Shazam: Mutation analysis

Susanna Marquez & Julian Q. Zhou

2025-12-26
Contents
Example data e 1
Calculate the counts and frequencies of mutations over the entire sequence 1
Calculate mutations within subregions L oL 3
Use amino acid physicochemical properties to define mutations 6

Basic mutational load calculations are provided by the observedMutations function.
observedMutations provides multiple options to control how mutations are calculated.
Mutations can be calculated as either counts or frequencies, divided into replacement (R) and
silent (S) mutations, and subset into FWR and CDR specific mutations. Additionally, alternative
mutational definitions may be considered based on the physicochemical properties of translated
codons.

Example data

A small example AIRR Rearrangement database is included in the alakazam package. Analyzing
mutations requires the following fields (columns) to be present in the table:

¢ sequence_alignment
e germline_alignment_d_mask

Import required packages
library(alakazam)

library (dplyr)
library(ggplot2)
library(shazam)

Load and subset example data
data(ExampleDb, package="alakazam")
db <- subset(ExampleDb, c_call %in’, c("IGHA", "IGHG") & sample_id == "+74")

Calculate the counts and frequencies of mutations over the entire sequence

When calling observedMutations with regionDefinition=NULL, the entire input sequence
(sequenceColumn) is compared to the germline sequence (germlineColumn) to identify R and S
mutations. If frequency=TRUE, the number of mutations is expressed as the frequency of mutations
over the total number of positions that are non-N in both the input and the germline sequences.

In the example below, the counts (frequency=FALSE) and frequencies (frequency=TRUE) of R and
S mutations are calculated separately. New columns containing mutation counts are appended to
the input data.frame with names in the form mu_count_<Region>_<R/S>. Mutation frequencies
appear in new columns named mu_freq_<Region>_<R/S>.

Calculate R and S mutation counts

db_obs <- observedMutations(db, sequenceColumn="sequence_alignment",
germlineColumn="germline_alignment_d_mask",
regionDefinition=NULL,
frequency=FALSE,

nproc=1)

Show new mutation count columns
db_obs %>%

select(sequence_id, starts_with("mu_count_")) %>%

head (n=4)
A tibble: 4 x 3
sequence_id mu_count_seq_r mu_count_seq_s
#i# <chr> <dbl> <dbl>
1 GN5SHBTOT7FUXYS8 0 0
2 GN5SHBTO5JMPIS 8 2
3 GN5SHBTOSH4LPP 8 2
4 GN5SHBTO5JGND3 0 0

Calculate R and S mutation frequencies

db_obs <- observedMutations(db_obs, sequenceColumn="sequence_alignment",
germlineColumn="germline_alignment_d_mask",
regionDefinition=NULL,
frequency=TRUE,

nproc=1)

Show mnew mutation frequency columns
db_obs 7>%

select (sequence_id, starts_with("mu_freq_ ")) %>%

head(n=4)
A tibble: 4 x 3
sequence_id mu_freq_seq_r mu_freq_seq_s
<chr> <dbl> <dbl>
1 GN5SHBTO7FUXYS8 0 0
2 GN5SHBTO5JMPIb 0.0237 0.00592
3 GN5SHBTOS8HALPP 0.0236 0.00590
4 GN5SHBTO5JGND3 0 0

Specifying the combine=TRUE argument will aggregate all mutation columns into a single value.

Calculate combined R and S mutation frequencies

db_obs <- observedMutations(db, sequenceColumn="sequence_alignment",
germlineColumn="germline_alignment_d_mask",
regionDefinition=NULL,
frequency=TRUE,
combine=TRUE,

nproc=1)
Show mew mutation frequency columns
db_obs %>%
select(sequence_id, starts_with("mu_freq")) %>%

head (n=4)
A tibble: 4 x 2
sequence_id mu_freq
<chr> <dbl>
1 GN5SHBTO7FUXY8 O

1
2 GNS6SHBTOS5JMPIS 0.0296
3 GNS5SHBTOSH4LPP 0.0295
4 GN5SHBTO5JGND3 O

We can plot the mutation frequencies and explore differences between samples or isotypes.

gl <- ggplot(db_obs, aes(x=c_call, y=mu_freq, fill=c_call)) +
geom_boxplot() +
labs(title="Total mutations",
x="Isotype", y="Mutation frequency") +
scale_fill_manual (name="Isotype", values=IG_COLORS, limits=force) +

theme _bw()
plot(gl)
Total mutations
[]
0.20
° §
>, 0.15] .
[&]
2 s
S b4 Isot
2 g sotype
(O]
g B icHA
o 4
8 0-10 E3 iGHG
e
=]
E I
0.05
$
[]
[] [)
0.00 ° °
IGHA IGHG

Isotype

Calculate mutations within subregions

To restrict the mutational analysis to a particular area in the sequence, the regionDefinition
argument needs to be assigned a RegionDefinition object, which simply defines the subregion

boundaries of the Ig sequence. For convenience, shazam provides a set of such objects, for which
an overview is provided via ?IMGT_SCHEMES. Each of these objects cover the IMGT numbered V
segment up to nucleotide position 312. Different objects treat regions within the V segment with
varying granularity:

IMGT_V_BY_CODONS: treats each codon, from codon 1 to codon 104, as a distinct region;
IMGT_V_BY_REGIONS: defines regions to be CDR1, CDR2, FWR1, FWR2 and FWR3;
IMGT_V: defines regions to be either CDR or FWR;

IMGT_V_BY_SEGMENTS: provides no subdivisions and treats the entire V segment as a single
region.

IMGT_VDJ: All regions, including CDR3 and FWRA4, grouped as either CDR or FWR. This
RegionDefinition is initially empty, and one is created on the fly for each set of clonally
related sequences.

IMGT_VDJ_BY_REGIONS: CDR1, CDR2, CDR3, FWRI1, FWR, FWR3 and FWR4 regions
treated as individual regions. This RegionDefinition is initially empty, and one is created
on the fly for each set of clonally related sequences.

When supplying one of these objects to regionDefinition, and with combined=FALSE, the resultant
mutation counts/frequencies will be tabulated in a way consistent with the granularity of the object’s
region definition. For example,

With IMGT_V_BY_REGIONS, mutation frequencies will be reported in columns mu_freq_cdrl_r,
mu_freq_cdrl_s, mu_freq_cdr2_r, mu_freq_cdr2_s, mu_freq_fwrl_r, mu_freq fwrl_s,
mu_freq_fwr2_r, mu_freq fwr2_s, mu_freq fwr3_r, and mu_freq fwr3_s.

With IMGT_V, mutation frequencies will be reported in columns mu_freq_cdr_r,
mu_freq_cdr_s, mu_freq_fwr_r, and mu_freq_fwr_s.

With IMGT_V_BY_SEGMENTS, mutation frequencies will be reported in columns mu_freq_v_r,
and mu_freq_v_s.

In the following example, we will explore the mutation frequency in the V-segment using two of the
region definitions.

Calculate R and S mutation counts for individual CDRs and FWRs
db_obs_v <- observedMutations(db, sequenceColumn="sequence_alignment",

germlineColumn="germline_alignment_d_mask",
regionDefinition=IMGT_V_BY_REGIONS,
frequency=FALSE,

nproc=1)

Show new FWR mutation columns
db_obs_v %>%

select(sequence_id, starts_with("mu_count_fwr")) %>7
head(n=4)

A tibble: 4 x 7

##
##
##
#it
##
#it
##

1
2
3
4

#

sequence_id mu_count_fwrl_r mu_count_fwrl_s mu_count_fwr2_r mu_count_fwr2_s
<chr> <dbl> <dbl> <dbl> <dbl>
GN5SHBTO7FUXY8 0 0 0 0
GN5SHBTO05JMPI5 1 0 0 0
GN5SHBTO8H4ALPP 1 0 0 0
GN5SHBT05JGND3 0 0 0 0

i 2 more variables: mu_count_fwr3_r <dbl>, mu_count_fwr3_s <dbl>

Calculate aggregate CDR and FWR V-segment R and S mutation frequencies

db_obs_v <- observedMutations(db_obs_v, sequenceColumn="sequence_alignment",
germlineColumn="germline_alignment_d_mask",
regionDefinition=IMGT_V,
frequency=TRUE,
nproc=1)

Show new CDR and FWR mutation frequency columns

db_obs_v %>%

select(sequence_id, starts_with("mu_freq_")) %>7%

head (n=4)

A tibble: 4 x 5

sequence_id mu_freq_cdr_r mu_freq_cdr_s mu_freq fwr_r mu_freq_ fwr_s
#i <chr> <dbl> <dbl> <dbl> <dbl>
1 GN5SHBTO7FUXYS8 0 0 0 0

2 GN5SHBTO5JMPI5 0 0 0.0251 0.00418
3 GN5SHBTOS8H4ALPP 0 0 0.025 0.00417
4 GN5SHBTO5JGND3 0 0 0 0

Plot a comparison between CDR silent and replacement mutations.

g2 <- ggplot(db_obs_v, aes(x=c_call, y=mu_freq cdr_s, fill=c_call)) +
geom_boxplot() +
labs(title="CDR silent mutations",
x="Isotype", y="Mutation frequency") +
scale_fill_manual (name="Isotype", values=IG_COLORS, limits=force) +
theme bw()
g3 <- ggplot(db_obs_v, aes(x=c_call, y=mu_freq_cdr_r, fill=c_call)) +
geom_boxplot() +
labs(title="CDR replacement mutations",
x="Isotype", y="Mutation frequency") +
scale_fill_manual (name="Isotype", values=IG_COLORS, limits=force) +
theme _bw()

alakazam: :gridPlot (g2, g3, ncol=2)

CDR silent mutations CDR replacement mutations

[] []
[] []
0.15-
[3
° [J
0.2
3 . 3
& &
0.10 1
q—g)_ Isotype % Isotype
E BE cHA &= EE GHA
c c
S B3 cHe S B3 icHG
s g8
=) S 0.14
= 0.05 - =
0.00 - 0.01
IGHA IGHG IGHA IGHG
Isotype Isotype

Use amino acid physicochemical properties to define mutations

By default, replacement and silent mutations are determined by exact amino acid identity; this can
be changed by setting the mutationDefinition argument. For convenience, shazam provides a set
of MutationDefinition objects defining changes in amino acid charge, hydrophobicity, polarity
and volume.

In the following example, replacement mutations are defined as amino acid changes that lead to
a change in charge (mutationDefinition=CHARGE_MUTATIONS). Mutations that do not alter the
charge classification of a translated codon will be considered silent mutations.

Calculate charge mutation frequency for the full sequence

db_obs_ch <- observedMutations(db, sequenceColumn="sequence_alignment",
germlineColumn="germline_alignment_d_mask",
regionDefinition=NULL,
mutationDefinition=CHARGE_MUTATIONS,
frequency=TRUE,
nproc=1)

Show mnew charge mutation frequency columns

db_obs_ch %>

select(sequence_id, starts_with("mu_freq_")) %>7%

head (n=4)
A tibble: 4 x 3
sequence_id mu_freq_seq_r mu_freq_seq_s
<chr> <dbl> <dbl>
1 GN5SHBTO7FUXY8 0 0
2 GN5SHBTO5JMPI5 0.00296 0.0266

3 GNS5SHBTO8H4LPP 0.00295 0.0265
4 GNS5SHBTO5JGND3 0 0

We can make a plot to visualize if mutations that change the sequence charge are more frequent in
one isotype.

g4 <- ggplot(db_obs_ch, aes(x=c_call, y=mu_freq_seq r, fill=c_call)) +
geom_boxplot() +
labs(title="Charge replacement mutations",
x="Isotype", y="Mutation frequency") +
scale_fill_manual (name="Isotype", values=IG_COLORS, limits=force) +
theme_bw()

plot(g4)
Charge replacement mutations

0.04 - +
[]

2 0.031 ° °
c
()
= Isotype
(&)
E ES GHA
& 0.02+
2 E3 1GHG
5
=

0.01 -

0.00 -

IGHA IGHG
Isotype

	Example data
	Calculate the counts and frequencies of mutations over the entire sequence
	Calculate mutations within subregions
	Use amino acid physicochemical properties to define mutations

