Shazam: Tuning clonal assignment thresholds with nearest neighbor
distances

Namita Gupta, Susanna Marquez, Nima Nouri and Julian Q. Zhou

2025-12-26
Contents
Example data . . . . . . .. 1
Calculating nearest neighbor distances (heavy chain sequences) . . . . .. ... ... ... 2
Calculating nearest neighbor distances (single-cell paired heavy and light chain sequences) 3
Using nearest neighbor distances to determine clonal assignment thresholds . . . . . . .. 4
Calculating nearest neighbor distances independently for subsets of data . . . . . . . . .. 7
Calculating nearest neighbor distances across groups rather than within a groups . . . . . 8
Speeding up pairwise-distance-matrix calculations with subsampling . . . . ... ... .. 9

Estimating the optimal distance threshold for partitioning clonally related sequences is accomplished
by calculating the distance from each sequence in the data set to its nearest neighbor and finding
the break point in the resulting bi-modal distribution that separates clonally related from unrelated
sequences. This is done via the following steps:

1. Calculating of the nearest neighbor distances for each sequence.
2. Generating a histogram of the nearest neighbor distances followed by either manual inspect
for the threshold separating the two modes or automated threshold detection.

Example data

A small example ATRR Rearrangement database is included in the alakazam package. Calculating
the nearest neighbor distances requires the following fields (columns) to be present in the table:

e sequence_id

e v_call

e j_call

e junction

e junction_length

# Import required packages
library(alakazam)

library (dplyr)
library(ggplot2)
library(shazam)

# Load and subset exzample data (for speed)



data(ExampleDb, package="alakazam")
set.seed(112)

db <- ExampleDb 7>} sample_n(size=500)
db %>, count(sample_id)

## # A tibble: 2 x 2

## sample_id n
#it <chr> <int>
## 1 +7d 253
## 2 -1h 247

Calculating nearest neighbor distances (heavy chain sequences)

By default, distToNearest, the function for calculating distance between every sequence and
its nearest neighbor, assumes that it is running under non-single-cell mode and that every input
sequence is a heavy chain sequence and will be used for calculation. It takes a few parameters to
adjust how the distance is measured.

o If a genotype has been inferred using the methods in the tigger package, and a
v_call_genotyped field has been added to the database, then this column may be used
instead of the default v_call column by specifying the vCallColumn argument.

— This will allows the more accurate V call from tigger to be used for grouping of the
sequences.

— Furthermore, for more leniency toward ambiguous V(D)J segment calls, the parameter
first can be set to FALSE.

— Setting first=FALSE will use the union of all possible genes to group sequences, rather
than the first gene in the field.

e The model parameter determines which underlying SHM model is used to calculate the
distance.

— The default model is single nucleotide Hamming distance with gaps considered as a match
to any nucleotide (ham).

— Other options include a human Ig-specific single nucleotide model similar to a transi-
tion/transversion model (hh_s1f) and the corresponding 5-mer context model from Yaari
et al, 2013 (hh_s5f), an analogous pair of mouse specific models from Cui et al, 2016
(mk_rsinf and mk_rsbnf), and amino acid Hamming distance (aa).

Note: Human and mouse distance measures that are backward compatible with SHazaM v0.1.4
and Change-O v0.3.3 are also provided as hs1f_compat and min_compat, respectively.

For models that are not symmetric (e.g., distance from A to B is not equal to the distance from B to
A), there is a symmetry parameter that allows the user to specify whether the average or minimum
of the two distances is used to determine the overall distance.

# Use nucleotide Hamming distance and normalize by junction length

dist_ham <- distToNearest(db %>% filter(sample_id == "+7d"),
sequenceColumn="junction",
vCallColumn="v_call_genotyped", jCallColumn="j_call",
model="ham", normalize="len", nproc=1)

## Running in non-single-cell mode.



# Use genotyped V assignments, a 5-mer model and mo mormalization

dist_sbf <- distToNearest(db 7>% filter(sample_id == "+7d"),
sequenceColumn="junction",
vCallColumn="v_call_genotyped", jCallColumn="j_call",

model="hh_s5f", normalize="none", nproc=1)

## Running in non-single-cell mode.

Calculating nearest neighbor distances (single-cell paired heavy and light chain
sequences)

The distToNearest function also supports running under single-cell mode where an input
Example10x containing single-cell paired IGH:IGK/IGL, TRB:TRA, or TRD:TRG chain sequences
are supplied. In this case, by default, cells are first divided into partitions containing the same
heavy/long chain (IGH, TRB, TRD) V gene and J gene (and if specified, junction length), and the
same light /short chain (IGK, IGL, TRA, TRG) V gene and J gene (and if specified, junction length).
Then, only the heavy chain sequences are used for calculating the nearest neighbor distances.

Under the single-cell mode, each row of the input Example10x should represent a sequence/chain.
Sequences/chains from the same cell are linked by a cell ID in a ce11IdColumn column. Note that a
cell should have exactly one IGH sequence (BCR) or TRB/TRD (T'CR). The values in the locusColumn
column must be one of IGH, IGI, IGK, or IGL (BCR) or TRA, TRB, TRD, or TRG (T'CR). To invoke
the single-cell mode, cel1IdColumn must be specified and locusColumn must be correct.

There is a choice of whether grouping should be done as a one-stage process or a two-stage process.
This can be specified via VJthenLen.

o In the one-stage process (VJthenLen=FALSE), cells are divided into partitions containing same
heavy/long chain V gene, J gene, and junction length (V-J-length combination), and the same
light chain V-J-length combination.

o In the two-stage process (VJthenLen=TRUE), cells are first divided by heavy/long chain V
gene and J gene (V-J combination), and light /short chain V-J combination; and then by the
corresponding junction lengths.

There is also a choice of whether grouping should be done using IGH (BCR) or TRB/TRD (TCR)
sequences only, or using both IGH and IGK/IGL (BCR) or TRB/TRD and TRA/TRG (TCR) sequences.
This is governed by onlyHeavy.

# Single-cell mode
# Group cells in a one-stage process (VJthenLen=FALSE) and using
# both heavy and light chain sequences (onlyHeavy=FALSE)

data(ExamplelOx, package="alakazam")
dist_sc <- distToNearest(ExamplelOx, celllIdColumn="cell id", locusColumn="locus",
VJthenLen=FALSE, onlyHeavy=FALSE)

Regardless of whether grouping was done using only the heavy chain sequences, or both heavy and
light chain sequences, only heavy chain sequences will be used for calculating the nearest neighbor
distances. Hence, under the single-cell mode, rows in the returned data.frame corresponding to
light chain sequences will have NA in the dist_nearest field.



Using nearest neighbor distances to determine clonal assignment thresholds

The primary use of the distance to nearest calculation in SHazaM is to determine the optimal
threshold for clonal assignment using the DefineClones tool in Change-O. Defining a threshold
relies on distinguishing clonally related sequences (represented by sequences with close neighbors)
from singletons (sequences without close neighbors), which show up as two modes in a nearest
neighbor distance histogram.

Thresholds may be manually determined by inspection of the nearest neighbor histograms or by
using one of the automated threshold detection algorithms provided by the findThreshold function.
The available methods are density (smoothed density) and gmm (gamma/Gaussian mixture model),
and are chosen via the method parameter of findThreshold.

Threshold determination by manual inspection

Manual threshold detection simply involves generating a histogram for the values in the
dist_nearest column of the distToNearest output and selecting a suitable value within the
valley between the two modes.

# Generate Hamming distance histogram
pl <- ggplot(subset(dist_ham, !is.na(dist_nearest)),
aes(x=dist_nearest)) +
geom_histogram(color="white", binwidth=0.02) +
geom_vline(xintercept=0.12, color="firebrick", linetype=2) +

labs(x = "Hamming distance", y = "Count") +
scale_x_continuous(breaks=seq(0, 1, 0.1)) +
theme_bw ()
plot(pl)
1004 T
1
1
1
1
1
1
754 1
1
1
1
1
1
E 1
S 504 1
o} 1
O 1
1
1
1
1
25 1 1
1
1
1
1
1
i | - — - 1 1 [ [T ] | — —
. | n-l_m ]
1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Hamming distance

By manual inspection, the length normalized ham model distance threshold would be set to a value



near 0.12 in the above example.

# Generate HH_S5F distance histogram
p2 <- ggplot(subset(dist_sbf, !is.na(dist_nearest)),
aes(x=dist_nearest)) +
geom_histogram(color="white", binwidth=1) +
geom_vline(xintercept=7, color="firebrick", linetype=2) +
labs(x = "HH_S5F distance", y = "Count") +
scale_x_continuous(breaks=seq(0, 50, 5)) +

theme _bw()
plot(p2)
100 A :
1
1
1
1
1
754 1
1
1
1
1
1
— 1
S 504 !
o 1
O 1
1
1
1
1
25+ 1
1
1
1
1
1
0- .I_+ - - - mull_=m im I. [ mm. -
T T 1 T T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50

HH_S5F distance

In this example, the unnormalized hh_s5f model distance threshold would be set to a value near 7.

Automated threshold detection via smoothed density

The density method will look for the minimum in the valley between two modes of a smoothed
distribution based on the input vector (distances), which will generally be the dist_nearest
column from the distToNearest output. Below is an example of using the density method for
threshold detection.

# Find threshold using density method
output <- findThreshold(dist_ham$dist_nearest, method="density")
threshold <- output@threshold

# Plot distance histogram, density estimate and optimum threshold
plot(output, title="Density Method")



Density Method

T T T T
0.00 0.25 0.50 0.75
Distance

# Print threshold
print (output)

## [1] 0.2468924

Automated threshold detection via a mixture model

The findThreshold function includes approaches for automatically determining a clonal assign-
ment threshold. The "gmm" method (gamma/Gaussian mixture method) of findThreshold
(method="gmm") performs a maximum-likelihood fitting procedure over the distance-to-nearest dis-
tribution using one of four combinations of univariate density distribution functions: "norm-norm"
(two Gaussian distributions), "norm-gamma" (lower Gaussian and upper gamma distribution),
"gamma-norm" (lower gamm and upper Gaussian distribution), and "gamma-gamma" (two gamma
distributions). By default, the threshold will be selected by calculating the distance at which the av-
erage of sensitivity and specificity reaches its maximum (cutoff="optimal"). Alternative threshold
selection criteria are also providing, including the curve intersection (cutoff="intersect"), user
defined sensitivity (cutoff="user", sen=x), or user defined specificity (cutoff="user", spc=x)

In the example below the mixture model method (method="gmm") is used to find the optimal threshold
for separating clonally related sequences by fitting two gamma distributions (model="gamma-gamma").
The red dashed-line shown in figure below defines the distance where the average of the sensitivity
and specificity reaches its maximum.

# Find threshold using gmm method

output <- findThreshold(dist_ham$dist_nearest, method="gmm", model="gamma-gamma')

# Plot distance histogram, Gaussian fits, and optimum threshold
plot(output, binwidth=0.02, title="GMM Method: gamma-gamma")



GMM Method: gamma—-gamma
|

20 -

154

Density

10 -

0.0 0.2 0.4 0.6
Distance
# Print threshold
print (output)

## [1] 0.1249318

Note: The shape of histogram plotted by plotGmmThreshold is governed by the binwidth parame-
ter. Meaning, any change in bin size will change the form of the distribution, while the gmm method
is completely bin size independent and only engages the real input data.

Calculating nearest neighbor distances independently for subsets of data

The fields argument to distToNearest will split the input data.frame into groups based on
values in the specified fields (columns) and will treat them independently. For example, if the input
data has multiple samples, then fields="sample_id" would allow each sample to be analyzed
separately.

In the previous examples we used a subset of the original example data. In the following example,
we will use the two available samples, -1h and +7d, and will set fields="sample_id". This will
reproduce previous results for sample +7d and add results for sample -1d.

dist_fields <- distToNearest(db, model="ham", normalize="len",
fields="sample_id", nproc=1)

## Running in non-single-cell mode.
We can plot the nearest neighbor distances for the two samples:

# Generate grouped histograms
p4 <- ggplot(subset(dist_fields, !is.na(dist_nearest)),
aes(x=dist_nearest)) +
geom_histogram(color="white", binwidth=0.02) +



geom_vline(xintercept=0.12, color="firebrick", linetype=2) +
labs(x = "Grouped Hamming distance", y = "Count") +
facet_grid(sample_id ~ ., scales="free_y") +
theme_bw()
plot (p4)

100

751

50 1

pPL+

251

O llllllIIIIIllIIIIIIIII [
02 04 06

Grouped Hamming distance

04 || [N,

Count

154

104

yt-

0.0

In this case, the threshold selected for +7d seems to work well for -1d as well.

Calculating nearest neighbor distances across groups rather than within a groups

Specifying the cross argument to distToNearest forces distance calculations to be performed
across groups, such that the nearest neighbor of each sequence will always be a sequence in a
different group. In the following example we set cross="sample", which will group the data into
-1h and +7d sample subsets. Thus, nearest neighbor distances for sequences in sample -1h will be
restricted to the closest sequence in sample +7d and vice versa.

dist_cross <- distToNearest(ExampleDb, sequenceColumn="junction",
vCallColumn="v_call_genotyped", jCallColumn="j_call",
model="ham", first=FALSE,
normalize="len", cross="sample_id", nproc=1)

## Running in non-single-cell mode.

# Generate cross sample histograms
p5 <- ggplot(subset(dist_cross, !is.na(cross_dist_nearest)),
aes(x=cross_dist_nearest)) +
labs(x = "Cross-sample Hamming distance", y = "Count") +
geom_histogram(color="white", binwidth=0.02) +
geom_vline(xintercept=0.12, color="firebrick", linetype=2) +
facet_grid(sample_id ~ ., scales="free_y") +



theme bw()
plot (p5)
3004

200

pL+

1004

IIIIIIIIIIII‘\||‘\||||||||IIIIIIIIIIIIIIIIIIII
T T
0.4 0.6

Cross—-sample Hamming distance

Count

301

201

yt-

104

e mlle EE

T
0.0 0.2

This can provide a sense of overlap between samples or a way to compare within-sample variation
to cross-sample variation.

Speeding up pairwise-distance-matrix calculations with subsampling
The subsample option in distToNearest allows to speed up calculations and reduce memory usage.

If there are very large groups of sequences that share V call, J call and junction length,
distToNearest will need a lot of memory and it will take a long time to calculate all the distances.
Without subsampling, in a large group of n=70,000 sequences distToNearest calculates a n*n
distance matrix. With subsampling, e.g. to s=15,000, the distance matrix for the same group has
size s*n, and for each sequence in db, the distance value is calculated by comparing the sequence to
the subsampled sequences from the same V-J-junction length group.

# Explore V-J-junction length groups sizes to use subsample

# Show the size of the largest groups

top_10_sizes <- ExampleDb %>
group_by(junction_length) %>% # Group by junction length
do(alakazam: :groupGenes (., first=TRUE)) %>} # Group by V and J call
mutate (GROUP_ID=paste(junction_length, vj_group, sep="_")) %>} # Create group
ungroup() %>%
group_by (GROUP_ID) 7>% # Group by GROUP_ID
distinct(junction) %>% # Count unique junctions per group
summarize (SIZE=n()) %>% # Get the size of the group
arrange(desc(SIZE)) %>} # Sort by decreasing size
select (SIZE) %>%



top_n(10) # Filter to the top 10
## Selecting by SIZE
top_10_sizes

## # A tibble: 10 x 1

## SIZE
## <int>
##H 1 89
## 2 37
## 3 36
## 4 34
## b 33
## 6 33
## 7 32
## 8 26
## 9 25
## 10 25

# Use 30 to subsample
# NOTE: This s a toy example. Subsampling to 30 sequence with real data is unwise
dist <- distToNearest(ExampleDb, sequenceColumn="junction",
vCallColumn="v_call_genotyped", jCallColumn="j_call",
model="ham",
first=FALSE, normalize="len",
subsample=30)

## Running in non-single-cell mode.

10



	Example data
	Calculating nearest neighbor distances (heavy chain sequences)
	Calculating nearest neighbor distances (single-cell paired heavy and light chain sequences)
	Using nearest neighbor distances to determine clonal assignment thresholds
	Calculating nearest neighbor distances independently for subsets of data
	Calculating nearest neighbor distances across groups rather than within a groups
	Speeding up pairwise-distance-matrix calculations with subsampling

