
Package ‘shapr’
December 22, 2025

Version 1.0.7

Title Prediction Explanation with Dependence-Aware Shapley Values

Description Complex machine learning models are often hard to interpret. However, in
many situations it is crucial to understand and explain why a model made a specific
prediction. Shapley values is the only method for such prediction explanation framework
with a solid theoretical foundation. Previously known methods for estimating the Shapley
values do, however, assume feature independence. This package implements methods which ac-
counts for any feature
dependence, and thereby produces more accurate estimates of the true Shapley values.
An accompanying 'Python' wrapper ('shaprpy') is available through PyPI.

URL https://norskregnesentral.github.io/shapr/,

https://github.com/NorskRegnesentral/shapr/

BugReports https://github.com/NorskRegnesentral/shapr/issues

License MIT + file LICENSE

Encoding UTF-8

ByteCompile true

Language en-US

RoxygenNote 7.3.3

Depends R (>= 3.5.0)

Imports stats, data.table (>= 1.15.0), Rcpp (>= 0.12.15), Matrix,
future.apply, methods, cli, rlang

Suggests ranger, xgboost, mgcv, testthat (>= 3.0.0), knitr, rmarkdown,
roxygen2, ggplot2, gbm, party, partykit, waldo, progressr,
future, ggbeeswarm, vdiffr, forecast, torch, GGally, coro,
parsnip, recipes, workflows, tune, dials, yardstick, hardhat,
rsample

LinkingTo RcppArmadillo, Rcpp

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation yes

1

https://norskregnesentral.github.io/shapr/
https://github.com/NorskRegnesentral/shapr/
https://github.com/NorskRegnesentral/shapr/issues

2 explain

Author Martin Jullum [cre, aut] (ORCID:
<https://orcid.org/0000-0003-3908-5155>),

Lars Henry Berge Olsen [aut] (ORCID:
<https://orcid.org/0009-0006-9360-6993>),

Annabelle Redelmeier [aut],
Jon Lachmann [aut] (ORCID: <https://orcid.org/0000-0001-8396-5673>),
Nikolai Sellereite [aut] (ORCID:

<https://orcid.org/0000-0002-4671-0337>),
Anders Løland [ctb],
Jens Christian Wahl [ctb],
Camilla Lingjærde [ctb],
Norsk Regnesentral [cph, fnd]

Maintainer Martin Jullum <Martin.Jullum@nr.no>

Repository CRAN

Date/Publication 2025-12-22 16:30:02 UTC

Contents

explain . 2
explain_forecast . 14
get_extra_comp_args_default . 21
get_iterative_args_default . 23
get_output_args_default . 25
get_results . 26
get_supported_approaches . 27
get_supported_models . 28
plot.shapr . 28
plot_MSEv_eval_crit . 32
plot_SV_several_approaches . 37
plot_vaeac_eval_crit . 41
plot_vaeac_imputed_ggpairs . 45
print.shapr . 48
print.summary.shapr . 49
summary.shapr . 49
vaeac_get_extra_para_default . 50
vaeac_train_model_continue . 55

Index 57

explain Explain the Output of Machine Learning Models with Dependence-
Aware (Conditional/Observational) Shapley Values

https://orcid.org/0000-0003-3908-5155
https://orcid.org/0009-0006-9360-6993
https://orcid.org/0000-0001-8396-5673
https://orcid.org/0000-0002-4671-0337

explain 3

Description

Compute dependence-aware Shapley values for observations in x_explain from the specified model
using the method specified in approach to estimate the conditional expectation. See Aas et al.
(2021) for a thorough introduction to dependence-aware prediction explanation with Shapley val-
ues. For an overview of the methodology and capabilities of the package, see the software paper
Jullum et al. (2025), or the pkgdown site at norskregnesentral.github.io/shapr/.

Usage

explain(
model,
x_explain,
x_train,
approach,
phi0,
iterative = NULL,
max_n_coalitions = NULL,
group = NULL,
n_MC_samples = 1000,
seed = NULL,
verbose = "basic",
predict_model = NULL,
get_model_specs = NULL,
prev_shapr_object = NULL,
asymmetric = FALSE,
causal_ordering = NULL,
confounding = NULL,
extra_computation_args = list(),
iterative_args = list(),
output_args = list(),
...

)

Arguments

model Model object. The model whose predictions you want to explain. Run get_supported_models()
for a table of which models explain supports natively. Unsupported models can
still be explained by passing predict_model and (optionally) get_model_specs,
see details for more information.

x_explain Matrix or data.frame/data.table. Features for which predictions should be ex-
plained.

x_train Matrix or data.frame/data.table. Data used to estimate the (conditional) fea-
ture distributions needed to properly estimate the conditional expectations in the
Shapley formula.

approach Character vector of length 1 or one less than the number of features. All ele-
ments should either be "gaussian", "copula", "empirical", "ctree", "vaeac",
"categorical", "timeseries", "independence", "regression_separate",

https://martinjullum.com/publication/aas-2021-explaining/aas-2021-explaining.pdf
https://martinjullum.com/publication/aas-2021-explaining/aas-2021-explaining.pdf
https://arxiv.org/pdf/2504.01842
https://norskregnesentral.github.io/shapr/

4 explain

or "regression_surrogate". The two regression approaches cannot be com-
bined with any other approach. See details for more information.

phi0 Numeric. The prediction value for unseen data, i.e., an estimate of the expected
prediction without conditioning on any features. Typically set this equal to the
mean of the response in the training data, but alternatives such as the mean of
the training predictions are also reasonable.

iterative Logical or NULL. If NULL (default), set to TRUE if there are more than 5 fea-
tures/groups, and FALSE otherwise. If TRUE, Shapley values are estimated itera-
tively for faster, sufficiently accurate results. First an initial number of coalitions
is sampled, then bootstrapping estimates the variance of the Shapley values. A
convergence criterion determines if the variances are sufficiently small. If not,
additional samples are added. The process repeats until the variances are below
the threshold. Specifics for the iterative process and convergence criterion are
set via iterative_args.

max_n_coalitions

Integer. Upper limit on the number of unique feature/group coalitions to use in
the iterative procedure (if iterative = TRUE). If iterative = FALSE, it repre-
sents the number of feature/group coalitions to use directly. The quantity refers
to the number of unique feature coalitions if group = NULL, and group coalitions
if group != NULL. max_n_coalitions = NULL corresponds to 2^n_features.

group List. If NULL, regular feature-wise Shapley values are computed. If provided,
group-wise Shapley values are computed. group then has length equal to the
number of groups. Each list element contains the character vectors with the
features included in the corresponding group. See Jullum et al. (2021) for more
information on group-wise Shapley values.

n_MC_samples Positive integer. For most approaches, it indicates the maximum number of
samples to use in the Monte Carlo integration of every conditional expectation.
For approach="ctree", n_MC_samples corresponds to the number of samples
from the leaf node (see an exception related to the ctree.sample argument
in setup_approach.ctree()). For approach="empirical", n_MC_samples
is the K parameter in equations (14-15) of Aas et al. (2021), i.e. the maxi-
mum number of observations (with largest weights) that is used, see also the
empirical.eta argument setup_approach.empirical().

seed Positive integer. Specifies the seed before any code involving randomness is run.
If NULL (default), no seed is set in the calling environment.

verbose String vector or NULL. Controls verbosity (printout detail level) via one or more
of "basic", "progress", "convergence", "shapley" and "vS_details". "basic"
(default) displays basic information about the computation and messages about
parameters/checks. "progress" displays where in the calculation process the
function currently is. "convergence" displays how close the Shapley value
estimates are to convergence (only when iterative = TRUE). "shapley" dis-
plays intermediate Shapley value estimates and standard deviations (only when
iterative = TRUE), and the final estimates. "vS_details" displays informa-
tion about the v(S) estimates, most relevant for approach %in% c("regression_separate",
"regression_surrogate", "vaeac"). NULL means no printout. Any combi-
nation can be used, e.g., verbose = c("basic", "vS_details").

https://martinjullum.com/publication/jullum-2021-efficient/jullum-2021-efficient.pdf

explain 5

predict_model Function. Prediction function to use when model is not natively supported. (Run
get_supported_models() for a list of natively supported models.) The func-
tion must have two arguments, model and newdata, which specify the model
and a data.frame/data.table to compute predictions for, respectively. The func-
tion must give the prediction as a numeric vector. NULL (the default) uses func-
tions specified internally. Can also be used to override the default function for
natively supported model classes.

get_model_specs

Function. An optional function for checking model/data consistency when model
is not natively supported. (Run get_supported_models() for a list of natively
supported models.) The function takes model as an argument and provides a list
with 3 elements:

labels Character vector with the names of each feature.
classes Character vector with the class of each feature.
factor_levels Character vector with the levels for any categorical features.

If NULL (the default), internal functions are used for natively supported model
classes, and checking is disabled for unsupported model classes. Can also be
used to override the default function for natively supported model classes.

prev_shapr_object

shapr object or string. If an object of class shapr is provided, or a string with
a path to where intermediate results are stored, then the function will use the
previous object to continue the computation. This is useful if the computation
is interrupted or you want higher accuracy than already obtained, and therefore
want to continue the iterative estimation. See the general usage vignette for
examples.

asymmetric Logical. Not applicable for (regular) non-causal explanations. If FALSE (de-
fault), explain computes regular symmetric Shapley values. If TRUE, explain
computes asymmetric Shapley values based on the (partial) causal ordering
given by causal_ordering. That is, explain only uses feature coalitions that
respect the causal ordering. If asymmetric is TRUE and confounding is NULL
(default), explain computes asymmetric conditional Shapley values as spec-
ified in Frye et al. (2020). If confounding is provided, i.e., not NULL, then
explain computes asymmetric causal Shapley values as specified in Heskes et
al. (2020).

causal_ordering

List. Not applicable for (regular) non-causal or asymmetric explanations. causal_ordering
is an unnamed list of vectors specifying the components of the partial causal or-
dering that the coalitions must respect. Each vector represents a component
and contains one or more features/groups identified by their names (strings)
or indices (integers). If causal_ordering is NULL (default), no causal order-
ing is assumed and all possible coalitions are allowed. No causal ordering
is equivalent to a causal ordering with a single component that includes all
features (list(1:n_features)) or groups (list(1:n_groups)) for feature-
wise and group-wise Shapley values, respectively. For feature-wise Shapley
values and causal_ordering = list(c(1, 2), c(3, 4)), the interpretation is
that features 1 and 2 are the ancestors of features 3 and 4, while features 3

https://norskregnesentral.github.io/shapr/articles/general_usage.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/0d770c496aa3da6d2c3f2bd19e7b9d6b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/32e54441e6382a7fbacbbbaf3c450059-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/32e54441e6382a7fbacbbbaf3c450059-Paper.pdf

6 explain

and 4 are on the same level. Note: All features/groups must be included in
causal_ordering without duplicates.

confounding Logical vector. Not applicable for (regular) non-causal or asymmetric expla-
nations. confounding is a logical vector specifying whether confounding is
assumed for each component in the causal_ordering. If NULL (default), no
assumption about the confounding structure is made and explain computes
asymmetric/symmetric conditional Shapley values, depending on asymmetric.
If confounding is a single logical (FALSE or TRUE), the assumption is set glob-
ally for all components in the causal ordering. Otherwise, confounding must
have the same length as causal_ordering, indicating the confounding assump-
tion for each component. When confounding is specified, explain computes
asymmetric/symmetric causal Shapley values, depending on asymmetric. The
approach cannot be regression_separate or regression_surrogate, as the
regression-based approaches are not applicable to the causal Shapley methodol-
ogy.

extra_computation_args

Named list. Specifies extra arguments related to the computation of the Shap-
ley values. See get_extra_comp_args_default() for description of the argu-
ments and their default values.

iterative_args Named list. Specifies the arguments for the iterative procedure. See get_iterative_args_default()
for description of the arguments and their default values.

output_args Named list. Specifies certain arguments related to the output of the function.
See get_output_args_default() for description of the arguments and their
default values.

... Arguments passed on to setup_approach.categorical, setup_approach.copula,
setup_approach.ctree, setup_approach.empirical, setup_approach.gaussian,
setup_approach.independence, setup_approach.regression_separate, setup_approach.regression_surrogate,
setup_approach.timeseries, setup_approach.vaeac

categorical.joint_prob_dt Data.table. (Optional) Containing the joint prob-
ability distribution for each combination of feature values. NULL means it is
estimated from the x_train and x_explain.

categorical.epsilon Numeric value. (Optional) If categorical.joint_prob_dt
is not supplied, probabilities/frequencies are estimated using x_train. If
certain observations occur in x_explain and NOT in x_train, then epsilon
is used as the proportion of times that these observations occur in the train-
ing data. In theory, this proportion should be zero, but this causes an error
later in the Shapley computation.

internal List. Not used directly, but passed through from explain().
ctree.mincriterion Numeric scalar or vector. Either a scalar or vector of

length equal to the number of features in the model. The value is equal to 1
- α where α is the nominal level of the conditional independence tests. If it
is a vector, this indicates which value to use when conditioning on various
numbers of features. The default value is 0.95.

ctree.minsplit Numeric scalar. Determines the minimum value that the sum
of the left and right daughter nodes must reach for a split. The default value
is 20.

explain 7

ctree.minbucket Numeric scalar. Determines the minimum sum of weights
in a terminal node required for a split. The default value is 7.

ctree.sample Boolean. If TRUE (default), then the method always samples
n_MC_samples observations from the leaf nodes (with replacement). If
FALSE and the number of observations in the leaf node is less than n_MC_samples,
the method will take all observations in the leaf. If FALSE and the number
of observations in the leaf node is more than n_MC_samples, the method
will sample n_MC_samples observations (with replacement). This means
that there will always be sampling in the leaf unless sample = FALSE and
the number of obs in the node is less than n_MC_samples.

empirical.type Character. (default = "fixed_sigma") Must be one of "independence",
"fixed_sigma", "AICc_each_k", or "AICc_full". Note: "empirical.type
= independence" is deprecated; use approach = "independence" instead.
"fixed_sigma" uses a fixed bandwidth (set through empirical.fixed_sigma)
in the kernel density estimation. "AICc_each_k" and "AICc_full" opti-
mize the bandwidth using the AICc criterion, with respectively one band-
width per coalition size and one bandwidth for all coalition sizes.

empirical.eta Numeric scalar. Needs to be 0 < eta <= 1. The default value
is 0.95. Represents the minimum proportion of the total empirical weight
that data samples should use. For example, if eta = .8, we choose the K
samples with the largest weights so that the sum of the weights accounts
for 80\ eta is the η parameter in equation (15) of Aas et al. (2021).

empirical.fixed_sigma Positive numeric scalar. The default value is 0.1.
Represents the kernel bandwidth in the distance computation used when
conditioning on all different coalitions. Only used when empirical.type
= "fixed_sigma"

empirical.n_samples_aicc Positive integer. Number of samples to consider
in AICc optimization. The default value is 1000. Only used when empirical.type
is either "AICc_each_k" or "AICc_full".

empirical.eval_max_aicc Positive integer. Maximum number of iterations
when optimizing the AICc. The default value is 20. Only used when
empirical.type is either "AICc_each_k" or "AICc_full".

empirical.start_aicc Numeric. Start value of the sigma parameter when
optimizing the AICc. The default value is 0.1. Only used when empirical.type
is either "AICc_each_k" or "AICc_full".

empirical.cov_mat Numeric matrix. (Optional) The covariance matrix of the
data generating distribution used to define the Mahalanobis distance. NULL
means it is estimated from x_train.

gaussian.mu Numeric vector. (Optional) Containing the mean of the data gen-
erating distribution. NULL means it is estimated from the x_train.

gaussian.cov_mat Numeric matrix. (Optional) Containing the covariance ma-
trix of the data generating distribution. NULL means it is estimated from the
x_train.

regression.model A tidymodels object of class model_specs. Default is a
linear regression model, i.e., parsnip::linear_reg(). See tidymodels for
all possible models, and see the vignette for how to add new/own models.
Note, to make it easier to call explain() from Python, the regression.model

https://martinjullum.com/publication/aas-2021-explaining/aas-2021-explaining.pdf
https://www.tidymodels.org/find/parsnip/

8 explain

parameter can also be a string specifying the model which will be parsed
and evaluated. For example, "parsnip::rand_forest(mtry = hardhat::tune(), trees = 100, engine = "ranger", mode = "regression")"
is also a valid input. It is essential to include the package prefix if the pack-
age is not loaded.

regression.tune_values Either NULL (default), a data.frame/data.table/tibble,
or a function. The data.frame must contain the possible hyperparameter
value combinations to try. The column names must match the names of the
tunable parameters specified in regression.model. If regression.tune_values
is a function, then it should take one argument x which is the training data
for the current coalition and returns a data.frame/data.table/tibble with the
properties described above. Using a function allows the hyperparameter
values to change based on the size of the coalition See the regression vi-
gnette for several examples. Note, to make it easier to call explain() from
Python, the regression.tune_values can also be a string containing an R
function. For example, "function(x) return(dials::grid_regular(dials::mtry(c(1,
ncol(x)))), levels = 3))" is also a valid input. It is essential to include
the package prefix if the package is not loaded.

regression.vfold_cv_para Either NULL (default) or a named list containing
the parameters to be sent to rsample::vfold_cv(). See the regression
vignette for several examples.

regression.recipe_func Either NULL (default) or a function that that takes in
a recipes::recipe() object and returns a modified recipes::recipe()
with potentially additional recipe steps. See the regression vignette for sev-
eral examples. Note, to make it easier to call explain() from Python, the
regression.recipe_func can also be a string containing an R function.
For example, "function(recipe) return(recipes::step_ns(recipe,
recipes::all_numeric_predictors(), deg_free = 2))" is also a valid
input. It is essential to include the package prefix if the package is not
loaded.

regression.surrogate_n_comb Positive integer. Specifies the number of unique
coalitions to apply to each training observation. The default is the number
of sampled coalitions in the present iteration. Any integer between 1 and
the default is allowed. Larger values requires more memory, but may im-
prove the surrogate model. If the user sets a value lower than the maximum,
we sample this amount of unique coalitions separately for each training ob-
servations. That is, on average, all coalitions should be equally trained.

timeseries.fixed_sigma Positive numeric scalar. Represents the kernel band-
width in the distance computation. The default value is 2.

timeseries.bounds Numeric vector of length two. Specifies the lower and
upper bounds of the timeseries. The default is c(NULL, NULL), i.e. no
bounds. If one or both of these bounds are not NULL, we restrict the sampled
time series to be between these bounds. This is useful if the underlying time
series are scaled between 0 and 1, for example.

vaeac.depth Positive integer (default is 3). The number of hidden layers in the
neural networks of the masked encoder, full encoder, and decoder.

vaeac.width Positive integer (default is 32). The number of neurons in each
hidden layer in the neural networks of the masked encoder, full encoder,
and decoder.

explain 9

vaeac.latent_dim Positive integer (default is 8). The number of dimensions
in the latent space.

vaeac.lr Positive numeric (default is 0.001). The learning rate used in the
torch::optim_adam() optimizer.

vaeac.activation_function An torch::nn_module() representing an acti-
vation function such as, e.g., torch::nn_relu() (default), torch::nn_leaky_relu(),
torch::nn_selu(), or torch::nn_sigmoid().

vaeac.n_vaeacs_initialize Positive integer (default is 4). The number of
different vaeac models to initiate in the start. Pick the best performing
one after vaeac.extra_parameters$epochs_initiation_phase epochs
(default is 2) and continue training that one.

vaeac.epochs Positive integer (default is 100). The number of epochs to train
the final vaeac model. This includes vaeac.extra_parameters$epochs_initiation_phase,
where the default is 2.

vaeac.extra_parameters Named list with extra parameters to the vaeac ap-
proach. See vaeac_get_extra_para_default() for description of possi-
ble additional parameters and their default values.

Details

The shapr package implements kernelSHAP estimation of dependence-aware Shapley values with
eight different Monte Carlo-based approaches for estimating the conditional distributions of the
data. These are all introduced in the general usage vignette. (From R: vignette("general_usage",
package = "shapr")). For an overview of the methodology and capabilities of the package, please
also see the software paper Jullum et al. (2025). Moreover, Aas et al. (2021) gives a general
introduction to dependence-aware Shapley values and the approaches "empirical", "gaussian",
"copula", and also discusses "independence". Redelmeier et al. (2020) introduces the approach
"ctree". Olsen et al. (2022) introduces the "vaeac" approach. Approach "timeseries" is dis-
cussed in Jullum et al. (2021). shapr has also implemented two regression-based approaches
"regression_separate" and "regression_surrogate", as described in Olsen et al. (2024). It
is also possible to combine the different approaches, see the general usage vignette for more infor-
mation.

The package also supports the computation of causal and asymmetric Shapley values as introduced
by Heskes et al. (2020) and Frye et al. (2020). Asymmetric Shapley values were proposed by
Frye et al. (2020) as a way to incorporate causal knowledge in the real world by restricting the
possible feature combinations/coalitions when computing the Shapley values to those consistent
with a (partial) causal ordering. Causal Shapley values were proposed by Heskes et al. (2020)
as a way to explain the total effect of features on the prediction, taking into account their causal
relationships, by adapting the sampling procedure in shapr.

The package allows parallelized computation with progress updates through the tightly connected
future::future and progressr::progressr packages. See the examples below. For iterative estimation
(iterative=TRUE), intermediate results may be printed to the console (according to the verbose
argument). Moreover, the intermediate results are written to disk. This combined batch computation
of the v(S) values enables fast and accurate estimation of the Shapley values in a memory-friendly
manner.

https://norskregnesentral.github.io/shapr/articles/general_usage.html
https://arxiv.org/pdf/2504.01842
https://martinjullum.com/publication/aas-2021-explaining/aas-2021-explaining.pdf
https://martinjullum.com/publication/redelmeier-2020-explaining/redelmeier-2020-explaining.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://martinjullum.com/publication/jullum-2021-efficient/jullum-2021-efficient.pdf
https://link.springer.com/content/pdf/10.1007/s10618-024-01016-z.pdf
https://norskregnesentral.github.io/shapr/articles/general_usage.html
https://proceedings.neurips.cc/paper/2020/file/32e54441e6382a7fbacbbbaf3c450059-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/0d770c496aa3da6d2c3f2bd19e7b9d6b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/0d770c496aa3da6d2c3f2bd19e7b9d6b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/32e54441e6382a7fbacbbbaf3c450059-Paper.pdf

10 explain

Value

Object of class c("shapr", "list"). Contains the following items:

shapley_values_est data.table with the estimated Shapley values with explained observation in
the rows and features along the columns. The column none is the prediction not devoted to
any of the features (given by the argument phi0)

shapley_values_sd data.table with the standard deviation of the Shapley values reflecting the un-
certainty in the coalition sampling part of the kernelSHAP procedure. These are, by definition,
0 when all coalitions are used. Only present when extra_computation_args$compute_sd=TRUE,
which is the default when iterative = TRUE.

internal List with the different parameters, data, functions and other output used internally.

pred_explain Numeric vector with the predictions for the explained observations.

MSEv List with the values of the MSEv evaluation criterion for the approach. See the MSEv evalu-
ation section in the general usage vignette for details.

timing List containing timing information for the different parts of the computation. summary
contains the time stamps for the start and end time in addition to the total execution time.
overall_timing_secs gives the time spent on different parts of the explanation computa-
tion. main_computation_timing_secs further decomposes the main computation time into
different parts of the computation for each iteration of the iterative estimation routine, if used.

Author(s)

Martin Jullum, Lars Henry Berge Olsen

References

• Jullum, M., Olsen, L. H. B., Lachmann, J., & Redelmeier, A. (2025). shapr: Explaining
Machine Learning Models with Conditional Shapley Values in R and Python. arXiv preprint
arXiv:2504.01842.

• Aas, K., Jullum, M., & Løland, A. (2021). Explaining individual predictions when features
are dependent: More accurate approximations to Shapley values. Artificial Intelligence, 298,
103502

• Frye, C., Rowat, C., & Feige, I. (2020). Asymmetric Shapley values: incorporating causal
knowledge into model-agnostic explainability. Advances in neural information processing
systems, 33, 1229-1239

• Heskes, T., Sijben, E., Bucur, I. G., & Claassen, T. (2020). Causal shapley values: Exploiting
causal knowledge to explain individual predictions of complex models. Advances in neural
information processing systems, 33, 4778-4789

• Jullum, M., Redelmeier, A. & Aas, K. (2021). Efficient and simple prediction explanations
with groupShapley: A practical perspective. Italian Workshop on Explainable Artificial Intel-
ligence 2021.

• Redelmeier, A., Jullum, M., & Aas, K. (2020). Explaining predictive models with mixed fea-
tures using Shapley values and conditional inference trees. In Machine Learning and Knowl-
edge Extraction: International Cross-Domain Conference, CD-MAKE 2020, Dublin, Ireland,
August 25-28, 2020, Proceedings 4 (pp. 117-137). Springer International Publishing.

https://norskregnesentral.github.io/shapr/articles/general_usage.html#msev-evaluation-criterion
https://norskregnesentral.github.io/shapr/articles/general_usage.html#msev-evaluation-criterion
https://arxiv.org/pdf/2504.01842
https://arxiv.org/pdf/2504.01842
https://arxiv.org/pdf/2504.01842
https://martinjullum.com/publication/aas-2021-explaining/aas-2021-explaining.pdf
https://martinjullum.com/publication/aas-2021-explaining/aas-2021-explaining.pdf
https://martinjullum.com/publication/aas-2021-explaining/aas-2021-explaining.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/0d770c496aa3da6d2c3f2bd19e7b9d6b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/0d770c496aa3da6d2c3f2bd19e7b9d6b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/0d770c496aa3da6d2c3f2bd19e7b9d6b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/32e54441e6382a7fbacbbbaf3c450059-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/32e54441e6382a7fbacbbbaf3c450059-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/32e54441e6382a7fbacbbbaf3c450059-Paper.pdf
https://martinjullum.com/publication/jullum-2021-efficient/jullum-2021-efficient.pdf
https://martinjullum.com/publication/jullum-2021-efficient/jullum-2021-efficient.pdf
https://martinjullum.com/publication/jullum-2021-efficient/jullum-2021-efficient.pdf
https://martinjullum.com/publication/redelmeier-2020-explaining/redelmeier-2020-explaining.pdf
https://martinjullum.com/publication/redelmeier-2020-explaining/redelmeier-2020-explaining.pdf
https://martinjullum.com/publication/redelmeier-2020-explaining/redelmeier-2020-explaining.pdf
https://martinjullum.com/publication/redelmeier-2020-explaining/redelmeier-2020-explaining.pdf

explain 11

• Sellereite N., & Jullum, M. (2019). shapr: An R-package for explaining machine learning
models with dependence-aware Shapley values. Journal of Open Source Software, 5(46),
2027

• Olsen, L. H., Glad, I. K., Jullum, M., & Aas, K. (2022). Using Shapley values and variational
autoencoders to explain predictive models with dependent mixed features. Journal of machine
learning research, 23(213), 1-51

• Olsen, L. H. B., Glad, I. K., Jullum, M., & Aas, K. (2024). A comparative study of meth-
ods for estimating model-agnostic Shapley value explanations. Data Mining and Knowledge
Discovery, 1-48

• Olsen, L. H. B., & Jullum, M. (2024). Improving the Sampling Strategy in KernelSHAP.
arXiv e-prints, arXiv-2410

Examples

Load example data
data("airquality")
airquality <- airquality[complete.cases(airquality),]
x_var <- c("Solar.R", "Wind", "Temp", "Month")
y_var <- "Ozone"

Split data into test and training data
data_train <- head(airquality, -3)
data_explain <- tail(airquality, 3)

x_train <- data_train[, x_var]
x_explain <- data_explain[, x_var]

Fit a linear model
lm_formula <- as.formula(paste0(y_var, " ~ ", paste0(x_var, collapse = " + ")))
model <- lm(lm_formula, data = data_train)

Explain predictions
p <- mean(data_train[, y_var])

(Optionally) enable parallelization via the future package
if (requireNamespace("future", quietly = TRUE)) {

future::plan("multisession", workers = 2)
}

(Optionally) enable progress updates within every iteration via the progressr package
if (requireNamespace("progressr", quietly = TRUE)) {

progressr::handlers(global = TRUE)
}

Empirical approach
explain1 <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = "empirical",

https://www.theoj.org/joss-papers/joss.02027/10.21105.joss.02027.pdf
https://www.theoj.org/joss-papers/joss.02027/10.21105.joss.02027.pdf
https://www.theoj.org/joss-papers/joss.02027/10.21105.joss.02027.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://link.springer.com/content/pdf/10.1007/s10618-024-01016-z.pdf
https://link.springer.com/content/pdf/10.1007/s10618-024-01016-z.pdf
https://link.springer.com/content/pdf/10.1007/s10618-024-01016-z.pdf
https://arxiv.org/pdf/2410.04883
https://arxiv.org/pdf/2410.04883

12 explain

phi0 = p,
n_MC_samples = 1e2

)

Gaussian approach
explain2 <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = "gaussian",
phi0 = p,
n_MC_samples = 1e2

)

Gaussian copula approach
explain3 <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = "copula",
phi0 = p,
n_MC_samples = 1e2

)

if (requireNamespace("party", quietly = TRUE)) {
ctree approach
explain4 <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = "ctree",
phi0 = p,
n_MC_samples = 1e2

)
}

Combined approach
approach <- c("gaussian", "gaussian", "empirical")
explain5 <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = approach,
phi0 = p,
n_MC_samples = 1e2

)

Printing
print(explain1) # The Shapley values
print(explain1) # The Shapley values

The MSEv criterion (+sd). Smaller values indicate a better approach.
print(explain1, what = "MSEv")

explain 13

print(explain2, what = "MSEv")
print(explain3, what = "MSEv")

Summary
summary1 <- summary(explain1)
summary1 # Provides a nicely formatted summary of the explanation

Various additional info stored in the summary object
Examples
summary1$shapley_est # A data.table with the Shapley values
summary1$timing$total_time_secs # Total computation time in seconds
summary1$parameters$n_MC_samples # Number of Monte Carlo samples used for the numerical integration
summary1$parameters$empirical.type # Type of empirical approach used

Plot the results
if (requireNamespace("ggplot2", quietly = TRUE)) {

plot(explain1)
plot(explain1, plot_type = "waterfall")

}

Group-wise explanations
group_list <- list(A = c("Temp", "Month"), B = c("Wind", "Solar.R"))

explain_groups <- explain(
model = model,
x_explain = x_explain,
x_train = x_train,
group = group_list,
approach = "empirical",
phi0 = p,
n_MC_samples = 1e2

)

print(explain_groups)

Separate and surrogate regression approaches with linear regression models.
req_pkgs <- c("parsnip", "recipes", "workflows", "rsample", "tune", "yardstick")
if (requireNamespace(req_pkgs, quietly = TRUE)) {

explain_separate_lm <- explain(
model = model,
x_explain = x_explain,
x_train = x_train,
phi0 = p,
approach = "regression_separate",
regression.model = parsnip::linear_reg()

)

explain_surrogate_lm <- explain(
model = model,
x_explain = x_explain,
x_train = x_train,
phi0 = p,
approach = "regression_surrogate",

14 explain_forecast

regression.model = parsnip::linear_reg()
)

}

Iterative estimation
For illustration only. By default not used for such small dimensions as here.
Restricting the initial and maximum number of coalitions as well.

explain_iterative <- explain(
model = model,
x_explain = x_explain,
x_train = x_train,
approach = "gaussian",
phi0 = p,
iterative = TRUE,
iterative_args = list(initial_n_coalitions = 8),
max_n_coalitions = 12

)

When not using all coalitions, we can also get the SD of the Shapley values,
reflecting uncertainty in the coalition sampling part of the procedure.
print(explain_iterative, what = "shapley_sd")

Summary
For iterative estimation, convergence info is also provided
summary_iterative <- summary(explain_iterative)

explain_forecast Explain a Forecast from Time Series Models with Dependence-Aware
(Conditional/Observational) Shapley Values

Description

Computes dependence-aware Shapley values for observations in explain_idx from the specified
model by using the method specified in approach to estimate the conditional expectation. See Aas,
et. al (2021) for a thorough introduction to dependence-aware prediction explanation with Shapley
values. For an overview of the methodology and capabilities of the shapr package, see the software
paper Jullum et al. (2025), or the pkgdown site at norskregnesentral.github.io/shapr/.

Usage

explain_forecast(
model,
y,
xreg = NULL,
train_idx = NULL,

https://martinjullum.com/publication/aas-2021-explaining/aas-2021-explaining.pdf
https://martinjullum.com/publication/aas-2021-explaining/aas-2021-explaining.pdf
https://arxiv.org/pdf/2504.01842
https://norskregnesentral.github.io/shapr/

explain_forecast 15

explain_idx,
explain_y_lags,
explain_xreg_lags = explain_y_lags,
horizon,
approach,
phi0,
max_n_coalitions = NULL,
iterative = NULL,
group_lags = TRUE,
group = NULL,
n_MC_samples = 1000,
seed = NULL,
predict_model = NULL,
get_model_specs = NULL,
verbose = "basic",
extra_computation_args = list(),
iterative_args = list(),
output_args = list(),
...

)

Arguments

model Model object. The model whose predictions you want to explain. Run get_supported_models()
for a table of which models explain supports natively. Unsupported models can
still be explained by passing predict_model and (optionally) get_model_specs,
see details for more information.

y Matrix, data.frame/data.table or a numeric vector. Contains the endogenous
variables used to estimate the (conditional) distributions needed to properly es-
timate the conditional expectations in the Shapley formula including the obser-
vations to be explained.

xreg Matrix, data.frame/data.table or a numeric vector. Contains the exogenous vari-
ables used to estimate the (conditional) distributions needed to properly estimate
the conditional expectations in the Shapley formula including the observations
to be explained. As exogenous variables are used contemporaneously when pro-
ducing a forecast, this item should contain nrow(y) + horizon rows.

train_idx Numeric vector. The row indices in data and reg denoting points in time to use
when estimating the conditional expectations in the Shapley value formula. If
train_idx = NULL (default) all indices not selected to be explained will be used.

explain_idx Numeric vector. The row indices in data and reg denoting points in time to
explain.

explain_y_lags Numeric vector. Denotes the number of lags that should be used for each vari-
able in y when making a forecast.

explain_xreg_lags

Numeric vector. If xreg != NULL, denotes the number of lags that should be
used for each variable in xreg when making a forecast.

16 explain_forecast

horizon Numeric. The forecast horizon to explain. Passed to the predict_model func-
tion.

approach Character vector of length 1 or one less than the number of features. All ele-
ments should either be "gaussian", "copula", "empirical", "ctree", "vaeac",
"categorical", "timeseries", "independence", "regression_separate",
or "regression_surrogate". The two regression approaches cannot be com-
bined with any other approach. See details for more information.

phi0 Numeric. The prediction value for unseen data, i.e., an estimate of the expected
prediction without conditioning on any features. Typically set this equal to the
mean of the response in the training data, but alternatives such as the mean of
the training predictions are also reasonable.

max_n_coalitions

Integer. Upper limit on the number of unique feature/group coalitions to use in
the iterative procedure (if iterative = TRUE). If iterative = FALSE, it repre-
sents the number of feature/group coalitions to use directly. The quantity refers
to the number of unique feature coalitions if group = NULL, and group coalitions
if group != NULL. max_n_coalitions = NULL corresponds to 2^n_features.

iterative Logical or NULL. If NULL (default), set to TRUE if there are more than 5 fea-
tures/groups, and FALSE otherwise. If TRUE, Shapley values are estimated itera-
tively for faster, sufficiently accurate results. First an initial number of coalitions
is sampled, then bootstrapping estimates the variance of the Shapley values. A
convergence criterion determines if the variances are sufficiently small. If not,
additional samples are added. The process repeats until the variances are below
the threshold. Specifics for the iterative process and convergence criterion are
set via iterative_args.

group_lags Logical. If TRUE all lags of each variable are grouped together and explained as
a group. If FALSE all lags of each variable are explained individually.

group List. If NULL, regular feature-wise Shapley values are computed. If provided,
group-wise Shapley values are computed. group then has length equal to the
number of groups. Each list element contains the character vectors with the
features included in the corresponding group. See Jullum et al. (2021) for more
information on group-wise Shapley values.

n_MC_samples Positive integer. For most approaches, it indicates the maximum number of
samples to use in the Monte Carlo integration of every conditional expectation.
For approach="ctree", n_MC_samples corresponds to the number of samples
from the leaf node (see an exception related to the ctree.sample argument
in setup_approach.ctree()). For approach="empirical", n_MC_samples
is the K parameter in equations (14-15) of Aas et al. (2021), i.e. the maxi-
mum number of observations (with largest weights) that is used, see also the
empirical.eta argument setup_approach.empirical().

seed Positive integer. Specifies the seed before any code involving randomness is run.
If NULL (default), no seed is set in the calling environment.

predict_model Function. Prediction function to use when model is not natively supported. (Run
get_supported_models() for a list of natively supported models.) The func-
tion must have two arguments, model and newdata, which specify the model

https://martinjullum.com/publication/jullum-2021-efficient/jullum-2021-efficient.pdf

explain_forecast 17

and a data.frame/data.table to compute predictions for, respectively. The func-
tion must give the prediction as a numeric vector. NULL (the default) uses func-
tions specified internally. Can also be used to override the default function for
natively supported model classes.

get_model_specs

Function. An optional function for checking model/data consistency when model
is not natively supported. (Run get_supported_models() for a list of natively
supported models.) The function takes model as an argument and provides a list
with 3 elements:
labels Character vector with the names of each feature.
classes Character vector with the class of each feature.
factor_levels Character vector with the levels for any categorical features.
If NULL (the default), internal functions are used for natively supported model
classes, and checking is disabled for unsupported model classes. Can also be
used to override the default function for natively supported model classes.

verbose String vector or NULL. Controls verbosity (printout detail level) via one or more
of "basic", "progress", "convergence", "shapley" and "vS_details". "basic"
(default) displays basic information about the computation and messages about
parameters/checks. "progress" displays where in the calculation process the
function currently is. "convergence" displays how close the Shapley value
estimates are to convergence (only when iterative = TRUE). "shapley" dis-
plays intermediate Shapley value estimates and standard deviations (only when
iterative = TRUE), and the final estimates. "vS_details" displays informa-
tion about the v(S) estimates, most relevant for approach %in% c("regression_separate",
"regression_surrogate", "vaeac"). NULL means no printout. Any combi-
nation can be used, e.g., verbose = c("basic", "vS_details").

extra_computation_args

Named list. Specifies extra arguments related to the computation of the Shap-
ley values. See get_extra_comp_args_default() for description of the argu-
ments and their default values.

iterative_args Named list. Specifies the arguments for the iterative procedure. See get_iterative_args_default()
for description of the arguments and their default values.

output_args Named list. Specifies certain arguments related to the output of the function.
See get_output_args_default() for description of the arguments and their
default values.

... Arguments passed on to setup_approach.categorical, setup_approach.copula,
setup_approach.ctree, setup_approach.empirical, setup_approach.gaussian,
setup_approach.independence, setup_approach.timeseries, setup_approach.vaeac
categorical.joint_prob_dt Data.table. (Optional) Containing the joint prob-

ability distribution for each combination of feature values. NULL means it is
estimated from the x_train and x_explain.

categorical.epsilon Numeric value. (Optional) If categorical.joint_prob_dt
is not supplied, probabilities/frequencies are estimated using x_train. If
certain observations occur in x_explain and NOT in x_train, then epsilon
is used as the proportion of times that these observations occur in the train-
ing data. In theory, this proportion should be zero, but this causes an error
later in the Shapley computation.

18 explain_forecast

internal List. Not used directly, but passed through from explain().
ctree.mincriterion Numeric scalar or vector. Either a scalar or vector of

length equal to the number of features in the model. The value is equal to 1
- α where α is the nominal level of the conditional independence tests. If it
is a vector, this indicates which value to use when conditioning on various
numbers of features. The default value is 0.95.

ctree.minsplit Numeric scalar. Determines the minimum value that the sum
of the left and right daughter nodes must reach for a split. The default value
is 20.

ctree.minbucket Numeric scalar. Determines the minimum sum of weights
in a terminal node required for a split. The default value is 7.

ctree.sample Boolean. If TRUE (default), then the method always samples
n_MC_samples observations from the leaf nodes (with replacement). If
FALSE and the number of observations in the leaf node is less than n_MC_samples,
the method will take all observations in the leaf. If FALSE and the number
of observations in the leaf node is more than n_MC_samples, the method
will sample n_MC_samples observations (with replacement). This means
that there will always be sampling in the leaf unless sample = FALSE and
the number of obs in the node is less than n_MC_samples.

empirical.type Character. (default = "fixed_sigma") Must be one of "independence",
"fixed_sigma", "AICc_each_k", or "AICc_full". Note: "empirical.type
= independence" is deprecated; use approach = "independence" instead.
"fixed_sigma" uses a fixed bandwidth (set through empirical.fixed_sigma)
in the kernel density estimation. "AICc_each_k" and "AICc_full" opti-
mize the bandwidth using the AICc criterion, with respectively one band-
width per coalition size and one bandwidth for all coalition sizes.

empirical.eta Numeric scalar. Needs to be 0 < eta <= 1. The default value
is 0.95. Represents the minimum proportion of the total empirical weight
that data samples should use. For example, if eta = .8, we choose the K
samples with the largest weights so that the sum of the weights accounts
for 80\ eta is the η parameter in equation (15) of Aas et al. (2021).

empirical.fixed_sigma Positive numeric scalar. The default value is 0.1.
Represents the kernel bandwidth in the distance computation used when
conditioning on all different coalitions. Only used when empirical.type
= "fixed_sigma"

empirical.n_samples_aicc Positive integer. Number of samples to consider
in AICc optimization. The default value is 1000. Only used when empirical.type
is either "AICc_each_k" or "AICc_full".

empirical.eval_max_aicc Positive integer. Maximum number of iterations
when optimizing the AICc. The default value is 20. Only used when
empirical.type is either "AICc_each_k" or "AICc_full".

empirical.start_aicc Numeric. Start value of the sigma parameter when
optimizing the AICc. The default value is 0.1. Only used when empirical.type
is either "AICc_each_k" or "AICc_full".

empirical.cov_mat Numeric matrix. (Optional) The covariance matrix of the
data generating distribution used to define the Mahalanobis distance. NULL
means it is estimated from x_train.

https://martinjullum.com/publication/aas-2021-explaining/aas-2021-explaining.pdf

explain_forecast 19

gaussian.mu Numeric vector. (Optional) Containing the mean of the data gen-
erating distribution. NULL means it is estimated from the x_train.

gaussian.cov_mat Numeric matrix. (Optional) Containing the covariance ma-
trix of the data generating distribution. NULL means it is estimated from the
x_train.

timeseries.fixed_sigma Positive numeric scalar. Represents the kernel band-
width in the distance computation. The default value is 2.

timeseries.bounds Numeric vector of length two. Specifies the lower and
upper bounds of the timeseries. The default is c(NULL, NULL), i.e. no
bounds. If one or both of these bounds are not NULL, we restrict the sampled
time series to be between these bounds. This is useful if the underlying time
series are scaled between 0 and 1, for example.

vaeac.depth Positive integer (default is 3). The number of hidden layers in the
neural networks of the masked encoder, full encoder, and decoder.

vaeac.width Positive integer (default is 32). The number of neurons in each
hidden layer in the neural networks of the masked encoder, full encoder,
and decoder.

vaeac.latent_dim Positive integer (default is 8). The number of dimensions
in the latent space.

vaeac.lr Positive numeric (default is 0.001). The learning rate used in the
torch::optim_adam() optimizer.

vaeac.activation_function An torch::nn_module() representing an acti-
vation function such as, e.g., torch::nn_relu() (default), torch::nn_leaky_relu(),
torch::nn_selu(), or torch::nn_sigmoid().

vaeac.n_vaeacs_initialize Positive integer (default is 4). The number of
different vaeac models to initiate in the start. Pick the best performing
one after vaeac.extra_parameters$epochs_initiation_phase epochs
(default is 2) and continue training that one.

vaeac.epochs Positive integer (default is 100). The number of epochs to train
the final vaeac model. This includes vaeac.extra_parameters$epochs_initiation_phase,
where the default is 2.

vaeac.extra_parameters Named list with extra parameters to the vaeac ap-
proach. See vaeac_get_extra_para_default() for description of possi-
ble additional parameters and their default values.

Details

This function explains a forecast of length horizon. The argument train_idx is analogous to
x_train in explain(), however, it just contains the time indices of where in the data the forecast
should start for each training sample. In the same way explain_idx defines the time index (indices)
which will precede a forecast to be explained.

As any autoregressive forecast model will require a set of lags to make a forecast at an arbitrary
point in time, explain_y_lags and explain_xreg_lags define how many lags are required to
"refit" the model at any given time index. This allows the different approaches to work in the same
way they do for time-invariant models.

20 explain_forecast

See the forecasting section of the general usage vignette for further details. See also the software pa-
per Jullum et al. (2025, Sec. 6) for a more detailed introduction to the methodology, and additional
examples.

Value

Object of class c("shapr", "list"). Contains the following items:

shapley_values_est data.table with the estimated Shapley values with explained observation in
the rows and features along the columns. The column none is the prediction not devoted to
any of the features (given by the argument phi0)

shapley_values_sd data.table with the standard deviation of the Shapley values reflecting the un-
certainty in the coalition sampling part of the kernelSHAP procedure. These are, by definition,
0 when all coalitions are used. Only present when extra_computation_args$compute_sd=TRUE,
which is the default when iterative = TRUE.

internal List with the different parameters, data, functions and other output used internally.

pred_explain Numeric vector with the predictions for the explained observations.

MSEv List with the values of the MSEv evaluation criterion for the approach. See the MSEv evalu-
ation section in the general usage vignette for details.

timing List containing timing information for the different parts of the computation. summary
contains the time stamps for the start and end time in addition to the total execution time.
overall_timing_secs gives the time spent on different parts of the explanation computa-
tion. main_computation_timing_secs further decomposes the main computation time into
different parts of the computation for each iteration of the iterative estimation routine, if used.

Author(s)

Jon Lachmann, Martin Jullum

References

• Jullum, M., Olsen, L. H. B., Lachmann, J., & Redelmeier, A. (2025). shapr: Explaining
Machine Learning Models with Conditional Shapley Values in R and Python. arXiv preprint
arXiv:2504.01842.

• Aas, K., Jullum, M., & Løland, A. (2021). Explaining individual predictions when features
are dependent: More accurate approximations to Shapley values. Artificial Intelligence, 298,
103502

• Frye, C., Rowat, C., & Feige, I. (2020). Asymmetric Shapley values: incorporating causal
knowledge into model-agnostic explainability. Advances in neural information processing
systems, 33, 1229-1239

• Heskes, T., Sijben, E., Bucur, I. G., & Claassen, T. (2020). Causal shapley values: Exploiting
causal knowledge to explain individual predictions of complex models. Advances in neural
information processing systems, 33, 4778-4789

• Jullum, M., Redelmeier, A. & Aas, K. (2021). Efficient and simple prediction explanations
with groupShapley: A practical perspective. Italian Workshop on Explainable Artificial Intel-
ligence 2021.

https://norskregnesentral.github.io/shapr/articles/general_usage.html#forecasting
https://arxiv.org/pdf/2504.01842
https://norskregnesentral.github.io/shapr/articles/general_usage.html#msev-evaluation-criterion
https://norskregnesentral.github.io/shapr/articles/general_usage.html#msev-evaluation-criterion
https://arxiv.org/pdf/2504.01842
https://arxiv.org/pdf/2504.01842
https://arxiv.org/pdf/2504.01842
https://martinjullum.com/publication/aas-2021-explaining/aas-2021-explaining.pdf
https://martinjullum.com/publication/aas-2021-explaining/aas-2021-explaining.pdf
https://martinjullum.com/publication/aas-2021-explaining/aas-2021-explaining.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/0d770c496aa3da6d2c3f2bd19e7b9d6b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/0d770c496aa3da6d2c3f2bd19e7b9d6b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/0d770c496aa3da6d2c3f2bd19e7b9d6b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/32e54441e6382a7fbacbbbaf3c450059-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/32e54441e6382a7fbacbbbaf3c450059-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/32e54441e6382a7fbacbbbaf3c450059-Paper.pdf
https://martinjullum.com/publication/jullum-2021-efficient/jullum-2021-efficient.pdf
https://martinjullum.com/publication/jullum-2021-efficient/jullum-2021-efficient.pdf
https://martinjullum.com/publication/jullum-2021-efficient/jullum-2021-efficient.pdf

get_extra_comp_args_default 21

• Redelmeier, A., Jullum, M., & Aas, K. (2020). Explaining predictive models with mixed fea-
tures using Shapley values and conditional inference trees. In Machine Learning and Knowl-
edge Extraction: International Cross-Domain Conference, CD-MAKE 2020, Dublin, Ireland,
August 25-28, 2020, Proceedings 4 (pp. 117-137). Springer International Publishing.

• Sellereite N., & Jullum, M. (2019). shapr: An R-package for explaining machine learning
models with dependence-aware Shapley values. Journal of Open Source Software, 5(46),
2027

• Olsen, L. H., Glad, I. K., Jullum, M., & Aas, K. (2022). Using Shapley values and variational
autoencoders to explain predictive models with dependent mixed features. Journal of machine
learning research, 23(213), 1-51

• Olsen, L. H. B., Glad, I. K., Jullum, M., & Aas, K. (2024). A comparative study of meth-
ods for estimating model-agnostic Shapley value explanations. Data Mining and Knowledge
Discovery, 1-48

• Olsen, L. H. B., & Jullum, M. (2024). Improving the Sampling Strategy in KernelSHAP.
arXiv e-prints, arXiv-2410

Examples

Load example data
data("airquality")
data <- data.table::as.data.table(airquality)

Fit an AR(2) model.
model_ar_temp <- ar(data$Temp, order = 2)

Calculate the zero prediction values for a three step forecast.
p0_ar <- rep(mean(data$Temp), 3)

Empirical approach, explaining forecasts starting at T = 152 and T = 153.
explain_forecast(

model = model_ar_temp,
y = data[, "Temp"],
train_idx = 2:151,
explain_idx = 152:153,
explain_y_lags = 2,
horizon = 3,
approach = "empirical",
phi0 = p0_ar,
group_lags = FALSE

)

get_extra_comp_args_default

Get the Default Values for the Extra Computation Arguments

https://martinjullum.com/publication/redelmeier-2020-explaining/redelmeier-2020-explaining.pdf
https://martinjullum.com/publication/redelmeier-2020-explaining/redelmeier-2020-explaining.pdf
https://martinjullum.com/publication/redelmeier-2020-explaining/redelmeier-2020-explaining.pdf
https://martinjullum.com/publication/redelmeier-2020-explaining/redelmeier-2020-explaining.pdf
https://www.theoj.org/joss-papers/joss.02027/10.21105.joss.02027.pdf
https://www.theoj.org/joss-papers/joss.02027/10.21105.joss.02027.pdf
https://www.theoj.org/joss-papers/joss.02027/10.21105.joss.02027.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://link.springer.com/content/pdf/10.1007/s10618-024-01016-z.pdf
https://link.springer.com/content/pdf/10.1007/s10618-024-01016-z.pdf
https://link.springer.com/content/pdf/10.1007/s10618-024-01016-z.pdf
https://arxiv.org/pdf/2410.04883
https://arxiv.org/pdf/2410.04883

22 get_extra_comp_args_default

Description

Get the Default Values for the Extra Computation Arguments

Usage

get_extra_comp_args_default(
internal,
paired_shap_sampling = isFALSE(internal$parameters$asymmetric),
semi_deterministic_sampling = FALSE,
kernelSHAP_reweighting = "on_all_cond",
compute_sd = isFALSE(internal$parameters$exact),
n_boot_samps = 100,
vS_batching_method = "future",
max_batch_size = 10,
min_n_batches = 10

)

Arguments

internal List. Not used directly, but passed through from explain().

paired_shap_sampling

Logical. If TRUE paired versions of all sampled coalitions are also included in
the computation. That is, if there are 5 features and e.g. coalitions (1,3,5) are
sampled, then also coalition (2,4) is used for computing the Shapley values. This
is done to reduce the variance of the Shapley value estimates. TRUE is the default
and is recommended for highest accuracy. For asymmetric, FALSE is the default
and the only legal value.

semi_deterministic_sampling

Logical. If FALSE (default), then we sample from all coalitions. If TRUE, the
sampling of coalitions is semi-deterministic, i.e. the sampling is done in a way
that ensures that coalitions that are expected to be sampled based on the number
of coalitions are deterministically included such that we sample among fewer
coalitions. This is done to reduce the variance of the Shapley value estimates,
and corresponds to the PySHAP* strategy in the paper Olsen & Jullum (2024).

kernelSHAP_reweighting

String. How to reweight the sampling frequency weights in the kernelSHAP
solution after sampling. The aim of this is to reduce the randomness and thereby
the variance of the Shapley value estimates. The options are one of 'none',
'on_N', 'on_all', 'on_all_cond' (default). 'none' means no reweighting,
i.e. the sampling frequency weights are used as is. 'on_N' means the sampling
frequencies are averaged over all coalitions with the same original sampling
probabilities. 'on_all' means the original sampling probabilities are used for
all coalitions. 'on_all_cond' means the original sampling probabilities are
used for all coalitions, while adjusting for the probability that they are sampled
at least once. 'on_all_cond' is preferred as it performs the best in simulation
studies, see Olsen & Jullum (2024).

https://arxiv.org/pdf/2410.04883
https://arxiv.org/pdf/2410.04883

get_iterative_args_default 23

compute_sd Logical. Whether to estimate the standard deviations of the Shapley value esti-
mates. This is TRUE whenever sampling based kernelSHAP is applied (either
iteratively or with a fixed number of coalitions).

n_boot_samps Integer. The number of bootstrapped samples (i.e. samples with replacement)
from the set of all coalitions used to estimate the standard deviations of the
Shapley value estimates.

vS_batching_method

String. The method used to perform batch computing of vS. "future" (de-
fault), utilizes future.apply::future_apply (via the future::future package), en-
abling parallelized computation and progress updates via progressr::progressr.
Alternatively, "forloop" can be used for straightforward sequential computa-
tion, which is mainly useful for package development and debugging purposes.

max_batch_size Integer. The maximum number of coalitions to estimate simultaneously within
each iteration. A larger number requires more memory, but may have a slight
computational advantage.

min_n_batches Integer. The minimum number of batches to split the computation into within
each iteration. Larger numbers give more frequent progress updates. If paral-
lelization is applied, this should be set no smaller than the number of parallel
workers.

Value

A list with the default values for the extra computation arguments.

Author(s)

Martin Jullum

References

• Olsen, L. H. B., & Jullum, M. (2024). Improving the Sampling Strategy in KernelSHAP.
arXiv preprint arXiv:2410.04883.

get_iterative_args_default

Function to specify arguments of the iterative estimation procedure

Description

Function to specify arguments of the iterative estimation procedure

https://arxiv.org/pdf/2410.04883
https://arxiv.org/pdf/2410.04883

24 get_iterative_args_default

Usage

get_iterative_args_default(
internal,
initial_n_coalitions = ceiling(min(200, max(5, internal$parameters$n_features,
(2^internal$parameters$n_features)/10), internal$parameters$max_n_coalitions)),
fixed_n_coalitions_per_iter = NULL,
max_iter = 20,
convergence_tol = 0.02,
n_coal_next_iter_factor_vec = c(seq(0.1, 1, by = 0.1), rep(1, max_iter - 10))

)

Arguments

internal List. Not used directly, but passed through from explain().
initial_n_coalitions

Integer. Number of coalitions to use in the first estimation iteration.
fixed_n_coalitions_per_iter

Integer. Number of n_coalitions to use in each iteration. NULL (default) means
setting it based on estimates based on a set convergence threshold.

max_iter Integer. Maximum number of estimation iterations
convergence_tol

Numeric. The t variable in the convergence threshold formula on page 6 in
the paper Covert and Lee (2021), ’Improving KernelSHAP: Practical Shap-
ley Value Estimation via Linear Regression’ https://arxiv.org/pdf/2012.01536.
Smaller values requires more coalitions before convergence is reached.

n_coal_next_iter_factor_vec

Numeric vector. The number of n_coalitions that must be used to reach con-
vergence in the next iteration is estimated. The number of n_coalitions actu-
ally used in the next iteration is set to this estimate multiplied by n_coal_next_iter_factor_vec[i]
for iteration i. It is wise to start with smaller numbers to avoid using too many
n_coalitions due to uncertain estimates in the first iterations.

Details

The functions sets default values for the iterative estimation procedure, according to the function
defaults. If the argument iterative of explain() is FALSE, it sets parameters corresponding to
the use of a non-iterative estimation procedure

Value

A list with the default values for the iterative estimation procedure

Author(s)

Martin Jullum

get_output_args_default 25

get_output_args_default

Get the Default Values for the Output Arguments

Description

Get the Default Values for the Output Arguments

Usage

get_output_args_default(
keep_samp_for_vS = FALSE,
MSEv_uniform_comb_weights = TRUE,
saving_path = tempfile("shapr_obj_", fileext = ".rds")

)

Arguments

keep_samp_for_vS

Logical. Indicates whether the samples used in the Monte Carlo estimation of
v(S) should be returned (in internal$output). Not used for approach="regression_separate"
or approach="regression_surrogate".

MSEv_uniform_comb_weights

Logical. If TRUE (default), then the function weights the coalitions uniformly
when computing the MSEv criterion. If FALSE, then the function use the Shapley
kernel weights to weight the coalitions when computing the MSEv criterion.
Note that the Shapley kernel weights are replaced by the sampling frequency
when not all coalitions are considered.

saving_path String. The path to the directory where the results of the iterative estimation
procedure should be saved. Defaults to a temporary directory.

Value

A list of default output arguments.

Author(s)

Martin Jullum

26 get_results

get_results Extract Components from a Shapr Object

Description

Extract Components from a Shapr Object

Usage

get_results(
x,
what = c("calling_function", "proglang", "approach", "shapley_est", "shapley_sd",
"pred_explain", "MSEv", "MSEv_explicand", "MSEv_coalition", "iterative_info",
"iterative_shapley_est", "iterative_shapley_sd", "saving_path", "timing_summary",
"timing_details", "parameters", "x_train", "x_explain", "dt_vS", "dt_samp_for_vS",
"dt_used_coalitions", "dt_valid_causal_coalitions", "dt_coal_samp_info"),

...
)

Arguments

x A shapr object

what Character vector specifying one or more components to extract. Options: "call-
ing_function", "proglang", "approach", "shapley_est", "shapley_sd", "pred_explain",
"MSEv", "MSEv_explicand", "MSEv_coalition", "iterative_info", "iterative_shapley_est",
"iterative_shapley_sd", "saving_path", "timing_summary", "timing_details", "pa-
rameters", "x_train", "x_explain", "dt_vS", "dt_samp_for_vS", "dt_used_coalitions",
"dt_valid_causal_coalitions", "dt_coal_samp_info". The default is to return all
components. See details for what each component contains.

... Not used

Details

The function extracts a full suite of information related to the computation of the Shapley values
from a shapr object. The allowed characters in what provides information as follows:

calling_function Name of function called to create the shapr object, (explain() or explain_forecast()).

proglang Programming language used to initiate the computations (R or Python).

approach Approach used to estimate the conditional expectations.

shapley_est data.table with the estimated Shapley values.

shapley_sd data.table with the standard deviation of the Shapley values reflecting the uncertainty
in the coalition sampling part of the kernelSHAP procedure.

pred_explain Numeric vector with the predictions for the explained observations.

MSEv/MSEv_explicand/MSEv_coalition Data.tables with MSEv evaluation criterion values over-
all/ per explicand/per coalition. Smaller values indicate better estimates of v(S). See the
MSEv evaluation section in the general usage vignette for details.

https://norskregnesentral.github.io/shapr/articles/general_usage.html#msev-evaluation-criterion

get_supported_approaches 27

iterative_info Data.table with information about the iterative estimation procedure.

iterative_shapley_est/iterative_shapley_sd Data.tables with the estimated Shapley val-
ues/their standard deviation for each iteration (when using the iterative estimation procedure).

saving_path Character string with the path where the (temporary) results are saved.

timing_summary Data.table with one row and three columns: init_time and end_time give the
time stamps for the start and end of the computation, respectively, while total_time_secs
gives the total time in seconds for the full computation.

timing_details List containing timing information for the different parts of the computation.
summary contains the information from timing_summary. overall_timing_secs gives the
time spent on the different parts of the explanation computation. main_computation_timing_secs
further decomposes the main computation time into the different parts of the computation for
each iteration of the iterative estimation routine, if used.

parameters List with the parameters used in the computation.

x_train/x_explain Data.tables with the training data used in the computation/observations to
explain.

dt_vS Data.table with the contribution function (v(S)) estimates for each coalition.

dt_samp_for_vS Data.table with the samples used in the Monte Carlo estimation of the contribu-
tion function (v(S)). This is only available if output_args_default$keep_samp_for_vS =
TRUE (defaults to FALSE) in explain().

dt_used_coalitions Data.table with an overview of the coalitions used in the computation.

dt_valid_causal_coalitions Data.table with the valid causal coalitions used in the computa-
tion.

dt_coal_samp_info Data.table with information related to the coalition sampling procedure being
used.

Note that the summary.shapr() function provides a nicely formatted printout with the most impor-
tant information, to then invisibly return the output of the present function. The print.shapr()
allows direct printing of the main results.

Value

If a single component is requested, returns that object. If multiple are requested, returns a named
list.

get_supported_approaches

Get the Implemented Approaches

Description

Get the Implemented Approaches

Usage

get_supported_approaches()

28 plot.shapr

Value

Character vector. The names of the implemented approaches that can be passed to argument
approach in explain().

get_supported_models Provide a data.table with the Supported Models

Description

Provide a data.table with the Supported Models

Usage

get_supported_models()

Value

A data.table with the supported models.

plot.shapr Plot of the Shapley Value Explanations

Description

Plots the individual prediction explanations.

Usage

S3 method for class 'shapr'
plot(
x,
plot_type = "bar",
digits = 3,
print_ggplot = TRUE,
index_x_explain = 1:10,
top_k_features = NULL,
col = NULL,
bar_plot_phi0 = TRUE,
bar_plot_order = "largest_first",
scatter_features = NULL,
scatter_hist = TRUE,
include_group_feature_means = FALSE,
beeswarm_cex = 1/length(index_x_explain)^(1/4),
...

)

plot.shapr 29

Arguments

x An shapr object. The output from explain().

plot_type Character. Specifies the type of plot to produce. "bar" (the default) gives a reg-
ular horizontal bar plot of the Shapley value magnitudes. "waterfall" gives a
waterfall plot indicating the changes in the prediction score due to each feature’s
contribution (their Shapley values). "scatter" plots the feature values on the
x-axis and Shapley values on the y-axis, as well as (optionally) a background
scatter_hist showing the distribution of the feature data. "beeswarm" summa-
rizes the distribution of the Shapley values along the x-axis for all the features.
Each point gives the Shapley value of a given instance, where the points are
colored by the feature value of that instance.

digits Integer. Number of significant digits to use in the feature description. Applicable
for plot_type "bar" and "waterfall"

print_ggplot Logical. Whether to print the created ggplot object once it is returned. The
default is TRUE which ensures the plot is always displayed also in loops, func-
tions, when sourcing a script, and when assigning the output to a variable like
p <- plot.shapr(...). See ggplot2::print.ggplot() for more details. If
you wish to further modify the returned ggplot object outside of plot.shapr,
we recommend setting print_ggplot = FALSE to avoid force printing. See the
examples for a practical use case.

index_x_explain

Integer vector. Which of the test observations to plot. For example, if you have
explained 10 observations using explain(), you can generate a plot for the first
five observations by setting index_x_explain = 1:5. Defaults to the first 10
observations.

top_k_features Integer. How many features to include in the plot. E.g. if you have 15 features
in your model you can plot the 5 most important features, for each explana-
tion, by setting top_k_features = 1:5. Applicable for plot_type "bar" and
"waterfall"

col Character vector (where length depends on plot type). The color codes (hex
codes or other names understood by ggplot2::ggplot()) for positive and neg-
ative Shapley values, respectively. The default is col=NULL, plotting with the de-
fault colors respective to the plot type. For plot_type = "bar" and plot_type
= "waterfall", the default is c("#00BA38","#F8766D"). For plot_type =
"beeswarm", the default is c("#F8766D","yellow","#00BA38"). For plot_type
= "scatter", the default is "#619CFF".
If you want to alter the colors in the plot, the length of the col vector depends
on plot type. For plot_type = "bar" or plot_type = "waterfall", two colors
should be provided, first for positive and then for negative Shapley values. For
plot_type = "beeswarm", either two or three colors can be given. If two colors
are given, then the first color determines the color that points with high feature
values will have, and the second determines the color of points with low feature
values. If three colors are given, then the first colors high feature values, the
second colors mid-range feature values, and the third colors low feature values.
For instance, col = c("red", "yellow", "blue") will make high values red,
mid-range values yellow, and low values blue. For plot_type = "scatter", a

30 plot.shapr

single color is to be given, which determines the color of the points on the scatter
plot.

bar_plot_phi0 Logical. Whether to include phi0 in the plot for plot_type = "bar".

bar_plot_order Character. Specifies what order to plot the features with respect to the magni-
tude of the Shapley values with plot_type = "bar": "largest_first" (the de-
fault) plots the features ordered from largest to smallest absolute Shapley value.
"smallest_first" plots the features ordered from smallest to largest absolute
Shapley value. "original" plots the features in the original order of the data
table.

scatter_features

Integer or character vector. Only used for plot_type = "scatter". Specifies
which features to include in the scatter plot. Can be a numerical vector indicat-
ing feature index, or a character vector, indicating the name(s) of the feature(s)
to plot.

scatter_hist Logical. Only used for plot_type = "scatter". Whether to include a scat-
ter_hist indicating the distribution of the data when making the scatter plot. Note
that the bins are scaled so that when all the bins are stacked they fit the span of
the y-axis of the plot.

include_group_feature_means

Logical. Whether to include the average feature value in a group on the y-axis
or not. If FALSE (default), then no value is shown for the groups. If TRUE, then
shapr includes the mean of the features in each group.

beeswarm_cex Numeric. The cex argument of ggbeeswarm::geom_beeswarm(), controlling
the spacing in the beeswarm plots.

... Other arguments passed to underlying functions, like ggbeeswarm::geom_beeswarm()
for plot_type = "beeswarm".

Details

See the examples below, or vignette("general_usage", package = "shapr") for examples of
how to use the function.

Value

ggplot object with plots of the Shapley value explanations

Author(s)

Martin Jullum, Vilde Ung, Lars Henry Berge Olsen

Examples

if (requireNamespace("party", quietly = TRUE)) {
data("airquality")
airquality <- airquality[complete.cases(airquality),]
x_var <- c("Solar.R", "Wind", "Temp", "Month")
y_var <- "Ozone"

plot.shapr 31

Split data into test- and training data
data_train <- head(airquality, -50)
data_explain <- tail(airquality, 50)

x_train <- data_train[, x_var]
x_explain <- data_explain[, x_var]

Fit a linear model
lm_formula <- as.formula(paste0(y_var, " ~ ", paste0(x_var, collapse = " + ")))
model <- lm(lm_formula, data = data_train)

Explain predictions
p <- mean(data_train[, y_var])

Empirical approach
x <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = "empirical",
phi0 = p,
n_MC_samples = 1e2

)

if (requireNamespace(c("ggplot2", "ggbeeswarm"), quietly = TRUE)) {
The default plotting option is a bar plot of the Shapley values
We draw bar plots for the first 4 observations
plot(x, index_x_explain = 1:4)

We can also make waterfall plots
plot(x, plot_type = "waterfall", index_x_explain = 1:4)
And only showing the two features with the largest contributions
plot(x, plot_type = "waterfall", index_x_explain = 1:4, top_k_features = 2)

Or scatter plots showing the distribution of the Shapley values and feature values
plot(x, plot_type = "scatter")
And only for a specific feature
plot(x, plot_type = "scatter", scatter_features = "Temp")

Or a beeswarm plot summarising the Shapley values and feature values for all features
plot(x, plot_type = "beeswarm")
plot(x, plot_type = "beeswarm", col = c("red", "black")) # we can change colors

Additional arguments can be passed to ggbeeswarm::geom_beeswarm() using the '...' argument.
For instance, sometimes the beeswarm plots overlap too much.
This can be fixed with the 'corral="wrap" argument.
See ?ggbeeswarm::geom_beeswarm for more information.
plot(x, plot_type = "beeswarm", corral = "wrap")

}

Example of scatter and beeswarm plot with factor variables
airquality$Month_factor <- as.factor(month.abb[airquality$Month])
airquality <- airquality[complete.cases(airquality),]

32 plot_MSEv_eval_crit

x_var <- c("Solar.R", "Wind", "Temp", "Month_factor")
y_var <- "Ozone"

Split data into test- and training data
data_train <- airquality
data_explain <- tail(airquality, 50)

x_train <- data_train[, x_var]
x_explain <- data_explain[, x_var]

Fit a linear model
lm_formula <- as.formula(paste0(y_var, " ~ ", paste0(x_var, collapse = " + ")))
model <- lm(lm_formula, data = data_train)

Explain predictions
p <- mean(data_train[, y_var])

Empirical approach
x <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = "ctree",
phi0 = p,
n_MC_samples = 1e2

)

if (requireNamespace(c("ggplot2", "ggbeeswarm"), quietly = TRUE)) {
plot(x, plot_type = "scatter")
plot(x, plot_type = "beeswarm")

}

Example of further modification of the output from plot.shapr
plt <- plot(x, index_x_explain = 1:4, print_ggplot = FALSE) # Storing without printing

Displays the modified ggplot object
plt +

ggplot2::ggtitle("My custom title") +
ggplot2::ylab("Variable influence") +
ggplot2::xlab("Variable")

}

plot_MSEv_eval_crit Plots of the MSEv Evaluation Criterion

Description

Make plots to visualize and compare the MSEv evaluation criterion for a list of explain() objects
applied to the same data and model. The function creates bar plots and line plots with points to il-

plot_MSEv_eval_crit 33

lustrate the overall MSEv evaluation criterion, but also for each observation/explicand and coalition
by only averaging over the coalitions and observations/explicands, respectively.

Usage

plot_MSEv_eval_crit(
explanation_list,
index_x_explain = 1:10,
id_coalition = NULL,
CI_level = if (length(explanation_list[[1]]$pred_explain) < 20) NULL else 0.95,
geom_col_width = 0.9,
plot_type = "overall"

)

Arguments

explanation_list

A list of explain() objects applied to the same data and model. If the entries
in the list are named, then the function use these names. Otherwise, they default
to the approach names (with integer suffix for duplicates) for the explanation
objects in explanation_list.

index_x_explain

Integer vector. Which of the test observations to plot. For example, if you have
explained 10 observations using explain(), you can generate a plot for the first
five observations by setting index_x_explain = 1:5. Defaults to the first 10
observations.

id_coalition Integer vector. Which of the coalitions to plot. E.g. if you used n_coalitions
= 16 in explain(), you can generate a plot for the first 5 coalitions and the 10th
by setting id_coalition = c(1:5, 10).

CI_level Positive numeric between zero and one. Default is 0.95 if the number of obser-
vations to explain is larger than 20, otherwise CI_level = NULL, which removes
the confidence intervals. The level of the approximate confidence intervals for
the overall MSEv and the MSEv_coalition. The confidence intervals are based
on that the MSEv scores are means over the observations/explicands, and that
means are approximation normal. Since the standard deviations are estimated,
we use the quantile t from the T distribution with N_explicands - 1 degrees of
freedom corresponding to the provided level. Here, N_explicands is the num-
ber of observations/explicands. MSEv +/- tSD(MSEv)/sqrt(N_explicands). Note
that the explain() function already scales the standard deviation by sqrt(N_explicands),
thus, the CI are MSEv \/- tMSEv_sd, where the values MSEv and MSEv_sd are
extracted from the MSEv data.tables in the objects in the explanation_list.

geom_col_width Numeric. Bar width. By default, set to 90% of the ggplot2::resolution() of
the data.

plot_type Character vector. The possible options are "overall" (default), "comb", and "ex-
plicand". If plot_type = "overall", then the plot (one bar plot) associated
with the overall MSEv evaluation criterion for each method is created, i.e., when
averaging over both the coalitions and observations/explicands. If plot_type =
"comb", then the plots (one line plot and one bar plot) associated with the MSEv

34 plot_MSEv_eval_crit

evaluation criterion for each coalition are created, i.e., when we only average
over the observations/explicands. If plot_type = "explicand", then the plots
(one line plot and one bar plot) associated with the MSEv evaluation criterion
for each observations/explicands are created, i.e., when we only average over
the coalitions. If plot_type is a vector of one or several of "overall", "comb",
and "explicand", then the associated plots are created.

Details

Note that in contrast to plot.shapr(), plot_MSEv_eval_crit() always just returns the ggplot
objects, i.e. no force displaying through ggplot2::print.ggplot().

Value

Either a single ggplot2::ggplot() object of the MSEv criterion when plot_type = "overall",
or a list of ggplot2::ggplot() objects based on the plot_type parameter.

Author(s)

Lars Henry Berge Olsen

Examples

if (requireNamespace("xgboost", quietly = TRUE) && requireNamespace("ggplot2", quietly = TRUE)) {
Get the data
data("airquality")
data <- data.table::as.data.table(airquality)
data <- data[complete.cases(data),]

#' Define the features and the response
x_var <- c("Solar.R", "Wind", "Temp", "Month")
y_var <- "Ozone"

Split data into test and training data set
ind_x_explain <- 1:25
x_train <- data[-ind_x_explain, ..x_var]
y_train <- data[-ind_x_explain, get(y_var)]
x_explain <- data[ind_x_explain, ..x_var]

Fitting a basic xgboost model to the training data
model <- xgboost::xgboost(
x = x_train,
y = y_train,
nround = 20,
verbosity = 0

)

Specifying the phi_0, i.e. the expected prediction without any features
phi0 <- mean(y_train)

Independence approach
explanation_independence <- explain(

plot_MSEv_eval_crit 35

model = model,
x_explain = x_explain,
x_train = x_train,
approach = "independence",
phi0 = phi0,
n_MC_samples = 1e2

)

Gaussian 1e1 approach
explanation_gaussian_1e1 <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = "gaussian",
phi0 = phi0,
n_MC_samples = 1e1

)

Gaussian 1e2 approach
explanation_gaussian_1e2 <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = "gaussian",
phi0 = phi0,
n_MC_samples = 1e2

)

ctree approach
explanation_ctree <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = "ctree",
phi0 = phi0,
n_MC_samples = 1e2

)

Combined approach
explanation_combined <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = c("gaussian", "independence", "ctree"),
phi0 = phi0,
n_MC_samples = 1e2

)

Create a list of explanations with names
explanation_list_named <- list(

"Ind." = explanation_independence,
"Gaus. 1e1" = explanation_gaussian_1e1,
"Gaus. 1e2" = explanation_gaussian_1e2,

36 plot_MSEv_eval_crit

"Ctree" = explanation_ctree,
"Combined" = explanation_combined

)

Create the default MSEv plot where we average over both the coalitions and observations
with approximate 95% confidence intervals
plot_MSEv_eval_crit(explanation_list_named, CI_level = 0.95, plot_type = "overall")

Can also create plots of the MSEv criterion averaged only over the coalitions or observations.
MSEv_figures <- plot_MSEv_eval_crit(explanation_list_named,

CI_level = 0.95,
plot_type = c("overall", "comb", "explicand")

)
MSEv_figures$MSEv_bar
MSEv_figures$MSEv_coalition_bar
MSEv_figures$MSEv_explicand_bar

When there are many coalitions or observations, then it can be easier to look at line plots
MSEv_figures$MSEv_coalition_line_point
MSEv_figures$MSEv_explicand_line_point

We can specify which observations or coalitions to plot
plot_MSEv_eval_crit(explanation_list_named,

plot_type = "explicand",
index_x_explain = c(1, 3:4, 6),
CI_level = 0.95

)$MSEv_explicand_bar
plot_MSEv_eval_crit(explanation_list_named,

plot_type = "comb",
id_coalition = c(3, 4, 9, 13:15),
CI_level = 0.95

)$MSEv_coalition_bar

We can alter the figures if other palette schemes or design is wanted
bar_text_n_decimals <- 1
MSEv_figures$MSEv_bar +
ggplot2::scale_x_discrete(limits = rev(levels(MSEv_figures$MSEv_bar$data$Method))) +
ggplot2::coord_flip() +
ggplot2::scale_fill_discrete() + #' Default ggplot2 palette
ggplot2::theme_minimal() + #' This must be set before the other theme call
ggplot2::theme(

plot.title = ggplot2::element_text(size = 10),
legend.position = "bottom"

) +
ggplot2::guides(fill = ggplot2::guide_legend(nrow = 1, ncol = 6)) +
ggplot2::geom_text(

ggplot2::aes(label = sprintf(
paste("%.", sprintf("%d", bar_text_n_decimals), "f", sep = ""),
round(MSEv, bar_text_n_decimals)

)),
vjust = -1.1, # This value must be altered based on the plot dimension
hjust = 1.1, # This value must be altered based on the plot dimension
color = "black",

plot_SV_several_approaches 37

position = ggplot2::position_dodge(0.9),
size = 5

)
}

plot_SV_several_approaches

Shapley Value Bar Plots for Several Explanation Objects

Description

Make plots to visualize and compare the estimated Shapley values for a list of explain() objects
applied to the same data and model. For group-wise Shapley values, the features values plotted are
the mean feature values for all features in each group.

Usage

plot_SV_several_approaches(
explanation_list,
index_explicands = NULL,
index_explicands_sort = FALSE,
only_these_features = NULL,
plot_phi0 = FALSE,
digits = 4,
print_ggplot = TRUE,
add_zero_line = FALSE,
axis_labels_n_dodge = NULL,
axis_labels_rotate_angle = NULL,
horizontal_bars = TRUE,
facet_scales = "free",
facet_ncol = 2,
geom_col_width = 0.85,
brewer_palette = NULL,
include_group_feature_means = FALSE

)

Arguments

explanation_list

A list of explain() objects applied to the same data and model. If the entries
in the list are named, then the function use these names. Otherwise, they default
to the approach names (with integer suffix for duplicates) for the explanation
objects in explanation_list.

38 plot_SV_several_approaches

index_explicands

Integer vector. Which of the explicands (test observations) to plot. E.g. if you
have explained 10 observations using explain(), you can generate a plot for
the first 5 observations/explicands and the 10th by setting index_x_explain =
c(1:5, 10). The argument index_explicands_sort must be FALSE to plot the
explicand in the order specified in index_x_explain.

index_explicands_sort

Boolean. If FALSE (default), then shapr plots the explicands in the order spec-
ified in index_explicands. If TRUE, then shapr sort the indices in increasing
order based on their id.

only_these_features

String vector. Containing the names of the features which are to be included in
the bar plots.

plot_phi0 Boolean. If we are to include the ϕ0 in the bar plots or not.

digits Integer. Number of significant digits to use in the feature description. Applicable
for plot_type "bar" and "waterfall"

print_ggplot Logical. Whether to print the created ggplot object once it is returned. The
default is TRUE which ensures the plot is always displayed also in loops, func-
tions, when sourcing a script, and when assigning the output to a variable like
p <- plot.shapr(...). See ggplot2::print.ggplot() for more details. If
you wish to further modify the returned ggplot object outside of plot.shapr,
we recommend setting print_ggplot = FALSE to avoid force printing. See the
examples for a practical use case.

add_zero_line Boolean. If we are to add a black line for a feature contribution of 0.
axis_labels_n_dodge

Integer. The number of rows that should be used to render the labels. This is
useful for displaying labels that would otherwise overlap.

axis_labels_rotate_angle

Numeric. The angle of the axis label, where 0 means horizontal, 45 means tilted,
and 90 means vertical. Compared to setting the angle in ggplot2::theme()
/ ggplot2::element_text(), this also uses some heuristics to automatically
pick the hjust and vjust that you probably want.

horizontal_bars

Boolean. Flip Cartesian coordinates so that horizontal becomes vertical, and
vertical, horizontal. This is primarily useful for converting geoms and statistics
which display y conditional on x, to x conditional on y. See ggplot2::coord_flip().

facet_scales Should scales be free ("free", the default), fixed ("fixed"), or free in one di-
mension ("free_x", "free_y")? The user has to change the latter manually
depending on the value of horizontal_bars.

facet_ncol Integer. The number of columns in the facet grid. Default is facet_ncol = 2.

geom_col_width Numeric. Bar width. By default, set to 85% of the ggplot2::resolution() of
the data.

brewer_palette String. Name of one of the color palettes from RColorBrewer::RColorBrewer().
If NULL, then the function uses the default ggplot2::ggplot() color scheme.
The following palettes are available for use with these scales:

plot_SV_several_approaches 39

Diverging BrBG, PiYG, PRGn, PuOr, RdBu, RdGy, RdYlBu, RdYlGn, Spec-
tral

Qualitative Accent, Dark2, Paired, Pastel1, Pastel2, Set1, Set2, Set3
Sequential Blues, BuGn, BuPu, GnBu, Greens, Greys, Oranges, OrRd, PuBu,

PuBuGn, PuRd, Purples, RdPu, Reds, YlGn, YlGnBu, YlOrBr, YlOrRd
include_group_feature_means

Logical. Whether to include the average feature value in a group on the y-axis
or not. If FALSE (default), then no value is shown for the groups. If TRUE, then
shapr includes the mean of the features in each group.

Value

A ggplot2::ggplot() object.

Author(s)

Lars Henry Berge Olsen

Examples

Not run:
if (requireNamespace("xgboost", quietly = TRUE) && requireNamespace("ggplot2", quietly = TRUE)) {

Get the data
data("airquality")
data <- data.table::as.data.table(airquality)
data <- data[complete.cases(data),]

Define the features and the response
x_var <- c("Solar.R", "Wind", "Temp", "Month")
y_var <- "Ozone"

Split data into test and training data set
ind_x_explain <- 1:12
x_train <- data[-ind_x_explain, ..x_var]
y_train <- data[-ind_x_explain, get(y_var)]
x_explain <- data[ind_x_explain, ..x_var]

Fitting a basic xgboost model to the training data
model <- xgboost::xgboost(

x = x_train,
y = y_train,
nround = 20,
verbosity = 0

)

Specifying the phi_0, i.e. the expected prediction without any features
phi0 <- mean(y_train)

Independence approach
explanation_independence <- explain(

model = model,

40 plot_SV_several_approaches

x_explain = x_explain,
x_train = x_train,
approach = "independence",
phi0 = phi0,
n_MC_samples = 1e2

)

Empirical approach
explanation_empirical <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = "empirical",
phi0 = phi0,
n_MC_samples = 1e2

)

Gaussian 1e1 approach
explanation_gaussian_1e1 <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = "gaussian",
phi0 = phi0,
n_MC_samples = 1e1

)

Gaussian 1e2 approach
explanation_gaussian_1e2 <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = "gaussian",
phi0 = phi0,
n_MC_samples = 1e2

)

Combined approach
explanation_combined <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = c("gaussian", "ctree", "empirical"),
phi0 = phi0,
n_MC_samples = 1e2

)

Create a list of explanations with names
explanation_list <- list(

"Ind." = explanation_independence,
"Emp." = explanation_empirical,
"Gaus. 1e1" = explanation_gaussian_1e1,
"Gaus. 1e2" = explanation_gaussian_1e2,

plot_vaeac_eval_crit 41

"Combined" = explanation_combined
)

The function uses the provided names.
plot_SV_several_approaches(explanation_list)

We can change the number of columns in the grid of plots and add other visual alterations
Set `print_ggplot = FALSE` to avoid force displaying the ggplot object before the modifications
outside plot_SV_several_approaches()

plot_SV_several_approaches(explanation_list,
facet_ncol = 3,
facet_scales = "free_y",
add_zero_line = TRUE,
digits = 2,
brewer_palette = "Paired",
geom_col_width = 0.6,
print_ggplot = FALSE

) +
ggplot2::theme_minimal() +

ggplot2::theme(legend.position = "bottom", plot.title = ggplot2::element_text(size = 10))

We can specify which explicands to plot to get less chaotic plots and make the bars vertical
plot_SV_several_approaches(explanation_list,

index_explicands = c(1:2, 5, 10),
horizontal_bars = FALSE,
axis_labels_rotate_angle = 45

)

We can change the order of the features by specifying the
order using the `only_these_features` parameter.
plot_SV_several_approaches(explanation_list,

index_explicands = c(1:2, 5, 10),
only_these_features = c("Temp", "Solar.R", "Month", "Wind")

)

We can also remove certain features if we are not interested in them
or want to focus on, e.g., two features. The function will give a
message to if the user specifies non-valid feature names.
plot_SV_several_approaches(explanation_list,

index_explicands = c(1:2, 5, 10),
only_these_features = c("Temp", "Solar.R"),
plot_phi0 = TRUE

)
}

End(Not run)

plot_vaeac_eval_crit Plot the training VLB and validation IWAE for vaeac models

42 plot_vaeac_eval_crit

Description

This function makes (ggplot2::ggplot()) figures of the training VLB and the validation IWAE
for a list of explain() objects with approach = "vaeac". See setup_approach() for more in-
formation about the vaeac approach. Two figures are returned by the function. In the figure, each
object in explanation_list gets its own facet, while in the second figure, we plot the criteria in
each facet for all objects.

Usage

plot_vaeac_eval_crit(
explanation_list,
plot_from_nth_epoch = 1,
plot_every_nth_epoch = 1,
criteria = c("VLB", "IWAE"),
plot_type = c("method", "criterion"),
facet_wrap_scales = "fixed",
facet_wrap_ncol = NULL

)

Arguments

explanation_list

A list of explain() objects applied to the same data, model, and vaeac must
be the used approach. If the entries in the list is named, then the function use
these names. Otherwise, it defaults to the approach names (with integer suffix
for duplicates) for the explanation objects in explanation_list.

plot_from_nth_epoch

Integer. If we are only plot the results form the nth epoch and so forth. The first
epochs can be large in absolute value and make the rest of the plot difficult to
interpret.

plot_every_nth_epoch

Integer. If we are only to plot every nth epoch. Usefully to illustrate the overall
trend, as there can be a lot of fluctuation and oscillation in the values between
each epoch.

criteria Character vector. The possible options are "VLB", "IWAE", "IWAE_running".
Default is the first two.

plot_type Character vector. The possible options are "method" and "criterion". Default is
to plot both.

facet_wrap_scales

String. Should the scales be fixed ("fixed", the default), free ("free"), or free
in one dimension ("free_x", "free_y").

facet_wrap_ncol

Integer. Number of columns in the facet wrap.

Details

See Olsen et al. (2022) or the blog post for a summary of the VLB and IWAE.

https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://borea17.github.io/paper_summaries/iwae/

plot_vaeac_eval_crit 43

Value

Either a single ggplot2::ggplot() object or a list of ggplot2::ggplot() objects based on the
plot_type parameter.

Author(s)

Lars Henry Berge Olsen

References

• Olsen, L. H., Glad, I. K., Jullum, M., & Aas, K. (2022). Using Shapley values and variational
autoencoders to explain predictive models with dependent mixed features. Journal of machine
learning research, 23(213), 1-51

Examples

if (requireNamespace("xgboost", quietly = TRUE) &&
requireNamespace("torch", quietly = TRUE) &&
torch::torch_is_installed()) {
data("airquality")
data <- data.table::as.data.table(airquality)
data <- data[complete.cases(data),]

x_var <- c("Solar.R", "Wind", "Temp", "Month")
y_var <- "Ozone"

ind_x_explain <- 1:6
x_train <- data[-ind_x_explain, ..x_var]
y_train <- data[-ind_x_explain, get(y_var)]
x_explain <- data[ind_x_explain, ..x_var]

Fitting a basic xgboost model to the training data
model <- xgboost::xgboost(
x = x_train,
y = y_train,
nround = 100,
verbosity = 0

)

Specifying the phi_0, i.e. the expected prediction without any features
p0 <- mean(y_train)

Train vaeac with and without paired sampling
explanation_paired <- explain(

model = model,
x_explain = x_explain,
x_train = x_train,
approach = "vaeac",
phi0 = p0,
n_MC_samples = 1, # As we are only interested in the training of the vaeac
vaeac.epochs = 10, # Should be higher in applications.

https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf

44 plot_vaeac_eval_crit

vaeac.n_vaeacs_initialize = 1,
vaeac.width = 16,
vaeac.depth = 2,
vaeac.extra_parameters = list(vaeac.paired_sampling = TRUE)

)

explanation_regular <- explain(
model = model,
x_explain = x_explain,
x_train = x_train,
approach = "vaeac",
phi0 = p0,
n_MC_samples = 1, # As we are only interested in the training of the vaeac
vaeac.epochs = 10, # Should be higher in applications.
vaeac.width = 16,
vaeac.depth = 2,
vaeac.n_vaeacs_initialize = 1,
vaeac.extra_parameters = list(vaeac.paired_sampling = FALSE)

)

Collect the explanation objects in an named list
explanation_list <- list(

"Regular sampling" = explanation_regular,
"Paired sampling" = explanation_paired

)

Call the function with the named list, will use the provided names
plot_vaeac_eval_crit(explanation_list = explanation_list)

The function also works if we have only one method,
but then one should only look at the method plot.
plot_vaeac_eval_crit(

explanation_list = explanation_list[2],
plot_type = "method"

)

Can alter the plot
plot_vaeac_eval_crit(

explanation_list = explanation_list,
plot_from_nth_epoch = 2,
plot_every_nth_epoch = 2,
facet_wrap_scales = "free"

)

If we only want the VLB
plot_vaeac_eval_crit(

explanation_list = explanation_list,
criteria = "VLB",
plot_type = "criterion"

)

If we want only want the criterion version
tmp_fig_criterion <-

plot_vaeac_imputed_ggpairs 45

plot_vaeac_eval_crit(explanation_list = explanation_list, plot_type = "criterion")

Since tmp_fig_criterion is a ggplot2 object, we can alter it
by, e.g,. adding points or smooths with se bands
tmp_fig_criterion + ggplot2::geom_point(shape = "circle", size = 1, ggplot2::aes(col = Method))
tmp_fig_criterion$layers[[1]] <- NULL
tmp_fig_criterion + ggplot2::geom_smooth(method = "loess", formula = y ~ x, se = TRUE) +

ggplot2::scale_color_brewer(palette = "Set1") +
ggplot2::theme_minimal()

}

plot_vaeac_imputed_ggpairs

Plot Pairwise Plots for Imputed and True Data

Description

A function that creates a matrix of plots (GGally::ggpairs()) from generated imputations from the
unconditioned distribution p(x) estimated by a vaeac model, and then compares the imputed values
with data from the true distribution (if provided). See ggpairs for an introduction to GGally::ggpairs(),
and the corresponding vignette.

Usage

plot_vaeac_imputed_ggpairs(
explanation,
which_vaeac_model = "best",
x_true = NULL,
add_title = TRUE,
alpha = 0.5,
upper_cont = c("cor", "points", "smooth", "smooth_loess", "density", "blank"),
upper_cat = c("count", "cross", "ratio", "facetbar", "blank"),
upper_mix = c("box", "box_no_facet", "dot", "dot_no_facet", "facethist",
"facetdensity", "denstrip", "blank"),

lower_cont = c("points", "smooth", "smooth_loess", "density", "cor", "blank"),
lower_cat = c("facetbar", "ratio", "count", "cross", "blank"),
lower_mix = c("facetdensity", "box", "box_no_facet", "dot", "dot_no_facet",
"facethist", "denstrip", "blank"),

diag_cont = c("densityDiag", "barDiag", "blankDiag"),
diag_cat = c("barDiag", "blankDiag"),
cor_method = c("pearson", "kendall", "spearman")

)

https://www.blopig.com/blog/2019/06/a-brief-introduction-to-ggpairs/
https://ggobi.github.io/ggally/articles/ggally_plots.html

46 plot_vaeac_imputed_ggpairs

Arguments

explanation Shapr list. The output list from the explain() function.
which_vaeac_model

String. Indicating which vaeac model to use when generating the samples. Pos-
sible options are always 'best', 'best_running', and 'last'. All possible
options can be obtained by calling names(explanation$internal$parameters$vaeac$models).

x_true Data.table containing the data from the distribution that the vaeac model is fitted
to.

add_title Logical. If TRUE, then a title is added to the plot based on the internal description
of the vaeac model specified in which_vaeac_model.

alpha Numeric between 0 and 1 (default is 0.5). The degree of color transparency.

upper_cont String. Type of plot to use in upper triangle for continuous features, see GGally::ggpairs().
Possible options are: 'cor' (default), 'points', 'smooth', 'smooth_loess',
'density', and 'blank'.

upper_cat String. Type of plot to use in upper triangle for categorical features, see GGally::ggpairs().
Possible options are: 'count' (default), 'cross', 'ratio', 'facetbar', and
'blank'.

upper_mix String. Type of plot to use in upper triangle for mixed features, see GGally::ggpairs().
Possible options are: 'box' (default), 'box_no_facet', 'dot', 'dot_no_facet',
'facethist', 'facetdensity', 'denstrip', and 'blank'

lower_cont String. Type of plot to use in lower triangle for continuous features, see GGally::ggpairs().
Possible options are: 'points' (default), 'smooth', 'smooth_loess', 'density',
'cor', and 'blank'.

lower_cat String. Type of plot to use in lower triangle for categorical features, see GGally::ggpairs().
Possible options are: 'facetbar' (default), 'ratio', 'count', 'cross', and
'blank'.

lower_mix String. Type of plot to use in lower triangle for mixed features, see GGally::ggpairs().
Possible options are: 'facetdensity' (default), 'box', 'box_no_facet', 'dot',
'dot_no_facet', 'facethist', 'denstrip', and 'blank'.

diag_cont String. Type of plot to use on the diagonal for continuous features, see GGally::ggpairs().
Possible options are: 'densityDiag' (default), 'barDiag', and 'blankDiag'.

diag_cat String. Type of plot to use on the diagonal for categorical features, see GGally::ggpairs().
Possible options are: 'barDiag' (default) and 'blankDiag'.

cor_method String. Type of correlation measure, see GGally::ggpairs(). Possible options
are: 'pearson' (default), 'kendall', and 'spearman'.

Value

A GGally::ggpairs() figure.

Author(s)

Lars Henry Berge Olsen

plot_vaeac_imputed_ggpairs 47

References

• Olsen, L. H., Glad, I. K., Jullum, M., & Aas, K. (2022). Using Shapley values and variational
autoencoders to explain predictive models with dependent mixed features. Journal of machine
learning research, 23(213), 1-51

Examples

if (requireNamespace("xgboost", quietly = TRUE) &&
requireNamespace("ggplot2", quietly = TRUE) &&
requireNamespace("torch", quietly = TRUE) &&
torch::torch_is_installed()) {
data("airquality")
data <- data.table::as.data.table(airquality)
data <- data[complete.cases(data),]

x_var <- c("Solar.R", "Wind", "Temp", "Month")
y_var <- "Ozone"

ind_x_explain <- 1:6
x_train <- data[-ind_x_explain, ..x_var]
y_train <- data[-ind_x_explain, get(y_var)]
x_explain <- data[ind_x_explain, ..x_var]

Fitting a basic xgboost model to the training data
model <- xgboost::xgboost(
x = x_train,
y = y_train,
nround = 100,
verbosity = 0

)

explanation <- shapr::explain(
model = model,
x_explain = x_explain,
x_train = x_train,
approach = "vaeac",
phi0 = mean(y_train),
n_MC_samples = 1,
vaeac.epochs = 10,
vaeac.n_vaeacs_initialize = 1

)

Plot the results
figure <- shapr::plot_vaeac_imputed_ggpairs(

explanation = explanation,
which_vaeac_model = "best",
x_true = x_train,
add_title = TRUE

)
figure

https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf

48 print.shapr

Note that this is an ggplot2 object which we can alter, e.g., we can change the colors.
figure +

ggplot2::scale_color_manual(values = c("#E69F00", "#999999")) +
ggplot2::scale_fill_manual(values = c("#E69F00", "#999999"))

}

print.shapr Print Method for Shapr Objects

Description

Print Method for Shapr Objects

Usage

S3 method for class 'shapr'
print(
x,
what = c("shapley_est", "shapley_sd", "MSEv", "MSEv_explicand", "MSEv_coalition",

"timing_summary"),
digits = 3L,
...

)

Arguments

x A shapr object

what Character. Which component to print. Options are "shapley_est", "shapley_sd",
"MSEv", "MSEv_explicand", "MSEv_coalition", and "timing_summary". De-
faults to "shapley_est". Only one component can be printed at a time. See the
details section of get_results() for details about each component.

digits Integer. Number of significant digits to display. Defaults to 3.

... Further arguments passed to data.table::print.data.table().

Value

The object is returned invisibly after printing selected output.

print.summary.shapr 49

print.summary.shapr Print Method for summary.shapr Objects

Description

Print Method for summary.shapr Objects

Usage

S3 method for class 'summary.shapr'
print(x, ...)

Arguments

x A summary.shapr object.

... Currently unused.

Value

Invisibly returns the summary object.

summary.shapr Summary Method for Shapr Objects

Description

Provides a formatted summary of a shapr object and returns an object of class summary.shapr
containing the same information as returned by get_results().

Usage

S3 method for class 'shapr'
summary(object, digits = 2L, ...)

Arguments

object A shapr object.

digits Integer. (Maximum) number of digits to be displayed after the decimal point.
Defaults to 2.

... Currently unused.

Value

An object of class summary.shapr, which is a named list with the same accessible components as
returned by get_results(). See get_results() for details about each component.

50 vaeac_get_extra_para_default

Examples

Load example data
data("airquality")
airquality <- airquality[complete.cases(airquality),]
x_var <- c("Solar.R", "Wind", "Temp", "Month")
y_var <- "Ozone"

Split data into test and training data
data_train <- head(airquality, -3)
data_explain <- tail(airquality, 3)

x_train <- data_train[, x_var]
x_explain <- data_explain[, x_var]

Fit a linear model
lm_formula <- as.formula(paste0(y_var, " ~ ", paste0(x_var, collapse = " + ")))
model <- lm(lm_formula, data = data_train)

Explain predictions
p <- mean(data_train[, y_var])

explanation <- explain(
model = model,
x_explain = x_explain,
x_train = x_train,
approach = "gaussian",
phi0 = p,
n_MC_samples = 1e2

)

Call summary without assignment - prints formatted output to console
summary(explanation)

Assign to variable - returns shapr.summary with summary information for later use
expl_summary <- summary(explanation) # print(expl_summary) provides the formatted output

Access components from the summary object
expl_summary$shapley_est # Estimated Shapley values
expl_summary$timing_summary$total_time_secs # Total computation time
expl_summary$approach # Approach used

vaeac_get_extra_para_default

Specify the Extra Parameters in the vaeac Model

Description

In this function, we specify the default values for the extra parameters used in explain() for
approach = "vaeac".

vaeac_get_extra_para_default 51

Usage

vaeac_get_extra_para_default(
vaeac.model_description = make.names(Sys.time()),
vaeac.folder_to_save_model = tempdir(),
vaeac.pretrained_vaeac_model = NULL,
vaeac.cuda = FALSE,
vaeac.epochs_initiation_phase = 2,
vaeac.epochs_early_stopping = NULL,
vaeac.save_every_nth_epoch = NULL,
vaeac.val_ratio = 0.25,
vaeac.val_iwae_n_samples = 25,
vaeac.batch_size = 64,
vaeac.batch_size_sampling = NULL,
vaeac.running_avg_n_values = 5,
vaeac.skip_conn_layer = TRUE,
vaeac.skip_conn_masked_enc_dec = TRUE,
vaeac.batch_normalization = FALSE,
vaeac.paired_sampling = TRUE,
vaeac.masking_ratio = 0.5,
vaeac.mask_gen_coalitions = NULL,
vaeac.mask_gen_coalitions_prob = NULL,
vaeac.sigma_mu = 10000,
vaeac.sigma_sigma = 1e-04,
vaeac.sample_random = TRUE,
vaeac.save_data = FALSE,
vaeac.log_exp_cont_feat = FALSE,
vaeac.which_vaeac_model = "best",
vaeac.save_model = TRUE

)

Arguments

vaeac.model_description

String (default is make.names(Sys.time())). String containing, e.g., the name
of the data distribution or additional parameter information. Used in the save
name of the fitted model. If not provided, then a name will be generated based
on base::Sys.time() to ensure a unique name. We use base::make.names()
to ensure a valid file name for all operating systems.

vaeac.folder_to_save_model

String (default is base::tempdir()). String specifying a path to a folder where
the function is to save the fitted vaeac model. Note that the path will be removed
from the returned explain() object if vaeac.save_model = FALSE. Further-
more, the model cannot be moved from its original folder if we are to use the
vaeac_train_model_continue() function to continue training the model.

vaeac.pretrained_vaeac_model

List or String (default is NULL). 1) Either a list of class vaeac, i.e., the list
stored in explanation$internal$parameters$vaeac where explanation is
the returned list from an earlier call to the explain() function. 2) A string

52 vaeac_get_extra_para_default

containing the path to where the vaeac model is stored on disk, for example,
explanation$internal$parameters$vaeac$models$best.

vaeac.cuda Logical (default is FALSE). If TRUE, then the vaeac model will be trained using
cuda/GPU. If torch::cuda_is_available() is FALSE, we fall back to using
the CPU. Using a GPU for smaller tabular dataset often do not improve the
efficiency. See vignette("installation", package = "torch") fo help to
enable running on the GPU (only Linux and Windows).

vaeac.epochs_initiation_phase

Positive integer (default is 2). The number of epochs to run each of the vaeac.n_vaeacs_initialize
vaeac models before continuing to train only the best performing model.

vaeac.epochs_early_stopping

Positive integer (default is NULL). The training stops if there has been no im-
provement in the validation IWAE for vaeac.epochs_early_stopping epochs.
If the user wants the training process to be solely based on this training criterion,
then vaeac.epochs in explain() should be set to a large number. If NULL, then
shapr will internally set vaeac.epochs_early_stopping = vaeac.epochs such
that early stopping does not occur.

vaeac.save_every_nth_epoch

Positive integer (default is NULL). If provided, then the vaeac model after every
vaeac.save_every_nth_epochth epoch will be saved.

vaeac.val_ratio

Numeric (default is 0.25). Scalar between 0 and 1 indicating the ratio of in-
stances from the input data which will be used as validation data. That is,
vaeac.val_ratio = 0.25 means that 75% of the provided data is used as train-
ing data, while the remaining 25% is used as validation data.

vaeac.val_iwae_n_samples

Positive integer (default is 25). The number of generated samples used to com-
pute the IWAE criterion when validating the vaeac model on the validation data.

vaeac.batch_size

Positive integer (default is 64). The number of samples to include in each batch
during the training of the vaeac model. Used in torch::dataloader().

vaeac.batch_size_sampling

Positive integer (default is NULL) The number of samples to include in each
batch when generating the Monte Carlo samples. If NULL, then the function gen-
erates the Monte Carlo samples for the provided coalitions and all explicands
sent to explain() at the time. The number of coalitions are determined by the
n_batches used by explain(). We recommend to tweak extra_computation_args$max_batch_size
and extra_computation_args$min_n_batches rather than vaeac.batch_size_sampling.
Larger batch sizes are often much faster provided sufficient memory.

vaeac.running_avg_n_values

Positive integer (default is 5). The number of previous IWAE values to include
when we compute the running means of the IWAE criterion.

vaeac.skip_conn_layer

Logical (default is TRUE). If TRUE, we apply identity skip connections in each
layer, see skip_connection(). That is, we add the input X to the outcome of
each hidden layer, so the output becomes X + activation(WX + b).

vaeac_get_extra_para_default 53

vaeac.skip_conn_masked_enc_dec

Logical (default is TRUE). If TRUE, we apply concatenate skip connections be-
tween the layers in the masked encoder and decoder. The first layer of the
masked encoder will be linked to the last layer of the decoder. The second layer
of the masked encoder will be linked to the second to last layer of the decoder,
and so on.

vaeac.batch_normalization

Logical (default is FALSE). If TRUE, we apply batch normalization after the acti-
vation function. Note that if vaeac.skip_conn_layer = TRUE, then the normal-
ization is applied after the inclusion of the skip connection. That is, we batch
normalize the whole quantity X + activation(WX + b).

vaeac.paired_sampling

Logical (default is TRUE). If TRUE, we apply paired sampling to the training
batches. That is, the training observations in each batch will be duplicated,
where the first instance will be masked by S while the second instance will be
masked by S̄. This ensures that the training of the vaeac model becomes more
stable as the model has access to the full version of each training observation.
However, this will increase the training time due to more complex implemen-
tation and doubling the size of each batch. See paired_sampler() for more
information.

vaeac.masking_ratio

Numeric (default is 0.5). Probability of masking a feature in the mcar_mask_generator()
(MCAR = Missing Completely At Random). The MCAR masking scheme en-
sures that vaeac model can do arbitrary conditioning as all coalitions will be
trained. vaeac.masking_ratio will be overruled if vaeac.mask_gen_coalitions
is specified.

vaeac.mask_gen_coalitions

Matrix (default is NULL). Matrix containing the coalitions that the vaeac model
will be trained on, see specified_masks_mask_generator(). This parame-
ter is used internally in shapr when we only consider a subset of coalitions,
i.e., when n_coalitions < 2nfeatures , and for group Shapley, i.e., when group is
specified in explain().

vaeac.mask_gen_coalitions_prob

Numeric array (default is NULL). Array of length equal to the height of vaeac.mask_gen_coalitions
containing the probabilities of sampling the corresponding coalitions in vaeac.mask_gen_coalitions.

vaeac.sigma_mu Numeric (default is 1e4). One of two hyperparameter values in the normal-
gamma prior used in the masked encoder, see Section 3.3.1 in Olsen et al.
(2022).

vaeac.sigma_sigma

Numeric (default is 1e-4). One of two hyperparameter values in the normal-
gamma prior used in the masked encoder, see Section 3.3.1 in Olsen et al.
(2022).

vaeac.sample_random

Logical (default is TRUE). If TRUE, the function generates random Monte Carlo
samples from the inferred generative distributions. If FALSE, the function use
the most likely values, i.e., the mean and class with highest probability for con-
tinuous and categorical, respectively.

https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf

54 vaeac_get_extra_para_default

vaeac.save_data

Logical (default is FALSE). If TRUE, then the data is stored together with the
model. Useful if one are to continue to train the model later using vaeac_train_model_continue().

vaeac.log_exp_cont_feat

Logical (default is FALSE). If we are to log transform all continuous features be-
fore sending the data to vaeac(). The vaeac model creates unbounded Monte
Carlo sample values. Thus, if the continuous features are strictly positive (as
for, e.g., the Burr distribution and Abalone data set), it can be advantageous
to log transform the data to unbounded form before using vaeac. If TRUE,
then vaeac_postprocess_data() will take the exp of the results to get back
to strictly positive values when using the vaeac model to impute missing val-
ues/generate the Monte Carlo samples.

vaeac.which_vaeac_model

String (default is best). The name of the vaeac model (snapshots from different
epochs) to use when generating the Monte Carlo samples. The standard choices
are: "best" (epoch with lowest IWAE), "best_running" (epoch with lowest
running IWAE, see vaeac.running_avg_n_values), and last (the last epoch).
Note that additional choices are available if vaeac.save_every_nth_epoch is
provided. For example, if vaeac.save_every_nth_epoch = 5, then vaeac.which_vaeac_model
can also take the values "epoch_5", "epoch_10", "epoch_15", and so on.

vaeac.save_model

Boolean. If TRUE (default), the vaeac model will be saved either in a base::tempdir()
folder or in a user specified location in vaeac.folder_to_save_model. If
FALSE, then the paths to model and the model will will be deleted from the
returned object from explain().

Details

The vaeac model consists of three neural network (a full encoder, a masked encoder, and a de-
coder) based on the provided vaeac.depth and vaeac.width. The encoders map the full and
masked input representations to latent representations, respectively, where the dimension is given
by vaeac.latent_dim. The latent representations are sent to the decoder to go back to the real
feature space and provide a samplable probabilistic representation, from which the Monte Carlo
samples are generated. We use the vaeac method at the epoch with the lowest validation error
(IWAE) by default, but other possibilities are available by setting the vaeac.which_vaeac_model
parameter. See Olsen et al. (2022) for more details.

Value

Named list of the default values vaeac extra parameter arguments specified in this function call.
Note that both vaeac.model_description and vaeac.folder_to_save_model will change with
time and R session.

Author(s)

Lars Henry Berge Olsen

https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf

vaeac_train_model_continue 55

References

• Olsen, L. H., Glad, I. K., Jullum, M., & Aas, K. (2022). Using Shapley values and variational
autoencoders to explain predictive models with dependent mixed features. Journal of machine
learning research, 23(213), 1-51

vaeac_train_model_continue

Continue to Train the vaeac Model

Description

Function that loads a previously trained vaeac model and continue the training, either on new data
or on the same dataset as it was trained on before. If we are given a new dataset, then we assume
that new dataset has the same distribution and one_hot_max_sizes as the original dataset.

Usage

vaeac_train_model_continue(
explanation,
epochs_new,
lr_new = NULL,
x_train = NULL,
save_data = FALSE,
verbose = NULL,
seed = 1

)

Arguments

explanation A explain() object and vaeac must be the used approach.

epochs_new Positive integer. The number of extra epochs to conduct.

lr_new Positive numeric. If we are to overwrite the old learning rate in the adam opti-
mizer.

x_train A data.table containing the training data. Categorical data must have class
names 1, 2, . . . ,K.

save_data Logical (default is FALSE). If TRUE, then the data is stored together with the
model. Useful if one are to continue to train the model later using vaeac_train_model_continue().

verbose String vector or NULL. Controls verbosity (printout detail level) via one or more
of "basic", "progress", "convergence", "shapley" and "vS_details". "basic"
(default) displays basic information about the computation and messages about
parameters/checks. "progress" displays where in the calculation process the
function currently is. "convergence" displays how close the Shapley value
estimates are to convergence (only when iterative = TRUE). "shapley" dis-
plays intermediate Shapley value estimates and standard deviations (only when

https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf

56 vaeac_train_model_continue

iterative = TRUE), and the final estimates. "vS_details" displays informa-
tion about the v(S) estimates, most relevant for approach %in% c("regression_separate",
"regression_surrogate", "vaeac"). NULL means no printout. Any combi-
nation can be used, e.g., verbose = c("basic", "vS_details").

seed Positive integer (default is 1). Seed for reproducibility. Specifies the seed before
any randomness based code is being run.

Value

A list containing the training/validation errors and paths to where the vaeac models are saved on the
disk.

Author(s)

Lars Henry Berge Olsen

References

• Olsen, L. H., Glad, I. K., Jullum, M., & Aas, K. (2022). Using Shapley values and variational
autoencoders to explain predictive models with dependent mixed features. Journal of machine
learning research, 23(213), 1-51

https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf
https://www.jmlr.org/papers/volume23/21-1413/21-1413.pdf

Index

base::make.names(), 51
base::Sys.time(), 51
base::tempdir(), 51, 54

data.table::print.data.table(), 48

explain, 2
explain(), 6, 18, 22, 24, 27–29, 32, 33, 37,

38, 42, 46, 50–55
explain_forecast, 14

future.apply::future_apply, 23
future::future, 9, 23

get_extra_comp_args_default, 21
get_extra_comp_args_default(), 6, 17
get_iterative_args_default, 23
get_iterative_args_default(), 6, 17
get_output_args_default, 25
get_output_args_default(), 6, 17
get_results, 26
get_results(), 48, 49
get_supported_approaches, 27
get_supported_models, 28
get_supported_models(), 3, 5, 15–17
GGally::ggpairs(), 45, 46
ggbeeswarm::geom_beeswarm(), 30
ggplot2::coord_flip(), 38
ggplot2::element_text(), 38
ggplot2::ggplot(), 29, 34, 38, 39, 42, 43
ggplot2::print.ggplot(), 29, 34, 38
ggplot2::resolution(), 33, 38
ggplot2::theme(), 38

mcar_mask_generator(), 53

paired_sampler(), 53
parsnip::linear_reg(), 7
plot.shapr, 28
plot.shapr(), 34
plot_MSEv_eval_crit, 32

plot_MSEv_eval_crit(), 34
plot_SV_several_approaches, 37
plot_vaeac_eval_crit, 41
plot_vaeac_imputed_ggpairs, 45
print.shapr, 48
print.shapr(), 27
print.summary.shapr, 49
progressr::progressr, 9, 23

RColorBrewer::RColorBrewer(), 38
recipes::recipe(), 8
rsample::vfold_cv(), 8

setup_approach(), 42
setup_approach.categorical, 6, 17
setup_approach.copula, 6, 17
setup_approach.ctree, 6, 17
setup_approach.ctree(), 4, 16
setup_approach.empirical, 6, 17
setup_approach.empirical(), 4, 16
setup_approach.gaussian, 6, 17
setup_approach.independence, 6, 17
setup_approach.regression_separate, 6
setup_approach.regression_surrogate, 6
setup_approach.timeseries, 6, 17
setup_approach.vaeac, 6, 17
skip_connection(), 52
specified_masks_mask_generator(), 53
summary.shapr, 49
summary.shapr(), 27

torch::cuda_is_available(), 52
torch::dataloader(), 52
torch::nn_leaky_relu(), 9, 19
torch::nn_module(), 9, 19
torch::nn_relu(), 9, 19
torch::nn_selu(), 9, 19
torch::nn_sigmoid(), 9, 19
torch::optim_adam(), 9, 19

vaeac(), 54

57

58 INDEX

vaeac_get_extra_para_default, 50
vaeac_get_extra_para_default(), 9, 19
vaeac_postprocess_data(), 54
vaeac_train_model_continue, 55
vaeac_train_model_continue(), 51, 54, 55

	explain
	explain_forecast
	get_extra_comp_args_default
	get_iterative_args_default
	get_output_args_default
	get_results
	get_supported_approaches
	get_supported_models
	plot.shapr
	plot_MSEv_eval_crit
	plot_SV_several_approaches
	plot_vaeac_eval_crit
	plot_vaeac_imputed_ggpairs
	print.shapr
	print.summary.shapr
	summary.shapr
	vaeac_get_extra_para_default
	vaeac_train_model_continue
	Index

