50, col="grey")
GenoM <- GenoM[, SnpCallRate > 0.6]

to filter out low call rate individuals: (also not necessarily a problem)
IndivCallRate <- apply(GenoM, MARGIN=1,

FUN = function(x) sum(x!=-9)) / ncol(GenoM)
hist(IndivCallRate, breaks=50, col="grey")
GoodSamples <- rownames(GenoM)[IndivCallRate > 0.8]

ComparePairs Compare Pairwise Relationships

Description

Compare, count and identify different types of relative pairs between two pedigrees, or within one
pedigree.

Usage
ComparePairs(
Ped1 = NULL,
Ped2 = NULL,

Pairs2 = NULL,
GenBack =1,

ComparePairs

21

patmat = FALSE,
ExcludeDummies = TRUE,
DumPrefix = c("FQ", "MQ"),

Return = "Counts”,
Pairs_suffix = "?"
)
Arguments

Ped1 first (e.g. original/reference) pedigree, dataframe with 3 columns: id-dam-sire.

Ped2 optional second (e.g. inferred) pedigree.

Pairs2 optional dataframe with as first three columns: ID1-ID2- relationship, e.g. as
returned by GetMaybeRel. Column names and any additional columns are ig-
nored. May be provided in addition to, or instead of Ped2.

GenBack number of generations back to consider; 1 returns parent-offspring and sibling
relationships, 2 also returns grandparental, avuncular and first cousins. GenBack
>2 is not implemented.

patmat logical, distinguish between paternal versus maternal relative pairs?

ExcludeDummies logical, exclude dummy IDs from output? Individuals with e.g. the same
dummy father will still be counted as paternal halfsibs. No attempt is made
to match dummies in one pedigree to individuals in the other pedigree; for that
use PedCompare.

DumPrefix character vector with the prefixes identifying dummy individuals. Use FO’
(’MO’) to avoid matching to regular individuals with IDs starting with "F* "M”),
provided Ped?2 has fewer than 999 dummy females (males).

Return return a matrix with Counts or a Summary of the number of identical relation-

Pairs_suffix

Details

ships and mismatches per relationship, or detailed results as a 2xNxN Array or
as a Dataframe. A1l returns a list with all four.

symbol added to the relationship abbreviations derived from Pairs2, when both
Ped2 and Pairs?2 are provided. Can be an empty string.

If Pairs2 is as returned by GetMaybeRel (identified by the additional column names 'LLR’ and
’OH’), these relationship categories are appended with an ’?” in the output, to distinguish them
from those derived from Ped?2.

When Pairs2$TopRel contains values other than the ones listed among the return values for the
combination of patmat and GenBack, they are prioritised in decreasing order of factor levels, or in
decreasing alphabetical order, and before the default (ped2 derived) levels.

The matrix returned by DyadCompare [Deprecated] is a subset of the matrix returned here using

default settings.

Value

Depending on Return, one of the following, or a list with all:

22

Counts

Summary

Array

Dataframe

ComparePairs

(the default), a matrix with counts, with the classification in Ped1 on rows and
that in Ped2 in columns. Counts for ’symmetrical’ pairs ("FS", "HS", "MHS",
"PHS", "FC1", "DFC1", "U","X") are divided by two.

a matrix with one row per relationship type and four columns , named as if Ped1
is the true pedigree:

n total number of pairs with that relationship in Ped1, and occurring in Ped2
OK Number of pairs with same relationship in Ped2 as in Ped1

hi Number of pairs with "higher’ relationship in Ped2 as in Ped1 (e.g. FS instead
of HS; ranking is the order given below)

lo Number of pairs with lower’ relationship in Ped2 as in Ped1, but not unre-
lated in Ped2

a 2xNxN array (if Ped2 or Pairs2 is specified) or a NxN matrix , where N is the
total number of individuals occurring in Ped1 and/or Ped2.

a dataframe with N2 rows and four columns:
id.A First individual of the pair

id.B Second individual of the pair

RC1 the relationship category in Ped1, as a factor with all considered categories
as levels, including those with 0 count

RC2 the relationship category in Ped2

Each pair is listed twice, e.g. once as P and once as O, or twice as FS.

Relationship abbreviations and ranking

By default (GenBack=1, patmat=FALSE) the following 7 relationships are distinguished:

¢ S: Self (not included in Counts)

e MP: Parent

* O: Offspring (not included in Counts)

FS: Full sibling
HS: Half sibling

e U: Unrelated, or otherwise related

* X: Either or both individuals not occurring in both pedigrees

In the array and dataframe, "MP’ indicates that the second (column) individual is the parent of the
first (row) individual, and *O’ indicates the reverse.

When GenBack=1, patmat=TRUE the categories are (S)-M-P-(O)-FS-MHS-PHS- U-X.
When GenBack=2, patmat=TRUE, the following relationships are distinguished:

¢ S: Self (not included in Counts)

e M: Mother
e P: Father

* O: Offspring (not included in Counts)

FS: Full sibling

ComparePairs 23

* MHS: Maternal half-sibling

* PHS: Paternal half-sibling

* MGM: Maternal grandmother

* MGF: Maternal grandfather

* PGM: Paternal grandmother

* PGF: Paternal grandfather

* GO: Grand-offspring (not included in Counts)

* FA: Full avuncular; maternal or paternal aunt or uncle

* HA: Half avuncular

* FN: Full nephew/niece (not included in Counts)

* HN: Half nephew/niece (not included in Counts)

* FC1: Full first cousin

* DFC1: Double full first cousin

e U: Unrelated, or otherwise related

* X: Either or both individuals not occurring in both pedigrees
Note that for avuncular and cousin relationships no distinction is made between paternal versus
maternal, as this may differ between the two individuals and would generate a large number of sub-

classes. When a pair is related via multiple paths, the first-listed relationship is returned. To get all
the different paths between a pair, use GetRelM with Return="Array".

When GenBack=2, patmat=FALSE, MGM, MGF, PGM and PGF are combined into GP, with the
rest of the categories analogous to the above.

See Also

PedCompare for individual-based comparison; GetRelM for a pairwise relationships matrix of a
single pedigree; PlotRelPairs for visualisation of relationships within each pedigree.

To estimate P(actual relationship (Ped1) | inferred relationship (Ped2)), see examples at EstConf.

Examples

PairsG <- ComparePairs(Ped_griffin, SeqOUT_griffin[["Pedigree”]],
patmat = TRUE, ExcludeDummies = TRUE, Return = "All")
PairsG$Counts

pairwise correct assignment rate:
PairsG$Summary[,"0K"] / PairsG$Summary[,"n"]

check specific pair:

PairsG$Array[, "i190_2010_M", "i168_2009_F"]

or

RelDF <- PairsG$Dataframe # for brevity
RelDF[RelDF$id.A=="1190_2010_M" & RelDF$id.B=="i168_2009_F", 1]

Colony-style lists of full sib dyads & half sib dyads:
FullSibDyads <- with(RelDF, RelDF[Pedl == "FS" & id.A < id.B, 1)

24 Conf_gritfin

HalfSibDyads <- with(RelDF, RelDF[Ped1 == "HS" & id.A < id.B, 1)
Use 'id.A < id.B' because each pair is listed 2x

Conf_griffin Example output from estimating confidence probabilities: griffins

Description

Example output of EstConf, with the inferred pedigree in SeqOUT_griffin used as reference pedi-
gree.

Usage

data(Conf_griffin)

Format

a list, see sequoia

Author(s)

Jisca Huisman, <jisca.huisman@gmail.com>

See Also

Ped_griffin, Geno_griffin,

Examples

Not run:

Conf_griffin <- EstConf(Pedigree = SeqOUT_griffin$Pedigree,
LifeHistData = LH_griffin,
args.sim = list(nSnp = 400, SnpError = 0.001,

ParMis=0.4),

args.seq = list(Module = 'ped', Err=0.001),
nSim = 20,
nCores = 5,
quiet = TRUE)

End(Not run)

CountOH 25

CountOH Count opposing homozygous SNPs between pairs of individuals

Description

Quick identification of likely parents, as the number of opposing homozygous (OH) SNPs is ex-
pected to be zero for parent- offspring pairs in absence of genotyping errors, and greater than zero
for all other pairs.

Usage

CountOH(x = NULL, ID2 = NULL, GenoM = NULL, max_OH = -1, quiet = FALSE)

Arguments
X Either a matrix, dataframe or similar where the first two columns are individual
IDs, or a vector with IDs. In the second case, you may provide ID2, and the
output will be an ID1 x ID2 matrix; else the output will be an ID1 x ID1 ma-
trix. Non-genotyped individuals are included in the results with all NA’s, and a
warning.
1D2 optional second vector with IDs
GenoM numeric matrix with genotype data: One row per individual, one column per
SNP, coded as 0, 1, 2, missing values as a negative number or NA. Row names
must be individual IDs, column names are ignored. You can reformat data with
GenoConvert, or use other packages to get it into a genlight object and then use
as.matrix.
max_OH stop counting OH’s for a pair if this value is reached, to reduce computation
time. Ignored if negative value or equal to total number of SNPs.
quiet suppress messages
Details

Counting the number of opposing homozygous (OH) SNPs is much faster than calculating likeli-
hoods, and does not rely on an estimated genotyping error rate. It can therefore be useful during
quality control, or to help figure out problems when assignment rate with sequoia is lower than
expected.

See Also

CalcPairlLL to calculate likelihoods for pairs, CalcOHLLR to calculate OH for a pedigree, CalcMaxMismatch
for calculation of the maximum OH used by sequoia to filter potential parent-offspring pairs.

26 DyadCompare

Examples

offspring_ids <- with(LH_HSg5, ID[BirthYear==20011])
candidate_father_ids <- with(LH_HSg5, ID[BirthYear==2000 & Sex==2])

OH_matrix <- CountOH(offspring_ids, candidate_father_ids, GenoM=Geno_HSg5)

hist(c(OH_matrix), breaks=c(0:40)-.5)

with high quality SNP data, there is often a clear separation in OH counts
between parent-offspring pairs (here: OH<3) and others (here: OH>4).

BUT: non-PO close relatives may have very low OH counts by chance,

and true PO pairs may have fairly high OH counts due to genotyping errors.

DyadCompare Compare Dyads (DEPRECATED)

Description
Count the number of half and full sibling pairs correctly and incorrectly assigned. DEPRECATED
- PLEASE USE ComparePairs

Usage
DyadCompare(Ped1 = NULL, Ped2 = NULL, nal = c(NA, "0"))

Arguments
Ped1 original pedigree, dataframe with 3 columns: id-dam-sire.
Ped2 second (inferred) pedigree.
nal the value for missing parents in Ped1.

Value

A 3x3 table with the number of pairs assigned as full siblings (FS), half siblings (HS) or unrelated
(U, including otherwise related) in the two pedigrees, with the classification in Ped1 on rows and
that in Ped2 in columns.

See Also

ComparePairs which supersedes this function; PedCompare

Examples

Not run:
DyadCompare (Ped1=Ped_HSg5, Ped2=SeqOUT_HSg5%Pedigree)

End(Not run)

ErrToM 27

ErrToM Generate Genotyping Error Matrix

Description
Make a vector or matrix specifying the genotyping error pattern, or a function to generate such a
vector/matrix from a single value Err.

with the probabilities of observed genotypes (columns) conditional on actual genotypes (rows), or
return a function to generate such matrices (using a single value Err as input to that function).

Usage
ErrToM(Err = NA, flavour = "version2.9"”, Return = "matrix")
Arguments
Err estimated genotyping error rate, as a single number, or 3x3 or 4x4 matrix, or
length 3 vector. If a single number, an error model is used that aims to deal with
scoring errors typical for SNP arrays. If a matrix, this should be the probability
of observed genotype (columns) conditional on actual genotype (rows). Each
row must therefore sum to 1. If Return="'function', this may be NA. If a vector,
these are the probabilities (observed given actual) homlother hom, hetlhom, and
homlhet.
flavour vector-generating or matrix-generating function, or one of ’version2.9’, ’ver-
sion2.0’, "version1.3’ (="SNPchip’), ’versionl.1’ (=’versionl111’), referring to
the sequoia version in which it was used as default. Only used if Err is a single
number.
Return output, ‘matrix’ (default), *vector’, function’ (matrix-generating), or *v_function’
(vector-generating)
Details

By default (flavour = "version2.9"), Err is interpreted as a locus-level error rate (rather than allele-
level), and equals the probability that an actual heterozygote is observed as either homozygote (i.e.,
the probability that it is observed as AA = probability that observed as aa = Err/2). The probability
that one homozygote is observed as the other is (Err/2)2.

The inbuilt *flavours’ correspond to the presumed and simulated error structures, which have changed
with sequoia versions. The most appropriate error structure will depend on the genotyping platform;
’version0.9” and ’versionl.1’ were inspired by SNP array genotyping while "versionl.3’ and ’ver-
sion2.0’ are intended to be more general.

This function, and throughout the package, it is assumed that the two alleles A and a are equiva-
lent. Thus, using notation P(observed genotype lactual genotype), that P(AA|aa) = P(aalAA),
P(aa|Aa) = P(AA|Aa), and P(aA|aa) = P(aA|AA).

version homlhom hetlhom homlhet

28

29 (E/2)? E-—(E/2)? E/2
2.0 (E/2)? E(1-E/2) E/2
1.3 (E/2)? FE E/2
1.1 E/2 E/2 E/2
0.9 0 E E/2

or in matrix form, Pr(observed genotype (columns) | actual genotype (rows)):

version2.9:
0 1 2
0 1-F E—(E/2)2 (E/2)2
1 E/2 1-F E/2
2 (E/2)? E-(E/2? 1-E
version2.0:
0 1 2
0 (1—E/2)2 E(1-E/2) (E/2)2
1 E/2 1-F E/2
2 (E/2)? E(1-E/2) (1-E/2)?
versionl.3
0 1 2
0 17}177(E/2)2 E (E/Z)2
1 E/2 1-F E/2
2 (E/2)2 E 1—E—(E/2)2
versionl. 1
0 1 2
0 1-E E/2 E/2

1 E/2 1—-E E/)2
2 E/2 E/2 1-F
version0.9 (not recommended)
0 1 2
0 1-F E 0
1 E/2 1—-E E/)2

2 0 E 1-F

ErrToM

ErrToM 29

When Err is a length 3 vector, or if Return = 'vector' these are the following probabilities:

* homlhom: an actual homozygote is observed as the other homozygote (F1)
* hetlhom: an actual homozygote is observed as heterozygote (Es)

* homlhet: an actual heterozygote is observed as homozygote (Fs)

and Pr(observed genotype (columns) | actual genotype (rows)) is then:

0 1 2
0 1-F —FE E, E;
1 Es 1—2F;, Es
2 o) E, 1—FE — By

When the SNPs are scored via sequencing (e.g. RADseq or DArTseq), the 3rd error rate (homlhet)
is typically considerably higher than the other two, while for SNP arrays it tends to be similar to
P(hetlhom).

Value

Depending on Return, either:

* 'matrix’': a 3x3 matrix, with probabilities of observed genotypes (columns) conditional on
actual (rows)

* 'function': a function taking a single value Err as input, and generating a 3x3 matrix

* 'vector': alength 3 vector, with the probabilities (observed given actual) homlother hom,
hetlhom, and homlhet.

Examples

ErM <- ErrToM(Err = 0.05)
ErM
ErrToM(ErM, Return = 'vector')

use error matrix from Whalen, Gorjanc & Hickey 2018
funE <- function(E) {
matrix(c(1-Ex3/4, E/2, E/4,
E/4, 1-2xE/4, E/4,
E/4, E/2, 1-Ex3/4),
3,3, byrow=TRUE) }
ErrToM(Err = 0.05, flavour = funE)
equivalent to:
ErrToM(Err = c(0.05/4, 0.05/2, 0.05/4))

30 Err_RADseq

Err_RADseq Convert Genotyping Error Rates from per-allele to per-locus

Description
Convert per-allele genotyping rates at homozygous (EO) and heterozygous (E1) sites to a length-3
vector with per-locus error rates homlhom, hetlhom, homlhet.

Usage
Err_RADseq(E@ = 0.005, E1 = 0.05, Return = "vector")

Arguments
EQ per-allele genotyping rates at homozygous sites
E1 per-allele genotyping rates at heterozygous sites
Return output format, ’vector’ (default) or *matrix’
Details

Estimation of per-allele genotyping rates is described in Bresadola et al (2020) - ’Estimating and
accounting for genotyping errors in RAD-seq experiments’, MER. The error model implemented
here is identical to that in Table 1 of that paper, and the default values are also taken from that paper.

For further information on how the sequoia package handles genotyping errors, see ErrToM.

Value
Depending on Return, either:

* 'vector': alength 3 vector, with the probabilities (observed given actual) homlother hom,
hetlhom, and homlhet.

* 'matrix': a 3x3 matrix, with probabilities of observed genotypes (columns) conditional on
actual (rows)

Examples

Compare with default error pattern (SNP chip based) :
Err_RADseq(E0=0.001, E1=0.05)
ErrToM(0.05%(1-0.05)*2, Return='vector')

usage in sequoia() and other functions:

Err_low <- Err_RADseq(E0=0.002, E1=0.05)

Err_high <- Err_RADseq(E0=0.01, E1=0.15)

Not run:
SeqOUT_lowErr <- sequoia(GenoM, LHdata, Err=Err_low)
SeqOUT_highErr <- sequoia(GenoM, LHdata, Err=Err_high)

also usable for confidence estimates, and to explore potential consequences

EstConf

of the

31

actual genotyping error rate being much higher/lower than assumed

EC <- EstConf(best_pedigree, LHdata, args.sim=list(SnpError=Err_high),

args.seq=list(Err=Err_low))

End(Not run)

EstConf

Confidence Probabilities

Description

Estimate confidence probabilities ("backward’) and assignment error rates ("forward’) per cate-
gory (genotyped/dummy) by repeatedly simulating genotype data from a reference pedigree using

SimGeno,

reconstruction a pedigree from this using sequoia, and counting the number of mis-

matches using PedCompare.

Usage
EstConf(
Pedigree = NULL,
LifeHistData = NULL,
args.sim = list(nSnp = 400, SnpError = 0.001, ParMis = c(0.4, 0.4)),
args.seq = list(Module = "ped”, Err = 0.001, Tassign = 0.5, CalcLLR = FALSE),
nSim = 10,
nCores = 1,
quiet = TRUE
)
Arguments
Pedigree reference pedigree from which to simulate, dataframe with columns id-dam-sire.
Additional columns are ignored.
LifeHistData dataframe with id, sex (1=female, 2=male, 3=unknown), birth year, and option-
ally BY.min - BY.max - YearLast.
args.sim list of arguments to pass to SimGeno, such as nSnp (number of SNPs), SnpError
(genotyping error rate) and ParMis (proportion of non-genotyped parents). Set
to NULL to use all default values.
args.seq list of arguments to pass to sequoia, such as Module (’par’ or 'ped’), Err (as-
sumed genotyping error rate), and Complex. May include (part of) SeqlList, a
list of sequoia output (i.e. as a list-within-a-list). Set to NULL to use all default
values.
nSim number of rounds of simulate - reconstruct - compare to perform, i.e. number of

simulated datasets.

32 EstConf

nCores number of computer cores to use. If >1, package parallel is used. Set to NULL
to use all but one of the available cores, as detected by parallel: :detectCores()
(using all cores tends to freeze up your computer). With large datasets, the
amount of computer memory may be the limiting factor for the number of cores
you can use.

quiet suppress messages. TRUE runs SimGeno and sequoia quietly, 'very' also sup-
presses other messages and the simulation counter when nCores=1 (there is no
simulation counter when nCores>1).

Details

The confidence probability is taken as the number of correct (matching) assignments, divided by
all assignments made in the observed (inferred-from-simulated) pedigree. In contrast, the false
negative & false positive assignment rates are proportions of the number of parents in the frue
(reference) pedigree. Each rate is calculated separately for dams & sires, and separately for each
category (Genotyped/Dummy(fiable)/X (none)) of individual, parent and co-parent.

This function does not know which individuals in the actual Pedigree are genotyped, so the confi-
dence probabilities need to be added to the Pedigree as shown in the example at the bottom.

A confidence of 1 means all assignments on simulated data were correct for that category-combination.
It should be interpreted as (and perhaps modified to) > 1 — 1/N, where sample size N is given in
the last column of the ConfProb and PedErrors dataframes in the output. The same applies for a
false negative/positive rate of 0 (i.e. to be interpreted as < 1/N).

Value
A list, with elements:

ConfProb See below
PedErrors See below
Pedigree.reference
the pedigree from which data was simulated
LifeHistData
Pedigree.inferred
a list with for each simulation the inferred pedigree based on the simulated data

SimSNPd a list with for each simulation the IDs of the individuals simulated to have been
genotyped

PedComp. fwd array with Counts from the ’forward’ PedCompare, from which PedErrors is
calculated

RunParams a list with the call to EstConf as a semi-nested list (args.sim, args.seq, nSim,

nCores), as well as the default parameter values for SimGeno and sequoia.

RunTime sequoia runtime per simulation in seconds, as measured by system. time()['elapsed'].

Dataframe ConfProb has 7 columns:

id.cat, dam.cat, sire.cat
Category of the focal individual, dam, and sire, in the pedigree inferred based
on the simulated data. Coded as G=genotyped, D=dummy, X=none

EstConf 33

dam. conf Probability that the dam is correct, given the categories of the assigned dam and
sire (ignoring whether or not the sire is correct)

sire.conf as dam. conf, for the sire
pair.conf Probability that both dam and sire are correct, given their categories
N Number of individuals per category-combination, across all nSim simulations

Array PedErrors has three dimensions:

class * FalseNeg(atives): could have been assigned but was not (individual + par-
ent both genotyped or dummifiable; Plonly in PedCompare).

* FalsePos(itives): no parent in reference pedigree, but one was assigned
based on the simulated data (P2only)

e Mismatch: different parents between the pedigrees

cat Category of individual + parent, as a two-letter code where the first letter indi-
cates the focal individual and the second the parent; G=Genotyped, D=Dummy,
T=Total
parent dam or sire
Assumptions

Because the actual true pedigree is (typically) unknown, the provided reference pedigree is used
as a stand-in and assumed to be the true pedigree, with unrelated founders. It is also assumed that
the probability to be genotyped is equal for all parents; in each round, a new random set of parents
(proportion set by ParMis) is mimicked to be non-genotyped. In addition, SNPs are assumed to
segregate independently.

An experimental version offering more fine-grained control is available at https://github.com/JiscaH/sequoiaExtra

Object size

The size in Kb of the returned list can become pretty big, as each of the inferred pedigrees is
included. When running EstConf many times for a range of parameter values, it may be prudent to
save the required summary statistics for each run rather than the full output.

Errors

If you have a large pedigree and try to run this function on multiple cores, you may run into "Cannot
allocate vector of size ..." errors or even unexpected crashes: there is not enough computer memory
for each separate run. Try reducing ‘nCores*.

See Also

SimGeno, sequoia, PedCompare.

34

Examples

estimate proportion of parents that are genotyped (= 1 - ParMis)
prop_parents_genotyped <- c(

dam = mean(unique(SeqOUT_griffin$Pedigree$dam) %in% rownames(Geno_griffin)),
sire = mean(unique(SeqOUT_griffin$Pedigree$sire) %in% rownames(Geno_griffin))

)

Example for parentage assignment only
conf_grif <- EstConf(Pedigree = SeqOUT_griffin$Pedigree,
LifeHistData = SeqOUT_griffin$LifeHist,

args.sim = list(nSnp = 150, # no. in actual data, or what-if
SnpError = 5e-3, # best estimate, or what-if
CallRate=0.9, # from SnpStats()

ParMis=c(0.28, 0.22)), # calc'd above
args.seq = list(Err=5e-3, Module="par"), # as in real run
nSim = 1, # try-out, proper run >=20 (10 if huge pedigree)
nCores=1)

parent-pair confidence, per category (Genotyped/Dummy/None)
conf_grif$ConfProb

Proportion of true parents that was correctly assigned
1 - apply(conf_grif$PedErrors, MARGIN=c('cat', 'parent'), FUN=sum, na.rm=TRUE)

add columns with confidence probabilities to pedigree
first add columns with category (G/D/X)
Ped.withConf <- getAssignCat(Pedigree = SeqOUT_griffin$Pedigree,
SNPd = SeqOUT_griffin$PedigreePar$id)
Ped.withConf <- merge(Ped.withConf, conf_grif$ConfProb, all.x=TRUE,
sort=FALSE) # (note: merge() messes up column order)
head(Ped.withConf[Ped.withConf$dam.cat=="G", J)

save output summary

Not run:

conf_griff[['Note']] <- 'You could add a note'

saveRDS(conf_grif[c('ConfProb', 'PedComp.fwd', 'RunParams', 'RunTime', 'Note')],
file = 'conf_200SNPs_Erre05_Callrate80.RDS"')

End(Not run)

overall assignment rate (AR), error rate (ER) & runtime
AR_max <- sum(!is.na(Ped_griffin$dam)) + sum(!is.na(Ped_griffin$sire))
ER_max <- 2*nrow(Ped_griffin)
PCT <- conf_grif$PedComp.fwd[,'TT',,] # Total-Total counts
list (AR = mean(apply(PCT[, 'Match',],1,sum)/AR_max), # sum over dam+sire
ER = mean(apply(PCT[,c('Mismatch', 'P2only'),],1,sum)/ER_max),
Time = mean(conf_grif$RunTime)/6@) # runtime in seconds --> minutes

P(actual FS | inferred as FS) etc.
Not run:
PairL <- list()

EstConf

FieldMums_griffin 35

for (i in 1:length(conf_grif$Pedigree.inferred)) { # nSim
cat(i, "\t")
PairL[[i]] <- ComparePairs(conf_grif$Pedigree.reference,
conf_grif$Pedigree.inferred[[i]],
GenBack=1, patmat=TRUE, ExcludeDummies = TRUE,
Return="Counts")
3
P(actual relationship (Ped1) | inferred relationship (Ped2))
PairRel.prop.A <- plyr::laply(PairL, function(M)
sweep(M, MARGIN='Ped2', STATS=colSums(M), FUN="/"))
PairRel.prop <- apply(PairRel.prop.A, 2:3, mean, na.rm=TRUE) #avg across sims
round(PairRel.prop, 3)
or: P(inferred relationship | actual relationship)
PairRel.prop2 <- plyr::laply(PairL, function(M)
sweep(M, MARGIN='Pedl1', STATS=rowSums(M), FUN="/"))

End(Not run)

Not run:

confidence probability vs. sibship size
source('https://raw.githubusercontent.com/JiscaH/sequoiakxtra/main/conf_vs_sibsize.R")
conf_grif_nOff <- Conf_by_nOff(conf_grif)

conf_grif_nOff['conf',,'GD',]

conf_grif_nOff['N',,'GD',]

End(Not run)

FieldMums_griffin Example field-observed mothers: griffins

Description
Example field pedigree used in vignette for PedCompare example. Non-genotyped females have
IDs ’BlueRed’, ’ YellowPink’, etc.

Usage

data(FieldMums_griffin)

Format

A data frame with 144 rows and 2 variables (id, mum)

Author(s)

Jisca Huisman, <jisca.huisman@gmail.com>

36 FindFamilies

See Also

SeqOUT_griffin for a sequoia run on simulated genotype data, Ped_griffin for the "true’ pedi-
gree.

Examples

Not run:
PC_griffin <- PedCompare(Pedl = cbind(FieldMums_griffin, sire=NA),
Ped2 = SeqOUT_griffin$Pedigree)

End(Not run)

FindFamilies Assign Family IDs

Description
Find clusters of connected individuals in a pedigree, and assign each cluster a unique family ID
(FID).

Usage

FindFamilies(Pedigree = NULL, SeqglList = NULL, MaybeRel = NULL)

Arguments
Pedigree dataframe with columns id - parentl - parent2; only the first 3 columns will be
used.
SeqlList list as returned by sequoia. If Pedigree is not provided, the element Pedigree
from this list will be used if present, and element Pedigreepar otherwise.
MaybeRel Output from GetMaybeRel, a dataframe with probable but non-assigned rela-
tives.
Details

This function repeatedly finds all ancestors and all descendants of each individual in turn, and
ensures they all have the same Family ID. Not all connected individuals are related, e.g. all grand-
parents of an individual will have the same FID, but will typically be unrelated.

When UseMaybeRel = TRUE, probable relatives are added to existing family clusters, or existing
family clusters may be linked together. Currently no additional family clusters are created.
Value

A numeric vector with length equal to the number of unique individuals in the pedigree (i.e. number
of rows in pedigree after running PedPolish on Pedigree).

GenoConvert

See Also

37

GetAncestors, GetDescendants, getGenerations

Examples

PedG <- SeqOUT_griffin$PedigreePar[,1:3]
FID_G <- FindFamilies(PedG)

PedG[FID_G==4,]

GenoConvert

Convert Genotype Data

Description

Convert genotype data in various formats to sequoia’s 1-column-per-marker format, PLINK’s ped
format, or Colony’s 2-columns-per-marker format.

Usage

GenoConvert(

InData = NULL,
InFile = NULL,

InFormat = "raw”,
OutFile = NA,
OutFormat = "seq”,
Missing = c("-9", "NA", "?2", "2", "NULL", "-1", c("@")[InFormat %in% c("col",
"ped”)1),
sep = C(” II’ Il\t”’ II,II’ H;II),
header = NA,
IDcol = NA,
FIDcol = NA,
FIDsep = "__",
dropcol = NA,
quiet = FALSE
)
Arguments
InData dataframe, matrix or genlight object with genotypes to be converted.
InFile character string with name of genotype file to be converted.
InFormat One of ’seq’ (sequoia), 'ped’ (PLINK .ped file), ’col’ (COLONY), 'raw’ (PLINK
—recodeA), ’vef® (requires library {vcfR}), ’single’ (1 column per SNP), or
’double’ (2 columns per SNP); see Details.
OutFile character string with name of converted file. If NA, return matrix with genotypes

in console (default); if NULL, write to ’GenoForSequoia.txt’ in current working
directory.

38

OutFormat

Missing

sep

header

IDcol

FIDcol

FIDsep

dropcol

quiet

Details

GenoConvert

as InFormat; only ’seq’, ’col’, and ’ped’ are implemented. For ’ped’ also a
sham .map file is created, so that the file can be read by PLINK. Only for "ped’
are extensions .ped & .map added to the specified OutFile filename.

vector with symbols interpreted as missing data. *0’ is missing data for InFormats
’col’ and ’ped’ only.

vector with field separator strings that will be tried on InFile. Ignored if pack-
age data.table is present or if InFormat="vcf' or 'vcf.gz’. The OutFile sepa-
rator uses the write. table default, i.e. one blank space.

a logical value indicating whether the file contains a header as its first line. If
NA (default), set to TRUE for ‘raw’, and FALSE otherwise.

number giving the column with individual IDs; O indicates the rownames (for
InData only). If NA (default), set to 2 for InFormat 'raw’ and ’ped’, and oth-
erwise to 1 for InFile and O (rownames) for InData, except when InData has a
column labeled 'ID’.

column with the family IDs, if any are wished to be used. This is column 1 for
InFormat 'raw’ and ’seq’, but those are by default not used.

string used to paste FID and IID together into a composite-ID (value passed to
paste’s collapse). This joining can be reversed using PedStripFID.

columns to exclude from the output data, on top of IDcol and FIDcol (which
become rownames). When NA, defaults to columns 3-6 for InFormat 'raw’ and
’seq’. Can also be used to drop some SNPs, see example below on how to do
this for the 2-columns-per-SNP input formats.

suppress messages and warnings.

The first two arguments are interchangeable, and can be given unnamed. The first argument is
assumed to be a file name if it is of class ’character’ and length 1, and to be the genetic data if it is
a matrix or dataframe.

If package data.table is detected, fread is used to read in the data from file. Otherwise, a combi-
nation of readLines and strsplit is used.

Value

A genotype matrix in the specified output format; the default sequoia format (’seq’) has 1 column
per SNP coded in 0/1/2 format (major homozygote /heterozygote /minor homozygote) with -9 for
missing values, sample IDs in row names and SNP names in column names. If *OutFile’ is specified,
the matrix is written to this file and nothing is returned inside R.

Input formats

The following formats can be specified by InFormat:

seq (sequoia) genotypes are coded as 0, 1, 2, missing as —9 (in input any negative number or NA
are OK), in 1 column per marker. Column 1 contains IDs, there is no header row.

GenoConvert 39

ped (PLINK) genotypes are coded as A, C, T, G, missing as 0, in 2 columns per marker. The first 6
columns are descriptive (1:FID, 2:IID, 3 to 6 ignored). If an associated .map file exists, SNP
names will be read from there.

raw (PLINK) genotypes are coded as 0, 1, 2, missing as NA, in 1 column per marker. The first
6 columns are descriptive (1:FID, 2:1ID, 3 to 6 ignored), and there is a header row. This is
produced by PLINK’s option —recode A

col (Colony) genotypes are coded as numeric values, missing as 0, in 2 columns per marker. Col-
umn 1 contains IDs.

vef (VCF) genotypes are coded as *0/0°,’0/1°,’1/1°, variable number of header rows followed by 1
row per SNP, with various columns of metadata followed by 1 column per individual. Requires
package vefR.

single 1 column per marker, otherwise unspecified

double 2 columns per marker, otherwise unspecified

For each InFormat, its default values for Missing, header, IDcol, FIDcol, and dropcol can be
overruled by specifying the corresponding input parameters.

Error messages

Occasionally when reading in a file GenoConvert may give an error that 'rows have unequal length’.
GenoConvert makes use of readLines and strsplit, which is much faster than read. table for
large datafiles, but also more sensitive to unusual line endings, unusual end-of-file characters, or
invisible characters (spaces or tabs) after the end of some lines. In these cases, try to read the data
from file using read.table or read.csv, and then use GenoConvert on this dataframe or matrix, see
example.

Any warnings generated by CheckGeno regarding SNPs scored for few individuals and/or individu-
als scored for few SNPs etc. are only for your information; none are excluded from GenoConvert’s
output, but these SNPs and/or individuals will be excluded during pre-processing of the data in any
of the other functions in this package.

Author(s)

Jisca Huisman, <jisca.huisman@gmail.com>

See Also

CheckGeno, SnpStats, LHConvert.

Examples

Not run:
Requires PLINK installed & in system PATH:

tinker with window size, window overlap and VIF to get a set of

400 - 800 markers (100-200 enough for just parentage):

system("cmd”, input = "plink --file mydata --indep 50 5 2")

system("cmd”, input = "plink --file mydata --extract plink.prune.in
--recodeA --out P1linkOUT")

40 Geno_griffin

GenoM <- GenoConvert(InFile = "PlinkOUT.raw", InFormat='raw')
which is the same as
GenoM <- GenoConvert(PlinkOUT.raw, InFormat='single',
IDcol=2, dropcol=c(1,3:6), header=TRUE)
(but it will complain that InFormat='single' is not consistent with .raw
file extension)

save time on file conversion next time:
write.table(GenoM, file="Geno_sequoia.txt"”, quote=FALSE, col.names=FALSE)
GenoM <- as.matrix(read.table("Geno_sequoia.txt"”, row.names=1, header=FALSE))

drop some SNPs, e.g. after a warning of >2 alleles:
dropSNP <- c¢(5,68,101,128)
GenoM <- GenoConvert(ColonyFile, InFormat = "col”,
dropcol = 1 + c(2*dropSNP-1, 2xdropSNP))

circumvent a 'rows have unequal length' error:
GenoTmp <- as.matrix(read.table("mydata.txt”, header=TRUE, row.names=1))

GenoM <- GenoConvert(InData=GenoTmp, InFormat="single", IDcol=0)

can also write to file, e.g. simulated genotypes:
GenoConvert(Geno_A, InFormat='seq', OutFormat='ped', OutFile = sim_genotypes)

End(Not run)

Geno_griffin Example genotype file: Griffins

Description

Simulated genotype data from Pedigree Ped_griffin

Usage
data(Geno_griffin)

Format

A genotype matrix with 142 rows (individuals) and 200 columns (SNPs). Each SNP is coded as
0/1/2 copies of the reference allele, with -9 for missing values. Ids are stored as rownames.

Author(s)

Jisca Huisman, <jisca.huisman@gmail.com>

See Also

SimGeno

Geno_HSg5 41

Geno_HSg5 Example genotype file: "HSg5’

Description

Simulated genotype data for all* individuals in Pedigree Ped_HSg5 (*: with 40

Usage

data(Geno_HSg5)

Format

A genotype matrix with 920 rows (ids) and 200 columns (SNPs). Each SNP is coded as 0/1/2 copies
of the reference allele, with -9 for missing values. Ids are stored as rownames.

Author(s)

Jisca Huisman, <jisca.huisman@gmail.com>

See Also

LH_HSg5, SimGeno, SeqOUT_HSg5

Examples

Not run:

this output was created as follows:

Geno_HSg5 <- SimGeno(Ped = Ped_HSg5, nSnp = 200, ParMis=0.4,
CallRate = 0.9, SnpError = 0.005)

End(Not run)

GetAncestors Get ancestors

Description

get all ancestors of an individual

Usage

GetAncestors(id, Pedigree)

42 getAssignCat

Arguments
id id of the individual
Pedigree dataframe with columns id - parentl - parent2; only the first 3 columns will be
used.
Value

a list with as first element id, second parents, third grandparents, etc.. Each element is a vector with
ids, the first three elements are named, the rest numbered. Ancestors are unsorted within each list
element.

Examples

Anc_i200 <- GetAncestors('i200_2010_F', Ped_griffin)

getAssignCat Assignability of Reference Pedigree

Description

Identify which individuals are SNP genotyped (G), and which can potentially be substituted by a
dummy individual ("dummifiable’, D).

Usage

getAssignCat(Pedigree, SNPd, minSibSize = "1sib1GP")

Arguments
Pedigree dataframe with columns id-dam-sire. Reference pedigree.
SNPd character vector with ids of genotyped individuals.
minSibSize minimum requirements to be considered dummifiable is 1 genotyped offspring,

and

* ’"1sib1GP’: at least 1 grandparent (G or D) or 1 more offspring (G or D);
these are potentially assignable by sequoia

 ’2sib’: atleast 1 more offspring (i.e. 2 siblings). Old default for PedCompare.

GetDescendants 43

Details

Non-genotyped individuals can potentially be substituted by a dummy during pedigree reconstruc-
tion by sequoia when they have at least one genotyped offspring, and either one additional off-
spring (genotyped or dummy) or an genotyped/dummy parent (i.e. a grandparent to the genotyped
offspring).

Note that this is the bare minimum requirement; e.g. grandparents are often indistinguishable from
full avuncular (see sequoia and vignette for details). G-G parent-offspring pairs are only assignable
if there is age information, or information from the surrounding pedigree, to tell which of the two
is the parent.

It is assumed that all individuals in SNPd have been genotyped for a sufficient number of SNPs. To
identify samples with a too-low call rate, use CheckGeno. To calculate the call rate for all samples,
see the examples below.

Value

The Pedigree dataframe with 3 additional columns, id.cat, dam.cat and sire.cat, with coding
similar to that used by PedCompare:

G Genotyped

D Dummy or ’dummifiable’

X Not genotyped and not dummifiable
Examples

PedA <- getAssignCat(Ped_HSg5, rownames(SimGeno_example))
tail(PedA)
table(PedA$dam.cat, PedA$sire.cat, useNA="ifany")

calculate call rate
Not run:
CallRates <- apply(MyGenotypes, MARGIN=1,

FUN = function(x) sum(x!=-9)) / ncol(MyGenotypes)
hist(CallRates, breaks=50, col="grey")
GoodSamples <- rownames(MyGenotypes)[CallRates > 0.8]
threshold depends on total number of SNPs, genotyping errors, proportion
of candidate parents that are SNPd (sibship clustering is more prone to
false positives).
PedA <- getAssignCat(MyOldPedigree, rownames(GoodSamples))

End(Not run)

GetDescendants Get descendants

Description

get all descendants of an individual

44 getGenerations

Usage

GetDescendants(id, Pedigree)

Arguments
id id of the individual
Pedigree dataframe with columns id - parentl - parent2; only the first 3 columns will be
used.
Value

a list with as first element id, second offspring, third grand-offspring, etc.. Each element is a vector
with ids, the first three elements are named, the rest numbered.

getGenerations Count Generations

Description

For each individual in a pedigree, count the number of generations since its most distant pedigree
founder.

Usage
getGenerations(Ped, StopIfInvalid = TRUE)

Arguments
Ped dataframe, pedigree with the first three columns being id - dam - sire. Column
names are ignored, as are additional columns.

StopIfInvalid if a pedigree loop is detected, stop with an error (TRUE, default) or return the
Pedigree, to see where the problem(s) occur.

Value

A vector with the generation number for each individual, starting at O for founders. Offspring of GO
X GO are G1, offspring of GO X G1 or G1 x G1 are G2, etc. NA indicates a pedigree loop where an
individual is its own ancestor (or that the pedigree has >1000 generations).

If no output name is specified, no results are returned, only an error message when the pedigree
contains a loop.

To get more details about a pedigree loop, you can use https://github.com/JiscaH/sequoiaExtra/blob/main/find_pedigree_loop

See Also

GetAncestors, GetDescendants to get all ancestors resp. descendants of a specific individual
(with a warning if it is its own ancestor); FindFamilies to find connected sub-pedigrees.

GetLLRAge 45

Examples

returns nothing if OK, else error:
getGenerations(SeqOUT_griffin$Pedigree)

returns vector with generation numbers:

G <- getGenerations(SeqOUT_griffin$Pedigree, StopIfInvalid=FALSE)
table(G, useNA='ifany')

Ped_plus_G <- cbind(SeqOUT_griffin$Pedigree, G)

GetLLRAge LLR-age from Ageprior Matrix

Description

Get log10-likelihood ratios for a specific age difference from matrix AgePriorExtra.

Usage

GetLLRAge (AgePriorExtra, agedif, patmat)

Arguments

AgePriorExtra matrix in sequoia output

agedif vector with age differences, in whole numbers. Must occur in rownames of
AgePriorExtra.
patmat numeric vector; choose maternal (1), paternal (2) relatives, or for each relation-

ship the most-likely alternative (3).

Details

This is a simple helper function to extract values from AgePriorExtra, e.g. to use together with
CalcPairLL.

Value

A matrix with nrow equal to the length of agedif, and 7 columns: PO-FS-HS-GP-FA-HA-U.

Examples

For a pair with unknown age difference, explore the difference age-based
LLRs for all relationships, for a range of plausible age differences.
PairsG <- data.frame(ID1 = 'A', ID2 = 'B', AgeDif = rep(c(-2,2,3),2),
PatMat = rep(1:2, each=3))
cbind(PairsG,
GetLLRAge (SeqOUT_griffin$AgePriorExtra,
agedif = PairsG$AgeDif, patmat = PairsG$PatMat))

46 GetMaybeRel
GetMaybeRel Find Putative Relatives
Description
Identify pairs of individuals likely to be related, but not assigned as such in the provided pedigree.
Usage
GetMaybeRel(
GenoM = NULL,
SeqgList = NULL,
Pedigree = NULL,
LifeHistData = NULL,
AgePrior = NULL,
Module = "par”,
Complex = "full",
Herm = "no",
Err = 1e-04,
ErrFlavour = "version2.9",
Tassign = 0.5,
Tfilter = -2,
MaxPairs = 7 * nrow(GenoM),
quiet = FALSE
)
Arguments

GenoM numeric matrix with genotype data: One row per individual, one column per
SNP, coded as 0, 1, 2, missing values as a negative number or NA. Row names
must be individual IDs, column names are ignored. You can reformat data with
GenoConvert, or use other packages to get it into a genlight object and then use
as.matrix.

SeqlList list with output from sequoia. SeqlList$Pedigree is used if present, and
SegList$PedigreePar otherwise, and overrides the input parameter Pedigree.
If *Specs’ is present, its elements override all input parameters with the same
name. The list elements ‘LifeHist’, ‘AgePriors’, and ‘ErrM’ are also used if
present, and similarly override the corresponding input parameters.

Pedigree dataframe with id - dam - sire in columns 1-3. May include non-genotyped
individuals, which will be treated as dummy individuals. When provided, all
likelihoods (and thus all maybe-relatives) are conditional on this pedigree. Note:
SeqList$Pedigree or SeqList$PedigreePar take precedent (for this function
only).

LifeHistData data.frame with up to 6 columns:

ID max. 30 characters long

GetMaybeRel

AgePrior

Module

Complex

Herm

Err

ErrFlavour

Tassign

Tfilter

47

Sex 1 = female, 2 = male, 3 = unknown, 4 = hermaphrodite, other numbers or
NA = unknown

BirthYear birth or hatching year, integer, with missing values as NA or any
negative number.

BY.min minimum birth year, only used if BirthYear is missing

BY.max maximum birth year, only used if BirthYear is missing

Year.last Last year in which individual could have had offspring. Can e.g. in
mammals be the year before death for females, and year after death for
males.

"Birth year" may be in any arbitrary discrete time unit relevant to the species
(day, month, decade), as long as parents are never born in the same time unit as
their offspring, and only integers are used. Individuals do not need to be in the
same order as in ‘GenoM’, nor do all genotyped individuals need to be included.

Agepriors matrix, as generated by MakeAgePrior and included in the sequoia
output. Affects which relationships are considered possible (only those where
P(A|R)/P(A) > 0).

type of relatives to check for. One of

par parent - offspring pairs

ped all first and second degree relatives

When ’par’, all pairs are returned that are more likely parent-offspring than un-
related, potentially including pairs that are even more likely to be otherwise
related.

Breeding system complexity. Either "full" (default), "simp" (simplified, no ex-
plicit consideration of inbred relationships), "mono" (monogamous).

Hermaphrodites, either "no", "A" (distinguish between dam and sire role, default
if at least 1 individual with sex=4), or "B" (no distinction between dam and sire
role). Both of the latter deal with selfing.

assumed per-locus genotyping error rate, as a single number, or a length 3 vec-
tor with P(homlhom), P(hetthom), P(homlhet), or a 3x3 matrix. See details
below. The error rate is presumed constant across SNPs, and missingness is
presumed random with respect to actual genotype. Using Err >5% is not rec-
ommended, and Err >10% strongly discouraged. See Err_RADseq to convert
per-allele rates at homozygous and heterozygous sites to the required length-3
vector, and ErrToM for further genotyping error details.

function that takes Err (single number) as input, and returns a length 3 vector
or 3x3 matrix, or choose from inbuilt options ’version2.9’, ’version2.0’, ’ver-
sionl.3’, or ’versionl.1’, referring to the sequoia version in which they were the
default. Ignored if Err is a vector or matrix.

minimum LLR required for acceptance of proposed relationship, relative to next
most likely relationship. Higher values result in more conservative assignments.
Must be zero or positive.

threshold log10-likelihood ratio (LLR) between a proposed relationship versus
unrelated, to select candidate relatives. Typically a negative value, related to the
fact that unconditional likelihoods are calculated during the filtering steps. More
negative values may decrease non-assignment, but will increase computational
time.

48 GetMaybeRel
MaxPairs the maximum number of putative pairs to return.
quiet logical, suppress messages.

Details

When Module="par",

the age difference of the putative pair is temporarily set to NA so that

genetic parent-offspring pairs declared to be born in the same year may be discovered. When
Module="ped", only relationships possible given the age difference, if known from the LifeHist-

Data, are considered.

Value

A list with

MaybePar A dataframe with non-assigned likely parent-offspring pairs, with columns:

ID1
ID2
TopRel: the most likely relationship, using abbreviations listed below

LLR: Logl0-Likelihood Ratio between most likely and next most likely
relationship

OH: Number of loci at which the two individuals are opposite homozygotes
BirthYearl: Birth year of ID1 (copied from LifeHistData)

BirthYear2

AgeDif: Age difference; BirthYear] - BirthYear2

Sex1: Sex of ID1 (copied from LifeHistData)

Sex2

SnpdBoth: Number of loci at which the two individuals are both success-
fully genotyped

MaybeRel A dataframe with non-assigned likely pairs of relatives, with columns identical
to MaybePar

MaybeTrio A dataframe with non-assigned parent-parent-offspring trios, with columns:

ID

parentl

parent2

TopRel: the most likely relationship, using abbreviations listed below

LLRparentl: LoglO-Likelihood Ratio between parentl being a parent of
ID vs the next most likely relationship between the pair, ignoring parent2

LLRparent2: as LLRparentl

LLRpair: LLR for the parental pair, versus the next most likely configura-
tion between the three individuals (with one or neither parent assigned)

OHparent1: Number of loci at which ID and parent] are opposite homozy-
gotes

OHparent2: as OHparent1

GetMaybeRel 49

* MEpair: Number of Mendelian errors between the offspring and the parent
pair, includes OH as well as e.g. parents being opposing homozygotes, but
the offspring not being a heterozygote. The offspring being OH with both
parents is counted as 2 errors.

* SNPd.id.parent1: Number of loci at which ID and parent1 are both success-
fully genotyped

* SNPd.id.parent2: as SNPd.id.parent1

The following categories are used in column *TopRel’, indicating the most likely relationship cate-
gory:

PO Parent-Offspring
FS Full Siblings
HS Half Siblings
GP GrandParent - grand-offspring
FA Full Avuncular (aunt/uncle)
2nd 2nd degree relatives, not enough information to distinguish between HS,GP and
FA
Q Unclear, but probably 1st, 2nd or 3rd degree relatives
See Also

sequoia to identify likely pairs of duplicate genotypes and for pedigree reconstruction; GetRelM to
identify all pairs of relatives in a pedigree; CalcPairLL for the likelihoods underlying the LLR.

Examples

Not run:
without conditioning on pedigree
MaybeRel_griffin <- GetMaybeRel(GenoM=Geno_griffin, Err=0.001, Module='par"')

End(Not run)
names (MaybeRel_griffin)

conditioning on pedigree

MaybePO <- GetMaybeRel(GenoM = Geno_griffin, SeqlList = SeqOUT_griffin,
Module = 'par')

head (MaybePO$MaybePar)

instead of providing the entire SeqlList, one may specify the relevant
elements separately
Maybe <- GetMaybeRel(GenoM = Geno_griffin,
Pedigree = SeqOUT_griffin$PedigreePar,
LifeHistData = LH_griffin,
Err=0.0001, Complex = "full"”,
Module = "ped")
head(Maybe$MaybeRel)

visualise results, turn dataframe into matrix first:

50

GetRelM

MaybeM <- GetRelM(Pairs = Maybe$MaybeRel)

PlotRelPairs(MaybeM)

or combine with pedigree (note suffix '?")

RelM <- GetRelM(Pedigree =SeqOUT_griffin$PedigreePar, Pairs = Maybe$MaybeRel)
PlotRelPairs(RelM)

GetRelM

Matrix with Pairwise Relationships

Description

Generate a matrix or 3D array with all pairwise relationships from a pedigree or dataframe with

pairs.

Usage
GetRelM(

Pedigree

Pairs

GenBack =1,

NULL,

patmat = FALSE,
directed = TRUE,

Return = "Matrix”,
Pairs_suffix = "?"
)
Arguments

Pedigree dataframe with columns id - dam - sire.

Pairs dataframe with columns ID1 - ID2 - Rel, e.g. as returned by GetMaybeRel.
Combining Pedigree and Pairs works best if the relationships are coded as
listed below.

GenBack number of generations back to consider; 1 returns parent-offspring and sibling
relationships, 2 also returns grand-parental, avuncular and first cousins.

patmat logical, distinguish between paternal versus maternal relative pairs? For avun-
cular pairs, the distinction is never made.

directed logical, distinguish between e.g. ID1=offspring, ID2=mother ("M’) and ID 1=mother,
ID2=offspring (’O’)? Defaults to TRUE; if FALSE both are are scored as "PO’,
as are father-offspring pairs, and all grandparent— grand-offspring pairs are scored
as ’GPO’, and avuncular pairs as 'TFNA’ and "HNA’. Not (currently) compatible
with patmat. When Return=’List’, each pair is included twice (as ID1-ID2 &
ID2-ID1)

Return ’Matrix’, ’Array’, or 'List’. "Matrix’ returns an N x N matrix with the closest

relationship between each pair. ’Array’ returns an N x N x R array with for each
of the R considered relationships whether it exists between the pair (1) or not

GetRelM 51

(0). See Details below. ’List’ returns a list with for each of the R considered
relationships a 2-column matrix with the IDs of the pairs having such a relation-
ship. The size of the list (in Mb) is much smaller than for the matrix or array,
and this is therefore the only format suitable for pedigrees with many thousands
of individuals. If Pairs is specified, the only possible return type is *Matrix’.

Pairs_suffix symbol added to the relationship abbreviations derived from Pairs, when both
Pedigree and Pairs are provided. Can be an empty string.

Details

Double relationships are ignored when Return='Matrix', but not when Return="Array'. For
example, when A and B are both mother-offspring and paternal siblings (A mated with her father
to produce B), only the mother-offspring relationship will be indicated when Return="Matrix'.

Note that full siblings are the exception to this rule: in the Array they will be indicated as 'FS’
only, and not as "MHS’ or ’PHS’. Similarly, full avuncular pairs are not indicated as "HA’. Double
half-avuncular relationships are indicated as both FA and HA.

When Pairs is provided, GenBack and patmat are ignored, and no check is performed if the abbre-
viations are compatible with other functions.

Value

If Return="Matrix', an N x N square matrix, with N equal to the number of rows in Pedigree
(after running PedPolish) or the number of unique individuals in Pairs. If Return="Array’', an
N x N x R array is returned, with R, the number of different relationships, determined by GenBack
and patmat.

The following abbreviations are used within the returned Matrix, or as names of the 3rd dimension
in the Array or of the List:

S Self

M Mother

P Father

MP Mother or Father (patmat=FALSE)
0 Offspring

FS Full sibling

MHS Maternal half-sibling

PHS Paternal half-sibling

XHS other half-sibling (hermaphrodites)
HS half-sibling (patmat=FALSE)

MGM Maternal grandmother

MGF Maternal grandfather

PGM Paternal grandmother

PGF Paternal grandfather

GP Grandparent (patmat=FALSE)

52 Inherit_patterns

GO Grand-offspring

FA Full avuncular; maternal or paternal aunt or uncle.

FN Full nephew/niece

HA Half avuncular

HN Half nephew/niece

DFC1 Double full first cousin

FC1 Full first cousin

U Unrelated (or otherwise related)

X Unknown, e.g. when only Pairs is provided and does not include this pair
See Also

ComparePairs for comparing pairwise relationships between two pedigrees; PlotRelPairs.

Examples

Rel.griffin <- GetRelM(Ped_griffin, directed=FALSE) # few categories
Rel.griffin <- GetRelM(Ped_griffin, patmat=TRUE, GenBack=2) # many cat.
table(as.vector(Rel.griffin))

turning matrix into vector first makes table() much faster
PlotRelPairs(Rel.griffin)

Inherit_patterns Inheritance patterns

Description

Inheritance patterns used by SimGeno for non-autosomal SNPs, identical to those in Inherit.xIsx

Usage

data(Inherit_patterns)

Format

An array with the following dimensions:

d1 type: autosomal, x-chromosome, y-chromosome, or mtDNA
d2 offspring sex: female, male, or unknown

d3 offspring genotype: aa (0), aA (1), Aa (1), or AA (2)

d4 mother genotype

d5 father genotype

LHConvert 53

Author(s)

Jisca Huisman, <jisca.huisman@gmail.com>

See Also

SimGeno

LHConvert Extract Sex and Birth Year from PLINK File

Description

Convert the first six columns of a PLINK .fam, .ped or .raw file into a three-column lifehistory file
for sequoia. Optionally FID and IID are combined.

Usage

LHConvert(
PlinkFile = NULL,
UseFID = FALSE,
SwapSex = TRUE,

FIDsep = "__",
LifeHistData = NULL
)
Arguments
PlinkFile character string with name of genotype file to be converted.
UseFID use the family ID column. The resulting ids (rownames of GenoM) will be in
the form FID _IID.
SwapSex change the coding from PLINK default (1=male, 2=female) to sequoia default
(1=female, 2=male); any other numbers are set to NA.
FIDsep characters inbetween FID and IID in composite-ID. By default a double under-

score is used, to avoid problems when some IIDs contain an underscore. Only
used when UseFID=TRUE.

LifeHistData dataframe with additional sex and birth year info. In case of conflicts, LifeHist-
Data takes priority, with a warning. If UseFID=TRUE, IDs in LifeHistData are
assumed to be already as FID__IID.

Details

The first 6 columns of PLINK .fam, .ped and .raw files are by default FID - IID - father ID (ignored)
- mother ID (ignored) - sex - phenotype.

Value

A dataframe with id, sex and birth year, which can be used as input for sequoia.

54 LH_griffin

See Also

GenoConvert, PedStripFID to reverse UseFID.

Examples

Not run:
combine FID and IID in dataframe with additional sex & birth years
ExtralH$FID_IID <- paste(ExtraLH$FID, ExtralLH$IID, sep = "__"

LH.new <- LHConvert(PlinkFile, UseFID = TRUE, FIDsep = "__",
LifeHistData = ExtralLH)

End(Not run)

LH_griffin Example life history data: griffins

Description

Example life history data associated with the griffin pedigree.

Usage
data(LH_griffin)

Format

A data frame with 200 rows and 3 variables (ID, Sex, BirthYear)

Author(s)

Jisca Huisman, <jisca.huisman@gmail.com>

See Also
Ped_griffin, SeqOUT_griffin

Examples

Not run:

BY <- rep(c(2001:2010), each=20)

Sex <- sample.int(n=2, size=200, replace=TRUE)

ID <- paste@("i"”, formatC(1:200, width=3, flag="0"), "_", BY, "_",
ifelse(Sex==1, "F", "M"))

LH_griffin <- data.frame(ID, Sex, BirthYear = BY)

End(Not run)

LH HSg5 55

LH_HSg5 Example life history file: "HSg5’

Description

This is the life history file associated with Ped_HSg5, which is Pedigree II in the paper.

Usage
data(LH_HSg5)

Format
A data frame with 1000 rows and 3 variables:

ID Female IDs start with ’a’, males with ’b’; the next 2 numbers give the generation number (00 —
05), the last 3 numbers the individual ID number (runs continuously across all generations)

Sex 1 =female, 2 = male
BirthYear from 2000 (generation 0, founders) to 2005

Author(s)

Jisca Huisman, <jisca.huisman@gmail.com>

References
Huisman, J. (2017) Pedigree reconstruction from SNP data: Parentage assignment, sibship cluster-
ing, and beyond. Molecular Ecology Resources 17:1009-1024.

See Also

Ped_HSg5 sequoia

LLtoProb transform log-likelihoods to probabilities

Description

transform a vector with log10 likelihoods to a vector with probabilities summing to one.

Usage
LLtoProb(LLv)

Arguments

LLv a vector with log10-likelihoods. All values >0 are set to NA.

56 MakeAgePrior

Details

The returned probabilities are calculated from the likelihoods used throughout the rest of this pack-
age, by scaling them to sum to one across all possible relationships. For Complex="'simp' these are
PO=parent-offspring, FS=full siblings, HS=half siblings, GP=grand-parental, FA=full avuncular,
HA=third degree relatives (incl half avuncular), and U=unrelated. For Complex="'full' there are
numerous double relationship considered (PO & HS, HS & HA, etc), making both numerator and
denominator in the scaling step less unambiguous, and the returned probabilities an approximation.

Computational under/overflow issues are reduced by subtracted the maximum value before convert-
ing from log to regular scale. Probabilities that would still be smaller than the machine precision
((LL = min(LL)/2) <log1@(.Machine$double.xmin)) are set to NA en then to 0, instead of -Inf,
to avoid issues when scaling to sum to 1.

Value

a vector with probabilities, with the same length and names.

Examples

LL_pairs <- CalcPairlLL(data.frame(ID1="'i042_2003_F',
ID2=c('i@15_2001_F', 'i022_2002_F', 'i035_2002_F')),
GenoM = Geno_griffin, Complex='simp', Err=1e-3, Plot=FALSE)
prob_pairs <- t(apply(LL_pairs[,10:16], MARGIN=1, LLtoProb))
- or -
prob_pairs <- plyr::aaply(as.matrix(LL_pairs[,10:16]), .margin=1, LLtoProb)
round(prob_pairs, 3)

1035_2002_F is MHS of i042_2003_F, but when not conditioning on any other
relatives has a higher LL to be 3rd degree relative (HA)
(possibly genotyping errors, or just randomness of Mendelian inheritance)

MakeAgePrior Age Priors

Description

Estimate probability ratios P(R|A)/P(R) for age differences A and five categories of parent-
offspring and sibling relationships R.

Usage

MakeAgePrior(
Pedigree = NULL,
LifeHistData = NULL,
MinAgeParent = NULL,
MaxAgeParent = NULL,
Discrete = NULL,

MakeAgePrior

57

Flatten = NULL,
lambdaNW = -1o0g(0.5)/100,

Smooth = TRUE
Plot = TRUE,

Return = "LR"
quiet = FALSE

Arguments

Pedigree

LifeHistData

MinAgeParent

MaxAgeParent

Discrete

Flatten

lambdaNW

Smooth

’

’

dataframe with id - dam - sire in columns 1-3, and optional column with birth
years. Other columns are ignored.

dataframe with 3 or 5 columns: id - sex (not used) - birthyear (optional columns
BY.min - BY.max - YearLast not used), with unknown birth years coded as neg-
ative numbers or NA. "Birth year" may be in any arbitrary discrete time unit
relevant to the species (day, month, decade), as long as parents are never born
in the same time unit as their offspring. It may include individuals not in the
pedigree, and not all individuals in the pedigree need to be in LifeHistData.

minimum age of a parent, a single number (min across dams and sires) or a
vector of length two (dams, sires). Defaults to 1. When there is a conflict with
the minimum age in the pedigree, the pedigree takes precedent.

maximum age of a parent, a single number (max across dams and sires) or a
vector of length two (dams, sires). If NULL, it will be set to latest - earliest birth
year in LifeHistData, or estimated from the pedigree if one is provided. See
details below.

discrete generations? By default (NULL), discrete generations are assumed if
all parent-offspring pairs have an age difference of 1, and all siblings an age
difference of 0, and there are at least 20 pairs of each category (mother, father,
maternal sibling, paternal sibling). Otherwise, overlapping generations are pre-
sumed. When Discrete=TRUE (explicitly or deduced), Smooth and Flatten are
always automatically set to FALSE. Use Discrete=FALSE to enforce (potential
for) overlapping generations.

logical. To deal with small sample sizes for some or all relationships, calcu-
late weighed average between the observed age difference distribution among
relatives and a flat (0/1) distribution. When Flatten=NULL (the default) auto-
matically set to TRUE when there are fewer than 20 parents with known age of
either sex assigned, or fewer than 20 maternal or paternal siblings with known
age difference. Also advisable if the sampled relative pairs with known age
difference are non-typical of the pedigree as a whole.

control weighing factors when Flatten=TRUE. Weights are calculated as W (R) =
1 — exp(—lambdaNW % N(R)), where N (R) is the number of pairs with re-
lationship R for which the age difference is known. Large values (>0.2) put
strong emphasis on the pedigree, small values (<0.0001) cause the pedigree to
be ignored. Default results in W = 0.5 for N = 100.

smooth the tails of and any dips in the distribution? Sets dips (<10% of average
of neighbouring ages) to the average of the neighbouring ages, sets the age after
the end (oldest observed age) to LR(end)/2, and assigns a small value (0.001) to

58

MakeAgePrior

the ages before the front (youngest observed age) and after the new end. Peaks
are not smoothed out, as these are less likely to cause problems than dips, and
are more likely to be genuine characteristics of the species. Is set to FALSE when
generations do not overlap (Discrete=TRUE).

Plot plot a heatmap of the results?
Return return only a matrix with the likelihood-ratio P(A|R)/P(A) ("LR") or a list
including also various intermediate statistics ("all") ?
quiet suppress messages.
Details

o4, r 1s the ratio between the observed counts of pairs with age difference A and relationship R
(N4, r), and the expected counts if age and relationship were independent (N, * pa * pRr).

During pedigree reconstruction, o4 g are multiplied by the genetic-only P(R|G) to obtain a proba-
bility that the pair are relatives of type R conditional on both their age difference and their genotypes.

The age-difference prior is used for pairs of genotyped individuals, as well as for dummy individu-
als. This assumes that the propensity for a pair with a given age difference to both be sampled does
not depend on their relationship, so that the ratio P(A|R)/P(A) does not differ between sampled
and unsampled pairs.

For further details, see the vignette.

Value

A matrix with the probability ratio of the age difference between two individuals conditional on
them being a certain type of relative (P(A|R)) versus being a random draw from the sample (P (A)).
Assuming conditional independence, this equals the probability ratio of being a certain type of
relative conditional on the age difference, versus being a random draw.

The matrix has one row per age difference (from zero up to max(MaxAgeParent)+1) and five
columns, one for each relationship type, with abbreviations:

M Mothers
Fathers
FS Full siblings
MS Maternal half-siblings
PS Paternal half-siblings

When Return="all’, a list is returned with the following elements:

BirthYearRange vector length 2
MaxAgeParent vector length 2, see details

tbl1A.R matrix with the counts per age difference (rows) / relationship (columns) com-
bination, plus a column *X’ with age differences across all pairs of individuals

PA.R Proportions, i.e. tblA.R divided by its colSums, with full-sibling correction
applied if necessary (see vignette).

LR.RU.A.raw Proportions PA.R standardised by global age difference distribution (column
’X’); LR.RU. A prior to flattening and smoothing

MakeAgePrior 59

Weights vector length 4, the weights used to flatten the distributions
LR.RU.A the ageprior, flattened and/or smoothed
Specs. AP the names of the input Pedigree and LifeHistData (or NULL), lambdaNW, and

the ’effective’ settings (i.e. after any automatic update) of Discrete, Smooth,
and Flatten.

CAUTION

The small sample correction with Smooth and/or Flatten prevents errors in one dataset, but may in-
troduce errors in another; a single solution that fits to the wide variety of life histories and datasets is
impossible. Please do inspect the matrix, e.g. with PlotAgePrior, and adjust the input parameters
and/or the output matrix as necessary.

A few outlier birth years can heavily influence the output; these may be easiest to spot with
Smooth=FALSE, Flatten=FALSE.

Single cohort

When all individuals in LifeHistData have the same birth year, it is assumed that Discrete=TRUE
and MaxAgeParent=1. Consequently, it is assumed there are no avuncular pairs present in the
sample; cousins are considered as alternative. To enforce overlapping generations, and thereby the
consideration of full- and half- avuncular relationships, set MaxAgeParent to some value greater
than 1.

When no birth year information is given at all, a single cohort is assumed, and the same rules apply.

Other time units

"Birth year" may be in any arbitrary time unit relevant to the species (day, month, decade), as long
as parents are always born before their putative offspring, and never in the same time unit (e.g.
parent’s BirthYear= 1 (or 2001) and offspring BirthYear=5 (or 2005)). Negative numbers and NA’s
are interpreted as unknown, and fractional numbers are not allowed.

MaxAgeParent
The maximum parental age for each sex equals the maximum of:

* the maximum age of parents in Pedigree,
¢ the input parameter MaxAgeParent,

 the maximum range of birth years in LifeHistData (including BY.min and BY.max). Only
used if both of the previous are NA, or if there are fewer than 20 parents of either sex assigned.

* 1, if Discrete=TRUE or the previous three are all NA

If the age distribution of assigned parents does not capture the maximum possible age of parents, it
is advised to specify MaxAgeParent for one or both sexes. Not doing so may hinder subsequent as-
signment of both dummy parents and grandparents. Not compatible with Smooth. If the largest age
difference in the pedigree is larger than the specified MaxAgeParent, the pedigree takes precedent
(i.e. the largest of the two is used).

@section grandparents & avuncular The agepriors for grand-parental and avuncular pairs is calcu-
lated from these by sequoia, and included in its output as ‘AgePriorExtra‘.

60 MaybeRel_gritfin

See Also

sequoia and its argument args. AP, PlotAgePrior for visualisation. The age vignette gives further
details, mathematical justification, and some examples.

Examples

without pedigree or lifehistdata:
MakeAgePrior (MaxAgeParent = c(2,3))
MakeAgePrior(Discrete=TRUE)

single cohort:
MakeAgePrior(LifeHistData = data.frame(ID = letters[1:5], Sex=3,
BirthYear=1984))

overlapping generations:

without pedigree: MaxAgeParent = max age difference between any pair +1

MakeAgePrior(LifeHistData = SeqOUT_griffin$LifeHist)

with pedigree:

MakeAgePrior (Pedigree=Ped_griffin,
LifeHistData=SeqOUT_griffin$LifeHist,
Smooth=FALSE, Flatten=FALSE)

with small-sample correction:

MakeAgePrior (Pedigree=Ped_griffin,
LifeHistData=SeqOUT_griffin$LifeHist,
Smooth=TRUE, Flatten=TRUE)

Call from sequoia() via args.AP:

Seq_HSg5 <- sequoia(SimGeno_example, LH_HSg5, Module="par",
args.AP=list(Discrete = TRUE), # non-overlapping generations
CalcLLR = FALSE, # skip time-consuming calculation of LLR's
Plot = FALSE) # no summary plots when finished

MaybeRel_griffin Example output from check for relatives: griffins

Description
Example output of a check for parent-offspring pairs and parent-parent-offspring trios with GetMaybeRel,
with Geno_griffin as input (simulated from Ped_griffin).

Usage
data(MaybeRel_griffin)

Format

a list with 2 dataframes, "MaybePar’ and "MaybeTrio’. See GetMaybeRel for further details.

MkGenoErrors 61

Author(s)

Jisca Huisman, <jisca.huisman@gmail.com>

See Also
SeqOUT_griffin

Examples

Not run:
MaybeRel_griffin <- GetMaybeRel(GenoM = Geno_griffin, Err=0.001,
Module = 'par')

End(Not run)

MkGenoErrors Simulate Genotyping Errors

Description

Generate errors and missing values in a (simulated) genotype matrix.

Usage

MkGenoErrors(
SGeno,
CallRate = 0.99,
SnpError = 5e-04,
ErrorfFV = function(E) c((E/2)*2, E - (E/2)*2, E/2),
ErrorFM = NULL,
Error.shape = 0.5,
CallRate.shape = 1,
WithLog = FALSE

)
Arguments

SGeno matrix with genotype data in Sequoia’s format: 1 row per individual, 1 column
per SNP, and genotypes coded as 0/1/2.

CallRate either a single number for the mean call rate (genotyping success), OR a vector
with the call rate at each SNP, OR a named vector with the call rate for each
individual. In the third case, ParMis is ignored, and individuals in the pedigree
(as id or as parent) not included in this vector are presumed non-genotyped.

SnpError either a single value which will be combined with ErrorFV, or a length 3 vector

with probabilities (observed given actual) homlother hom, hetlhom, and homlhet;
OR a vector or 3XnSnp matrix with the genotyping error rate(s) for each SNP.

62 PedCompare

ErrorFV function taking the error rate (scalar) as argument and returning a length 3 vec-
tor with hom->other hom, hom->het, het->hom. May be an ’ErrFlavour’, e.g.
‘version2.9’.

ErrorfM function taking the error rate (scalar) as argument and returning a 3x3 ma-

trix with probabilities that actual genotype i (rows) is observed as genotype j
(columns). See below for details. To use, set ErrorFV = NULL

Error.shape first shape parameter (alpha) of beta-distribution of per-SNP error rates. A
higher value results in a flatter distribution.

CallRate.shape as Error.shape, for per-SNP call rates.

WithLog Include dataframe in output with which datapoints have been edited, with columns
id - SNP - actual (original, input) - observed (edited, output).

Value

The input genotype matrix, with some genotypes replaced, and some set to missing (-9). If WithLog=TRUE,
a list with 3 elements: GenoM, Log, and Counts_actual (genotype counts in input, to allow double
checking of simulated genotyping error rate).

PedCompare Compare Two Pedigrees

Description

Compare an inferred pedigree (Ped2) to a previous or simulated pedigree (Ped1), including com-
parison of sibship clusters and sibship grandparents.

Usage

PedCompare(
Pedl = NULL,
Ped2 = NULL,
DumPrefix = c("FQ", "M@"),
SNPd = NULL,
Symmetrical = TRUE,
minSibSize = "1sib1GP",

Plot = TRUE
)
Arguments
Ped1 first (e.g. original) pedigree, dataframe with columns id-dam-sire; only the first
3 columns will be used.
Ped2 second pedigree, e.g. newly inferred SeqOUT$Pedigree or SeqOUT$PedigreePar,

with columns id-dam-sire.

PedCompare

DumPrefix

SNPd

Symmetrical

minSibSize

Plot

Details

63

character vector with the prefixes identifying dummy individuals in Ped2. Use
"FO’ "MQ0’) to avoid matching to regular individuals with IDs starting with 'F’
(M), provided Ped2 has fewer than 999 dummy females (males).

character vector with IDs of genotyped individuals. If NULL, defaults to the IDs
occurring in both Ped1 and Ped2 and not starting with any of the prefixes in
DumPrefix.

when determining the category of individuals (Genotyped/Dummy/X), use the
“highest’ category across the two pedigrees (TRUE, default) or only consider
Ped1 (Symmetrical = FALSE).

minimum requirements to be considered ’"dummifiable’, passed to getAssignCat:

* ’Isib’ : sibship of size 1, with or without grandparents. The latter aren’t
really a sibship, but can be useful in some situations.

* ’1sib1GP’: sibship of size 1 with at least 1 grandparent (default)

e ’2sib’: at least 2 siblings, with or without grandparents (default prior to
version 2.4)

show square Venn diagrams of counts?

The comparison is divided into different classes of ‘assignable’ parents (getAssignCat). This
includes cases where the focal individual and parent according to Ped1 are both Genotyped (G-G),
as well as cases where the non-genotyped parent according to Ped1 can be lined up with a sibship
Dummy parent in Ped2 (G-D), or where the non-genotyped focal individual in Ped1 can be matched
to a dummy individual in Ped2 (D-G and D-D). If SNPd is NULL (the default), and DumPrefix is
set to NULL, the intersect between the IDs in Pedigrees 1 and 2 is taken as the vector of genotyped

individuals.

Value
A list with

Counts

Counts.detail

MergedPed
ConsensusPed

DummyMatch

Mismatch

Pedlonly
Ped2only

A 7 x 5 x 2 named numeric array with the number of matches and mismatches,
see below

a large numeric array with number of matches and mismatches, with more detail
for all possible combination of categories

A dataframe with side-by-side comparison of the two pedigrees
A consensus pedigree, with Pedigree 2 taking priority over Pedigree 1

Dataframe with all dummy IDs in Pedigree 2 (id.2), and the best-matching indi-
vidual in Pedigree 1 (id.1). Also includes the class of the dam & sire, as well as
counts of offspring per outcome class (off.Match, off.Mismatch, etc.)

A subset of MergedPed with mismatches between Pedl and Ped2, as defined
below

as Mismatches, with parents in Ped1 that were not assigned in Ped2

as Mismatches, with parents in Ped2 that were missing in Ped1

’MergedPed’, "Mismatch’, "Pedlonly’ and "Ped2only’ provide the following columns:

64

PedCompare

id All ids in both Pedigree 1 and 2. For dummy individuals, this is the id in pedi-
gree 2

dam.1, sire.1 parents in Pedigree 1

dam.2, sire.?2 parents in Pedigree 2

id.r,dam.r, sire.r
The real id of dummy individuals or parents in Pedigree 2, i.e. the best-matching
non-genotyped individual in Pedigree 1, or "nomatch". If a sibship in Pedigree
1 is divided over 2 sibships in Pedigree 2, the smaller one will be denoted as
"nomatch"

id.dam.cat, id.sire.cat
the category of the individual (first letter) and highest category of the dam (sire)
in Pedigree 1 or 2: G=Genotyped, D=(potential) dummy, X=none. Individual,
one-letter categories are generated by getAssignCat. Using the ’best’ category
from both pedigrees makes comparison between two inferred pedigrees sym-
metrical and more intuitive.

dam.class, sire.class
classification of dam and sire: Match, Mismatch, Plonly, P2only, or ’_’ when
no parent is assigned in either pedigree

The first dimension of Counts denotes the following categories:

GG Genotyped individual, assigned a genotyped parent in either pedigree

GD Genotyped individual, assigned a dummy parent, or at least 1 genotyped sibling
or a genotyped grandparent in Pedigree 1)

GT Genotyped individual, total

DG Dummy individual, assigned a genotyped parent (i.e., grandparent of the sibship
in Pedigree 2)

DD Dummy individual, assigned a dummy parent (i.e., avuncular relationship be-
tween sibships in Pedigree 2)

DT Dummy total

1T Total total, includes all genotyped individuals, plus non-genotyped individuals

in Pedigree 1, plus non-replaced dummy individuals (see below) in Pedigree 2
The second dimension of Counts gives the outcomes:

Total The total number of individuals with a parent assigned in either or both pedigrees

Match The same parent is assigned in both pedigrees (non-missing). For dummy par-
ents, it is considered a match if the inferred sibship which contains the most
offspring of a non-genotyped parent, consists for more than half of this individ-
ual’s offspring.

Mismatch Different parents assigned in the two pedigrees. When a sibship according to
Pedigree 1 is split over two sibships in Pedigree 2, the smaller fraction is in-
cluded in the count here.

Plonly Parent in Pedigree 1 but not 2; includes non-assignable parents (e.g. not geno-
typed and no genotyped offspring).

P2only Parent in Pedigree 2 but not 1.

PedCompare 65

The third dimension Counts separates between maternal and paternal assignments, where e.g. pa-
ternal ’DT’ is the assignment of fathers to both maternal and paternal sibships (i.e., to dummies of
both sexes).

In *ConsensusPed’, the priority used is parent.r (if not "nomatch") > parent.2 > parent.1. The
columns ’id.cat’, dam.cat’ and ’sire.cat’ have two additional levels compared to ’MergedPed’:

G Genotyped

D Dummy individual (in Pedigree 2)

R Dummy individual in pedigree 2 replaced by best matching non-genotyped in-
dividual in pedigree 1

U Ungenotyped, Unconfirmed (parent in Pedigree 1, with no dummy match in
Pedigree 2)

X No parent in either pedigree

Assignable

Note that ’assignable’ may be overly optimistic. Some parents from Ped1 indicated as assignable
may never be assigned by sequoia, for example parent-offspring pairs where it cannot be determined
which is the older of the two, or grandparents that are indistinguishable from full avuncular (i.e.
genetics inconclusive because the candidate has no parent assigned, and ageprior inconclusive).

dummifiable

Considered as potential dummy individuals are all non-genotyped individuals in Pedigree 1 who
have, according to either pedigree, at least 2 genotyped offspring, or at least one genotyped offspring
and a genotyped parent.

Mismatches

Perhaps unexpectedly, cases where all siblings are correct but a dummy parent rather than the geno-
typed Pedl-parent are assigned, are classified as a mismatch (for each of the siblings). These are
typically due to a too low assumed genotyping error rate, a wrong parental birth year, or some other
issue that requires user inspection. To identify these cases, ComparePairs may be of help.

Genotyped *mystery samples’

If Pedigree 2 includes samples for which the ID is unknown, the behaviour of PedCompare depends
on whether the temporary IDs for these samples are included in SNPd. If they are included, matching
(actual) IDs in Pedigree 1 will be flagged as mismatches (because the IDs differ). If they are
not included in SNPd, or SNPd is not explicitly provided, matches are accepted, as the situation is
indistinguishable from comparing dummy parents across pedigrees.

This is of course all conditional on relatives of the mystery sample being assigned in Pedigree 2.

Author(s)

Jisca Huisman, <jisca.huisman@gmail.com>

66 PedPolish

See Also

ComparePairs for comparison of all pairwise relationships in 2 pedigrees; EstConf for repeated
simulate-reconstruct-compare; getAssignCat for all parents in the reference pedigree that could
have been assigned; CalcOHLLR to check how well an *old’ pedigree fits with the SNP data.

Examples

compare <- PedCompare(Ped_griffin, SeqOUT_griffin$Pedigree)
compare$Counts["TT",,] # totals only; 45 dams & 47 sires non-assigned
compare$Counts[,,"dam”] # dams only

inspect non-assigned in Ped2, id genotyped, dam might-be-dummy

PedM <- compare$MergedPed # for brevity

PedM[PedM$id.dam.cat=="'GD' & PedM$dam.class=='Plonly',]

zoom in on specific dam

PedM[which(PedM$dam.1=="1011_2001_F"),]

no sire for 'i034_2002_F' -> impossible to tell if half-sibs or avuncular

overview of all non-genotyped -- dummy matches
head (compare$DummyMatch)

success of paternity assignment, if genotyped mother correctly assigned
dimnames(compare$Counts.detail)
compare$Counts.detail["G","G",, "Match"”,]

default before version 3.5: minSibSize = '2sib'’

compare_2s <- PedCompare(Ped_griffin, SeqOUT_griffin$Pedigree,
minSibSize = '2sib')

compare_2s$Counts[,,"dam”] # note decrease in Total 'dummies

with(compare_2s$MergedPed, table(id.dam.cat, dam.class))

some with id.cat = 'X' or dam.cat='X' are nonetheless dam.class='Match'
PedPolish Fix Pedigree
Description

Ensure all parents & all genotyped individuals are included, remove duplicates, rename columns,
and replace 0 by NA or v.v.. Does not sort parents before offspring.

Usage

PedPolish(
Pedigree,
gID = NULL,
ZeroToNA = TRUE,
NAToZero = FALSE,
DropNonSNPd = TRUE,
addParentRows = TRUE,

PedPolish 67

FillParents = FALSE,
KeepAllColumns = TRUE,
KeepAllRows = FALSE,
NullOK = FALSE,
LoopCheck = TRUE,
StopIfInvalid = TRUE

)
Arguments

Pedigree dataframe where the first 3 columns are id, dam, sire.

gID character vector with ids of genotyped individuals (rownames of genotype ma-
trix).

ZeroToNA logical, replace 0’s for missing values by NA’s (defaults to TRUE).

NAToZero logical, replace NA’s for missing values by 0’s. If TRUE, ZeroToNA is automati-
cally set to FALSE.

DropNonSNPd logical, remove any non-genotyped individuals (but keep non-genotyped par-

ents), & sort pedigree in order of gID.

addParentRows add rows for any dams, sires, or individuals in gID not yet occurring in the id
column.

FillParents logical, for individuals with only 1 parent assigned, set the other parent to a
dummy (without assigning siblings or grandparents). Makes the pedigree com-
patible with R packages and software that requires individuals to have either 2
or O parents, such as kinship.

KeepAllColumns Keep all columns in Pedigree (TRUE, default), or only id - dam - sire (FALSE).

KeepAllRows Keep all rows in Pedigree (TRUE), or drop rows where id = NA (FALSE, de-
fault). Duplicated rows are always removed.

NullOK logical, is it OK for Ped to be NULL? Then NULL will be returned.
LoopCheck logical, check for invalid pedigree loops by calling getGenerations.

StopIfinvalid if a pedigree loop is detected, stop with an error (TRUE, default).

Details
Recognized column names are an exact or partial match with (case is ignored):
id Hidﬂ’ lliidll’ "0f "
n n " n " n " n n n

dam "dam", "mother”, "mot", "mom", "mum", "mat"

sire "sire", "father", "fat", "dad", "pat"

sequoia requires the column order id - dam - sire; columns 2 and 3 are swapped by this function if
necessary.

68 PedStripFID

Examples

PedZ <- Ped_HSg5[41:50,]
PedPolish(PedZ)
PedPolish(PedZ, gID = rownames(SimGeno_example)[30:40], DropNonSNPd=TRUE)

Not run:
To get the output pedigree into kinship2 compatible format:
PedP <- sequoia::PedPolish(SeqOUT$Pedigree, DropNonSNPd=FALSE,
FillParents = TRUE)
PedP$Sex <- with(PedP, ifelse(id %in% dam, "female”, "male"))
default to 'male' to avoid warning: "More than 25% of the gender values are
'unknown'"

Ped.fix <- with(PedP, kinship2::fixParents(id=id, dadid=sire, momid=dam,
sex=Sex))

Ped.k <- with(Ped.fix, kinship2::pedigree(id, dadid, momid, sex, missid=0))

End(Not run)

PedStripFID Back-transform IDs

Description

Reverse the joining of FID and IID in GenoConvert and LHConvert

Usage
PedStripFID(Ped, FIDsep = "__")
Arguments
Ped pedigree as returned by sequoia (e.g. SeqOUT$Pedigree).
FIDsep characters inbetween FID and IID in composite-ID.
Details

Note that the family IDs are the ones provided, and not automatically updated. New, numeric ones
can be obtained with FindFamilies.
Value
A pedigree with 6 columns
FID family ID of focal individual (offspring).

id within-family of focal individual

dam.FID original family ID of assigned dam

Ped_gritfin 69

dam within-family of dam
sire.FID original family ID of assigned sire
sire within-family of sire
Ped_griffin Example pedigree: griffins
Description

Example pedigree with overlapping generations and polygamy.

Usage
data(Ped_griffin)

Format

A data frame with 200 rows and 4 variables (id, dam, sire, birthyear)

Code

The R code used to create this pedigree can be found in /data-raw.

Author(s)

Jisca Huisman, <jisca.huisman@gmail.com>

See Also

LH_griffin; SeqOUT_griffin for a sequoia run on simulated genotype data based on this pedigree;
Ped_HSg5 for another pedigree; sequoia.

Ped_HSg5 Example pedigree: "HSg5’

Description

A pedigree with five non-overlapping generations and considerable inbreeding. Each female mated
with two random males and each male with three random females, producing four full-sib offspring
per mating. This is Pedigree II in the paper.

Usage
data(Ped_HSg5)

70 PlotAgePrior

Format

A data frame with 1000 rows and 3 variables (id, dam, sire)

Author(s)

Jisca Huisman, <jisca.huisman@gmail.com>

References

Huisman, J. (2017) Pedigree reconstruction from SNP data: Parentage assignment, sibship cluster-
ing, and beyond. Molecular Ecology Resources 17:1009-1024.

See Also

LH_HSg5 SimGeno_example sequoia

PlotAgePrior Plot Age Priors

Description

Visualise the age-difference based prior probability ratios as a heatmap.

Usage

PlotAgePrior (AP = NULL, legend = TRUE)

Arguments
AP matrix with age priors (P(A|R)/P(A)) with age differences in rows and rela-
tionships in columns; by default M: maternal parent (mother), P: paternal parent
(father), FS: full siblings, MS: maternal siblings (full + half), PS: paternal sib-
lings.
legend if TRUE, a new plotting window is started and layout is used to plot a legend
next to the main plot. Set to FALSE if you want to add it as panel to an existing
plot (e.g. with par(mfcol=c(2,2))).
Value
A heatmap.
See Also

MakeAgePrior, SummarySeq.

PlotPairLLL

Examples

71

PlotAgePrior(SeqOUT_griffin$AgePriors)
PlotAgePrior(SeqOUT_griffin$AgePriorExtra)

PlotPairLL

Plot Pair Log10-Likelihoods

Description

Colour-coded scatter plots of e.g. LLR(PO/U) against LLR(FS/U), for various relationship combi-

nations.
Usage
PlotPairlLL(
PairLL,
COmbO =]_iSt(C(”FS", IIPOH), C(IIHSH’ HFSII)’ C(”GP“, IIHSII)’ C(IIFAIIy IIHSH))’
nrows = NULL,
ncols = NULL,
bgcol = TRUE,
Tassign = 0.5,
Tfilter = -2
)
Arguments
PairLL dataframe, output from CalcPairLL.
combo list with length-2 character vectors, specifying which likelihoods to plot against
each other. Choose from 'PO’, 'FS’, "HS’, *GP’, "FA’, and "HA’. The first one
gets plotted on the x-axis, the second on the y-axis. Subsequent figures will be
drawn row-wise.
Nrows number of rows in the figure layout. If NULL, setto ceiling(length(combo)/ncols).
ncols number of columns in the figure layout. If both nrows and ncols are NULL,
ncols is set to ceiling(sqrt(length(combo))), and nrows will be equal to
ncols or one less.
bgcol logical, colour the upper and lower triangle background of each figure to match
the specified relationship combo.
Tassign assignment threshold, shown as grey square in bottom-left corner and a band
along the diagonal.
Tfilter filter threshold, shown as dark grey square in bottom-left.
Details

The colour of each point is determined by columns focal (outer circle) and TopRel (inner filling)

of PairlLL.

Impossible relationships (LL > 0 in PairLL) are shown as -Inf on the axes, if any are present.

72 PlotPedComp
See Also
CalcPairLL.
Examples
Pairs <- data.frame(ID1 = "a@1005",
ID2 = c("a00013"”, "a00008", "a0e011", "b0ooo1”,
"b01006", "b01007", "b01013", "b01014"),
focal = rep(c("P0", "HS"), each=4))
PLL <- CalcPairLL(Pairs, GenoM=SimGeno_example, Plot=FALSE)
PlotPairlLL(PLL,
combo = list(c("FS", "P0"), c("HS", "FS"), c("GP", "HS"),
C("FA", "HS"), c("HA", "FA"), c("FA", "GP")),
nrows = 3)
PlotPedComp Visualise PedCompare Output
Description
square Venn diagrams with PedCompare Counts.
Usage
PlotPedComp(Counts, sameSize = FALSE)
Arguments
Counts a 7x5x2 array with counts of matches and mismatches per category (genotyped
vs dummy), as returned by PedCompare.
sameSize logical, make all per-category Venn diagrams the same size TRUE, or make their
size proportional to the counts (FALSE, the default). If TRUE, a warning is printed
at the bottom.
See Also
PedCompare
Examples

PC.g <- PedCompare(Ped1 = cbind(FieldMums_griffin, sire=NA),
Ped2 = SeqOUT_griffin$Pedigree)
PlotPedComp(PC.g$Counts)

PlotPropAssigned 73

PlotPropAssigned Plot proportion of individuals that has a parent assigned

Description

For any pedigree, plot the proportion of individuals that has a genotyped, dummy, observed, or no
dam/sire assigned.

Usage
PlotPropAssigned(Pedigree = NULL, DumPrefix = c("F@", "M@"), SNPd = NULL, ...)
Arguments
Pedigree dataframe where the first 3 columns are id, dam, sire.
DumPrefix character vector with prefixes for dummy dams (mothers) and sires (fathers),
used to distinguish between dummies and non-dummies.
SNPd character vector with ids of genotyped individuals (e.g. rownames of genotype
matrix).
further arguments passed to barplot
Details

This function offers a more flexible interface to some of the plots included in SummarySeq

Value

a 2x4 matrix with counts, returned invisibly.

Examples

PlotPropAssigned(SeqOUT_griffin$Pedigree, SNPd = rownames(Geno_griffin))

PlotRelPairs Plot Pairwise Relationships

Description

Plot pairwise 1st and 2nd degree relationships between individuals, similar to Colony’s dyad plot.

PlotRelPairs

Usage
PlotRelPairs(
RelM = NULL,
subset.x = NULL,
subset.y = NULL,
drop.U = TRUE,
pch.symbols = FALSE,
cex.axis = 0.7,
mar = c(5, 5, 1, 8)
)
Arguments
RelM square matrix with relationships between all pairs of individuals, as generated
by GetRelM. Row and column names should be individual IDs.
subset.x vector with IDs to show on the x-axis; the y-axis will include all siblings, parents
and grandparents of these individuals.
subset.y vector with IDs to show on the y-axis; the x-axis will include all siblings, off-
spring and grandoffspring of these individuals. Specify either subset.x or
subset.y (or neither), not both.
drop.U logical: omit individuals without relatives from the plot, and omit individuals

without parents from the x-axis. Ignored if subset.x or subset.y is specified.

pch.symbols logical: use different symbols for the different relationships (TRUE) or only
colours in a heatmap-like fashion (FALSE). Question marks in the plot indicate
that one or more of the symbols are not supported on your machine.

cex.axis the magnification to be used for axis annotation. Decrease this value if R is
dropping axis labels to prevent them from overlapping.

mar A numerical vector of the form c(bottom, left, top, right) which gives the number
of lines of margin to be specified on the four sides of the plot.

Details

Parents are shown above the diagonal (y-axis is parent of x-axis), siblings below the diagonal.
If present, grandparents and full aunts/uncles are also shown above the diagonal. Individuals
are sorted by dam ID and sire ID so that siblings are grouped together, and then by generation
(getGenerations) so that later generations are closer to the origin.

If RelM is based on a dataframe with pairs rather than a pedigree, parents and grandparents are
similarly only displayed above the diagonal, but the order of individuals is arbitrary and the ID on
the x-axis is as likely to be the grandparent of the one on the y-axis as vice versa. Second degree
relatives of unknown classification ("2nd’, may be HS, GP or FA) are only shown below the diag-
onal. The switch between pedigree-based versus pairs-based is made on whether parent-offspring
pairs are coded as "M’,’P’, "MP’, O’ (unidirectional, from pedigree) or as "PO’ (bidirectional, from
pairs).

Note that half-avuncular and (double) full cousin pairs are ignored.

PlotSeqSum 75

Value

The subsetted, rearranged RelM is returned invisible.

The numbers of unique pairs of each relationship type are given in the figure legend. The number
of ’self’ pairs refers to the number of individuals on the x-axis, not all of whom may occur on the
y-axis when drop.U=TRUE or a subset is specified.

See Also

GetRelM; SummarySeq for individual-wise graphical pedigree summaries.

Examples

Rel.griffin <- GetRelM(Ped_griffin, patmat=TRUE, GenBack=2)
PlotRelPairs(Rel.griffin)

Not run:
PlotRelPairs(Rel.griffin, pch.symbols = TRUE)
plot with unicode symbols not supported on all platforms

End(Not run)

parents & grandparents of 2008 cohort:
PlotRelPairs(Rel.griffin,

subset.x = Ped_griffin$id[Ped_griffin$birthyear ==2008])
offspring & grand-offspring of 2002 cohort:
PlotRelPairs(Rel.griffin,

subset.y = Ped_griffin$id[Ped_griffin$birthyear ==2002])

PlotSeqSum Plot Summary Overview of sequoia Output

Description

visualise the numbers of assigned parents, sibship sizes, and parental LLRs

Usage

PlotSeqSum(SeqSum, Pedigree = NULL, Panels = "all”, ask = TRUE)

Arguments
SeqSum list output from SummarySeq.
Pedigree dataframe with at least id, dam and sire in columns 1-3, respectively. If columns

with parental LLRs and/or Mendelian errors are present, these will be plotted as
well.

76 SeqOUT_griffin

Panels character vector with panel(s) to plot. Choose from ’all’, ’G.parents’ (parents of
genotyped individuals), *D.parents’ (parents of dummies), *O.parents’ (parents
of non-genotyped non-dummies), sibships’, 'LLR’, "OH’.

ask ask for user key stroke before proceeding to next plot.

Examples

sumry <- SummarySeq(SeqOUT_griffin, Plot=FALSE)
PlotSeqSum(sumry, SeqOUT_griffin$Pedigree, Panels='all', ask=FALSE)

SeqOUT_griffin Example output from pedigree inference: griffins

Description
Example output of a sequoia run including sibship clustering, with Geno_griffin as input (simu-
lated from Ped_griffin).

Usage

data(SeqOUT_griffin)

Format

a list, see sequoia

Author(s)

Jisca Huisman, <jisca.huisman@gmail.com>

See Also

sequoia

Examples

Not run:

SeqOUT_griffin <- sequoia(GenoM = Geno_griffin,
LifeHistData = LH_griffin,
Module = 'ped')

End(Not run)

SeqOUT_HSg5 77

SeqOUT_HSg5 Example output from pedigree inference: "HSg5’

Description

Example output of a sequoia run including sibship clustering, based on Pedigree Geno_HSg5.

Usage

data(SeqOUT_HSg5)

Format

a list, see sequoia

Author(s)

Jisca Huisman, <jisca.huisman@gmail.com>

See Also

Ped_HSg5, LH_HSg5

Examples

Not run:

this output was created as follows:

Geno <- SimGeno(Ped = Ped_HSg5, nSnp = 200)

SeqOUT_HSg5 <- sequoia(GenoM = Geno, LifeHistData = LH_HSg5, Module = "ped"”,
Err = 0.005)

End(Not run)

some ways to inspect the output; see vignette for more info:
names (SeqOUT_HSg5)

SeqOUT_HSg5%Specs

SummarySeq(SeqOUT_HSg5)

sequoia Pedigree Reconstruction

Description

Perform pedigree reconstruction based on SNP data, including parentage assignment and sibship
clustering.

78

Usage
sequoia(
GenoM = NULL,
LifeHistData

sequoia

= NULL,

SeqList = NULL,
Module = "ped”,

Err = 1e-04,

Tfilter =

Tassign = 0.5,
MaxSibshipSize = 100,

DummyPrefix

C(HFM’ IIMH)’

Complex = "full”,

n

Herm = "no

UseAge = "yes",

args.AP = list(Flatten = NULL, Smooth = TRUE),
mtSame = NULL,

CalcLLR = FALSE,

quiet = FALSE,

StrictGenoCheck = TRUE,

Plot = NULL,
ErrFlavour
)
Arguments
GenoM
LifeHistData
SeqglList

"version2.9"

numeric matrix with genotype data: One row per individual, one column per
SNP, coded as 0, 1, 2, missing values as a negative number or NA. Row names
must be individual IDs, column names are ignored. You can reformat data with
GenoConvert, or use other packages to get it into a genlight object and then use
as.matrix.

data.frame with up to 6 columns:

ID max. 30 characters long

Sex 1 = female, 2 = male, 3 = unknown, 4 = hermaphrodite, other numbers or
NA = unknown

BirthYear birth or hatching year, integer, with missing values as NA or any
negative number.

BY.min minimum birth year, only used if BirthYear is missing

BY.max maximum birth year, only used if BirthYear is missing

Year.last Last year in which individual could have had offspring. Can e.g. in
mammals be the year before death for females, and year after death for
males.

"Birth year" may be in any arbitrary discrete time unit relevant to the species
(day, month, decade), as long as parents are never born in the same time unit as
their offspring, and only integers are used. Individuals do not need to be in the
same order as in ‘GenoM’, nor do all genotyped individuals need to be included.

list with output from a previous run, to be re-used in the current run. Used are
elements ‘PedigreePar’, ‘LifeHist’, ‘AgePriors’, ‘Specs’, and ‘ErrM’, and these

sequoia

Module

Err

Tfilter

Tassign

MaxSibshipSize

DummyPrefix

Complex

Herm

UseAge

args.AP

mtSame

79

override the corresponding input parameters. Not all of these elements need to
be present, and all other elements are ignored. If SeqList$Specs is provided,
all input parameters with the same name as its items are ignored, except Module.

one of

pre Only input check, return SeqList$Specs

dup Also check for duplicate genotypes

par Also perform parentage assignment (genotyped parents to genotyped off-
spring)

ped (Also) perform full pedigree reconstruction, including sibship clustering
and grandparent assignment. By far the most time consuming, and may
take several hours for large datasets.

assumed per-locus genotyping error rate, as a single number, or a length 3 vec-
tor with P(homlhom), P(hetthom), P(homlhet), or a 3x3 matrix. See details
below. The error rate is presumed constant across SNPs, and missingness is
presumed random with respect to actual genotype. Using Err >5% is not rec-
ommended, and Err >10% strongly discouraged. See Err_RADseq to convert
per-allele rates at homozygous and heterozygous sites to the required length-3
vector, and ErrToM for further genotyping error details.

threshold log10-likelihood ratio (LLR) between a proposed relationship versus
unrelated, to select candidate relatives. Typically a negative value, related to the
fact that unconditional likelihoods are calculated during the filtering steps. More
negative values may decrease non-assignment, but will increase computational
time.

minimum LLR required for acceptance of proposed relationship, relative to next
most likely relationship. Higher values result in more conservative assignments.
Must be zero or positive.

maximum number of offspring for a single individual (a generous safety margin
is advised).

character vector of length 2 with prefixes for dummy dams (mothers) and sires
(fathers); maximum 20 characters each. Length 3 vector in case of hermaphrodites
(or default prefix "H’).

Breeding system complexity. Either "full" (default), "simp" (simplified, no ex-
plicit consideration of inbred relationships), "mono" (monogamous).

Hermaphrodites, either "no", "A" (distinguish between dam and sire role, default
if at least 1 individual with sex=4), or "B" (no distinction between dam and sire
role). Both of the latter deal with selfing.

either "yes" (default), "no" (only use age differences for filtering), or "extra"
(additional rounds with extra reliance on ageprior, may boost assignments but
increased risk of erroneous assignments). Used during full reconstruction only.

list with arguments to be passed on to MakeAgePrior, e.g. ‘Discrete® (non-
overlapping generations), ‘MinAgeParent, ‘MaxAgeParent‘.

matrix indicating whether individuals (might) have the same mitochondrial hap-
lotype (1), and may thus be matrilineal relatives, or not (0). This potentially
be useful to distinguish between maternal and paternal half siblings when few

80 sequoia

parents are genotyped, or between maternal and paternal parents when their
sex(role) is unknown. Row names and column names should match IDs in
‘GenoM*. Not all individuals need to be included and order is not important.
For details see the mtDNA vignette.

CalcLLR TRUE/FALSE; calculate log-likelihood ratios for all assigned parents (geno-
typed + dummy; parent vs. otherwise related). Time-consuming in large datasets.
Can be done separately with CalcOHLLR.

quiet suppress messages: TRUE/FALSE/"verbose".

Plot display plots from SnpStats, MakeAgePrior, and SummarySeq. Defaults (NULL)
to TRUE when quiet=FALSE or "verbose", and FALSE when quiet=TRUE. If
you get error ’figure margins too large’, enlarge the plotting area (drag with
mouse). Error ’invalid graphics state’ can be dealt with by clearing the plotting
area with dev.off().

StrictGenoCheck
Automatically exclude any individuals genotyped for <5 the unavoidable de-
fault up to version 2.4.1. Otherwise only excluded are (very nearly) monomor-
phic SNPs, SNPs scored for fewer than 2 individuals, and individuals scored for
fewer than 2 SNPs.

ErrFlavour function that takes Err (single number) as input, and returns a length 3 vector
or 3x3 matrix, or choose from inbuilt options ’version2.9’, ’version2.0’, ’ver-
sionl.3’, or *versionl.1’, referring to the sequoia version in which they were the
default. Ignored if Err is a vector or matrix.

Details

For each pair of candidate relatives, the likelihoods are calculated of them being parent-offspring

(PO), full siblings (FS), half siblings (HS), grandparent-grandoffspring (GG), full avuncular (niece/nephew
- aunt/uncle; FA), half avuncular/great-grandparental/cousins (HA), or unrelated (U). Assignments

are made if the likelihood ratio (LLR) between the focal relationship and the most likely alternative
exceed the threshold Tassign.

Dummy parents of sibships are denoted by FO001, FO002, ... (mothers) and M0001, M0002, ...
(fathers), are appended to the bottom of the pedigree, and may have been assigned real or dummy
parents themselves (i.e. sibship-grandparents). A dummy parent is not assigned to singletons.

Full explanation of the various options and interpretation of the output is provided in the vignettes
and on the package website, https://jiscah.github.io/index.html .

Value

A list with some or all of the following components, depending on Module. All input except GenoM
is included in the output.

AgePriors Matrix with age-difference based probability ratios for each relationship, used
for full pedigree reconstruction; see MakeAgePrior for details. When running
only parentage assignment (Module="par") the returned AgePriors has been
updated to incorporate the information of the assigned parents, and is ready for
use during full pedigree reconstruction.

sequoia

args.AP

DummyIDs

DupGenotype

DupLifeHistID

ErrM

ExcludedInd

ExcludedSNPs

LifeHist

LifeHistPar

LifeHistSib
NoLH

Pedigree

PedigreePar

Specs

TotLikParents

TotLikSib

AgePriorExtra

DummyClones

81

(input) arguments used to specify age prior matrix. If a custom ageprior was
provided via SeqList$AgePrior, this matrix is returned instead

Dataframe with pedigree for dummy individuals, as well as their sex, estimated
birth year (point estimate, upper and lower bound of 95% confidence interval;
see also CalcBYprobs), number of offspring, and offspring IDs. From version
2.1 onwards, this includes dummy offspring.

Dataframe, duplicated genotypes (with different IDs, duplicate IDs are not al-
lowed). The specified number of maximum mismatches is used here too. Note
that this dataframe may include pairs of closely related individuals, and monozy-
gotic twins.

Dataframe, row numbers of duplicated IDs in life history dataframe. For conve-
nience only, but may signal a problem. The first entry is used.

(input) Error matrix; probability of observed genotype (columns) conditional on
actual genotype (rows)

Individuals in GenoM which were excluded because of a too low genotyping
success rate (<50%).

Column numbers of SNPs in GenoM which were excluded because of a too low
genotyping success rate (<10%).

(input) Dataframe with sex and birth year data. All missing birth years are coded
as ’-999’, all missing sex as ’3’.

LifeHist with additional columns ’Sexx’ (inferred Sex when assigned as part
of parent-pair), 'BY.est’ (mode of birth year probability distribution), ’BY.lo’
(lower limit of 95% highest density region), 'BY.hi’ (higher limit), inferred after
parentage assignment. 'BY.est’ is NA when the probability distribution is flat
between 'BY.lo’ and 'BY.hi’.

as LifeHistPar, but estimated after full pedigree reconstruction
Vector, IDs in genotype data for which no life history data is provided.

Dataframe with assigned genotyped and dummy parents from Sibship step; en-
tries for dummy individuals are added at the bottom.

Dataframe with assigned parents from Parentage step.

Named vector with parameter values. This includes the maximum OH for poten-

tial (parent-)parent-offspring pairs (trios), which is calculated by CalcMaxMismatch

Numeric vector, Total likelihood of the genotype data at initiation and after each
iteration during Parentage.

Numeric vector, Total likelihood of the genotype data at initiation and after each
iteration during Sibship clustering.

As AgePriors, but including columns for grandparents and avuncular pairs. NOT
updated after parentage assignment, but returned as used during the run.

Hermaphrodites only: female-male dummy ID pairs that refer to the same non-
genotyped individual

List elements PedigreePar and Pedigree both have the following columns:

id

Individual ID

82 sequoia

dam Assigned mother, or NA
sire Assigned father, or NA
LLRdam Log10-Likelihood Ratio (LLR) of this female being the mother, versus the next

most likely relationship between the focal individual and this female. See De-
tails below for relationships considered, and see CalcPairLL for underlying
likelihood values and further details)

LLRsire idem, for male parent

LLRpair LLR for the parental pair, versus the next most likely configuration between the
three individuals (with one or neither parent assigned)

OHdam Number of loci at which the offspring and mother are opposite homozygotes

OHsire idem, for father

MEpair Number of Mendelian errors between the offspring and the parent pair, includes

OH as well as e.g. parents being opposing homozygotes, but the offspring not
being a heterozygote. The offspring being OH with both parents is counted as 2
errors.

Genotyping error rate
The genotyping error rate Err can be specified three different ways:

* A single number, which is combined with ErrFlavour by ErrToM to create a length 3 vector
(nextitem). By default (ErrFlavour = "version2.9’), P(homlhom)=$(E/2)"2$, P(hetlhom)=$E-
(E/2)"2$, P(homlhet)=$E/2$.

* a length 3 vector (NEW from version 2.6), with the probabilities to observe a actual ho-
mozygote as the other homozygote (homlhom), to observe a homozygote as heterozygote
(hetlhom), and to observe an actual heterozygote as homozygote (homlhet). This assumes that
the two alleles are equivalent with respect to genotyping errors, i.e. $P(AAlaa) = P(aalAA)S$,
$P(aalAa)=P(AAlAa)$, and $P(aAlaa)=P(aAlAA)$.

* a 3x3 matrix, with the probabilities of observed genotype (columns) conditional on actual
genotype (rows). Only needed when the assumption in the previous item does not hold. See
ErrToM for details.

(Too) Few Assignments?

Possibly Err is much lower than the actual genotyping error rate.
Alternatively, a true parent will not be assigned when it is:
* unclear who is the parent and who the offspring, due to unknown birth year for one or both
individuals
* unclear whether the parent is the father or mother

* unclear if it is a parent or e.g. full sibling or grandparent, due to insufficient genetic data
And true half-siblings will not be clustered when it is:

* unclear if they are maternal or paternal half-siblings

* unclear if they are half-siblings, full avuncular, or grand-parental

sequoia 83

* unclear what type of relatives they are due to insufficient genetic data

All pairs of non-assigned but likely/definitely relatives can be found with GetMaybeRel (run without
conditioning on a pedigree). For a method to do pairwise "assignments’, see https://jiscah.github.io/articles/pairLL_classificat
; for further information, see the vignette.

If you already had a partial pedigree, running CalcOHLLR or CalcParentProbs on it with the new
SNP data and various parameter value combinations may be informative.

Disclaimer

While every effort has been made to ensure that sequoia provides what it claims to do, there is
absolutely no guarantee that the results provided are correct. Use of sequoia is entirely at your own
risk.

Website
https://jiscah.github.io/

Author(s)

Jisca Huisman, <jisca.huisman@gmail.com>

References

Huisman, J. (2017) Pedigree reconstruction from SNP data: Parentage assignment, sibship cluster-
ing, and beyond. Molecular Ecology Resources 17:1009-1024.

See Also

¢ GenoConvert to read in various data formats,

* CheckGeno, SnpStats to calculate missingness and allele frequencies,

e SimGeno to simulate SNP data from a pedigree,

* MakeAgePrior to estimate effect of age on relationships and PlotAgePrior to visualise those,
e SummarySeq and PlotPropAssigned to visualise results,

* GetMaybeRel to find pairs of potential relatives,

* GetRelM to turn a pedigree into pairwise relationships,

* CountOH, CalcPairLL and LLtoProb for specified pairs of individuals respectively count Op-
posing Homozygous SNPs, calculate likelihoods of various relationships, and transform those
likelihoods to probabilities,

* CalcOHLLR to count Opposing Homozygous SNPs and calculate LLR for all parent-offspring
pairs in any pedigree,

* CalcParentProbs to calculate assignment probabilities (instead of LLRs) in any pedigree,
* CalcBYprobs to estimate birth years,

* PedCompare and ComparePairs to compare two pedigrees,

* EstConf to estimate assignment errors,

* writeSeq to save sequoia output as text or excel files,

e vignette("sequoia") for detailed manual & FAQ.

84

Examples

=== EXAMPLE 1: simulated data ===

head(SimGeno_example[,1:10])

head (LH_HSg5)

parentage assignment:

SeqOUT <- sequoia(GenoM = SimGeno_example, Err = 0.005,
LifeHistData = LH_HSg5, Module="par"”, Plot=TRUE)

names (SeqOUT)

SeqOUT$PedigreePar[34:42,]

compare to true (or old) pedigree:
PC <- PedCompare(Ped_HSg5, SeqOUT$PedigreePar)
PC$Counts["GG", ,]

parentage assignment + full pedigree reconstruction:
(note: this can be rather time consuming)
SeqOUT2 <- sequoia(GenoM = SimGeno_example, Err = 0.005,
LifeHistData = LH_HSg5, Module="ped"”, quiet="verbose")
SeqOUT2$Pedigree[34:42,]

PC2 <- PedCompare(Ped_HSg5, SeqOUT2$Pedigree)
PC2$Counts["GT",,]
PC2$Counts[, , "dam"]

different kind of pedigree comparison:
ComparePairs(Ped1=Ped_HSg5, Ped2=SeqOUT$PedigreePar, patmat=TRUE)

results overview:
SummarySeq(SeqOUT2)

important to run with approx. correct genotyping error rate:

SeqOUT2.b <- sequoia(GenoM = SimGeno_example, # Err = le-4 by default
LifeHistData = LH_HSg5, Module="ped", Plot=FALSE)

PC2.b <- PedCompare(Ped_HSg5, SeqOUT2.b$Pedigree)

PC2.b%$Counts["GT",,]

Not run:
=== EXAMPLE 2: real data ===
ideally, select 400-700 SNPs: high MAF & low LD
save in 0/1/2/NA format (PLINK's --recodeA)
GenoM <- GenoConvert(InFile = "inputfile_for_sequoia.raw",
InFormat = "raw”) # can also do Colony format
SNPSTATS <- SnpStats(GenoM)
perhaps after some data-cleaning:
write.table(GenoM, file="MyGenoData.txt"”, row.names=T, col.names=F)

later:

GenoM <- as.matrix(read.table("MyGenoData.txt”, row.names=1, header=FALSE))

or for very large datasets:
GenoM <- data.table::fread('MyGenoData.txt') %>% as.matrix(rownames=1)

sequoia

SimGeno 85

LHdata <- read.table("LifeHistoryData.txt", header=T) # ID-Sex-birthyear
SeqOUT <- sequoia(GenoM, LHdata, Err=0.005)
SummarySeq(SeqOUT)

SeqOUT$notes <- "Trial run on cleaned data” # add notes for future reference
saveRDS(SeqOUT, file="sequoia_output_42.RDS") # save to R-specific file

writeSeq(SeqOUT, folder="sequoia_output”) # save to several plain text files

runtime:
SeqOUT$Specs$TimeEnd - SeqOUT$Specs$TimeStart

End(Not run)

SimGeno Simulate Genotypes

Description

Simulate SNP genotype data from a pedigree, with optional missingness, genotyping errors, and
non-genotyped parents.

Usage

SimGeno(
Pedigree,
nSnp = 400,
ParMis = c(0, 0),
MAF = 0.3,
CallRate = 0.99,
SnpError = 5e-04,
ErrorFV = function(E) c((E/2)*2, E - (E/2)*2, E/2),
ErrorFM = NULL,
ReturnStats = FALSE,
quiet = FALSE

)
Arguments
Pedigree dataframe, pedigree with the first three columns being id - dam - sire, additional
columns are ignored.
nSnp number of SNPs to simulate.
ParMis single number or vector length two with proportion of parents with fully missing

genotype. Ignored if CallRate is a named vector. NOTE: default changed from
0.4 (up to version 2.8.5) to O (from version 2.9).

86

MAF

CallRate

SnpError

ErrorFV

ErrorfFM

ReturnStats

quiet

Details

SimGeno

either a single number with minimum minor allele frequency, and allele fre-
quencies will be sampled uniformly between this minimum ("'min_maf’) and
1-min_maf (NOTE: between min_maf and 0.5 up to version 2.11) OR a vec-
tor with minor allele frequency at each locus. In both cases, this is the MAF
among pedigree founders; the MAF in the sample will deviate due to drift. Oc-
casionally, alleles may get fixed, and all founders carrying the allele simulated
as non-genotyped, resulting in a sample MAF of 0.

either a single number for the mean call rate (genotyping success), OR a vector
with the call rate at each SNP, OR a named vector with the call rate for each
individual. In the third case, ParMis is ignored, and individuals in the pedigree
(as id or as parent) not included in this vector are presumed non-genotyped.

either a single value which will be combined with ErrorFV, or a length 3 vector
with probabilities (observed given actual) homlother hom, hetlhom, and homlhet;
OR a vector or 3XnSnp matrix with the genotyping error rate(s) for each SNP.

function taking the error rate (scalar) as argument and returning a length 3 vec-
tor with hom->other hom, hom->het, het->hom. May be an ’ErrFlavour’, e.g.
‘version2.9’.

function taking the error rate (scalar) as argument and returning a 3x3 ma-
trix with probabilities that actual genotype i (rows) is observed as genotype j
(columns). See below for details. To use, set ErrorFV = NULL

in addition to the genotype matrix, return the input parameters and mean &
quantiles of MAF, error rate and call rates.

suppress messages.

For founders, i.e. individuals with no known parents, genotypes are drawn according to the provided
MAF and assuming Hardy-Weinberg equilibrium. Offspring genotypes are generated following
Mendelian inheritance, assuming all loci are completely independent. Individuals with one known
parent are allowed: at each locus, one allele is inherited from the known parent, and the other drawn
from the genepool according to the provided MAF.

Value

If ReturnStats=FALSE (the default), a matrix with genotype data in sequoia’s input format, en-

coded as 0/1/2/-9.

If ReturnStats=TRUE, a named list with three elements: list ’ParamsIN’, matrix ’SGeno’, and list

’StatsOUT”:

AF

AF.act
SnpError
SnpCallRate
IndivError

IndivCallRate

Frequency in ’observed’ genotypes of *1’ allele

Allele frequency in ’actual’ (without genotyping errors & missingness)
Error rate per SNP (actual /= observed AND observed /= missing)
Non-missing per SNP

Error rate per individual

Non-missing per individual

SimGeno 87

Genotyping errors

If SnpError is a length 3 vector, genotyping errors are generated following a length 3 vector with
probabilities that 1) an actual homozygote is observed as the other homozygote, 2) an actual ho-
mozygote is observed as a heterozygote, and 3) an heterozygote is observed as an homozygote. The
only assumption made is that the two alleles can be treated equally, i.e. observing actual allele A
as a is as likely as observing actual a as $AS.

If SnpError is a single value, by default this is interpreted as a locus-level error rate (rather than
allele-level), and equals the probability that a homozygote is observed as heterozygote, and the
probability that a heterozygote is observed as either homozygote (i.e., the probability that it is ob-
served as AA = probability that observed as aa = SnpError/2). The probability that one homozygote
is observed as the other is (SnpErro r/2)2. How this single value is rendered into a 3x3 error matrix
is fully flexible and specified via ErrorFM; see 1ink{ErrToM} for details.

The default values of SnpError=5e-4 and ErrorFM="version2.9" correspond to the length 3 vec-
tor c((5e-4/2)*2, 5e-4x(1-5e-4/2) , 5e-4/2).

A beta-distribution is used to simulate variation in the error rate between SNPs, the shape parameter
of this distribution can be specified via MkGenoErrors. It is also possible to specify the error rate
per SNP.

Call Rate

Variation in call rates across SNPs is assumed to follow a highly skewed (beta) distribution, with
many SNPs having call rates close to 1, and a narrowing tail of lower call rates. The first shape
parameter defaults to 1 (but see MkGenoErrors), and the second shape parameter is defined via the
mean as CallRate. For 99.9% of SNPs to have a call rate of 0.8 (0.9; 0.95) or higher, use a mean
call rate of 0.969 (0.985; 0.993).

Variation in call rate between samples can be specified by providing a named vector to CallRate.
Otherwise, variation in call rate and error rate between samples occurs only as side-effect of the
random nature of which individuals are hit by per-SNP errors and drop-outs. Finer control is pos-
sible by first generating an error-free genotype matrix, and then calling MkGenoErrors directly on
(subsets of) the matrix.

Disclaimer

This simulation is highly simplistic and assumes that all SNPs segregate completely independently,
that the SNPs are in Hardy-Weinberg equilibrium in the pedigree founders. It assumes that geno-
typing errors are not due to heritable mutations of the SNPs, and that missingness is random and
not e.g. due to heritable mutations of SNP flanking regions. Results based on this simulated data
will provide an minimum estimate of the number of SNPs required, and an optimistic estimate of
pedigree reconstruction performance.

Author(s)

Jisca Huisman, <jisca.huisman@gmail.com>

See Also

The wrapper EstConf for repeated simulation and pedigree reconstruction; MkGenoErrors for fine
control over the distribution of genotyping errors in simulated data; ErrToM for more information

88 SimGeno_example

about genotyping error patterns.

Examples
Geno_A <- SimGeno(Pedigree = Ped_griffin, nSnp=200, ParMis=c(0.1, 0.6),
MAF = 0.25, SnpError = 0.001)

Geno_B <- SimGeno(Pedigree = Ped_HSg5, nSnp = 100, ParMis = 0.2,
SnpError = c(0.01, 0.04, 0.1))

Geno_C <- SimGeno(Pedigree = Ped_griffin, nSnp=200, ParMis=0, CallRate=0.6,
SnpError = 0.05, ErrorFV=function(E) c(E/1@, E/10, E))

genotype matrix with duplicated samples:

Dups_grif <- data.frame(ID1 = c('i0@06_2001_M', 'i021_2002_M', 'i064_2004_F'))

Dups_grif$ID2 <- paste@(Dups_grif$ID1, '_2')

Err <- c(0.01, 0.04, 0.1)

Geno_act <- SimGeno(Ped_griffin, nSnp=500, ParMis=0, CallRate=1, SnpError=0)

Geno_sim <- MkGenoErrors(Geno_act, SnpError=Err, CallRate=0.99)

Geno_dups <- MkGenoErrors(Geno_act[Dups_grif$ID1, 1, SnpError=Err,
CallRate=0.99)

rownames (Geno_dups) <- Dups_grif$ID2

Geno_sim <- rbind(Geno_sim, Geno_dups)

Not run:
write simulated genotypes to a file, e.g. for use by PLINK:

GenoConvert(Geno_A, InFormat='seq', OutFormat='ped', OutFile = sim_genotypes)

End(Not run)

SimGeno_example Example genotype file: "HSg5’

Description

Simulated genotype data for cohorts 1+2 in Pedigree Ped_HSg5

Usage

data(SimGeno_example)

Format
A genotype matrix with 214 rows (ids) and 200 columns (SNPs). Each SNP is coded as 0/1/2 copies
of the reference allele, with -9 for missing values. Ids are stored as rownames.

Author(s)

Jisca Huisman, <jisca.huisman@gmail.com>

SnpStats

See Also

89

LH_HSg5, SimGeno

SnpStats

SNP Summary Statistics

Description

Estimate allele frequency (AF), missingness and Mendelian errors per SNP.

Usage

SnpStats(
GenoM,

Pedigree = NULL,
Duplicates = NULL,

Plot = TRUE,
quiet = TRUE,

calc_HWE = TRUE,

ErrFlavour

Arguments

GenoM
Pedigree
Duplicates
Plot

quiet
calc_HWE

ErrFlavour

Details

genotype matrix, in sequoia’s format: 1 column per SNP, 1 row per individual,
genotypes coded as 0/1/2/-9, and row names giving individual IDs.

dataframe with 3 columns: ID - parentl - parent2. Additional columns and non-
genotyped individuals are ignored. Used to count Mendelian errors per SNP and
(poorly) estimate the error rate.

dataframe with pairs of duplicated samples
logical, show histograms of the results?
logical, suppress messages?

logical, calculate chi-square test for Hardy-Weinberg equilibrium? Can be rela-
tively time consuming for large datasets.

DEPRECATED AND IGNORED. Was used to estimate Err.hat

Calculation of these summary statistics can be done in PLINK, and SNPs with low minor allele
frequency or high missingness should be filtered out prior to pedigree reconstruction. This function
is provided as an aid to inspect the relationship between AF, missingness and genotyping error to
find a suitable combination of SNP filtering thresholds to use.

For pedigree reconstruction, SNPs with zero or one copies of the alternate allele in the dataset (MAF
< 1/2N) are considered fixed, and excluded.

90 SummarySeq

Value

A matrix with a number of rows equal to the number of SNPs (=number of columns of GenoM),
and when no Pedigree is provided 2 columns:

AF Allele frequency of the ’second allele’ (the one for which the homozygote is
coded 2)

Mis Proportion of missing calls

HWE . p p-value from chi-square test for Hardy-Weinberg equilibrium

When a Pedigree is provided, there are § additional columns:
n.dam, n.sire, n.pair

Number of dams, sires, parent-pairs successfully genotyped for the SNP
OHdam, OHsire Count of number of opposing homozygous cases

MEpair Count of Mendelian errors, includes opposing homozygous cases when only one
parent is genotyped

n.dups, n.diff Number of duplicate pairs successfully genotyped for the SNP; number of dif-
ferences. The latter does not count cases where one duplicate is not successfully
genotyped at the SNP

See Also

GenoConvert to convert from various data formats; CheckGeno to check the data is in valid format
for sequoia and exclude monomorphic SNPs etc., CalcOHLLR to calculate OH & ME per individual.

Examples

Genotypes <- SimGeno(Ped_HSg5, nSnp=100, CallRate = runif(100, 0.5, 0.8),
SnpError = 0.05)

SnpStats(Genotypes) # only plots; data is returned invisibly

SNPstats <- SnpStats(Genotypes, Pedigree=Ped_HSg5)

SummarySeq Summarise Sequoia Output or Pedigree

Description

Number of assigned parents and grandparents and sibship sizes, split by genotyped, dummy, and
"observed’.

SummarySeq

Usage

SummarySeq(

91

SeqgList = NULL,

Pedigree
DumPrefix

SNPd = NULL,
Plot = TRUE,

NULL,
C(”F@”, MMOH)’

Panels = "all”

Arguments

SeqlList

Pedigree

DumPrefix

SNPd

Plot

Panels

Details

the list returned by sequoia. Only elements 'Pedigree’ or ’PedigreePar’ and
’AgePriors’ are used. All ids in ’PedigreePar’, and only those, are presumed
genotyped.

dataframe, pedigree with the first three columns being id - dam - sire. Col-
umn names are ignored, as are additional columns, except for columns OHdam,
OHsire, MEpair, LLRdam, LLRsire, LLRpair (plotting only).

character vector with prefixes for dummy dams (mothers) and sires (fathers),
used to distinguish between dummies and non-dummies. Will be read from
SeqlList’s *Specs’ if provided.

character vector with ids of SNP genotyped individuals. Only used when Pedigree
is provided instead of SeqList, to distinguish between genetically assigned par-
ents and ’observed’ parents (e.g. observed in the field, or assigned previously
using microsatellites). If NULL (the default), all parents are presumed observed.

show barplots and histograms of the results, as well as of the parental LLRs,
Mendelian errors, and agepriors, if present.

character vector with panel(s) to plot. Choose from ’all’, G.parents’ (parents of
genotyped individuals), *D.parents’ (parents of dummy individuals), ’sibships’
(distribution of sibship sizes), 'LLR’ (logl10-likelihood ratio parent/otherwise
related), ’OH’ (count of opposite homozygote SNPs).

The list with results is returned invisible

Value

A list with the following elements:

PedSummary

ParentCount

a 2-column matrix with basic summary statistics, similar to what used to be re-
turned by Pedantics’ pedStatSummary (now archived on CRAN). First column
refers to the complete pedigree, second column to SNP-genotyped individuals
only. Maternal siblings sharing a dummy parent are counted in the 2nd column
if both sibs are genotyped, but not if one of the sibs is a dummy individual.

an array with the number of assigned parents, split by:

92 writeColumns

* offspringCat: Genotyped, Dummy, or Observed* (*: only when Pedigree
is provided rather than SeqlList, for ids which are not listed in SNPd and
do not conform to DumPrefix + number (i.e. (almost) all individuals when
SNPd = NULL, the default).

* offspringSex: Female, Male, Unknown, or Herm* (*: hermaphrodite, only
if any individuals occur as both dam and sire). Based only on whether an
individual occurs as Dam or Sire.

 parentSex: Dam or Sire

* parentCat: Genotyped, Dummy, Observed*, or None (*: as for offspring-
Cat)

GPCount an array with the number of assigned grandparents, split by:

* offspringCat: Genotyped, Dummy, Observed*, or All

 grandparent kind: maternal grandmothers (MGM), maternal grandfathers
(MGF), paternal grandmothers (PGM), paternal grandfathers (PGF)

* grandparentCat: Genotyped, Dummy, Observed*, or None
SibSize a list with elements 'mat’ (maternal half + full siblings), "pat’ (paternal half
+ full siblings), and *full’ (full siblings). Each is a matrix with a number of

rows equal to the maximum sibship size, and 3 columns, splitting by the type of
parent: Genotyped, Dummy, or Observed.

See Also
PlotSeqSum to plot the output of this function; PlotPropAssigned for just a barplot of the propor-
tion of individuals with genotyped/dummy/observed/no assigned dam/sire.

Examples

SummarySeq(Ped_griffin)
sumry_grif <- SummarySeq(SeqOUT_griffin, Panels=c("G.parents”, "OH"))
sumry_grif$PedSummary

invisible results (nothing printed) when no output object is specified:
SummarySeq(SeqOUT_griffin, Panels=c("LLR"))

writeColumns Write Data to a File Column-wise

Description
Write data.frame or matrix to a text file, using white space padding to keep columns aligned as in
print.

Usage

writeColumns(x, file = "", row.names = TRUE, col.names = TRUE)

writeSeq 93

Arguments
X the object to be written, preferably a matrix or data frame. If not, it is attempted
to coerce X to a matrix.
file a character string naming a file.
row.names a logical value indicating whether the row names of x are to be written along
with x.
col.names a logical value indicating whether the column names of x are to be written along
with x.
writeSeq Write Sequoia Output to File
Description

The various list elements returned by sequoia are each written to text files in the specified folder,
or to separate sheets in a single excel file (requires library openxlsx).

Usage

writeSeq(
SeqlList,
GenoM = NULL,
MaybeRel = NULL,
PedComp = NULL,
OutFormat = "txt",
folder = "Sequoia-OUT",
file = "Sequoia-OUT.xlsx",
quiet = FALSE

)
Arguments

SeqlList list returned by sequoia, to be written out.

GenoM matrix with genetic data (optional). Ignored if OutFormat="xIls’, as the resulting
file could become too large for excel.

MaybeRel list with results from GetMaybeRel (optional).

PedComp list with results from PedCompare (optional). SeqList$DummyIDs is combined
with PedComp$DummyMatch if both are provided.

OutFormat ’x1s’ or 'txt’.

folder the directory where the text files will be written; will be created if it does not
already exists. Relative to the current working directory, or NULL for current
working directory. Ignored if OutFormat="'x1ls".

file the name of the excel file to write to, ignored if OutFormat="txt".

quiet suppress messages.

94 writeSeq

Details

The text files can be used as input for the stand-alone Fortran version of sequoia, e.g. when the
genotype data is too large for R. See vignette('sequoia') for further details.

See Also

writeColumns to write to a text file, using white space padding to keep columns aligned.

Examples

Not run:
writeSeq(SeqlList, OutFormat="xls", file="MyFile.x1lsx")

add additional sheet to the excel file:

library(openxlsx)

wb <- loadWorkbook("MyFile.x1sx")

addWorksheet (wb, sheetName = "ExtraData")

writeData(wb, sheet = "ExtraData”, MyData, rowNames=FALSE)
saveWorkbook (wb, "MyFile.xlsx", overwrite=TRUE, returnValue=TRUE)

or: (package requires java & is trickier to install)
xlsx::write.xlsx(MyData, file = "MyFile.xlsx", sheetName="ExtraData",

col.names=TRUE, row.names=FALSE, append=TRUE, showNA=FALSE)

End(Not run)

Index

+ datasets
Conf_griffin, 24
FieldMums_griffin, 35
Geno_griffin, 40
Geno_HSg5, 41
Inherit_patterns, 52
LH_griffin, 54
LH_HSg5, 55
MaybeRel_griffin, 60
Ped_griffin, 69
Ped_HSg5, 69
SeqOUT_griffin, 76
SeqOUT_HSg5, 77
SimGeno_example, 88

x inherit
Inherit_patterns, 52

* sequoia
Conf_griffin, 24
FieldMums_griffin, 35
Geno_griffin, 40
Geno_HSg5, 41
Inherit_patterns, 52
LH_griffin, 54
LH_HSg5, 55
MaybeRel_griffin, 60
Ped_griffin, 69
Ped_HSg5, 69
SeqOUT_griffin, 76
SeqOUT_HSg5, 77
SimGeno_example, 88

barplot, 73

CalcBYprobs, 3, 81, 83

CalcMaxMismatch, 4, 8, 25, 81

CalcOHLLR, 6, 13, 20, 25, 66, 80, 83, 90

CalcPairlLL, 9, 10, 16, 17, 25,45,49, 71, 72,
82, 83

CalcParentProbs, 15, 16, 83

CalcRped, 18

CheckGeno, 9, 18, 39, 43, 83, 90
ComparePairs, 20, 26, 52, 65, 66, 83
Conf_griffin, 24

CountOH, 25, 83

DyadCompare, 21, 26

Err_RADseq, 7, 12, 30,47, 79
ErrToM, 5,7, 12,27, 30,47,79, 82, 87
EstConf, 23, 24, 31, 66, 83, 87

FieldMums_griffin, 35
FindFamilies, 36, 44, 68
fread, 38

genlight, 37
Geno_griffin, 24, 40, 60, 76
Geno_HSg5, 41, 77
GenoConvert, 7,9, 11, 16, 25, 37, 46, 54, 68,
78, 83, 90
GetAncestors, 37,41, 44
getAssignCat, 8, 9, 13,42, 63, 64, 66
GetDescendants, 37, 43, 44
getGenerations, 37, 44, 67, 74
GetLLRAge, 45
GetMaybeRel, 15, 21, 36, 46, 50, 60, 83, 93
GetRelM, 15, 23,49, 50, 74, 75, 83

Inherit_patterns, 52
invisible, 19, 75, 91

kinship, 18, 67

layout, 70
LH_griffin, 54, 69
LH_HSg5, 41, 55,70, 77, 89
LHConvert, 39, 53, 68
LLtoProb, 15, 17,55, 83

MakeAgePrior, 3,4, 7, 12, 14,47, 56, 70, 79,
80, 83

96 INDEX

MaybeRel_griffin, 60
MkGenoErrors, 61, 87

paste, 38
Ped_griffin, 24, 36, 40, 54, 60, 69, 76
Ped_HSg5, 41, 55, 69, 69, 77, 88
PedCompare, 21, 23, 26, 31, 33, 35, 42, 43, 62,
72,83, 93
PedPolish, 9, 36, 51, 66
PedStripFID, 38, 54, 68
PlotAgePrior, 60, 70, 83
PlotPairlLL, 12, 15,71
PlotPedComp, 72
PlotPropAssigned, 73, 83, 92
PlotRelPairs, 23, 52,73
PlotSeqSum, 75, 92

read. table, 39
readLines, 38, 39

SeqOUT_griffin, 24, 36, 54, 61, 69, 76

SeqOUT_HSg5, 41, 77

sequoia, 5, 7-9, 12, 19, 24, 25, 31, 33, 36, 42,
43,45-47,49, 53, 55, 59, 60, 69, 70,
76, 77,71, 91, 93

SimGeno, 31, 33, 40, 41, 53, 83, 85, 89

SimGeno_example, 70, 88

SnpStats, 5, 19, 20, 39, 80, 83, 89

strsplit, 38, 39

SummarySeq, 9, 70, 73, 75, 80, 83, 90

system. time, 32

write.table, 38
writeColumns, 92, 94
writeSeq, 83,93

	CalcBYprobs
	CalcMaxMismatch
	CalcOHLLR
	CalcPairLL
	CalcParentProbs
	CalcRped
	CheckGeno
	ComparePairs
	Conf_griffin
	CountOH
	DyadCompare
	ErrToM
	Err_RADseq
	EstConf
	FieldMums_griffin
	FindFamilies
	GenoConvert
	Geno_griffin
	Geno_HSg5
	GetAncestors
	getAssignCat
	GetDescendants
	getGenerations
	GetLLRAge
	GetMaybeRel
	GetRelM
	Inherit_patterns
	LHConvert
	LH_griffin
	LH_HSg5
	LLtoProb
	MakeAgePrior
	MaybeRel_griffin
	MkGenoErrors
	PedCompare
	PedPolish
	PedStripFID
	Ped_griffin
	Ped_HSg5
	PlotAgePrior
	PlotPairLL
	PlotPedComp
	PlotPropAssigned
	PlotRelPairs
	PlotSeqSum
	SeqOUT_griffin
	SeqOUT_HSg5
	sequoia
	SimGeno
	SimGeno_example
	SnpStats
	SummarySeq
	writeColumns
	writeSeq
	Index

