Package ‘shinytest2’

January 9, 2026

Title Testing for Shiny Applications
Version 0.5.0

Description Automated unit testing of Shiny applications through a
headless 'Chromium' browser.

License MIT + file LICENSE

URL https://rstudio.github.io/shinytest2/,
https://github.com/rstudio/shinytest2

BugReports https://github.com/rstudio/shinytest2/issues
Depends testthat (>=3.3.1)

Imports callr, checkmate (>= 2.0.0), chromote (>= 0.5.0), cli, fs,
globals (>= 0.14.0), httr2, jsonlite, lifecycle (>= 1.0.3),
pingr, pkgload, R6 (>=2.4.0), rlang (>= 1.0.0), rmarkdown,
shiny, withr

Suggests box, deSolve, diffobj, ggplot2, golem, knitr, plotly, png,
rhino, rstudioapi, shinytest (>= 1.5.1), shinyvalidate (>=
0.1.2), shinyWidgets, showimage, spelling, usethis, vdiffr (>=
1.0.0)

LinkingTo cppll

VignetteBuilder knitr

Config/Needs/check rstudio/shiny, bslib
Config/Needs/shinytest2-testing decor
Config/Needs/website pkgdown, tidyverse/tidytemplate
Config/testthat/edition 3

Encoding UTF-8

Language en-US

RoxygenNote 7.3.3

Collate 'R6-helper.R' 'app-driver-chromote.R' 'app-driver-dir.R’
'app-driver-expect-download.R' 'app-driver-expect-js.R'
'app-driver-expect-screenshot.R'

https://rstudio.github.io/shinytest2/
https://github.com/rstudio/shinytest2
https://github.com/rstudio/shinytest2/issues

2 AppDriver

'app-driver-expect-unique-names.R' 'app-driver-expect-values.R'
‘app-driver-get-log.R' 'app-driver-initialize.R'
'app-driver-log-message.R' 'app-driver-message.R'
'app-driver-node.R' 'app-driver-set-inputs.R'

'app-driver-start.R' 'app-driver-stop.R' 'app-driver-timeout.R'
'app-driver-upload-file.R' 'app-driver-variant.R’'
'app-driver-wait.R' 'app-driver-window.R' 'app-driver.R’'
‘chromote-methods.R' 'compare-screenshot-threshold.R' 'cpp11.R’
'expect-snapshot.R' 'expr-recurse.R' 'httr2.R' 'migrate.R’
'missing-value.R' 'pkg.R' 'utils.R’ "platform.R’
'record-test-unique-name.R' 'record-test.R' 'rstudio.R’
'save-app.R' 'shiny-browser.R' 'shinytest2-logs.R’
'shinytest2-package.R' 'test-app.R' 'use.R'

NeedsCompilation yes

Author Barret Schloerke [cre, aut] (ORCID:
<https://orcid.org/0000-0001-9986-114X>),
Posit Software, PBC [cph, fnd],
Winston Chang [ctb] (Original author to rstudio/shinytest),
Gabor Csardi [ctb] (Original author to rstudio/shinytest),
Hadley Wickham [ctb] (Original author to rstudio/shinytest),
Mango Solutions [cph, ccp] (Original author to rstudio/shinytest)

Maintainer Barret Schloerke <barret@posit.co>
Repository CRAN
Date/Publication 2026-01-09 21:40:02 UTC

Contents
AppDrivero 2
compare_screenshot_threshold o oL 0oL 53
local_app_support e e e e e 56
migrate_from_shinytesto 58
platform_variant. e 59
record_test. e e 59
TESE_APD « « o e e e e e e e e 61
use_shinytest2 63

Index 66

AppDriver Drive a Shiny application

https://orcid.org/0000-0001-9986-114X

AppDiriver 3

Description

This class starts a Shiny app in a new R session, along with chromeote’s headless browser that can
be used to simulate user actions. This provides a full simulation of a Shiny app so that you can test
user interactions with a live app.

Methods described below are ordered by perceived popularity. Expect methods are grouped next to
their corresponding get methods.

Vignettes

Please see Testing in depth for more details about the different expectation methods.

Please see Robust testing for more details about the cost / benefits for each expectation method.

Test mode

To have your AppDriver retrieve values from your Shiny app, be sure to set shiny: :runApp(test.mode
= TRUE) when running your Shiny app.

If you are deploying your Shiny app where you do not have control over the call to shiny: : runApp(),
you can set options(shiny.testmode = TRUE) in a .Rprofile file within your Shiny app direc-
tory.

Start-up failure

If the app throws an error during initialization, the AppDriver will be stored in rlang: : last_error () $app.
This allows for the "failure to initialize" to be signaled while also allowing for the app to be retrieved
after any initialization error has been thrown.

Exporting reactive values

Reactive values from within your Shiny application can be exported using the method: shiny: :exportTestValues().
This underutilized method exposes internal values of your app without needing to create a corre-
sponding input value or output value.

For example:

library(shiny)
shiny_app <- shinyApp(
fluidPage(
h1("Pythagorean theorem"),
numericInput(”A", "A", 3),
numericInput(”"B", "B", 4),
verbatimTextOutput ("C"),
),
function(input, output) {
a_squared <- reactive({ req(input$A); input$A * input$A })
b_squared <- reactive({ req(input$B); input$B * input$B })
c_squared <- reactive({ a_squared() + b_squared() })
c_value <- reactive({ sqrt(c_squared()) })
output$C <- renderText({ c_value() })

https://rstudio.github.io/shinytest2/articles/in-depth.html
https://rstudio.github.io/shinytest2/articles/robust.html
https://shiny.posit.co/r/reference/shiny/latest/exporttestvalues.html

4 AppDriver

exportTestValues(
a_squared = { a_squared() 3},
b_squared = { b_squared() 3},
c_squared = { c_squared() }
)
3
)

app <- AppDriver$new(shiny_app)

init_vals <- app$get_values()
str(init_vals)

#> List of 3

#> $ input :List of 2

#> ..$ A: int 3

#> ..$ B: int 4

#> $ output:List of 1

#> ..$ C: chr "5"

#> $ export:List of 3

#> ..$ a_squared: int 9
#> ..$ b_squared: int 16
#> ..$ c_squared: int 25

These exported test values are only exposed when shiny::runApp(test.mode = TRUE) is set.
shinytest2 sets this variable when running Shiny based app or document.

testthat wrappers

The two main expectation methods: $expect_values() and $expect_screenshot() eventually
wrap testthat: :expect_snapshot_file().

Their underlying logic is similar to:

skip_on_cran() # AppDriver

Expect values
tmpfile <- tempfile(fileext = ".json")
jsonlite::write_json(app$get_values(), tmpfile)
expect_snapshot_file(

tmpfile,

variant = app$get_variant(),

compare = testthat::compare_file_text

)

Expect screenshot
tmpfile <- tempfile(fileext = ".png")
app$get_screenshot(tmpfile)

AppDiriver 5

expect_snapshot_file(
tmpfile,
variant = app$get_variant(),
compare = testthat::compare_file_binary

)

To update the snapshot values, you will need to run a variation of testthat: : snapshot_review().

Methods

Public methods:

e AppDriver$new()

e AppDriver$view()

* AppDriver$click()

e AppDriver$set_inputs()

* AppDriver$upload_file()

e AppDriver$expect_values()

* AppDriver$get_value()

* AppDrivers$get_values()

e AppDriver$expect_download()
* AppDriver$get_download()

e AppDriver$expect_text()

* AppDrivers$get_text()

* AppDriver$expect_html()

* AppDriver$get_html()

* AppDriver$expect_js()

* AppDriver$get_js()

* AppDriver$run_js()

* AppDriver$expect_screenshot ()
* AppDriver$get_screenshot()
e AppDriver$wait_for_idle()

* AppDriver$wait_for_value()
e AppDriver$wait_for_js()

* AppDriver$expect_unique_names()
e AppDriver$get_dir()

* AppDriver$get_url()

* AppDriver$get_window_size()
e AppDriver$set_window_size()
* AppDrivers$get_chromote_session()
* AppDrivers$get_variant()

* AppDriver$get_logs()

e AppDriver$log_message()

* AppDriver$stop()

AppDriver

Method new(): Initialize an AppDriver object
Usage:
AppDriver$new(
app_dir = testthat::test_path("../../"),

L

name = NULL,

variant = missing_arg(),
seed = NULL,

load_timeout = missing_arg(),
timeout = missing_arg(),
wait = TRUE,
screenshot_args = missing_arg(),
expect_values_screenshot_args = TRUE,
check_names = TRUE,
view = missing_arg(),
height = NULL,
width = NULL,
clean_logs = TRUE,
shiny_args = list(),
render_args = NULL,
options = list()
)

Arguments:
app_dir This value can be many different things:

* A directory containing your Shiny application or a run-time Shiny R Markdown docu-
ment.

* A URL pointing to your shiny application. (Don’t forget to set testmode = TRUE when
running your application!)

* A Shiny application object which inherits from "shiny.appobj".

* A function that runs your Shiny application or Shiny R Markdown or returns a Shiny
app object. If being used within a package, be sure to call library(<pkg>) first within
the provided function as the function will be executed within the background R process.
When library=*() is called, pkgload: :1load_all() will be automatically executed to
load the package’s source code.

By default, app_diris setto test_path(”../../") to work in both interactive and testing

usage.

If a file path is not provided to app_dir, snapshots will be saved as if the root of the Shiny

application was the current directory.

. Must be empty. Allows for parameter expansion.
name Prefix value to use when saving testthat snapshot files. Ex: NAME-001 . json. Name must
be unique when saving multiple snapshots from within the same testing file. Otherwise, two
different AppDriver objects will be referencing the same files.
variant If not-NULL, results will be saved in _snaps/{variant}/{test.md}, so variant
must be a single string of alphanumeric characters suitable for use as a directory name.

You can variants to deal with cases where the snapshot output varies and you want to cap-

ture and test the variations. Common use cases include variations for operating system, R

version, or version of key dependency. For example usage, see platform_variant().

AppDiriver 7

seed An optional random seed to use before starting the application. For apps that use R’s
random number generator, this can make their behavior repeatable.

load_timeout How long to wait for the app to load, in ms. This includes the time to start R.
Defaults to 15s.
If load_timeout is missing, the first numeric value found will be used:
* R option options(shinytest2.load_timeout=)
» System environment variable SHINYTEST2_LOAD_TIMEOUT
* 15 % 1000 (15 seconds)

timeout Default number of milliseconds for any timeout or timeout_ parameter in the AppDriver
class. Defaults to 4s.
If timeout is missing, the first numeric value found will be used:
* R option options(shinytest2.timeout=)
* System environment variable SHINYTEST2_TIMEOUT
e 4 %1000 (4 seconds)

wait If TRUE, $wait_for_idle(duration = 200, timeout = load_timeout) will be called
once the app has connected a new session, blocking until the Shiny app is idle for 200ms.

screenshot_args Default set of arguments to pass in to chromote: : ChromoteSession’s $get_screenshot()
method when taking screenshots within $expect_screenshot(). To disable screenshots
by default, set to FALSE.

expect_values_screenshot_args The value for screenshot_args when producing a debug
screenshot for $expect_values(). To disable debug screenshots by default, set to FALSE.

check_names Check if widget names are unique once the application initially loads? If dupli-
cate names are found on initialization, a warning will be displayed.

view Opens the chromote: :ChromoteSession in an interactive browser tab before attempting
to navigate to the Shiny app.

height, width Window size to use when opening the chromote: :ChromoteSession. Both
height and width values must be non-null values to be used.

clean_logs Whether to remove the stdout and stderr Shiny app logs when the AppDriver
object is garbage collected.

shiny_args A list of options to pass to shiny: :runApp(). Ex: list(port = 8080).

render_args Passed to rmarkdown: : run(render_args=) forinteractive .Rmds. Ex: list(quiet
= TRUE)

options A list of base::options() to set in the Shiny application’s child R process. See
shiny: :shinyOptions() for inspiration. If shiny. trace = TRUE, then all WebSocket traf-
fic will be captured by chromote and time-stamped for logging purposes.

Returns: An object with class AppDriver and the many methods described in this documenta-
tion.

Examples:
\dontrun{

Create an AppDriver from the Shiny app in the current directory
app <- AppDriver()

Create an AppDriver object from a different Shiny app directory
example_app <- system.file("examples/@1_hello"”, package = "shiny")
app <- AppDriver(example_app)

AppDriver

Expect consistent inital values
app$expect_values()
}

Method view(): View the Shiny application
Calls $view() on the chromote: :ChromoteSession object to view your Shiny application in a
Chrome browser.
This method is very helpful for debugging while writing your tests.
Usage:
AppDriver$view()
Examples:
\dontrun{
Open app in Chrome
app$view()
}

Method click(): Click an element
Find a Shiny input/output value or DOM CSS selector and click it using the DOM method
TAG.click().
This method can be used to click input buttons and other elements that need to simulate a click
action.
Usage:
AppDriver$click(
input = missing_arg(),
output = missing_arg(),
selector = missing_arg(),

)

Arguments:

input, output, selector A name of an Shiny input/output value or a DOM CSS selector.
Only one of these may be used.

. If input is used, all extra arguments are passed to $set_inputs(!!input := "click”, ...).
This means that the AppDriver will wait until an output has been updated within the speci-
fied timeout_. When clicking any other content, . . . must be empty.

Examples:
\dontrun{

app_path <- system.file("examples/@7_widgets"”, package = "shiny")
app <- AppDriver$new(app_path)

tmpfile <- write.csv(cars, "cars.csv")
app$upload_file(filel = tmpfile)
cat(app$get_text("#view"))
app$set_inputs(dataset = "cars"”, obs = 6)
app$click("update™)
cat(app$get_text("#view"))

}

https://www.w3schools.com/jsref/met_html_click.asp
https://www.w3schools.com/jsref/met_html_click.asp

AppDiriver 9

Method set_inputs(): Setinput values
Set Shiny inputs by sending the value to the Chrome browser and programmatically updating the
values. Given wait_ = TRUE, the method will not return until an output value has been updated.
Usage:
AppDriver$set_inputs(

L

wait_ = TRUE,

timeout_ = missing_arg(),
allow_no_input_binding_ = FALSE,
priority_ = c("input”, "event")
)
Arguments:

. Name-value pairs, component_name_1 = value_1, component_name_2 = value_2 etc.
Input with name component_name_1 will be assigned value value_1.

wait_ Wait until all reactive updates have completed?

timeout_ Amount of time to wait before giving up (milliseconds). Defaults to the resolved
timeout value during the AppDriver initialization.

allow_no_input_binding_ When setting the value of an input, allow it to set the value of an
input even if that input does not have an input binding. This is useful to replicate behavior
like hovering over a plotly plot.

priority_ Sets the event priority. For expert use only: see https://shiny.rstudio.com/
articles/communicating-with-js.html#values-vs-events for details.
Examples:

\dontrun{
app_path <- system.file("examples/@7_widgets"”, package = "shiny")
app <- AppDriver$new(app_path)

cat(app$get_text("#view"))
app$set_inputs(dataset = "cars”, obs = 6)
app$click("update”)
cat(app$get_text("#view"))

3

Method upload_file(): Upload a file

Uploads a file to the specified file input.
Usage:
AppDriver$upload_file(..., wait_ = TRUE, timeout_ = missing_arg())
Arguments:

. Name-path pair, e.g. component_name = file_path. The file located at file_path will
be uploaded to file input with name component_name.

wait_ Wait until all reactive updates have completed?
timeout_ Amount of time to wait before giving up (milliseconds). Defaults to the resolved
timeout value during the AppDriver initialization.

Examples:

https://shiny.rstudio.com/articles/communicating-with-js.html#values-vs-events
https://shiny.rstudio.com/articles/communicating-with-js.html#values-vs-events

AppDriver

\dontrun{

app_path <- system.file("examples/@9_upload”, package = "shiny")
app <- AppDriver$new(app_path)

Save example file
tmpfile <- tempfile(fileext = ".csv")
write.csv(cars, tmpfile, row.names = FALSE)

Upload file to input named: filel
app$upload_file(filel = tmpfile)
3

Method expect_values(): Expect input, output, and export values
A JSON snapshot is saved of given the results from the underlying call to $get_values().

Note, values that contain environments or other values that will have trouble serializing may not
work well. Instead, these objects should be manually inspected and have their components tested
individually.
Please see Robust testing for more details.
Usage:
AppDrivers$expect_values(
input = missing_arg(),
output = missing_arg(),
export = missing_arg(),
screenshot_args = missing_arg(),
name = NULL,
transform = NULL,
cran = deprecated()

)

Arguments:
. Must be empty. Allows for parameter expansion.

input, output, export Depending on which parameters are supplied, different return values
can occur: * If input, output, and export are all missing, then all values are included in
the snapshot. * If at least one input, output, or export is specified, then only the requested
values are included in the snapshot.
The values supplied to each variable can be: * A character vector of specific names to only
include in the snapshot. * TRUE to request that all values of that type are included in the
snapshot. * Anything else (e.g. NULL or FALSE) will result in the parameter being ignored.

screenshot_args This value is passed along to $expect_screenshot() where the resulting
snapshot expectation is ignored. If missing, the default value will be $new(expect_values_screenshot_args=).
The final value can either be:
* TRUE: A screenshot of the browser’s scrollable area will be taken with no delay
* FALSE: No screenshot will be taken
* A named list of arguments. These arguments are passed directly to chromote: : ChromoteSession’s

$get_screenshot () method. The selector and delay will default to "html" and @ re-
spectively.

https://rstudio.github.io/shinytest2/articles/robust.html

AppDiriver 11

name The file name to be used for the snapshot. The file extension will be overwritten to . json.
By default, the name supplied to app on initialization with a counter will be used (e.g.
"NAME-001. json").

transform Optionally, a function to scrub sensitive or stochastic text from the output. Should
take a character vector of lines as input and return a modified character vector as output.

cran Deprecated. With AppDriver never testing on CRAN, this parameter no longer has any
effect.

Returns: The result of the snapshot expectation

Examples:

\dontrun{
library(shiny)
shiny_app <- shinyApp(
fluidPage(
h1("Pythagorean theorem”),
numericInput("A", "A", 3),
numericInput("B", "B", 4),
verbatimTextOutput ("C"),
),
function(input, output) {
a_squared <- reactive({ req(input$A); input$A * input$A })
b_squared <- reactive({ req(input$B); input$B * input$B })
c_squared <- reactive({ a_squared() + b_squared() })
c_value <- reactive({ sqgrt(c_squared()) })
output$C <- renderText({ c_value() 1})

exportTestValues(
a_squared = { a_squared() 3},
b_squared = { b_squared() 3},
c_squared = { c_squared() }
)
}

)
app <- AppDriver$new(shiny_app)

Snapshot all known values
app$expect_values()

Snapshot only “export™ values
app$expect_values(export = TRUE)

Snapshot values “"A"™ from “input™ and ~"C"" from ~output”
app$expect_values(input = "A", output = "C")
}

Method get_value(): Get a single input, output, or export value

This is a helper function around $get_values() to retrieve a single input, output, or export
value. Only a single input, output, or export value can be used.

AppDriver

Note, values that contain environments or other values that will have trouble serializing to RDS
may not work well.

Usage:

AppDriver$get_value(
input = missing_arg(),
output = missing_arg(),
export = missing_arg(),
hash_images = FALSE

)

Arguments:

. Must be empty. Allows for parameter expansion.
input, output, export One of these variable should contain a single string value. If more
than one value is specified or no values are specified, an error will be thrown.
hash_images If TRUE, images will be hashed before being returned. Otherwise, all images will
return their full data64 encoded value.

Returns: The requested input, output, or export value.

Examples:

\dontrun{
app_path <- system.file("examples/@4_mpg", package = "shiny")
app <- AppDriver$new(app_path)

Retrieve a single value

app$get_value(output = "caption”)

#> [1] "mpg ~ cyl”

Equivalent code using ~$get_values()"
app$get_values(output = "caption”")$output$caption
#> [1] "mpg ~ cyl”

3

Method get_values(): Get input, output, and export values
Retrieves a list of all known input, output, or export values. This method is a core method
when inspecting your Shiny app.
Note, values that contain environments or other values that will have trouble serializing may not
work well.
Usage:
AppDrivers$get_values(
input = missing_arg(),
output = missing_arg(),
export = missing_arg(),
hash_images = FALSE
)

Arguments:

. Must be empty. Allows for parameter expansion.

AppDiriver 13

input, output, export Depending on which parameters are supplied, different return values
can occur: * If input, output, and export are all missing, then all values are included in
the snapshot. * If at least one input, output, or export is specified, then only the requested
values are included in the snapshot.
The values supplied to each variable can be: * A character vector of specific names to only
include in the snapshot. * TRUE to request that all values of that type are included in the
snapshot. * Anything else (e.g. NULL or FALSE) will result in the parameter being ignored.

hash_images If TRUE, images will be hashed before being returned. Otherwise, all images will
return their full data64 encoded value.

Returns: A named list of all inputs, outputs, and export values.

Examples:
\dontrun{
library(shiny)
shiny_app <- shinyApp(
fluidPage(
h1("Pythagorean theorem”),
numericInput(”A", "A", 3),
numericInput("B"”, "B", 4),
verbatimTextOutput ("C"),
),
function(input, output) {
a_squared <- reactive({ req(input$A); input$A * input$A })
b_squared <- reactive({ req(input$B); input$B * input$B })
c_squared <- reactive({ a_squared() + b_squared() })
c_value <- reactive({ sqrt(c_squared()) })
output$C <- renderText({ c_value() })

exportTestValues(
a_squared = { a_squared() 3},
b_squared = { b_squared() 3},
c_squared = { c_squared() }
)
3
)

app <- AppDriver$new(shiny_app)

Show all known values
str(app$get_values())
#> List of 3

#> $ input :List of 2
#> ..%$ A: int 3

#> ..$ B: int 4

#> $ output:List of 1
..$ C: chr "5"

#> $ export:List of 3
#> ..$ a_squared: int 9
#> ..$ b_squared: int 16

14

AppDriver

#> ..$ c_squared: int 25

Get only “export™ values
str(app$get_values(export = TRUE))
#> List of 1

#> $ export:List of 3

#> ..$ a_squared: int 9

#> ..$ b_squared: int 16

#> ..$ c_squared: int 25

Get values “"A"" from “input™ and ~"C"~ from ~output”
str(app$get_values(input = "A", output = "C"))

#> List of 2

#> $ input :List of 1

#> ..% A: int 3

#> $ output:List of 1

#> ..$ C: chr "5"

b

Method expect_download(): Expect a downloadable file
Given a shiny::downloadButton()/shiny: :downloadLink() output ID, the corresponding
file will be downloaded and saved as a snapshot file.
Usage:
AppDrivers$expect_download(
output,
compare = NULL,
name = NULL,
transform = NULL,
cran = deprecated()

)

Arguments:

output output ID of shiny: :downloadButton()/shiny: :downloadLink()
. Must be empty. Allows for parameter expansion.

compare This value is passed through to testthat: :expect_snapshot_file(). By default it
is set to NULL which will default to testthat: :compare_file_text if name has extension
.r, .R, .Rmd, .md, or . txt, and otherwise uses testthat: :compare_file_binary.

name File name to save file to (including file name extension). The default, NULL, generates an
ascending sequence of names: 001.download, 002.download, etc.

transform Optionally, a function to scrub sensitive or stochastic text from the output. Should
take a character vector of lines as input and return a modified character vector as output.

cran Deprecated. With AppDriver never testing on CRAN, this parameter no longer has any
effect.
Examples:

\dontrun{
app_path <- system.file("examples/1@0_download”, package = "shiny")

AppDiriver 15

app <- AppDriver$new(app_path)

Save snapshot of rock.csv as 001.download
Save snapshot value of “rock.csv™ to capture default file name
app$expect_download("downloadData”, compare = testthat::compare_file_text)

3

Method get_download(): Get downloadable file
Given a shiny::downloadButton()/shiny: :downloadLink() output ID, the corresponding
file will be downloaded and saved as a file.

Usage:

AppDrivers$get_download(output, filename = NULL)

Arguments:

output output ID of shiny: :downloadButton()/shiny: :downloadLink()

filename File path to save the downloaded file to.

Returns: $get_download() will return the final save location of the file. This location can

change depending on the value of filename and response headers.
Location logic:

e If filename is not NULL, filename will be returned.

» Ifacontent-disposition filename is provided, then a temp file containing this filename
will be returned.

* Otherwise, a temp file ending in .download will be returned.

Examples:

\dontrun{
app_path <- system.file("examples/10_download”, package = "shiny")
app <- AppDriver$new(app_path)

Get rock.csv as a tempfile
app$get_download(”"downloadData")
#> [1]1 "/TEMP/PATH/rock.csv"

Get rock.csv as a "./myfile.csv”

app$get_download("downloadData”, filename = "./myfile.csv")
#> [1] "./myfile.csv"
3

Method expect_text(): Expect snapshot of UI text

$expect_text() will extract the text value of all matching elements via TAG. textContent and
store them in a snapshot file. This method is more robust to internal package change as only the
text values will be maintained. Note, this method will not retrieve any <input /> value’s text
content, e.g. text inputs or text areas, as the input values are not stored in the live HTML.

When possible, use $expect_text() over $expect_html() to allow package authors room to
alter their HTML structures. The resulting array of TAG. textContent values found will be stored
in a snapshot file.

Please see Robust testing for more details.

Usage:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Disposition
https://rstudio.github.io/shinytest2/articles/robust.html

16

AppDriver

AppDriver$expect_text(selector, ..., cran = deprecated())

Arguments:
selector A DOM CSS selector to be passed into document. querySelectorAll()
. Must be empty. Allows for parameter expansion.
cran Deprecated. With AppDriver never testing on CRAN, this parameter no longer has any
effect.
Examples:

\dontrun{
hello_app <- system.file("examples/@1_hello"”, package = "shiny")
app <- AppDriver$new(hello_app)

Make a snapshot of ~"Hello Shiny!""
app$expect_text("h2")
}

Method get_text(): Get Ul text
$get_text() will extract the text value of all matching elements via TAG. textContent. Note,
this method will not retrieve any <input /> value’s text content, e.g. text inputs or text areas, as
the input values are not stored in the live HTML.

Usage:

AppDriver$get_text(selector)

Arguments:

selector A DOM CSS selector to be passed into document. querySelectorAll()
Returns: A vector of character values

Examples:

\dontrun{
hello_app <- system.file("examples/@1_hello"”, package = "shiny")
app <- AppDriver$new(hello_app)

app$get_text("h2")
#> [1] "Hello Shiny!"
3

Method expect_html(): Expect snapshot of UL HTML

$expect_html() will extract the full DOM structures of each matching element and store them
in a snapshot file. This method captures internal DOM structure which may be brittle to changes
by external authors or dependencies.

Note, this method will not retrieve any <input /> value’s text content, e.g. text inputs or text
areas, as the input values are not stored in the live HTML.

When possible, use $expect_text() over $expect_html() to allow package authors room to
alter their HTML structures. The resulting array of TAG. textContent values found will be stored
in a snapshot file.

Please see Robust testing for more details.

Usage:

https://rstudio.github.io/shinytest2/articles/robust.html

AppDiriver 17

AppDriver$expect_html(selector, ..., outer_html = TRUE, cran = deprecated())

Arguments:
selector A DOM selector to be passed into document. querySelectorAll()
. Must be empty. Allows for parameter expansion.
outer_html If TRUE (default), the full DOM structure will be returned (TAG.outerHTML). If
FALSE, the full DOM structure of the child elements will be returned (TAG. innerHTML).

cran Deprecated. With AppDriver never testing on CRAN, this parameter no longer has any
effect.

Examples:

\dontrun{

app_path <- system.file("examples/@4_mpg", package = "shiny")
app <- AppDriver$new(app_path)

Save a snapshot of the ~caption™ output
app$expect_html ("#caption”)
3

Method get_html(): Get Ul HTML

$get () will extract the full DOM structures of each matching element. This method captures
internal DOM structure which may be brittle to changes by external authors or dependencies.
Note, this method will not retrieve any <input /> value’s text content, e.g. text inputs or text
areas, as the input values are not stored in the live HTML.

Please see Robust testing for more details.

Usage:
AppDriver$get_html(selector, ..., outer_html = TRUE)

Arguments:
selector A DOM selector to be passed into document.querySelectorAll()
. Must be empty. Allows for parameter expansion.

outer_html If TRUE, the full DOM structure will be returned (TAG.outerHTML). If FALSE, the
full DOM structure of the child elements will be returned (TAG. innerHTML).

Examples:

\dontrun{
app_path <- system.file("examples/@3_reactivity"”, package = "shiny")
app <- AppDriver$new(app_path, check_names = FALSE)

app$set_inputs(caption = "Custom value!")

cat(app$get_html(".shiny-input-container”)[1])

#> <div class="form-group shiny-input-container">

#> <label class="control-label” id="caption-label” for="caption”>Caption:</label>

#> <input id="caption” type="text" class="form-control shiny-bound-input” value="Data Summary">
#> </div>

~* No update to the DOM of ~caption”

}

https://rstudio.github.io/shinytest2/articles/robust.html

18

AppDriver

Method expect_js(): Expect snapshot of JavaScript script output

This is a building block function that may be called by other functions. For example, $expect_text ()

and $expect_html() are thin wrappers around this function.
Once the script has executed, the JSON result will be saved to a snapshot file.

Usage:
AppDriver$expect_js(
script = missing_arg(),

file = missing_arg(),
timeout = missing_arg(),
pre_snapshot = NULL,
cran = deprecated()

)

Arguments:
script A string containing the JavaScript script to be executed.
. Must be empty. Allows for parameter expansion.

file A file containing JavaScript code to be read and used as the script. Only one of script
or file can be specified.

timeout Amount of time to wait before giving up (milliseconds). Defaults to the resolved
timeout value during the AppDriver initialization.

pre_snapshot A function to be called on the result of the script before taking the snapshot.
$expect_html() and $expect_text () both use unlist().

cran Deprecated. With AppDriver never testing on CRAN, this parameter no longer has any
effect.

Examples:

\dontrun{
app_path <- system.file("examples/@7_widgets"”, package = "shiny")
app <- AppDriver$new(app_path)

Track how many clicks are given to “#update™ button
app$run_js(”

window.test_counter = 0;

$('#update').click(() => window.test_counter++);
)
app$set_inputs(obs = 20)
Click the update button, incrementing the counter
app$click("update)
Save a snapshot of number of clicks (1)
app$expect_js("window. test_counter;")

b

Method get_js(): Execute JavaScript code in the browser and return the result

This function will block the local R session until the code has finished executing its tick in the
browser. If a Promise is returned from the script, $get_js() will wait for the promise to resolve.
To have JavaScript code execute asynchronously, wrap the code in a Promise object and have the
script return an atomic value.

AppDiriver 19

Arguments will have to be inserted into the script as there is not access to arguments. This can
be done with commands like paste(). If using glue: :glue(), be sure to use uncommon .open
and . close values to avoid having to double all { and }.

Usage:
AppDrivers$get_js(
script = missing_arg(),

file = missing_arg(),
timeout = missing_arg()

)

Arguments:

script JavaScript to execute. If a JavaScript Promise is returned, the R session will block until
the promise has been resolved and return the value.

. Must be empty. Allows for parameter expansion.
file A (local) file containing JavaScript code to be read and used as the script. Only one of
script or file can be specified.
timeout Amount of time to wait before giving up (milliseconds). Defaults to the resolved
timeout value during the AppDriver initialization.

Returns: Result of the script (or file contents)

Examples:

\dontrun{

library(shiny)

shiny_app <- shinyApp(h1("Empty App"”), function(input, output) { })
app <- AppDriver$new(shiny_app)

Execute JavaScript code in the app's browser
app$get_js("1 + 1;"
#> [1] 2

Execute a JavaScript Promise. Return the resolved value.
apps$get_js(”

new Promise((resolve) => {

setTimeout(() => resolve(1 + 1), 1000)

.

then((value) => value + 1);
”)
#> [1] 3

With escaped arguments

loc_field <- "hostname”

js_txt <- paste@("window.location["”, jsonlite::toJSON(loc_field, auto_unbox = TRUE), "1")
app$get_js(js_txt)

#> [1]1 "127.0.0.1"

With “glue::glue()"
js_txt <- glue::glue_data(

20

AppDriver

lapply(
list(x = 40, y = 2),
jsonlite::toJSON,
auto_unbox = TRUE
),
.open = "<" .close = ">",
"let answer = function(a, b) {\n",
" return a + b;\n",
"}\n",
"answer (<x>, <y>);\n”

)
app$get_js(js_txt)
#> [1] 42

3

Method run_js(): Execute JavaScript code in the browser

This function will block the local R session until the code has finished executing its fick in the
browser.

The final result of the code will be ignored and not returned to the R session.

Usage:
AppDriver$run_js(
script = missing_arg(),

file = missing_arg(),
timeout = missing_arg()

)

Arguments:

script JavaScript to execute.
. Must be empty. Allows for parameter expansion.
file A (local) file containing JavaScript code to be read and used as the script. Only one of
script or file can be specified
timeout Amount of time to wait before giving up (milliseconds). Defaults to the resolved
timeout value during the AppDriver initialization.

Examples:

\dontrun{

library(shiny)

shiny_app <- shinyApp(h1("Empty App"”), function(input, output) { })
app <- AppDriver$new(shiny_app)

Get JavaScript answer from the app's browser
app$get_js("1 + 1")

#> [1] 2

Execute JavaScript code in the app's browser
app$run_js("1 + 1)

(Returns “app” invisibly)

AppDiriver 21

With escaped arguments

loc_field <- "hostname”

js_txt <- paste@("window.location[", jsonlite::toJSON(loc_field, auto_unbox = TRUE), "1")
app$run_js(js_txt)

app$get_js(js_txt)

#> [1] "127.0.0.1"

}

Method expect_screenshot(): Expect a screenshot of the Shiny application

This method takes a screenshot of the application (of only the selector area) and compares the
image to the expected image.

Please be aware that this method is very brittle to changes outside of your Shiny application.
These changes can include:

* running on a different R version
* running on a different in operating system
* using a different default system font

* using different package versions These differences are explicitly clear when working with
plots.

Unless absolutely necessary for application consistency, it is strongly recommended to use other
expectation methods.

Usage:
AppDriver$expect_screenshot(

threshold = getOption("shinytest2.compare_screenshot.threshold”, NULL),
kernel_size = getOption("shinytest2.compare_screenshot.kernel_size"”, 5),
screenshot_args = missing_arg(),

delay = missing_arg(),

selector = missing_arg(),

compare = missing_arg(),

quiet = FALSE,

name = NULL,

cran = deprecated()

)

Arguments:

. Must be empty. Allows for parameter expansion.

threshold Parameter supplied to compare_screenshot_threshold() when using the default
compare method. The default value can be set globally with the shinytest2.compare_screenshot. threshold
option.
If the value of thresholdis NULL, compare_screenshot_threshold() will actlike testthat: :compare_file_bir
However, if threshold is a positive number, it will be compared against the largest convo-
lution value found if the two images fail a testthat: : compare_file_binary comparison.
Which value should I use? Threshold values values below 5 help deter false-positive screen-
shot comparisons (such as inconsistent rounded corners). Larger values in the 10s and 100s
will help find real changes. However, not all values are one size fits all and you will need to
play with a threshold that fits your needs.

22 AppDriver

kernel_size Parameter supplied to compare_screenshot_threshold() when using the de-
fault compare method. The kernel_size represents the height and width of the convolution
kernel applied to the pixel differences. This integer-like value should be relatively small.

The default value can be set globally with the shinytest2.compare_screenshot.kernel_size

option.

screenshot_args This named list of arguments is passed along to chromote: : ChromoteSession’s
$get_screenshot () method. If missing, the value will default to $new(screenshot_args=).

If screenshot_args is:

* TRUE: A screenshot of the browser’s scrollable area will be taken with no delay

* A named list of arguments: Arguments passed directly to chromote: :ChromoteSession’s
$get_screenshot() method. The delay argument will default to @ seconds. The
selector argument can take two special values in addition to being a CSS DOM se-
lector.

— "scrollable_area” (default): The entire scrollable area will be captured. Typically
this is your browser’s viewport size, but it can be larger if the page is scrollable. This
value works well with Apps that contain elements whose calculated dimensions may
be different than their presented size.

— "viewport"”: This value will capture the browser’s viewport in its current viewing
location, height, and width. It will only capture what is currently being seen with
$view().

In v0.3.0, the default selector value was changed from the HTML DOM selector

("html") to entire scrollable area ("scrollable_area”).

delay The number of seconds to wait before taking the screenshot. This value can be supplied
as delay or screenshot_args$delay, with the delay parameter having preference.

selector The selector is a CSS selector that will be used to select a portion of the page to be
captured. This value can be supplied as selector or screenshot_args$selector, with
the selector parameter having preference.

In v@.3.0, two special selector values were added:

* "scrollable_area” (default): The entire scrollable area will be captured. Typically
this is your browser’s viewport size, but it can be larger if the page is scrollable. This
value works well with Apps that contain elements whose calculated dimensions may be
different than their presented size.

» "viewport”: This value will capture the browser’s viewport in its current viewing loca-
tion, height, and width. It will only capture what is currently being seen with $view().

Inv@. 3.0, the default selector value was changed from the HTML DOM selector ("htm1")

to entire scrollable area ("scrollable_area").

compare A function used to compare the screenshot snapshot files. The function should take
two inputs, the paths to the old and new snapshot, and return either TRUE or FALSE.

compare defaults to a function that wraps around compare_screenshot_threshold(old,

new, threshold = threshold, kernel_size = kernel_size, quiet = quiet). Note: if

thresholdis NULL (default), compare will behave as if testthat: :compare_file_binary()
was provided, comparing the two images byte-by-byte.

quiet Parameter supplied to compare_screenshot_threshold() when using the default compare
method. If FALSE, diagnostic information will be presented when the computed value is
larger than a non-NULL threshold value.

name The file name to be used for the snapshot. The file extension will overwritten to .png.
By default, the name supplied to app on initialization with a counter will be used (e.g.

AppDiriver 23

"NAME-001.png").
cran Deprecated. With AppDriver never testing on CRAN, this parameter no longer has any
effect.

Examples:

\dontrun{
These example lines should be performed in a ~./tests/testthat”
test file so that snapshot files can be properly saved

app_path <- system.file("examples/@1_hello"”, package = "shiny")
app <- AppDriver$new(app_path, variant = platform_variant())

Expect a full size screenshot to be pixel perfect
app$expect_screenshot ()

Images are brittle when containing plots
app$expect_screenshot(selector = "#distPlot")

Test with more threshold in pixel value differences
Helps with rounded corners
app$expect_screenshot(threshold = 10)

Equivalent expectations
app$expect_screenshot() # default
app$expect_screenshot(threshold = NULL)
app$expect_screenshot(compare = testthat::compare_file_binary)
expect_snapshot_file(

app$get_screenshot(),

variant = app$get_variant(),

compare = testthat::compare_file_binary

)

Equivalent expectations
app$expect_screenshot(threshold = 3, kernel_size = 5)
app$expect_screenshot(compare = function(old, new) {
compare_screenshot_threshold(
old, new,
threshold = 3,
kernel_size =

)

5

b))
expect_screenshot_file(
app$get_screenshot(),
variant = app$get_variant(),
compare = function(old, new) {
compare_screenshot_threshold(
old, new,
threshold = 3,

kernel_size 5

AppDriver

)
b
)

Take a screenshot of the entire scrollable area
app$expect_screenshot ()
app$expect_screenshot(selector = "scrollable_area”)

Take a screenshot of the current viewport

Shrink the window to be smaller than the app
app$set_window_size (400, 500)

Scroll the viewport just a bit
app$run_js("window.scroll(30, 70)")

Take screenshot of browser viewport
app$expect_screenshot(selector = "viewport")

}

Method get_screenshot(): Take a screenshot
Take a screenshot of the Shiny application.

Usage:

AppDriver$get_screenshot(
file = NULL,
screenshot_args = missing_arg(),
delay = missing_arg(),
selector = missing_arg()

)

Arguments:

file If NULL, then the image will be displayed to the current Graphics Device. If a file path,
then the screenshot will be saved to that file.

. Must be empty. Allows for parameter expansion.

screenshot_args This named list of arguments is passed along to chromote: : ChromoteSession’s
$get_screenshot () method. If missing, the value will default to $new(screenshot_args=).
If screenshot_args is:

* TRUE: A screenshot of the browser’s scrollable area will be taken with no delay

* A named list of arguments: Arguments passed directly to chromote: :ChromoteSession’s
$get_screenshot() method. The delay argument will default to @ seconds. The
selector argument can take two special values in addition to being a CSS DOM se-
lector.

— "scrollable_area” (default): The entire scrollable area will be captured. Typically
this is your browser’s viewport size, but it can be larger if the page is scrollable. This
value works well with Apps that contain elements whose calculated dimensions may
be different than their presented size.

— "viewport"”: This value will capture the browser’s viewport in its current viewing

location, height, and width. It will only capture what is currently being seen with
$view().

AppDiriver 25

In v@.3.0, the default selector value was changed from the HTML DOM selector
("html") to entire scrollable area ("scrollable_area").
If screenshot_args=FALSE is provided, the parameter will be ignored and a screenshot
will be taken with default behavior.
delay The number of seconds to wait before taking the screenshot. This value can be supplied
as delay or screenshot_args$delay, with the delay parameter having preference.
selector The selector is a CSS selector that will be used to select a portion of the page to be
captured. This value can be supplied as selector or screenshot_args$selector, with
the selector parameter having preference.

In v@.3.0, two special selector values were added:

* "scrollable_area” (default): The entire scrollable area will be captured. Typically
this is your browser’s viewport size, but it can be larger if the page is scrollable. This
value works well with Apps that contain elements whose calculated dimensions may be
different than their presented size.

» "viewport”: This value will capture the browser’s viewport in its current viewing loca-
tion, height, and width. It will only capture what is currently being seen with $view().

Inv@. 3.0, the default selector value was changed from the HTML DOM selector ("html1")

to entire scrollable area ("scrollable_area").

Examples:

\dontrun{

app_path <- system.file("examples/@1_hello"”, package = "shiny")
app <- AppDriver$new(app_path)

Display in graphics device
app$get_screenshot()

Update bins then display "~"disPlot”™ in graphics device
app$set_inputs(bins = 10)
app$get_screenshot(selector = "#distPlot")

Save screenshot to file and view it
tmpfile <- tempfile(fileext = ".png")
app$get_screenshot(tmpfile)
showimage: : show_image(tmpfile)

b

Method wait_for_idle(): Wait for Shiny to not be busy (idle) for a set amount of time

Waits until Shiny has not been busy for a set duration of time, e.g. no reactivity is updating or has
occurred.

This is useful, for example, when waiting for your application to initialize or if you’ve resized the
window with $set_window_size() and want to make sure all plot redrawing is complete before
take a screenshot.

By default,

* $new(wait = TRUE) waits for Shiny to not be busy after initializing the application
* $set_window_size(wait = TRUE) waits for Shiny to not be busy after resizing the window.)

Usage:

26

AppDriver

AppDriver$wait_for_idle(duration = 500, timeout = missing_arg())

Arguments:
duration How long Shiny must be idle (in ms) before unblocking the R session.

timeout Amount of time to wait before giving up (milliseconds). Defaults to the resolved
timeout value during the AppDriver initialization.

Returns: invisible(self) if Shiny stabilizes within the timeout. Otherwise an error will be
thrown

Examples:

\dontrun{
app_path <- system.file("examples/@1_hello"”, package = "shiny")
app <- AppDriver$new(app_path)

pre_value <- app$get_value(output = "distPlot")

Update bins value

app$set_inputs(bins = 10, wait_ = FALSE)
middle_value <- app$get_value(output = "distPlot")
app$wait_for_idle()

post_value <- app$get_value(output = "distPlot"”)

No guarantee that these values are different
identical (pre_value, middle_value)

Will not be equal

identical(pre_value, post_value)

Change the screen size to trigger a plot update

pre_value <- app$get_value(output = "distPlot")
app$set_window_size(height = 1080, width = 1920, wait = FALSE)
middle_value <- app$get_value(output = "distPlot")
app$wait_for_idle()

post_value <- app$get_value(output = "distPlot")

No guarantee that these values are different
identical(pre_value, middle_value)

Will not be equal

identical (pre_value, post_value)

3

Method wait_for_value(): Wait for a new Shiny value

Waits until an input, output, or export Shiny value is not one of ignored values, or the timeout
is reached.

Only a single input, output, or export value may be used.
This function can be useful in helping determine if an application has finished processing a com-
plex reactive situation.

Usage:

AppDiriver 27

AppDriver$wait_for_value(
input = missing_arg(),
output = missing_arg(),
export = missing_arg(),
ignore = list(NULL, ""),
timeout = missing_arg(),
interval = 400

)

Arguments:
. Must be empty. Allows for parameter expansion.

input, output, export A name of an input, output, or export value. Only one of these pa-
rameters may be used.

ignore List of possible values to ignore when checking for updates.

timeout Amount of time to wait before giving up (milliseconds). Defaults to the resolved
timeout value during the AppDriver initialization.

interval How often to check for the condition, in ms.

timeout_ Amount of time to wait for a new output value before giving up (milliseconds).
Defaults to the resolved timeout value during the AppDriver initialization

Returns: Newly found value

Examples:

\dontrun{
library(shiny)
shiny_app <- shinyApp(
fluidPage(
h1("Dynamic output”),
actionButton("display”, "Display UI"),
uiOutput ("dym1"),
),
function(input, output) {
output$dyml <- renderUI({
req(input$display)
Sys.sleep(runif (1, max = 2)) # Artificial calculations
taglist(
sliderInput(”slider1”, "Slider #1", @, 100, 25),
uiOutput ("dym2")
)

b))
output$dym2 <- renderUI({

Sys.sleep(runif (1, max = 2)) # Artificial calculations
taglList(
sliderInput(”slider2"”, "Slider #2", @, 100, 50),
"Total:", verbatimTextOutput(”total")
)

)
output$total <- renderText({

28

AppDriver

req(input$slider1, input$slider?2)
input$slider1 + input$slider2
b))
3
)

app <- AppDriver$new(shiny_app)
Create UI / output values

app$click("display”)
Wait for total to be calculated (or have a non-NULL value)

new_total_value <- app$wait_for_value(output = "total”)
[1] "75"

app$get_value(output = "total”)

#> [1]1 "75"

3

Method wait_for_js(): Wait for a JavaScript expression to be true

Waits until a JavaScript expression evaluates to true or the timeout is exceeded.

Usage:
AppDriver$wait_for_js(script, timeout = missing_arg(), interval = 100)

Arguments:

script A string containing JavaScript code. This code must eventually return a truethy value
or a timeout error will be thrown.

timeout How long the script has to return a truethy value (milliseconds). Defaults to the
resolved timeout value during the AppDriver initialization.

interval How often to check for the condition (milliseconds).

Returns: invisible(self) if expression evaluates to true without error within the timeout.
Otherwise an error will be thrown

Examples:

\dontrun{
shiny_app <- shinyApp(h1("Empty App"”), function(input, output) { })
app <- AppDriver$new(shiny_app)

Contrived example:
Wait until “Date.now()” returns a number that ends in a 5. (@ - 10 seconds)
system. time(
app$wait_for_js("Math.floor((Date.now() / 1000) % 10) == 5;")
)

A second example where we run the contents of a JavaScript file
and use the result to wait for a condition

app$run_js(file = "complicated_file.js")
app$wait_for_js("complicated_condition();")

}

https://developer.mozilla.org/en-US/docs/Glossary/Truthy

AppDiriver 29

Method expect_unique_names(): Expect unique input and output names.
If the HTML has duplicate input or output elements with matching id values, this function will
throw an error. It is similar to AppDriver$new(check_names = TRUE), but asserts that no warn-
ings are displayed.
This method will not throw if a single input and a single output have the same name.

Usage:

AppDriver$expect_unique_names()

Examples:

\dontrun{
shiny_app <- shinyApp(
ui = fluidPage(
Duplicate input IDs: ~"text""
textInput("text”, "Text 1"),
textInput(“text”, "Text 2")
),
server = function(input, output) {
empty
3
)
Initial checking for unique names (default behavior)
app <- AppDriver$new(shiny_app, check_names = TRUE)
#> Warning:
#> | Shiny inputs should have unique HTML id values.
#> i The following HTML id values are not unique:
#> - text
app$stop()

Manually assert that all names are unique

app <- AppDriver$new(shiny_app, check_names = FALSE)
app$expect_unique_names()

#> Error: ~app_check_unique_names(self, private)” threw an unexpected warning.

#> Message: ! Shiny inputs should have unique HTML id values.
#> i The following HTML id values are not unique:

#> + text

#> Class: rlang_warning/warning/condition

app$stop()

}

Method get_dir(): Retrieve the Shiny app path
Usage:
AppDrivers$get_dir()
Returns: The directory containing the Shiny application or Shiny runtime document. If a URL

was provided to app_dir during initialization, the current directory will be returned.

Examples:

\dontrun{
app_path <- system.file("examples/@1_hello"”, package = "shiny")

30

AppDriver

app <- AppDriver$new(app_path)

identical (app$get_dir(), app_path)
#> [1] TRUE
}

Method get_url(): Retrieve the Shiny app URL

Usage:
AppDrivers$get_url()

Returns: URL where the Shiny app is being hosted

Examples:

\dontrun{
app_path <- system.file("examples/@1_hello"”, package = "shiny")
app <- AppDriver$new(app_path)

browseURL (app$get_url())
}

Method get_window_size(): Get window size
Get current size of the browser window, as list of numeric scalars named width and height.

Usage:
AppDriver$get_window_size()

Examples:

\dontrun{
app_path <- system.file("examples/@1_hello", package = "shiny")
app <- AppDriver$new(app_path)

app$get_window_size()
#> $width

[11 992

#>

#> $height

#> [1] 1323

}

Method set_window_size(): Sets size of the browser window.

Usage:

AppDriver$set_window_size(width, height, wait = TRUE)

Arguments:

width, height Height and width of browser, in pixels.

wait If TRUE, $wait_for_idle() will be called after setting the window size. This will block

until any width specific items (such as plots) that need to be re-rendered.

Examples:

AppDiriver

\dontrun{

app_path <- system.file("examples/@1_hello", package = "shiny")
Set init window size

app <- AppDriver$new(app_path, height = 1400, width = 1000)

app$get_window_size()
#> $width

[1] 1000

#>

#> $height

#> [1] 1400

Manually set the window size
app$set_window_size(height = 1080, width = 1920)
app$get_window_size()

#> $width

[1] 1920

#>

#> $height

#> [1] 1080

}

Method get_chromote_session(): Get Chromote Session
Get the chromote: :ChromoteSession object from the chromote package.

Usage:
AppDriver$get_chromote_session()

Returns: chromote: :ChromoteSession R6 object

Examples:

\dontrun{
app_path <- system.file("examples/@1_hello"”, package = "shiny")
app <- AppDriver$new(app_path)

b <- app$get_chromote_session()
b$Runtime$evaluate(”1 + 1")
#> $result

#> $result$type

#> [1]1 "number”

#>

#> $result$value

#> [1] 2

#>

#> $result$description

#> [1] "2"

3

Method get_variant(): Get the variant
Get the variant supplied during initialization

31

32

AppDriver

Usage:
AppDriver$get_variant()

Returns: The variant value supplied during initialization or NULL if no value was supplied.

Examples:

\dontrun{
app_path <- system.file("examples/@1_hello", package = "shiny")

app <- AppDriver$new(app_path)

app$get_variant()
#> NULL

app <- AppDriver$new(app_path, variant = platform_variant())
app$get_variant()

#> [1] "mac-4.1"

3

Method get_logs(): Get all logs
Retrieve all of the debug logs that have been recorded.

Usage:
AppDrivers$get_logs()

Returns: A data.frame with the following columns:
* workerid: The shiny worker ID found within the browser
e timestamp: POSIXct timestamp of the message
* location: The location of the message was found. One of three values:
— "shinytest2": Occurs when $1og_message() is called

— "shiny”: stdin and stdout messages from the Shiny server. Note message () output is
sent to stdout.

— "chromote”: Captured by the chromote event handlers. See console API, exception
thrown, websocket sent, and websocket received for more details

 level: For a given location, there are different types of log levels.
— "shinytest2": "log"; Only log messages are captured.
— "shiny”: "stdout"” or "stderr"; Note, message () output is sent to stderr.
— "chromote”: Correspond to any level of a JavaScript console.LEVEL() function call.

Typically, these are "log"and"error"but can include"info", "debug", and "warn". If op-

ne

tions(shiny.trace = TRUE), then the level will recorded as "websocket"*.

Examples:

\dontrun{
app1 <- AppDriver$new(system.file("examples/@1_hello", package = "shiny"))

appl1$get_logs()

#> {shinytest2} R info 10:00:28.86 Start AppDriver initialization
#> {shinytest2} R info 10:00:28.86 Starting Shiny app

#> {shinytest2} R info 10:00:29.76 Creating new ChromoteSession

https://chromedevtools.github.io/devtools-protocol/1-3/Runtime/#event-consoleAPICalled
https://chromedevtools.github.io/devtools-protocol/1-3/Runtime/#event-exceptionThrown
https://chromedevtools.github.io/devtools-protocol/1-3/Runtime/#event-exceptionThrown
https://chromedevtools.github.io/devtools-protocol/1-3/Network/#event-webSocketFrameSent
https://chromedevtools.github.io/devtools-protocol/1-3/Network/#event-webSocketFrameReceived

AppDiriver 33

#> {shinytest2} R info 10:00:30.56 Navigating to Shiny app

#> {shinytest2} R info 10:00:30.70 Injecting shiny-tracer.js

#> {chromote} JS info 10:00:30.75 shinytest2; jQuery found

#> {chromote} JS info 10:00:30.77 shinytest2; Waiting for shiny session to connect
#> {chromote} JS info 10:00:30.77 shinytest2; Loaded

#> {shinytest2} R info 10:00:30.77 Waiting for Shiny to become ready

#> {chromote} JS info 10:00:30.90 shinytest2; Connected

#> {chromote} JS info 10:00:30.95 shinytest2; shiny:busy

#> {shinytest2} R info 10:00:30.98 Waiting for Shiny to become idle for 200ms within 15000ms
#> {chromote} JS info 10:00:30.98 shinytest2; Waiting for Shiny to be stable

#> {chromote} JS info 10:00:31.37 shinytest2; shiny:idle

#> {chromote} JS info 10:00:31.38 shinytest2; shiny:value distPlot

#> {chromote} JS info 10:00:31.57 shinytest2; Shiny has been idle for 200ms

#> {shinytest2} R info 10:00:31.57 Shiny app started

#> {shiny} R stderr ----——------ Loading required package: shiny
#> {shiny} R stderr --—--——----- Running application in test mode.
#> {shiny} R stderr ----——-----

#> {shiny} R stderr ----------- Listening on http://127.0.0.1:4679

To capture all websocket traffic, set “options = list(shiny.trace = TRUE)"
app2 <- AppDriver$new(

system.file("examples/@1_hello"”, package = "shiny"),

options = list(shiny.trace = TRUE)
)

app2%$get_logs()
(A1l WebSocket messages have been replaced with “WEBSOCKET_MSG™ in example below)

#> {shinytest2} R info 10:01:57.49 Start AppDriver initialization

#> {shinytest2} R info 10:01:57.50 Starting Shiny app

#> {shinytest2} R info 10:01:58.20 Creating new ChromoteSession

#> {shinytest2} R info 10:01:58.35 Navigating to Shiny app

#> {shinytest2} R info 10:01:58.47 Injecting shiny-tracer.js

#> {chromote} JS info 10:01:58.49 shinytest2; jQuery not found

#> {chromote} JS info 10:01:58.49 shinytest2; Loaded

#> {shinytest2} R info 10:01:58.50 Waiting for Shiny to become ready
#> {chromote} JS info 10:01:58.55 shinytest2; jQuery found

#> {chromote} JS info 10:01:58.55 shinytest2; Waiting for shiny session to connect
#> {chromote} JS websocket 10:01:58.64 send WEBSOCKET_MSG

#> {chromote} JS websocket 10:01:58.67 recv WEBSOCKET_MSG

#> {chromote} JS info 10:01:58.67 shinytest2; Connected

#> {chromote} JS websocket 10:01:58.71 recv WEBSOCKET_MSG

#> {chromote} JS websocket 10:01:58.72 recv WEBSOCKET_MSG

#> {chromote} JS info 10:01:58.72 shinytest2; shiny:busy

#> {chromote} JS websocket 10:01:58.73 recv WEBSOCKET_MSG

#> {chromote} JS websocket 10:01:58.73 recv WEBSOCKET_MSG

#> {shinytest2} R info 10:01:58.75 Waiting for Shiny to become idle for 200ms within 15000ms
#> {chromote} JS info 10:01:58.75 shinytest2; Waiting for Shiny to be stable

34

AppDriver

#> {chromote} JS websocket 10:01:58.81 recv WEBSOCKET_MSG
#> {chromote} JS websocket 10:01:58.81 recv WEBSOCKET_MSG

#> {chromote} JS info 10:01:58.81 shinytest2; shiny:idle

#> {chromote} JS websocket 10:01:58.82 recv WEBSOCKET_MSG

#> {chromote} JS info 10:01:58.82 shinytest2; shiny:value distPlot

#> {chromote} JS info 10:01:59.01 shinytest2; Shiny has been idle for 200ms

#> {shinytest2} R info 10:01:59.01 Shiny app started

#> {shiny} R stderr -———=—-—----—- Loading required package: shiny

#> {shiny} R stderr -——=-——---- Running application in test mode.

#> {shiny} R stderr --——--——---

#> {shiny} R stderr -——--—---——- Listening on http://127.0.0.1:4560

#> {shiny} R stderr ----------- SEND {"config":{"workerId”:"","sessionId"|truncated
#> {shiny} R stderr ----------- RECV {"method":"init","data":{"bins":30, |truncated
#> {shiny} R stderr ----------- SEND {"custom":{"showcase-src":{"srcref":|truncated
#> {shiny} R stderr -——--—----—- SEND {"busy":"busy"}

#> {shiny} R stderr ----------- SEND {"custom”:{"showcase-src":{"srcref": |truncated
#> {shiny} R stderr ----------- SEND {"recalculating”:{"name"”:"distPlot"”, |truncated
#> {shiny} R stderr ----------- SEND {"recalculating”:{"name":"distPlot"”, | truncated
#> {shiny} R stderr -----—----- SEND {"busy"”":"idle"}

#> {shiny} R stderr ----------- SEND {"errors”:{}, "values":{"distPlot"”: |truncated

The log that is returned is a “data.frame()".

log <- app2%$get_logs()

tibble::glimpse(log)

#> Rows: 43

#> Columns: 5

#> $ workerid <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, . ..

#> $ timestamp <dttm> 2022-09-19 10:01:57, 2022-09-19 10:01:57, 2022-09-19 10:01:58, 2022. . .
#> $ location <chr> "shinytest2"”, "shinytest2"”, "shinytest2", "shinytest2”, "shinytest2". . .

#> $ level <chr> "info", "info", "info", "info", "info"”, "info", "info", "info", "inf. . .
#> $ message <chr> "Start AppDriver initialization"”, "Starting Shiny app”, "Creating ne. . .
#> $ workerid <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, . ..

#> $ timestamp <dttm> 2022-03-16 11:09:57, 2022-03-16 11:09:57, 2022-03-16 11:09:. . .
#> $ location <chr> "shinytest2", "shinytest2”, "shinytest2", "shinytest2”, "shi. . .
#> $ level <chr> "info", "info", "info", "info", "info", "info”, "info", "inf. . .
#> $ message <chr> "Start AppDriver initialization”, "Starting Shiny app”, "Cre. . .

It may be filtered to find desired logs

subset(log, level == "websocket")

(A1l WebSocket messages have been replaced with “WEBSOCKET_MSG™ in example below)
#> {chromote} JS websocket 10:01:58.64 send WEBSOCKET_MSG
#> {chromote} JS websocket 10:01:58.67 recv WEBSOCKET_MSG
#> {chromote} JS websocket 10:01:58.71 recv WEBSOCKET_MSG
#> {chromote} JS websocket 10:01:58.72 recv WEBSOCKET_MSG
#> {chromote} JS websocket 10:01:58.73 recv WEBSOCKET_MSG
#> {chromote} JS websocket 10:01:58.73 recv WEBSOCKET_MSG
#> {chromote} JS websocket 10:01:58.81 recv WEBSOCKET_MSG
#> {chromote} JS websocket 10:01:58.81 recv WEBSOCKET_MSG

AppDiriver 35

#> {chromote} JS websocket 10:01:58.82 recv WEBSOCKET_MSG
3

Method log_message(): Add a message to the shinytest2 log.
Usage:
AppDriver$log_message(message)

Arguments:

message Single message to store in log

Examples:

\dontrun{
app_path <- system.file("examples/@1_hello", package = "shiny")
app <- AppDriver$new(app_path)

app$log_message("Setting bins to smaller value”)
app$set_inputs(bins = 10)

app$get_logs()

}

Method stop(): Stop the Shiny application driver
This method stops all known processes:

» The Shiny application in the background R process,
* the background R process hosting the Shiny application, and
¢ the Chromote Session instance.
To stop your shiny application and return a value from $stop(), see shiny: :stopApp(). This is
useful in testing to return context information.
Typically, this can be paired with a button that when clicked will call shiny: : stopApp(info) to
return info from the test app back to the main R session.
Usage:
AppDriver$stop(signal_timeout = missing_arg())

Arguments:

signal_timeout Milliseconds to wait between sending a SIGINT, SIGTERM, and SIGKILL to
the Shiny process. Defaults to 500ms and does not utilize the resolved value from AppDriver$new(timeout=).
However, if covr is currently executing, then the timeout is set to 20,000ms to allow for
the coverage report to be generated.

Returns: The result of the background process if the Shiny application has already been termi-
nated.

Examples:

\dontrun{
rlang::check_installed("reactlog")

library(shiny)
shiny_app <- shinyApp(
ui = fluidPage(
actionButton("button”, "Stop app and return Reactlog"),

36

"Click count:", textOutput(”count")
),

server = function(input, output) {
output$count <- renderText({ input$button })

observe({
req(input$button)
stopApp(shiny::reactlog())
1))

b
)

app <- AppDriver$new(
shiny_app,
Enable reactlog in background R session
options = list(shiny.reactlog = TRUE)

)

app$click("button”)
rlog <- app$stop()
str(head(rlog, 2))
#> List of 2

#> $:List of 7

#> ..$ action : chr "define”

#> ..$ reactld: chr "r3"

#> ..$ label : chr "Theme Counter”

#> ..$ type : chr "reactiveval”

#> ..$ value : chr " num 0"

#> ..$ session: chr "bdc7417f2fc8c84fc05c9518e36fdc44”
#> ..$ time : num 1.65e+09

#> $:List of 7

#> ..$ action : chr "define”

#> ..$ reactld: chr "r4"

#> ..$ label : chr "output$count”

#>- attr(*, "srcref”)= int [1:6] 7 32 7 45 32 45
#>- attr(x, "srcfile")= chr ""
#> ..$ type : chr "observer”

#> ..$ value : chr " NULL"

#> ..$ session: chr "bdc7417f2fc8c84fc05c9518e36fdc44”
#> ..% time : num 1.65e+09

3

See Also

platform_variant(), use_shinytest2_test()

Examples

H m o
Method ~AppDriver$new”

AppDiriver

Not run:
Create an AppDriver from the Shiny app in the current directory
app <- AppDriver()

Create an AppDriver object from a different Shiny app directory
example_app <- system.file("examples/@1_hello"”, package = "shiny")
app <- AppDriver(example_app)

Expect consistent inital values
app$expect_values()

End(Not run)

H m o
Method ~AppDriver$view”
R e

Not run:
Open app in Chrome
app$view()

End(Not run)

B et
Method ~AppDriver$click"”
H m o

Not run:
app_path <- system.file("examples/0@7_widgets"”, package = "shiny")
app <- AppDriver$new(app_path)

tmpfile <- write.csv(cars, "cars.csv")
app$upload_file(filel = tmpfile)
cat(app$get_text("#view"))
app$set_inputs(dataset = "cars”, obs = 6)
app$click("update”)
cat(app$get_text("#view"))

End(Not run)

e
Method ~AppDriver$set_inputs”
B oo

Not run:
app_path <- system.file("examples/07_widgets"”, package = "shiny")
app <- AppDriver$new(app_path)

cat(app$get_text("#view"))
app$set_inputs(dataset = "cars”, obs = 6)
app$click("update™)

37

38

cat(app$get_text("#view"))
End(Not run)

H m o
Method ~AppDriver$upload_file~
H m o

Not run:
app_path <- system.file("examples/@9_upload”, package = "shiny")
app <- AppDriver$new(app_path)

Save example file
tmpfile <- tempfile(fileext = ".csv")
write.csv(cars, tmpfile, row.names = FALSE)

Upload file to input named: filel
app$upload_file(filel = tmpfile)

End(Not run)

H m o
Method ~AppDriver$expect_values”
B m o

Not run:
library(shiny)
shiny_app <- shinyApp(
fluidPage(
h1("Pythagorean theorem”),
numericInput(”A", "A", 3),
numericInput(”"B", "B", 4),
verbatimTextOutput("C"),
),
function(input, output) {
a_squared <- reactive({ req(input$A); input$A * input$A })
b_squared <- reactive({ req(input$B); input$B * input$B })
c_squared <- reactive({ a_squared() + b_squared() })
c_value <- reactive({ sqrt(c_squared()) })
output$C <- renderText({ c_value() })

exportTestValues(
a_squared = { a_squared() 1},
b_squared = { b_squared() 3},
c_squared = { c_squared() }

)

3
)

app <- AppDriver$new(shiny_app)

Snapshot all known values
app$expect_values()

AppDiriver

AppDiriver

Snapshot only “export” values
app$expect_values(export = TRUE)

Snapshot values “"A"~ from “input” and ~"C"" from ~output=
app$expect_values(input = "A", output = "C")

End(Not run)

H m oo
Method ~AppDriver$get_value”
e

Not run:
app_path <- system.file("examples/0@4_mpg", package = "shiny")
app <- AppDriver$new(app_path)

Retrieve a single value

app$get_value(output = "caption”)

#> [1] "mpg ~ cyl”

Equivalent code using ~$get_values()"
app$get_values(output = "caption”)$output$caption
#> [1] "mpg ~ cyl”

End(Not run)

B oo
Method ~AppDriver$get_values”
i mm

Not run:
library(shiny)
shiny_app <- shinyApp(
fluidPage(
h1("Pythagorean theorem"),
numericInput(”A”, "A", 3),
numericInput(”B", "B", 4),
verbatimTextOutput("C"),
),
function(input, output) {
a_squared <- reactive({ req(input$A); input$A * input$A })
b_squared <- reactive({ req(input$B); input$B * input$B 3})
c_squared <- reactive({ a_squared() + b_squared() })
c_value <- reactive({ sqrt(c_squared()) })
output$C <- renderText({ c_value() })

exportTestValues(
a_squared = { a_squared() 3},
b_squared = { b_squared() },
c_squared = { c_squared() }
)
}
)

39

40

AppDiriver

app <- AppDriver$new(shiny_app)

Show all known values
str(app$get_values())

#> List of 3

#> $ input :List of 2

#> ..$ A: int 3

#> ..$ B: int 4

#> $ output:List of 1

#> ..$ C: chr "5"

#> $ export:List of 3

#> ..$ a_squared: int 9
#> ..$ b_squared: int 16
#> ..$ c_squared: int 25

Get only “export™ values
str(app$get_values(export = TRUE))
#> List of 1

#> $ export:List of 3

#> ..$ a_squared: int 9

#> ..$ b_squared: int 16

#> ..$ c_squared: int 25

Get values “"A"™ from “input” and ~"C"> from ~output”
str(app$get_values(input = "A", output = "C"))

#> List of 2

#> $ input :List of 1

#> ..$ A: int 3

#> $ output:List of 1

#> ..$ C: chr "5"

End(Not run)

o
Method ~AppDriver$expect_download™

Not run:
app_path <- system.file("examples/10_download”, package = "shiny")
app <- AppDriver$new(app_path)

Save snapshot of rock.csv as 001.download

Save snapshot value of “rock.csv™ to capture default file name
app$expect_download("downloadData”, compare = testthat::compare_file_text)
End(Not run)

#H - e

Method ~AppDriver$get_download™

#H# -

Not run:

AppDiriver 41

app_path <- system.file("examples/10_download”, package = "shiny")
app <- AppDriver$new(app_path)

Get rock.csv as a tempfile
app$get_download("downloadData”)
#> [1] "/TEMP/PATH/rock.csv”

Get rock.csv as a "./myfile.csv”
app$get_download("downloadData”, filename = "./myfile.csv")
[11 "./myfile.csv”

End(Not run)

et
Method ~AppDriver$expect_text”
H m o

Not run:
hello_app <- system.file("examples/01_hello"”, package = "shiny")
app <- AppDriver$new(hello_app)

Make a snapshot of ~"Hello Shiny!""
app$expect_text("h2")

End(Not run)

H m o
Method ~AppDriver$get_text”
o

Not run:
hello_app <- system.file("examples/01_hello"”, package = "shiny")
app <- AppDriver$new(hello_app)

app$get_text("h2")
#> [1] "Hello Shiny!"

End(Not run)

#H# - e

Method ~AppDriver$expect_html~

#H# -

Not run:

app_path <- system.file("examples/04_mpg", package = "shiny")
app <- AppDriver$new(app_path)

Save a snapshot of the “caption™ output
app$expect_html ("#caption”)

End(Not run)

42

AppDriver

Method ~AppDriver$get_html~
B o

Not run:
app_path <- system.file("examples/@3_reactivity"”, package = "shiny")
app <- AppDriver$new(app_path, check_names = FALSE)

app$set_inputs(caption = "Custom value!")

cat(app$get_html(".shiny-input-container”)[1])

#> <div class="form-group shiny-input-container"”>

#> <label class="control-label” id="caption-label” for="caption”>Caption:</label>

#> <input id="caption” type="text" class="form-control shiny-bound-input” value="Data Summary">
#> </div>

** No update to the DOM of “caption”

End(Not run)

R e
Method ~AppDriver$expect_js~

Not run:
app_path <- system.file("examples/@7_widgets"”, package = "shiny")
app <- AppDriver$new(app_path)

Track how many clicks are given to “#update™ button
app$run_js(”

window.test_counter = 0;

$('#update').click(() => window.test_counter++);
)
app$set_inputs(obs = 20)
Click the update button, incrementing the counter
app$click("update”)
Save a snapshot of number of clicks (1)
app$expect_js("window. test_counter;")

End(Not run)

H m o
Method ~AppDriver$get_js~
B m oo

Not run:

library(shiny)

shiny_app <- shinyApp(h1("Empty App"), function(input, output) { })
app <- AppDriver$new(shiny_app)

Execute JavaScript code in the app's browser
app$get_js("1 + 1;")
#> [1] 2

Execute a JavaScript Promise. Return the resolved value.
app$get_js(”

AppDiriver 43

new Promise((resolve) => {
setTimeout(() => resolve(l + 1), 1000)
b
then((value) => value + 1);
N)
[1] 3

With escaped arguments

loc_field <- "hostname”

js_txt <- paste@("window.location["”, jsonlite::toJSON(loc_field, auto_unbox = TRUE), "]1")
app$get_js(js_txt)

#> [1]1 "127.0.0.1"

With “glue::glue()”
js_txt <- glue::glue_data(
lapply(
list(x = 40, y = 2),
jsonlite::toJSON,
auto_unbox = TRUE
),
.open = "<" _.close = ">",
"let answer = function(a, b) {\n",
" return a + b;\n",
"}\n",
"answer (<x>, <y>);\n"

)
app$get_js(js_txt)
#> [1] 42

End(Not run)

o
Method ~AppDriver$run_js~
H m o

Not run:

library(shiny)

shiny_app <- shinyApp(h1("Empty App"), function(input, output) { })
app <- AppDriver$new(shiny_app)

Get JavaScript answer from the app's browser
app$get_js("1 + 1")

#> [1] 2

Execute JavaScript code in the app's browser
app$run_js("1 + 1")

(Returns “app”™ invisibly)

With escaped arguments

loc_field <- "hostname”

js_txt <- paste@(”"window.location["”, jsonlite::toJSON(loc_field, auto_unbox = TRUE), "1")
app$run_js(js_txt)

app$get_js(js_txt)

#> [1] "127.0.0.1"

44

AppDiriver

End(Not run)

e e
Method ~AppDriver$expect_screenshot™
B m o

Not run:
These example lines should be performed in a ~./tests/testthat”
test file so that snapshot files can be properly saved

app_path <- system.file("examples/@1_hello", package = "shiny")
app <- AppDriver$new(app_path, variant = platform_variant())

Expect a full size screenshot to be pixel perfect
app$expect_screenshot()

Images are brittle when containing plots
app$expect_screenshot(selector = "#distPlot")

Test with more threshold in pixel value differences
Helps with rounded corners
app$expect_screenshot(threshold = 10)

Equivalent expectations
app$expect_screenshot() # default
app$expect_screenshot(threshold = NULL)
app$expect_screenshot(compare = testthat::compare_file_binary)
expect_snapshot_file(

app$get_screenshot(),

variant = app$get_variant(),

compare = testthat::compare_file_binary

)

Equivalent expectations
app$expect_screenshot(threshold = 3, kernel_size = 5)
app$expect_screenshot(compare = function(old, new) {
compare_screenshot_threshold(
old, new,
threshold = 3,
kernel_size = 5
)
»
expect_screenshot_file(
app$get_screenshot(),
variant = app$get_variant(),
compare = function(old, new) {
compare_screenshot_threshold(
old, new,
threshold = 3,

kernel_size = 5

AppDiriver

)

Take a screenshot of the entire scrollable area
app$expect_screenshot()
app$expect_screenshot(selector = "scrollable_area”)

Take a screenshot of the current viewport

Shrink the window to be smaller than the app
app$set_window_size (400, 500)

Scroll the viewport just a bit
app$run_js("window.scroll (30, 70)")

Take screenshot of browser viewport
app$expect_screenshot(selector = "viewport")

End(Not run)

oo
Method ~AppDriver$get_screenshot”
oo

Not run:
app_path <- system.file("examples/@1_hello", package = "shiny")
app <- AppDriver$new(app_path)

Display in graphics device
app$get_screenshot()

Update bins then display "~"disPlot"”™ in graphics device
app$set_inputs(bins = 10)
app$get_screenshot(selector = "#distPlot")

Save screenshot to file and view it
tmpfile <- tempfile(fileext = ".png")
app$get_screenshot(tmpfile)
showimage: : show_image(tmpfile)

End(Not run)

b mmm
Method ~AppDriver$wait_for_idle~
B

Not run:
app_path <- system.file("examples/@1_hello", package = "shiny")
app <- AppDriver$new(app_path)

pre_value <- app$get_value(output = "distPlot")

Update bins value

app$set_inputs(bins = 10, wait_ = FALSE)
middle_value <- app$get_value(output = "distPlot")
app$wait_for_idle()

post_value <- app$get_value(output = "distPlot")

45

46

No guarantee that these values are different
identical (pre_value, middle_value)

Will not be equal

identical(pre_value, post_value)

Change the screen size to trigger a plot update
pre_value <- app$get_value(output = "distPlot")

app$set_window_size(height = 1080, width = 1920, wait = FALSE)

middle_value <- app$get_value(output = "distPlot")
app$wait_for_idle()
post_value <- app$get_value(output = "distPlot")

No guarantee that these values are different
identical(pre_value, middle_value)

Will not be equal

identical (pre_value, post_value)

End(Not run)

i mmmm
Method ~AppDriver$wait_for_value”
Bt

Not run:
library(shiny)
shiny_app <- shinyApp(
fluidPage(
h1("Dynamic output”),
actionButton("display”, "Display UI"),
uiOutput("dym1"),
),
function(input, output) {
output$dyml <- renderUI({
req(input$display)

Sys.sleep(runif(1, max = 2)) # Artificial calculations

taglist(
sliderInput(”slider1”, "Slider #1", @, 100, 25),
uiOutput("dym2")

)

»
output$dym2 <- renderUI({

Sys.sleep(runif(1, max = 2)) # Artificial calculations

taglist(
sliderInput(”slider2”, "Slider #2", @, 100, 50),
"Total:", verbatimTextOutput(”total")
)
»
output$total <- renderText({
req(input$slider1, input$slider2)
input$slider1 + input$slider2
»

AppDriver

AppDiriver

)
app <- AppDriver$new(shiny_app)
Create UI / output values

app$click("display”)
Wait for total to be calculated (or have a non-NULL value)

new_total_value <- app$wait_for_value(output = "total")
[1] "75"

app$get_value(output = "total”)

[1]1 "75"

End(Not run)

oo
Method ~AppDriver$wait_for_js=
o

Not run:
shiny_app <- shinyApp(h1("Empty App"), function(input, output) { })
app <- AppDriver$new(shiny_app)

Contrived example:
Wait until “Date.now()" returns a number that ends in a 5. (@ - 10 seconds)
system.time(
app$wait_for_js(”"Math.floor((Date.now() / 1000) % 10) == 5;")
)

A second example where we run the contents of a JavaScript file
and use the result to wait for a condition

app$run_js(file = "complicated_file.js")
app$wait_for_js("complicated_condition();")

End(Not run)

B oo
Method ~AppDriver$expect_unique_names”
B m oo

Not run:
shiny_app <- shinyApp(
ui = fluidPage(
Duplicate input IDs: ~"text""
textInput(”"text”, "Text 1"),
textInput(”text”, "Text 2")
),
server = function(input, output) {
empty
}
)
Initial checking for unique names (default behavior)
app <- AppDriver$new(shiny_app, check_names = TRUE)
#> Warning:

47

48

AppDiriver

#> 1 Shiny inputs should have unique HTML id values.
#> i The following HTML id values are not unique:
#> - text

app$stop()

Manually assert that all names are unique

app <- AppDriver$new(shiny_app, check_names = FALSE)

app$expect_unique_names()

#> Error: ~app_check_unique_names(self, private)” threw an unexpected warning.
#> Message: ! Shiny inputs should have unique HTML id values.

#> i The following HTML id values are not unique:

#> + text

#> Class: rlang_warning/warning/condition

app$stop()

End(Not run)

i mmmm
Method ~AppDriver$get_dir”
Bt

Not run:
app_path <- system.file("examples/@1_hello", package = "shiny")
app <- AppDriver$new(app_path)

identical (app$get_dir(), app_path)
#> [1] TRUE

End(Not run)

o
Method ~AppDriver$get_url-”
B oo

Not run:
app_path <- system.file("examples/@1_hello", package = "shiny")
app <- AppDriver$new(app_path)

browseURL (app$get_url())
End(Not run)

e
Method ~AppDriver$get_window_size~
B oo

Not run:
app_path <- system.file("examples/@1_hello", package = "shiny")
app <- AppDriver$new(app_path)

app$get_window_size()
#> $width
#> [1] 992

AppDiriver 49

#>
#> $height
#> [1] 1323

End(Not run)

H m o
Method ~AppDriver$set_window_size~
B m

Not run:

app_path <- system.file("examples/@1_hello"”, package = "shiny")
Set init window size

app <- AppDriver$new(app_path, height = 1400, width = 1000)

app$get_window_size()
#> $width

#> [1] 1000

#>

#> $height

[1] 1400

Manually set the window size
app$set_window_size(height = 1080, width = 1920)
app$get_window_size()

#> $width

[1] 1920

#>

#> $height

[1] 1080

End(Not run)

oo
Method ~AppDriver$get_chromote_session”
B oo

Not run:
app_path <- system.file("examples/@1_hello", package = "shiny")
app <- AppDriver$new(app_path)

b <- app$get_chromote_session()
b$Runtime$evaluate(”1 + 1")
#> $result

#> $result$type

#> [1] "number”

#>

#> $result$value

#> [1] 2

#>

#> $result$description

#> [1] "2"

50

AppDriver

End(Not run)

B oo
Method ~AppDriver$get_variant®
H m o

Not run:
app_path <- system.file("examples/@1_hello", package = "shiny")

app <- AppDriver$new(app_path)

app$get_variant()
#> NULL

app <- AppDriver$new(app_path, variant = platform_variant())
app$get_variant()
#> [1] "mac-4.1"

End(Not run)

B oo
Method ~AppDriver$get_logs™
B — oo

Not run:
appl <- AppDriver$new(system.file("examples/@1_hello", package = "shiny"))

appl1$get_logs()

#> {shinytest2} R info 10:00:28.86 Start AppDriver initialization

#> {shinytest2} R info 10:00:28.86 Starting Shiny app

#> {shinytest2} R info 10:00:29.76 Creating new ChromoteSession

#> {shinytest2} R info 10:00:30.56 Navigating to Shiny app

#> {shinytest2} R info 10:00:30.70 Injecting shiny-tracer.js

#> {chromote} JS info 10:00:30.75 shinytest2; jQuery found

#> {chromote} JS info 10:00:30.77 shinytest2; Waiting for shiny session to connect
#> {chromote} JS info 10:00:30.77 shinytest2; Loaded

#> {shinytest2} R info 10:00:30.77 Waiting for Shiny to become ready

#> {chromote} JS info 10:00:30.90 shinytest2; Connected

#> {chromote} JS info 10:00:30.95 shinytest2; shiny:busy

#> {shinytest2} R info 10:00:30.98 Waiting for Shiny to become idle for 200ms within 15000ms
#> {chromote} JS info 10:00:30.98 shinytest2; Waiting for Shiny to be stable

#> {chromote} JS info 10:00:31.37 shinytest2; shiny:idle

#> {chromote} JS info 10:00:31.38 shinytest2; shiny:value distPlot

#> {chromote} JS info 10:00:31.57 shinytest2; Shiny has been idle for 200ms

#> {shinytest2} R info 10:00:31.57 Shiny app started

#> {shiny} R stderr ----------- Loading required package: shiny

#> {shiny} R stderr ---—-------- Running application in test mode.
#> {shiny} R stderr -----------

#> {shiny} R stderr ---——------ Listening on http://127.0.0.1:4679

To capture all websocket traffic, set “options = list(shiny.trace = TRUE)"
app2 <- AppDriver$new(

AppDiriver 51

system.file("examples/@1_hello"”, package = "shiny"),
options = list(shiny.trace = TRUE)
)

app2%$get_logs()

(ALl WebSocket messages have been replaced with “WEBSOCKET_MSG™ in example below)

#> {shinytest2} R info 10:01:57.49 Start AppDriver initialization

#> {shinytest2} R info 10:01:57.50 Starting Shiny app

#> {shinytest2} R info 10:01:58.20 Creating new ChromoteSession

#> {shinytest2} R info 10:01:58.35 Navigating to Shiny app

#> {shinytest2} R info 10:01:58.47 Injecting shiny-tracer.js

#> {chromote} JS info 10:01:58.49 shinytest2; jQuery not found

#> {chromote} JS info 10:01:58.49 shinytest2; Loaded

#> {shinytest2} R info 10:01:58.50 Waiting for Shiny to become ready

#> {chromote} JS info 10:01:58.55 shinytest2; jQuery found

#> {chromote} JS info 10:01:58.55 shinytest2; Waiting for shiny session to connect
#> {chromote} JS websocket 10:01:58.64 send WEBSOCKET_MSG

#> {chromote} JS websocket 10:01:58.67 recv WEBSOCKET_MSG

#> {chromote} JS info 10:01:58.67 shinytest2; Connected

#> {chromote} JS websocket 10:01:58.71 recv WEBSOCKET_MSG

#> {chromote} JS websocket 10:01:58.72 recv WEBSOCKET_MSG

#> {chromote} JS info 10:01:58.72 shinytest2; shiny:busy

#> {chromote} JS websocket 10:01:58.73 recv WEBSOCKET_MSG

#> {chromote} JS websocket 10:01:58.73 recv WEBSOCKET_MSG

#> {shinytest2} R info 10:01:58.75 Waiting for Shiny to become idle for 200ms within 15000ms
#> {chromote} JS info 10:01:58.75 shinytest2; Waiting for Shiny to be stable

#> {chromote} JS websocket 10:01:58.81 recv WEBSOCKET_MSG

#> {chromote} JS websocket 10:01:58.81 recv WEBSOCKET_MSG

#> {chromote} JS info 10:01:58.81 shinytest2; shiny:idle

#> {chromote} JS websocket 10:01:58.82 recv WEBSOCKET_MSG

#> {chromote} JS info 10:01:58.82 shinytest2; shiny:value distPlot

#> {chromote} JS info 10:01:59.01 shinytest2; Shiny has been idle for 200ms

#> {shinytest2} R info 10:01:59.01 Shiny app started

#> {shiny} R stderr -—---—----- Loading required package: shiny

#> {shiny} R stderr -—--------—- Running application in test mode.

#> {shiny} R stderr -----------

#> {shiny} R stderr -—--—-—----- Listening on http://127.0.0.1:4560

#> {shiny?} R stderr ----—------—- SEND {"config":{"workerId”:"",6 "sessionId"|truncated
#> {shiny} R stderr -—---—-—--- RECV {"method":"init","data":{"bins"”:30, |truncated
#> {shiny} R stderr ----------- SEND {"custom”:{"showcase-src":{"srcref":|truncated
#> {shiny} R stderr -—--------—- SEND {"busy":"busy"}

#> {shiny?} R stderr ----------- SEND {"custom”:{"showcase-src":{"srcref”:|truncated
#> {shiny} R stderr ----------- SEND {"recalculating”:{"name":"distPlot", |truncated
#> {shiny?} R stderr ----------—- SEND {"recalculating”:{"name":"distPlot”, | truncated
#> {shiny} R stderr ----—----—-—- SEND {"busy":"idle"}

#> {shiny} R stderr ----------—- SEND {"errors”:{},"values”:{"distPlot":|truncated

The log that is returned is a “data.frame()".
log <- app2$get_logs()
tibble::glimpse(log)

#> Rows: 43
#> Columns: 5

#> $ workerid <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, . . .

52

AppDriver

#> $ timestamp <dttm> 2022-09-19 10:01:57, 2022-09-19 10:01:57, 2022-09-19 10:01:58, 2022. . .
#> $ location <chr> "shinytest2”, "shinytest2”, "shinytest2”, "shinytest2", "shinytest2". . .
#>$ level <chr> "info", "info", "info", "info", "info", "info", "info", "info", "inf. . .
#> $ message <chr> "Start AppDriver initialization”, "Starting Shiny app"”, "Creating ne. . .

#> $ workerid <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,

#> $ timestamp <dttm> 2022-03-16 11:09:57, 2022-03-16 11:09:57, 2022-03-16 11:09:. . .
#> $ location <chr> "shinytest2”, "shinytest2", "shinytest2", "shinytest2"”, "shi. . .
#> $ level <chr> "info", "info", "info", "info", "info", "info", "info", "inf. ..
#> $ message <chr> "Start AppDriver initialization”, "Starting Shiny app”, "Cre. . .

It may be filtered to find desired logs

subset(log, level == "websocket")

(A1l WebSocket messages have been replaced with “WEBSOCKET_MSG™ in example below)
#> {chromote} JS websocket 10:01:58.64 send WEBSOCKET_MSG
#> {chromote} JS websocket 10:01:58.67 recv WEBSOCKET_MSG
#> {chromote} JS websocket 10:01:58.71 recv WEBSOCKET_MSG
#> {chromote} JS websocket 10:01:58.72 recv WEBSOCKET_MSG
#> {chromote} JS websocket 10:01:58.73 recv WEBSOCKET_MSG
#> {chromote} JS websocket 10:01:58.73 recv WEBSOCKET_MSG
#> {chromote} JS websocket 10:01:58.81 recv WEBSOCKET_MSG
#> {chromote} JS websocket 10:01:58.81 recv WEBSOCKET_MSG
#> {chromote} JS websocket 10:01:58.82 recv WEBSOCKET_MSG

End(Not run)

B it
Method ~AppDriver$log_message”
H m o

Not run:
app_path <- system.file("examples/@1_hello", package = "shiny")
app <- AppDriver$new(app_path)

app$log_message("”Setting bins to smaller value")
app$set_inputs(bins = 10)
app$get_logs()

End(Not run)

B o
Method ~AppDriver$stop”
B o

Not run:
rlang::check_installed("reactlog")

library(shiny)
shiny_app <- shinyApp(
ui = fluidPage(
actionButton("button”, "Stop app and return Reactlog”),
"Click count:", textOutput(”count")
),

server = function(input, output) {

compare_screenshot_threshold 53

output$count <- renderText({ input$button 3})

observe({
req(input$button)
stopApp(shiny::reactlog())
»
}

)

app <- AppDriver$new(
shiny_app,
Enable reactlog in background R session
options = list(shiny.reactlog = TRUE)

)

app$click("button”)
rlog <- app$stop()
str(head(rlog, 2))
#> List of 2

#> ¢ :List of 7

#> ..$ action : chr "define”

#> ..$ reactld: chr "r3"

#> ..$ label : chr "Theme Counter”

#> ..$ type : chr "reactiveVal”

#> ..%$ value : chr " num 0"

#> ..$ session: chr "bdc7417f2fc8c84fc05c9518e36fdc44”
#> ..$ time : num 1.65e+09

#> $:List of 7

#> ..$ action : chr "define”

#> ..$ reactld: chr "r4"

#> ..$ label : chr "output$count”

#>- attr(x, "srcref”)= int [1:6] 7 32 7 45 32 45
#>- attr(*, "srcfile”)= chr ""

#> ..$ type : chr "observer”

#> ..$ value : chr " NULL"

#> ..$ session: chr "bdc7417f2fc8c84fc05c9518e36fdc44”
#> ..% time : num 1.65e+09

End(Not run)

compare_screenshot_threshold
Compare screenshots given threshold value

Description

chromote can sometimes produce screenshot images with non-deterministic (yet close) color val-
ues. This can happen in locations such as rounded corners of divs or textareas.

54 compare_screenshot_threshold

Usage

compare_screenshot_threshold(
old,
new,

threshold = getOption("shinytest2.compare_screenshot.threshold”, NULL),
kernel_size = getOption("shinytest2.compare_screenshot.kernel_size"”, 5),
quiet = FALSE

)

screenshot_max_difference(
old,
new = missing_arg(),

D

kernel_size = getOption("shinytest2.compare_screenshot.kernel_size"”, 5)

Arguments

old Current screenshot file path
new New screenshot file path
Must be empty. Allows for parameter expansion.

threshold The threshold for maximum allowed image difference (see below for details).
The default is NULL or can be set globally via the shinytest2.compare_screenshot. threshold
option.
If the value of threshold is NULL, compare_screenshot_threshold() will act
like testthat: :compare_file_binary. However, if threshold is a positive
number, it will be compared against the largest convolution value found if the
two images fail a testthat::compare_file_binary comparison. The max
value that can be found is 4 * kernel_size * 2.
Threshold values values below 5 help deter false-positive screenshot compar-
isons (such as inconsistent rounded corners). Larger values in the 10s and 100s
will help find real changes. However, not all values are one size fits all and you
will need to play with a threshold that fits your needs.
To find the current difference between two images, use screenshot_max_difference().

kernel_size The kernel_size represents the height and width of the convolution kernel
applied to the matrix of pixel differences. This integer-like value should be rela-
tively small, such as 5. The default value can be set via the shinytest2.compare_screenshot.kernel_:
option.
quiet If FALSE and the value is larger than threshold, then a message is printed to the
console. This is helpful when getting a failing image and being informed about
how different the new image is from the old image.

Details

These differences make comparing screenshots impractical using traditional expectation methods
as false-positives are produced often over time. To mitigate this, we can use a fuzzy matching

compare_screenshot_threshold 55

algorithm that can tolerate small regional differences throughout the image. If the local changes
found are larger than the threshold, then the images are determined to be different. Both the
screenshot difference threshold and the size of the kernel (kernel_size) can be set to tune the
false positive rate.

Functions
* compare_screenshot_threshold(): Compares two images and allows for a threshold dif-
ference of so many units in each RGBA color channel.

Itis suggested to use this method with AppDriver$expect_screenshot(threshold=, kernel_size=)
to make expectations on screenshots given particular threshold and kernel_size values.

¢ screenshot_max_difference(): Finds the difference between two screenshots.

This value can be used in compare_screenshot_threshold(threshold=). It is recom-
mended that the value used for compare_screenshot_threshold(threshold=) is larger
than the immediate max difference found. This allows for random fluctuations when rounding
sub pixels.

If new is missing, it will use the file value of old (FILE.png) and default to FILE.new.png

Algorithm for the difference between two screenshots

1. First the two images are compared using testthat::compare_file_binary(). If the files
are identical, return TRUE that the screenshot images are the same.

2. If threshold is NULL, return FALSE as the convolution will not occur.

3. Prepare the screenshot difference matrix by reading the RGBA channels of each image and
find their respective absolute differences

4. Sum the screenshot difference matrix channels at each pixel location

5. Perform a convolution using a small square kernel matrix that is kernel_size big and filled
with 1s.

6. Find the largest value in the resulting convolution matrix.
7. If this max convolution value is larger than threshold, return FALSE, images are different.

8. Otherwise, return TRUE, images are the same.

Examples

img_folder <- system.file("example/imgs/", package = "shinytest2")
slider_old <- fs::path(img_folder, "slider-old.png")
slider_new <- fs::path(img_folder, "slider-new.png")

Can you see the differences between these two images?
showimage: : show_image(slider_old)
showimage: : show_image(slider_new)

You might have caught the difference between the two images!
slider_diff <- fs::path(img_folder, "slider-diff.png")

showimage: : show_image(slider_diff)

Let's find the difference between the two images

56 local_app_support

screenshot_max_difference(slider_old, slider_new)
~ 28

Using different threshold values...
compare_screenshot_threshold(slider_old, slider_new, threshold = NULL)
#> FALSE # Images are not identical
compare_screenshot_threshold(slider_old, slider_new, threshold = 25)
#> FALSE # Images are more different than 25 units
compare_screenshot_threshold(slider_old, slider_new, threshold = 30)
#> TRUE # Images are not as different as 30 units

HHHHHHEHAHEHAAHRAH R

Now let's look at two fairly similar images
bookmark_old <- fs::path(img_folder, "bookmark-old.png")
bookmark_new <- fs::path(img_folder, "bookmark-new.png")

Can you see the difference between these two images?
(Hint: Focused corners)
showimage: : show_image (bookmark_old)
showimage: : show_image (bookmark_new)

Can you find the red pixels showing the differences?

Hint: Look in the corners of the focused text
bookmark_diff <- fs::path(img_folder, "bookmark-diff.png")
showimage: : show_image (bookmark_diff)

Let's find the difference between the two images
screenshot_max_difference(bookmark_old, bookmark_new)
#~0.25

Using different threshold values...
compare_screenshot_threshold(bookmark_old, bookmark_new, threshold = NULL)
#> FALSE # Images are not identical

compare_screenshot_threshold(bookmark_old, bookmark_new, threshold = 5)
#> TRUE # Images are not as different than 5 units
local_app_support Attach the Shiny application’s support environment

Description
Executes all . /R files and global.R into a temp environment that is attached appropriately. This is
useful when wanting access to functions or values created in the . /R folder for testing purposes.
Usage

local_app_support(app_dir, envir = rlang::caller_env())

local_app_support 57

with_app_support(app_dir, expr, envir = rlang::caller_env())

load_app_support(app_dir, envir = rlang::caller_env())

Arguments
app_dir The base directory for the Shiny application.
envir The environment in which the App support should be made available.
expr An expression to evaluate within the support environment.

Details

For Shiny application testing within R packages, local_app_support() and with_app_support()
where loading an App’s support files should not happen automatically.

For non-package based Shiny applications, it is recommended to use load_app_support() for the
support to be available throughout all test files.

Functions

* local_app_support(): Temporarily attach the Shiny application’s support environment into
the current environment.

» with_app_support(): For the provided expr, attach the Shiny application’s support environ-
ment into the current environment.

* load_app_support(): Loads all support files into the current environment. No cleanup ac-
tions are ever performed.

Examples

Not run:
./tests/testthat/apps/myapp/R/utils.R
n <- 42

#' # ./tests/testthat/test-utils.R

test_that("Can access support environment”, {
expect_false(exists("n"))
shinytest2::local_app_support(test_path("apps/myapp”))
expect_equal(n, 42)

»

Or using with_app_support()
test_that(”Can access support environment”, {
expect_false(exists("n"))
shinytest2: :with_app_support(test_path("apps/myapp"”), {
expect_equal(n, 42)
b))
expect_false(exists("n"))

b

End(Not run)

58 migrate_from_shinytest

migrate_from_shinytest
Migrate shinytest tests

Description

This function will migrate standard shinytest test files to the new shinytest2 + testthat ed 3 snapshot
format.

Usage

migrate_from_shinytest(
app_dir,
clean = TRUE,
include_expect_screenshot = missing_arg(),
quiet = FALSE

)
Arguments
app_dir Directory containing the Shiny application or Shiny Rmd file
Must be empty. Allows for parameter expansion.
clean If TRUE, then the shinytest test directory and runner will be deleted after the

migration to use shinytest2.

include_expect_screenshot
If TRUE, ShinyDriver$snapshot () will turn into both AppDriver$expect_values()
and AppDriver$expect_screenshot(). If FALSE, ShinyDriver$snapshot()
will only turn into AppDriver$expect_values(). If missing, include_expect_screenshot
will behave as FALSE if shinytest: : testApp(compareImages = FALSE) or ShinyDriver$snapshotIni
= FALSE) is called.

quiet Logical that determines if migration information and steps should be printed to
the console.
Details
shinytest file contents will be traversed and converted to the new shinytest2 format. If the shinytest
code can not be directly seen in the code, then it will not be converted.
Value

Invisible TRUE

platform_variant 59

platform_variant Platform specific variant

Description

Returns a string to be used within testthat’s’ snapshot testing. Currently, the Operating System and
R Version (major, minor, no patch version) are returned.

Usage
platform_variant(..., os_name = TRUE, r_version = TRUE)
Arguments
Must be empty. Allows for parameter expansion.
os_name if TRUE, include the OS name in the output
r_version if TRUE, include the major and minor version of the R version, no patch version
Details

If more information is needed in the future to distinguish standard testing environments, this func-
tion will be updated accordingly.

See Also

testthat::test_dir()

record_test Launch test event recorder for a Shiny app

Description

Once a recording is completed, it will create or append a new shinytest2 test to the testthat
test_file.

Usage

record_test(
app = II. n

name = NULL,

seed = NULL,
load_timeout = NULL,
shiny_args = list(),
test_file = NULL,

60 record_test

open_test_file = rlang::is_interactive(),
allow_no_input_binding = NULL,
record_screen_size = TRUE,

run_test = TRUE,

record_in_package = TRUE

)
Arguments

app A AppDriver object, or path to a Shiny application.
Must be empty. Allows for parameter expansion.

name Name provided to AppDriver. This value should be unique between all tests
within a test file. If it is not unique, different expect methods may overwrite
each other.

seed A random seed to set before running the app. This seed will also be used in the

test script.

load_timeout Maximum time to wait for the Shiny application to load, in milliseconds. If a
value is provided, it will be saved in the test script.

shiny_args A list of options to pass to runApp(). If a value is provided, it will be saved in
the test script.

test_file Base file name of the testthat test file. If NULL, a default name will be used. If
recording within a package, the test file will be saved to the package’s tests/testthat/
directory. If not within a package, the test file will be saved to the app’s tests/testthat/
directory. If within a package, the default name is test-app-<appdir>.R,
where <appdir> is the name of the app directory. If not within a package, the
default name is test-shinytest2.R.

open_test_file If TRUE, the test file will be opened in an editor via file.edit() before execut-
ing.
allow_no_input_binding
This value controls if events without input bindings are recorded.
* If TRUE, events without input bindings are recorded.
* If FALSE, events without input bindings are not recorded.

e If NULL (default), if an updated input does not have a corresponding input,
a modal dialog will be shown asking if unbound input events should be
recorded.

See AppDriver$set_inputs() for more information.

record_screen_size
If TRUE, the screen size will be recorded when initialized and changed.

run_test If TRUE, test_file will be executed after saving the recording.
record_in_package
If TRUE and if the current working directory is within a package, the test file will
be saved to the package’s tests/testthat/ directory. If FALSE, the test file
will be saved to the app’s tests/testthat/ directory.

test_app 61

Uploading files

Files that are uploaded to your Shiny app must be located somewhere within the tests/testthat
subdirectory or available via system.file().

Files that are uploaded during recording that do not have a valid path will have a warning inserted
into the code. Please fix the file path by moving the file to the tests/testthat subdirectory or by
using system.file(). After fixing the path, remove the line of warning code.

See Also

test_app()

Examples

Not run:
record_test("path/to/app")

End(Not run)

test_app Test Shiny applications with testthat

Description

This is a helper method that wraps around testthat::test_dir() to test your Shiny application
or Shiny runtime document. This is similar to how testthat: : test_check() tests your R package
but for your app.

Usage

test_app(
app_dir = missing_arg(),
name = missing_arg(),
reporter = testthat::get_reporter(),
stop_on_failure = missing_arg(),
check_setup = deprecated(),
quiet = FALSE

Arguments

app_dir The base directory for the Shiny application.

e Ifapp_diris missing and test_app() is called within the . /tests/testthat.R
file, the parent directory (”../") is used.

* Otherwise, the default path of ”." is used.

Parameters passed to testthat::test_dir()

62 test_app

name Name to display in the middle of the test name. This value is only used when
calling test_app() inside of testhat test. The final testing context will have the
format of "{test_context} - {name} - {app_test_context}".

reporter Reporter to pass through to testthat: :test_dir().
stop_on_failure

If missing, the default value of TRUE will be used. However, if missing and
currently testing, FALSE will be used to seamlessly integrate the app reporter to

reporter.
check_setup Deprecated. Parameter ignored.
quiet If TRUE, suppresses deprecation warnings when called within testthat tests.

Details

Example usage:

Interactive usage
Test Shiny app in current working directory
shinytest2::test_app()

Test Shiny app in another directory
path_to_app <- "path/to/app”
shinytest2::test_app(path_to_app)

File: ./tests/testthat.R
Will find Shiny app in "../"
shinytest2::test_app()

File: ./tests/testthat/test-shinytest2.R
Test a shiny application within your own {testthat} code
test_that("Testing a Shiny app in a package”, {
app <- shinytest2::AppDriver$new(path_to_app)
Perform tests with “app™...
b))

When testing within a package, it is recommended to not call test_app(), but instead test your
applications within your own testthat tests. This allows for more flexibility and control over how
your applications are tested while your current package’s testthat infrastructure. See the Use Pack-
age vignette for more details.

Uploading files

When testing an application, all non-temp files that are uploaded should be located in the . /tests/testthat
directory. This allows for tests to be more portable and self contained.

When recording a test with record_test(), for every uploaded file that is located outside of
./tests/testthat, a warning will be thrown. Once the file path has be fixed, you may remove the
warning statement.

https://rstudio.github.io/shinytest2/articles/use-package.html
https://rstudio.github.io/shinytest2/articles/use-package.html

use_shinytest2 63

Different ways to test

test_app() is an opinionated testing function that will only execute testthat tests in the . /tests/testthat
folder. If (for some rare reason) you have other non-testthat tests to execute, you can call shiny: :runTests().
This method will generically run all test runners and their associated tests.

Execute a single Shiny app's {testthat} file such as ~./tests/testthat/test-shinytest2.R"
test_app(filter = "shinytest2")

Execute all {testthat} tests
test_app()

Execute all tests for all test runners
shiny: :runTests()

See Also

record_test() to create tests to record against your Shiny application.

testthat: :snapshot_review() and testthat: :snapshot_accept() if you want to com-
pare or update snapshots after testing.

local_app_support() / with_app_support() to load the Shiny application’s helper files
into respective environments. These methods are useful for within package testing as they
have fine tune control over when the support environment is loaded.

load_app_support () to load the Shiny application’s helper files into the calling environment.
This method is useful for non-package based Shiny applications where the support environ-
ment should be available in every test file.

use_shinytest2 Use shinytest2 with your Shiny application

Description

Use shinytest2 with your Shiny application

Usage

use_

shinytest2(

n o n

app_dir = ".",

runner = missing_arg(),
setup = missing_arg(),
ignore = missing_arg(),
package = missing_arg(),

L

quiet = FALSE,
overwrite = FALSE

64

use_shinytest2

use_shinytest2_test(

app_dir =

non

’

open = rlang::is_interactive(),
quiet = FALSE,
overwrite = FALSE

Arguments

app_dir
runner

setup

ignore

package

quiet
overwrite

open

Functions

The base directory for the Shiny application
If TRUE, creates a shinytest2 test runner at . /tests/testthat.R

If TRUE, creates a setup file called ./tests/testthat/setup-shinytest2.R
containing a call to load_app_support (). If you would like fine grain control
over when the environment is loaded, please look at local_app_support() and
with_app_support().

If TRUE, adds entries to .Rbuildignore and .gitignore to ignore new debug
screenshots. (*_.new.png)

If TRUE, adds shinytest2 to Suggests in the DESCRIPTION file.
Must be empty. Allows for parameter expansion.

If TRUE, console output will be suppressed.

If TRUE, the test file or test runner will be overwritten.

If TRUE, the test file will be opened in an editor via file.edit() after saving.

* use_shinytest2(): This usethis-style method initializes many different useful features when
using shinytest2:

— runner: Creates a shinytest2 test runner at . /tests/testthat.R. This file will contain
acall to test_app().

— setup: Creates ./tests/testthat/setup-shinytest2.R to add your Shiny ./R ob-
jects and functions into the testing environment. This file will run before testing begins.

— ignore: Add an entry to ./Rbuildignore (if it exists) and .gitignore to ignore new
debug screenshots. (*_.new.png)

— package: Adds shinytest to the Suggests packages in the DESCRIPTION file (if it ex-

ists).

When all values are missing and currently in a package working directory, the defaults are
all TRUE. When the current working directory is a package root directory, runner/setup are
FALSE and ignore/package are TRUE.

If any of these values are not missing, the remaining missing values will be set to FALSE. This
allows use_shinytest2() to add more flags in future versions without opting into all changes

inadvertently.

e use_shinytest2_test(): Creates a test file called . /tests/testthat/test-shinytest2.R.
By default, this file’s template test will initialize your Shiny application and expect the initial

values.

This method will also set up a test runner if it does not exist.

use_shinytest2

Examples

Set up shinytest2 testing configs
Not run: use_shinytest2()

Set up a shinytest2 test

Not run: use_shinytest2_test()

65

Index

AppDriver, 2, 55, 60
base: :options(), 7

chromote: :ChromoteSession, 7, 8, 10, 22,
24,31

compare_screenshot_threshold, 53

compare_screenshot_threshold(), 21, 22

Deprecated, 62
file.edit(), 60, 64

load_app_support (local_app_support), 56
load_app_support(), 57, 63, 64
local_app_support, 56
local_app_support(), 63, 64

migrate_from_shinytest, 58

platform_variant, 59
platform_variant(), 6, 36

record_test, 59
record_test(), 62, 63

screenshot_max_difference
(compare_screenshot_threshold),
53

:downloadButton(), 14, 15

:downloadLink(), 14, 15

:runApp(), 7

:runTests(), 63

:shinyOptions(), 7

:stopApp(), 35

shiny:
shiny:
shiny:
shiny:
shiny:
shiny:

test_app, 61

test_app(), 61, 64
testthat::compare_file_binary, 21, 54
testthat::compare_file_binary(), 22, 55
testthat: :expect_snapshot_file(), 4, 14

66

testthat:
testthat:
testthat:
testthat:

:snapshot_accept(), 63
:snapshot_review(), 5, 63
:test_check(), 61
:test_dir(), 59, 61, 62

unlist(), I8

use_shinytest2, 63

use_shinytest2_test (use_shinytest2), 63
use_shinytest2_test(), 36

with_app_support (local_app_support), 56
with_app_support(), 63, 64

	AppDriver
	compare_screenshot_threshold
	local_app_support
	migrate_from_shinytest
	platform_variant
	record_test
	test_app
	use_shinytest2
	Index

