Package ‘shrinkTVP’

January 8, 2026
Type Package

Title Efficient Bayesian Inference for Time-Varying Parameter Models
with Shrinkage
Version 3.1.1

Description Efficient Markov chain Monte Carlo (MCMC) algorithms for fully Bayesian estima-
tion of time-varying parameter models with shrinkage priors, both dynamic and static. De-
tails on the algorithms used are provided in Bitto and Frithwirth-

Schnatter (2019) <doi:10.1016/j.jeconom.2018.11.006> and

Cadonna et al. (2020) <doi:10.3390/econometrics8020020> and Knaus and Frithwirth-
Schnatter (2023) <doi:10.48550/arXiv.2312.10487>. For details on the pack-

age, please see Knaus et al. (2021) <doi:10.18637/jss.v100.113>. For the multivariate exten-
sion, see the 'shrinkTVPVAR' package.

License GPL (>=2)

Encoding UTF-8

Depends R (>=3.3.0)

Imports Rcpp, GIGrvg, stochvol (>= 3.0.3), coda, methods, utils, zoo

LinkingTo Rcpp, ReppArmadillo, GIGrvg, ReppProgress, stochvol, ReppGSL

RoxygenNote 7.3.2

Suggests testthat, knitr, rmarkdown, R.rsp

VignetteBuilder R.rsp

NeedsCompilation yes

Author Peter Knaus [aut, cre] (ORCID: <https://orcid.org/0000-0001-6498-7084>),
Angela Bitto-Nemling [aut],
Annalisa Cadonna [aut] (ORCID: <https://orcid.org/0000-0003-0360-7628>),
Sylvia Frithwirth-Schnatter [aut] (ORCID:
<https://orcid.org/0000-0003-0516-5552>),
Daniel Winkler [ctb],
Kemal Dingic [ctb]

Maintainer Peter Knaus <peter.knaus@wu.ac.at>
Repository CRAN
Date/Publication 2026-01-08 08:40:26 UTC

https://doi.org/10.1016/j.jeconom.2018.11.006
https://doi.org/10.3390/econometrics8020020
https://doi.org/10.48550/arXiv.2312.10487
https://doi.org/10.18637/jss.v100.i13
https://orcid.org/0000-0001-6498-7084
https://orcid.org/0000-0003-0360-7628
https://orcid.org/0000-0003-0516-5552

2 eval_pred_dens

Contents
eval_pred_dens 2
fitted.shrinkTVP e 3
forecast_shrinkTVP e 4
LPDS . . 5
PIOLMCIMC.AVD o o e e e e e e e e e 6
plot.shrinkTVP 0o e 9
plot.shrinkTVP_forc 10
predict.shrinkTVP o 11
print.shrinkTVP o oo o 12
residuals.shrinkTVP o 000 13
shrinkDTVP o o e 14
shrinkTVP o o e 22
simTVP . . . e 29
updateTVP e 31

Index 38

eval_pred_dens Evaluate the one-step ahead predictive density of a fitted TVP model
Description

eval_pred_dens evaluates the one-step ahead predictive density of a fitted TVP model resulting
from a call to shrink TVP at the points supplied in x. For details on the approximation of the one-step
ahead predictive density used, see the vignette.

Usage
eval_pred_dens(x, mod, data_test, log = FALSE)

Arguments
X a real number or a vector of real numbers, taken to be the points at which the
predictive density will be evaluated.
mod an object of class shrinkTVP, containing the fitted model for which the predic-
tive density should be evaluated.
data_test a data frame with one row, containing the one-step ahead covariates. The names
of the covariates have to match the names of the covariates used during model
estimation in the call to shrinkTVP.
log a single logical value determining whether the density should be evaluated on
the log scale or not.
Value

The value returned is a vector of length length(x), containing the values of the predictive density
evaluated at the points supplied in x.

fitted.shrinkTVP 3

Author(s)

Peter Knaus <peter.knaus@wu.ac.at>

See Also

Other prediction functions: LPDS(), fitted.shrinkTVP(), forecast_shrinkTVP(), predict.shrinkTVP(),
residuals.shrinkTVP()

Examples

Simulate data

set.seed(123)

sim <- simTVP(theta = c(0.2, @, @), beta_mean = c(1.5, -0.3, 0))
data <- sim$data

Estimate model
res <- shrinkTVP(y ~ x1 + x2, data = data[1:199, 1)

Create sequence of x values where the density is to be evaluated
x_vals <- seq(@, 12, by = 0.1)

Evaluate density and plot
dens <- eval_pred_dens(x_vals, res, data[200, 1)
plot(x_vals, dens, type = "1")

Add vertical line where true value of the one-step ahead y lies
abline(v = data$y[200])

fitted.shrinkTVP Calculate fitted historical values for an estimated TVP model

Description

Calculates the fitted values for an estimated TVP model, i.e. X;3;. Note that in contrast to
predict.shrinkTVP this does not include the error term.

Usage
S3 method for class 'shrinkTVP'
fitted(object, ...)

Arguments
object A shrinkTVP object

Currently ignored.

4 forecast_shrinkTVP

Value

An object of class shrinkTVP_fitted

Author(s)

Peter Knaus <peter.knaus@wu.ac.at>

See Also

Other prediction functions: LPDS(), eval_pred_dens(), forecast_shrinkTVP(), predict.shrinkTVP(),
residuals.shrinkTVP()

Examples

Generate synthetic data
sim <- simTVP()

Estimate a model
res <- shrinkTVP(y ~ x1 + x2, sim$data)

Calculate fitted values
fitted <- fitted(res)

Visualize

plot(fitted)
lines(sim$datas$y, col = "forestgreen”)
forecast_shrinkTVP Draw from posterior predictive density of a fitted TVP model
Description

forecast_shrinkTVP draws from the posterior predictive distribution of a fitted TVP model result-
ing from a call to shrinkTVP.

Usage

forecast_shrinkTVP(mod, newdata, n.ahead)

Arguments
mod an object of class shrinkTVP, containing the fitted model.
newdata a data frame containing the future covariates. The names of the covariates have
to match the names used during model estimation in the call to shrinkTVP.
n.ahead a single, positive integer indicating the forecasting horizon, i.e. how many time-

points into the future the posterior predictive distribution should be sampled
from. Can not be larger than the number of rows in newdata.

LPDS 5

Value

The value returned is a list object of class shrinkTVP_forc containing the samples from the poste-
rior predictive density.

Author(s)

Peter Knaus <peter.knaus@wu.ac.at>

See Also

Other prediction functions: LPDS(), eval_pred_dens(), fitted.shrinkTVP(), predict.shrinkTVP(),
residuals.shrinkTVP()

Examples

Simulate data

set.seed(123)

sim <- simTVP(theta = c(0.2, @, @), beta_mean = c(1.5, -0.3, 0))
data <- sim$data

Estimate model
res <- shrinkTVP(y ~ x1 + x2, data = data[1:190, 1)

Forecast
forc <- forecast_shrinkTVP(res, datal[191:200, 1)

Plot
plot(forc)

LPDS Calculate the Log Predictive Density Score for a fitted TVP model

Description

LPDS calculates the one-step ahead Log Predictive Density Score (LPDS) of a fitted TVP model
resulting from a call to shrinkTVP For details on the approximation of the one-step ahead predictive
density used, see the vignette.

Usage

LPDS(mod, data_test)

6 plot.mcmc.tvp

Arguments
mod an object of class shrinkTVP, containing the fitted model for which the LPDS
should be calculated.
data_test a data frame with one row, containing the one-step ahead covariates and re-
sponse. The names of the covariates and the response have to match the names
used during model estimation in the call to shrinkTVP.
Value

A real number equaling the calculated LPDS.

Author(s)

Peter Knaus <peter.knaus@wu.ac.at>

See Also

Other prediction functions: eval_pred_dens(), fitted.shrinkTVP(), forecast_shrinkTVP(),
predict.shrinkTVP(), residuals.shrinkTVP()

Examples

Simulate data

set.seed(123)

sim <- simTVP(theta = c(0.2, @, @), beta_mean = c(1.5, -0.3, 0))
data <- sim$data

Estimate model
res <- shrinkTVP(y ~ x1 + x2, data = data[1:199, 1)

Calculate LPDS
LPDS(res, data[200,])

plot.mcmc. tvp Graphical summary of posterior distribution for a time-varying pa-
rameter

Description

plot.mcmc. tvp plots empirical posterior quantiles for a time-varying parameter.

plot.mcmc.tvp 7

Usage

S3 method for class 'mcmc.tvp'
plot(

XI

probs = ¢(0.025, 0.25, 0.75, ©.975),

shaded = TRUE,

quantlines = FALSE,

shadecol = "skyblue",

shadealpha = 0.5,

quantlty = 2,

quantcol = "black”,

quantlwd = 0.5,

drawzero = TRUE,

zerolty = 2,

zerolwd = 1,

zerocol = "grey”,

Arguments

X mecmce . tvp object

probs vector of boundaries for credible intervals to plot for each point in time, with
values in [0,1]. The largest and smallest value form the outermost credible inter-
val, the second smallest and second largest the second outermost and so forth.
The default value is c(0.025, .25, 0.75, 0.975). Note that there have to be
the same number of probs < 0.5 as there are > 0.5.

shaded single logical value or a vector of logical values, indicating whether or not to
shade the area between the pointwise credible intervals. If a vector is given, the
first value given is used to determine if the area between the outermost credible
interval is shaded, the second for the second outermost and so forth. Recycled in
the usual fashion if the vector is shorter than the number of quantile pairs. The
default value is TRUE.

quantlines single logical value or a vector of logical values, indicating whether or not to
draw borders along the pointwise credible intervals. If a vector is given, the
first value given is used to determine whether the outermost credible interval is
marked by lines, the second for the second outermost and so forth. Recycled in
the usual fashion if the vector is shorter than the number of credible intervals.
The default value is FALSE.

shadecol single character string or a vector of character strings. Determines the color
of the shaded areas that represent the credible intervals. If a vector is given,
the first color given is used for the outermost area, the second for the second
outermost and so forth. Recycled in the usual fashion if the vector is shorter
than the number of shaded areas. Has no effect if shaded = FALSE. The default
value is "skyblue”.

shadealpha real number between 0 and 1 or a vector of real numbers between 0 and 1. De-
termines the level of transparency of the shaded areas that represent the credible

8 plot.mcmc.tvp

intervals. If a vector is given, the first value given is used for the outermost area,
the second for the second outermost and so forth. Recycled in the usual fashion
if the vector is shorter than the number of shaded areas. Has no effect if shaded
= FALSE. The default value is 0. 5.

quantlty either a single integer in [0,6] or one of the character strings "blank”, "solid",
"dashed”, "dotted”, "dotdash”, "longdash"”, "twodash” or a vector con-
taining these. Determines the line type of the borders drawn around the shaded
areas that represent the credible intervals. Note that if a vector is supplied the el-
ements have to either be all integers or all character strings. If a vector is given,
the first value given is used for the outermost area, the second for the second
outermost and so forth. Recycled in the usual fashion if the vector is shorter
than the number of shaded areas. Has no effect if quantlines = FALSE. The
default value is 2.

quantcol single character string or a vector of character strings. Determines the color of
the borders drawn around the shaded areas that represent the credible intervals.
If a vector is given, the first color given is used for borders of the outermost
area, the second for the second outermost and so forth. Recycled in the usual
fashion if the vector is shorter than the number of shaded areas. Has no effect if
quantlines = FALSE. The default value is "black"”.

quantlwd single real, positive number or a vector of real, positive numbers. Determines
the line width of the borders drawn around the shaded areas that represent the
credible intervals. If a vector is given, the first number given is used for the
borders of the outermost area, the second for the second outermost and so forth.
Recycled in the usual fashion if the vector is shorter than the number of shaded
areas. Has no effect if quantlines = FALSE. The default value is @.5.

drawzero single logical value determining whether to draw a horizontal line at zero or not.
The default value is TRUE.
zerolty single integer in [0,6] or one of the character strings "blank”, "solid"”, "dashed”,

"dotted”, "dotdash”, "longdash”, "twodash”. Determines the line type of
the horizontal line at zero. Has no effect if drawzero = FALSE. The default value
is 2.

zerolwd single real, positive number. Determines the line width of the horizontal line at
zero. Has no effect if drawzero = FALSE. The default value is 1.

zerocol single character string. Determines the color of the horizontal line at zero. Has
no effect if drawzero = FALSE. The default value is "grey".

further arguments to be passed to plot.

Value

Called for its side effects and returns invisibly.

Author(s)

Peter Knaus <peter.knaus@wu.ac.at>

See Also

Other plotting functions: plot.shrinkTVP(), plot.shrinkTVP_forc()

plot.shrinkTVP

Examples

set.seed(123)

sim <- simTVP(theta = c(0.2, @, @), beta_mean = c(1.5, -0.3, 0))

data <- sim$data

res <- shrinkTVP(y ~ x1 + x2, data)
plot(res$beta$beta_x1)

plot.shrinkTVP

Graphical summary of posterior distribution

Description

plot.shrinkTVP generates plots visualizing the posterior distribution.

Usage

S3 method for class 'shrinkTVP'

plot(
X,

pars = c("beta"),

nplot = 3,

h_borders = c(0.05, 0.05),
w_borders = c(0.02, 0.02),

Arguments

X

pars

nplot

h_borders

w_borders

a shrinkTVP object.

a character vector containing the names of the parameters to be visualized. The
names have to coincide with the names of the list elements of the shrinkTVP
object. Throws an error if any element of pars does not fulfill this criterium.
The default is c("beta").

positive integer that indicates the number of tvp plots to display on a single page
before a new page is generated. The default value is 3.

single real, positive number smaller than 0.5 or a vector containing two such
numbers. Determines the relative amount of space (the total amount summing
up to 1) left blank on the left and right of the plot, in that order. The default is
c(0.05, 0.05).

single real, positive number smaller than 0.5 or a vector containing two such
numbers. Determines the relative amount of space (the total amount summing
up to 1) left blank at the top and bottom of the plot, in that order. The default is
c(0.02, 0.02).

further arguments to be passed to the respective plotting functions.

10 plot.shrinkTVP_forc

Value

Called for its side effects and returns invisibly.

Author(s)

Peter Knaus <peter.knaus@wu.ac.at>

See Also
Other plotting functions: plot.mcmc. tvp(), plot.shrinkTVP_forc()

Examples

set.seed(123)
sim <- simTVP(theta = c(0.2, @, @), beta_mean = c(1.5, -0.3, 0))
data <- sim$data

output <- shrinkTVP(y ~ x1 + x2, data)
plot(output)

Will produce an error because 'hello' is not a parameter in the model
Not run:
plot(output, pars = c("beta”, "hello"))

End(Not run)

plot.shrinkTVP_forc Graphical summary of posterior predictive density

Description

plot.shrinkTVP_forc generates plots visualizing the posterior predictive density generated by
forecast_shrinkTVP.

Usage
S3 method for class 'shrinkTVP_forc'
plot(x, showgap = FALSE, ...)
Arguments
X a shrinkTVP_forc object.
showgap if showgap = FALSE, the gap between the historical observations and the fore-

casts is removed. The default value is FALSE.

further arguments to be passed to plot.

predict.shrinkTVP 11

Value

Called for its side effects and returns invisibly.

Author(s)

Peter Knaus <peter.knaus@wu.ac.at>

See Also

Other plotting functions: plot.memc. tvp(), plot.shrinkTVP()

Examples

set.seed(123)
sim <- simTVP()

train <- sim$datal1:190, 1]
test <- sim$datal[191:200,]

res <- shrinkTVP(y ~ x1 + x2, train)

forecast <- forecast_shrinkTVP(res, test)

plot(forecast)
lines(sim$datas$y, col = "forestgreen”)
predict.shrinkTVP Calculate predicted historical values for an estimated TVP model
Description

Calculates the predicted past values for an estimated TVP model, i.e. X[3; + ¢. Note that in
contrast to fitted. shrinkTVP this includes the error term.

Usage
S3 method for class 'shrinkTVP'
predict(object, ...)

Arguments
object a shrinkTVP object

Currently ignored.

Value

An object of class shrinkTVP_pred.

12 print.shrinkTVP

Author(s)

Peter Knaus <peter.knaus@wu.ac.at>

See Also

Other prediction functions: LPDS(), eval_pred_dens(), fitted.shrinkTVP(), forecast_shrinkTVP(),
residuals.shrinkTVP()

Examples

Generate synthetic data
sim <- simTVP(N = 300)

Estimate a model
res <- shrinkTVP(y ~ x1 + x2, sim$data)

Calculate predicted values
pred <- predict(res)

Visualize

plot(pred)
lines(sim$datas$y, col = "forestgreen”)
print.shrinkTVP Nicer printing of shrinkTVP objects
Description

Nicer printing of shrinkTVP objects

Usage
S3 method for class 'shrinkTVP'
print(x, ...)
Arguments
X a shrinkTVP object.
Currently ignored.
Value

Called for its side effects and returns invisibly.

Author(s)

Peter Knaus <peter.knaus@wu.ac.at>

residuals.shrink TVP 13

residuals.shrinkTVP Calculate residuals for an estimated TVP model

Description

Calculates the residuals for an estimated TVP model, i.e. y; — X/ 5;.

Usage
S3 method for class 'shrinkTVP'
residuals(object, ...)

Arguments
object a shrinkTVP object.

Currently ignored.

Value

An object of class shrinkTVP_resid

Author(s)

Peter Knaus <peter.knaus@wu.ac.at>

See Also

Other prediction functions: LPDS(), eval_pred_dens(), fitted.shrinkTVP(), forecast_shrinkTVP(),
predict.shrinkTVP()

Examples

Generate synthetic data
sim <- simTVP(N = 300)

Estimate a model
res <- shrinkTVP(y ~ x1 + x2, sim$data)

Calculate residuals
resids <- residuals(res)

Visualize
plot(resids)

14 shrinkDTVP

shrinkDTVP Markov Chain Monte Carlo (MCMC) for time-varying parameter
models with dynamic shrinkage

Description

shrinkTVP samples from the joint posterior distribution of the parameters of a time-varying param-
eter model with dynamic triple gamma shrinkage, potentially including stochastic volatility (SV),
and returns the MCMC draws.

Usage

shrinkDTVP(
formula,
data,
mod_type = "double”,
niter = 10000,
nburn = round(niter/2),
nthin = 1,
learn_a_xi = TRUE,
learn_a_tau = TRUE,
a_xi = 0.1,
a_tau = 0.1,
learn_c_xi = TRUE,
learn_c_tau = TRUE,
0.1

C_Xi ,
c_tau = 0.1,
a_eq_c_xi = FALSE,

a_eq_c_tau = FALSE,
learn_kappa2_B = TRUE,
learn_lambda2_B = TRUE,
kappa2_B = 20,

lambda = 20,

a_psi 5,

c_psi = 0.5,

iid = FALSE,
shrink_inter = TRUE,
hyperprior_param,
display_progress = TRUE,
sv = FALSE,

sv_param,

MH_tuning,

starting_vals

n N

_B
Q.

shrinkDTVP 15

Arguments

formula object of class "formula": a symbolic representation of the model, as in the
function 1m. For details, see formula.

data optional data frame containing the response variable and the covariates. If not
found in data, the variables are taken from environment(formula), typically
the environment from which shrinkTVP is called. No NAs are allowed in the
response variable and the covariates.

mod_type character string that reads either "triple”, "double” or "ridge". Determines
whether the triple gamma, double gamma or ridge prior are used for theta_sr
and beta_mean. The default is "double".

niter positive integer, indicating the number of MCMC iterations to perform, includ-
ing the burn-in. Has to be larger than or equal to nburn + 2. The default value
is 10000.

nburn non-negative integer, indicating the number of iterations discarded as burn-in.
Has to be smaller than or equal to niter - 2. The default value is round(niter
/2).

nthin positive integer, indicating the degree of thinning to be performed. Every nthin
draw is kept and returned. The default value is 1, implying that every draw is
kept.

learn_a_xi logical value indicating whether to learn a_xi, the spike parameter of the state
variances. Ignored if mod_type is set to "ridge"”. The default value is TRUE.

learn_a_tau logical value indicating whether to learn a_tau, the spike parameter of the mean
of the initial values of the states. Ignored if mod_type is set to "ridge"”. The
default value is TRUE.

a_xi positive, real number, indicating the (fixed) value for a_xi. Ignored if learn_a_xi
is TRUE or mod_type is set to "ridge”. The default value is 0.1.

a_tau positive, real number, indicating the (fixed) value for a_tau. Ignored if learn_a_tau
is TRUE or mod_type is set to "ridge”. The default value is 0.1.

learn_c_xi logical value indicating whether to learn c_xi, the tail parameter of the state
variances. Ignored if mod_type is not set to "triple” or a_eg_c_xi is set to
TRUE. The default value is TRUE.

learn_c_tau logical value indicating whether to learn c_tau, the tail parameter of the mean
of the initial values of the states. Ignored if mod_type is not set to "triple” or
a_eg_c_tau is set to TRUE. The default value is TRUE.

c_xi positive, real number, indicating the (fixed) value for c¢_xi. Ignored if learn_c_xi
is TRUE, mod_type is not set to "triple” or a_eq_c_xi is set to TRUE. The de-
fault value is 0.1.

c_tau positive, real number, indicating the (fixed) value for c_tau. Ignored if learn_c_xi
is TRUE, mod_type is not set to "triple"” or a_eq_c_tau is set to TRUE. The de-
fault value is 0.1.

a_eq_c_xi logical value indicating whether to force a_xi and c_xi to be equal. If set to
TRUE, beta_a_xi and alpha_a_xi are used as the hyperparameters and beta_c_xi
and alpha_c_xi are ignored. Ignored if mod_type is not set to "triple"”. The
default value is FALSE.

16

a_eq_c_tau

learn_kappa2_B

learn_lambda2_B

kappa2_B

lambda2_B

a_psi

c_psi

iid

shrink_inter

shrinkDTVP

logical value indicating whether to force a_tau and c_tau to be equal. If set
to TRUE, beta_a_tau and alpha_a_tau are used as the hyperparameters and
beta_c_tau and alpha_c_tau are ignored. Ignored if mod_type is not set to
"triple”. The default value is FALSE.

logical value indicating whether to learn kappa2_B, the global level of shrinkage
for the state variances. The default value is TRUE.

logical value indicating whether to learn the lambda2_B parameter, the global
level of shrinkage for the mean of the initial values of the states. The default
value is TRUE.

positive, real number, indicating the (fixed) value for kappa2_B. Ignored if
learn_kappa2_B is TRUE. The default value is 20.

positive, real number, indicating the (fixed) value for lambda2_B. Ignored if
learn_lambda2_B is TRUE. The default value is 20.

positive, real number, or a vector of length equal to the number of covariates
containing positive, real numbers. Indicates the value for a_psi, which is the
pole parameter of the dynamic triple gamma. The default value is 0.5.

positive, real number, or a vector of length equal to the number of covariates
containing positive, real numbers. Indicates the value for c_psi, which is the tail
parameter of the dynamic triple gamma. The default value is 0.5.

logical value indicating whether the innovations are assumed to be independent
and identically distributed. If set to TRUE, the innovations are assumed to be
a priori iid triple gamma. If set to FALSE, the prior on the innovations is the
dynamic triple gamma specification of Knaus and Frithwirth-Schnatter (2023).
The default value is FALSE.

logical value indicating whether to dynamically shrink the intercept. Note that
shrinkage is still applied to the theta_sr and beta_mean associated with the
intercept. The intercept column is automatically determined by the function and
does not have to be included in the formula. This is done by finding the column
that contains only 1s. The default value is TRUE.

hyperprior_param

optional named list containing hyperparameter values. Not all have to be sup-
plied, with those missing being replaced by the default values. Any list elements
that are misnamed will be ignored and a warning will be thrown. All hyperpa-
rameter values have to be positive, real numbers. The following hyperparame-
ters can be supplied:

e c0: The default value is 2.5.

¢ g0: The default value is 5.

¢ GO: The default value is 5/ (2.5 - 1).

* e1: The default value is 0.001.

* e2: The default value is 0.001.

* d1: The default value is 0.001.

e d2: The default value is 0.001.

¢ alpha_a_xi: The default value is 5.

¢ alpha_a_tau: The default value is 5.

shrinkDTVP 17

* beta_a_xi: The default value is 10.

* beta_a_tau: The default value is 10.

¢ alpha_c_xi: The default value is 5.

e alpha_c_tau: The default value is 5.

e beta_c_xi: The default value is 2.

* beta_c_tau: The default value is 2.

* a_rho: The default value is 2.

e b_rho: The default value is 0.95.

¢ alpha_rho: The default value is 0.5.

¢ beta_rho: The default value is 3.

display_progress

logical value indicating whether the progress bar and other informative output
should be displayed. The default value is TRUE.

sV logical value indicating whether to use stochastic volatility for the error of the
observation equation. For details please see stochvol, in particular svsample.
The default value is FALSE.

sv_param optional named list containing hyperparameter values for the stochastic volatil-
ity parameters. Not all have to be supplied, with those missing being replaced
by the default values. Any list elements that are misnamed will be ignored and
a warning will be thrown. Ignored if sv is FALSE. The following elements can
be supplied:

* Bsigma_sv: positive, real number. The default value is 1.
* a@_sv: positive, real number. The default value is 5.

* b@_sv: positive, real number. The default value is 1.5.

¢ bmu: real number. The default value is 0.

e Bmu: real number. larger than 0. The default value is 1.

MH_tuning optional named list containing values used to tune the MH steps for a_x1i, a_tau,
c_xi, and c_tau. Not all have to be supplied, with those missing being re-
placed by the default values. Any list elements that are misnamed will be ig-
nored and a warning will be thrown. The arguments for a_xi(a_tau) are only
used if learn_a_xi(learn_a_tau) is set to TRUE and mod_type is not equal to
"ridge". The arguments for c_xi(c_tau) are only used if learn_c_xi(learn_c_tau)
is set to TRUE and mod_type is equal to "triple”. Arguments ending in "adap-
tive" are logical values indicating whether or not to make the MH step for the
respective parameter adaptive. Arguments ending in "tuning_par" serve two dif-
ferent purposes. If the respective MH step is not set to be adaptive, it acts as the
standard deviation of the proposal distribution. If the respective MH step is set
to be adaptive, it acts as the initial standard deviation. Arguments ending in "tar-
get_rate" define the acceptance rate the algorithm aims to achieve. Arguments
ending in "max_adapt"” set the maximum value by which the logarithm of the
standard deviation of the proposal distribution is adjusted. Finally, arguments
ending in "batch_size" set the batch size after which the standard deviation of
the proposal distribution is adjusted. The following elements can be supplied:

* a_xi_adaptive: logical value. The default is TRUE.
* a_xi_tuning_par: positive, real number. The default value is 1.

18

starting_vals

shrinkDTVP

a_xi_target_rate: positive, real number, between 0 and 1. The default
value is 0.44.

a_xi_max_adapt: positive, real number. The default value is 0.01.
a_xi_batch_size: positive integer. The default value is 50.
a_tau_adaptive: logical value. The default is TRUE.
a_tau_tuning_par: positive, real number. The default value is 1.

a_tau_target_rate: positive, real number, between 0 and 1. The default
value is 0.44.

a_tau_max_adapt: positive, real number. The default value is 0.01.
a_tau_batch_size: positive integer. The default value is 50.
c_xi_adaptive: logical value. The default is TRUE.
c_xi_tuning_par: positive, real number. The default value is 1.

c_xi_target_rate: positive, real number, between 0 and 1. The default
value is 0.44.

c_xi_max_adapt: positive, real number. The default value is 0.01.
c_xi_batch_size: positive integer. The default value is 50.
c_tau_adaptive: logical value. The default is TRUE.
c_tau_tuning_par: positive, real number. The default value is 1.

c_tau_target_rate: positive, real number, between 0 and 1. The default
value is 0.44.

c_tau_max_adapt: positive, real number. The default value is 0.01.
c_tau_batch_size: positive integer. The default value is 50.
rho_adaptive: logical value. The default is TRUE.
rho_tuning_par: positive, real number. The default value is 1.

rho_target_rate: positive, real number, between 0 and 1. The default
value is 0.44.

rho_max_adapt: positive, real number. The default value is 0.01.
rho_batch_size: positive integer. The default value is 50.

optional named list containing the values at which the MCMC algorithm will be
initialized. In the following d refers to the number of covariates, including the
intercept and expanded factors. Not all have to be supplied, with those missing
being replaced by the default values. Any list elements that are misnamed will be
ignored and a warning will be thrown. The following elements can be supplied:

beta_mean_st: vector of length d containing single numbers. The default
isrep(@, d).

theta_sr_st: vector of length d containing single, positive numbers. The
default is rep(1, d).

tau2_st: vector of length d containing single, positive numbers. The de-
faultis rep(1, d).

xi2_st: vector of length d containing single, positive numbers. The default
isrep(1, d).

kappa2_st: vector of length d containing single, positive numbers. The
default is rep(1, d).

shrinkDTVP

Details

19

* lambda2_st: vector of length d containing single, positive numbers. The
defaultis rep(1, d).

* kappa2_B_st: positive, real number. The default value is 20.
* lambda2_B_st: positive, real number. The default value is 20.
* a_xi_st: positive, real number. The default value is 0.1.

* a_tau_st: positive, real number. The default value is 0.1.

e c_xi_st: positive, real number. The default value is 0.1. Note that the prior
for c_xi is restricted to (0, 0.5).

e c_tau_st: positive, real number. The default value is 0.1. Note that the
prior for c_tau is restricted to (0, 0.5).

e sv_mu_st: real number. The default value is -10.

* sv_phi_st: positive, real number between -1 and 1. The default value is
0.5.

* sv_sigma2_st : positive, real number. The default value is 1.
* CO_st: positive, real number. The default value is 1.

* sigma2_st: positive, real number if sv is FALSE, otherwise a vector of
positive, real numbers of length N. The default value is 1 or a vector thereof.

¢ ho_st: real number. The default value is 0.

* lambda_0_st vector of length d containing positive, real numbers. The
default value is rep(1, d).

* rho_st: vector of length d containing real numbers between 0 and b_rho.
The default value is rep(max(@.1, hyperprior_param$b_rho-0.1), d).

For details concerning the algorithms please refer to the papers by Bitto and Frithwirth-Schnatter
(2019), Cadonna et al. (2020) and Knaus and Frithwirth-Schnatter (2023). For more details on the
package and the usage of the functions, see Knaus et al. (2021).

Value

The value returned is a list object of class shrinkTVP containing

beta
beta_mean
theta_sr
tau2

xi2

list object containing an mcmc.tvp object for the parameter draws from the
posterior distribution of the centered states, one for each covariate. In the case
that there is only one covariate, this becomes just a single mcmc. tvp object.

mcme object containing the parameter draws from the posterior distribution of
beta_mean.

mcmc object containing the parameter draws from the posterior distribution of
the square root of theta.

mcmc object containing the parameter draws from the posterior distribution of
tau2.

mcmc object containing the parameter draws from the posterior distribution of
Xi2.

20

psi

lambda_p

kappa_p

lambda?2

kappa2

a_tau

c_Xxi

c_tau

lambda2_B

kappa2_B

rho

sigma2

co

sv_mu

sv_phi

sv_sigma?2

shrinkDTVP

list object containing an mcmc.tvp object for the parameter draws from the
posterior distribution of psi, one for each covariate. In the case that there is only
one covariate, this becomes just a single mecmc. tvp object.

list object containing an mcmc.tvp object for the parameter draws from the
posterior distribution of lambda_p, one for each covariate. In the case that there
is only one covariate, this becomes just a single mecmc. tvp object.

(optional) 1list object containing an mcmc. tvp object for the parameter draws
from the posterior distribution of kappa_p, one for each covariate. In the case
that there is only one covariate, this becomes just a single mcmc. tvp object. Not
returned if iid is not TRUE.

(optional) mcmc object containing the parameter draws from the posterior distri-
bution of lambda2. Not returned if mod_type is not "triple”.

(optional) mcmc object containing the parameter draws from the posterior distri-
bution of kappa2. Not returned if mod_type is not "triple”.

(optional) mcmc object containing the parameter draws from the posterior distri-
bution of a_xi. Not returned if learn_a_xi is FALSE or mod_type is "ridge"”.

(optional) mcmc object containing the parameter draws from the posterior distri-
bution of a_tau. Not returned if learn_a_tau is FALSE or mod_type is "ridge".

(optional) mcmc object containing the parameter draws from the posterior dis-
tribution of c¢_xi. Not returned if learn_c_xi is FALSE or mod_type is not
"triple"”.

(optional) mcmc object containing the parameter draws from the posterior dis-
tribution of c_tau. Not returned if learn_c_tau is FALSE or mod_type is not
"triple”.

(optional) mcmc object containing the parameter draws from the posterior distri-
bution of lambda2_B. Not returned if 1learn_lambda2_B is FALSE or mod_type
is "ridge”.

(optional) mcmc object containing the parameter draws from the posterior distri-
bution of kappa2_B. Not returned if learn_kappa2_B is FALSE or mod_type is
"ridge".

(optional) mcmc object containing the parameter draws from the posterior distri-
bution of rho. Not returned if iid is not TRUE.

mcmc object containing the parameter draws from the posterior distribution of
sigma2. If svis TRUE, sigma2 is additionally an mcmc. tvp object.

(optional) mcmc object containing the parameter draws from the posterior distri-
bution of CO. Not returned if sv is TRUE.

(optional) mcmc object containing the parameter draws from the posterior distri-
bution of the mu parameter for the stochastic volatility model on the errors. Not
returned if sv is FALSE.

(optional) mcmc object containing the parameter draws from the posterior distri-
bution of the phi parameter for the stochastic volatility model on the errors. Not
returned if sv is FALSE.

(optional) mcmc object containing the parameter draws from the posterior distri-
bution of the sigma2 parameter for the stochastic volatility model on the errors.
Not returned if sv is FALSE.

shrinkDTVP 21

MH_diag (optional) named list containing statistics for assessing MH performance. Not
returned if no MH steps are required or none of them are specified to be adaptive.

internals list object containing two arrays that are required for calculating the LPDS.

priorvals list object containing hyperparameter values of the prior distributions, as spec-
ified by the user.

model list object containing the model matrix, model response and formula used.

summaries list object containing a collection of summary statistics of the posterior draws.

To display the output, use plot and summary. The summary method displays the specified prior val-
ues stored in priorvals and the posterior summaries stored in summaries, while the plot method
calls coda’s plot.mcmc or the plot.memc. tvp method. Furthermore, all functions that can be ap-
plied to coda: :mcmc objects (e.g. coda::acfplot) can be applied to all output elements that are
coda compatible.

Author(s)

Peter Knaus <peter.knaus@wu.ac.at>

References

Bitto, A., & Frithwirth-Schnatter, S. (2019). "Achieving shrinkage in a time-varying parameter
model framework." Journal of Econometrics,210(1), 75-97. <doi:10.1016/j.jeconom.2018.11.006>

Cadonna, A., Frithwirth-Schnatter, S., & Knaus, P. (2020). "Triple the Gamma—A Unifying
Shrinkage Prior for Variance and Variable Selection in Sparse State Space and TVP Models."
Econometrics, 8(2), 20. <doi:10.3390/econometrics8020020>

Knaus, P, Bitto-Nemling, A., Cadonna, A., & Frithwirth-Schnatter, S. (2021) "Shrinkage in the
Time-Varying Parameter Model Framework Using the R Package shrinkTVP." Journal of Statistical
Software 100(13), 1-32. <doi:10.18637/jss.v100.i113>

Knaus, P., & Frithwirth-Schnatter, S. (2023). "The Dynamic Triple Gamma Prior as a Shrinkage
Process Prior for Time-Varying Parameter Models." arXiv preprint arXiv:2312.10487. <doi:10.48550/arXiv.2312.10487>
See Also

plot.shrinkTVP, plot.mcmc. tvp

Examples

set.seed(123)
sim <- simTVP(DTG = TRUE, theta = c(@, 1, @), beta_mean = c(1, 1, @), rho = 0.95, c_psi = 2)
data <- sim$data

Example 1, match the true underlying process

res <- shrinkDTVP(y ~ x1 + x2, data = data, c_psi = 2)
summarize output

summary(res)

Example 2, dynamic horseshoe

22 shrinkTVP

res <- shrinkDTVP(y ~ x1 + x2, data = data)

Example 3, modify hyperparameters
res <- shrinkDTVP(y ~ x1 + x2, data = data,
hyperprior_param = list(a_rho = 1,
alpha_rho = 0.5,
beta_rho = 0.5))

shrinkTVP Markov Chain Monte Carlo (MCMC) for time-varying parameter
models with shrinkage

Description

shrinkTVP samples from the joint posterior distribution of the parameters of a time-varying param-
eter model with shrinkage, potentially including stochastic volatility (SV), and returns the MCMC
draws.

Usage

shrinkTVP(
formula,
data,
mod_type = "double”,
niter = 10000,
nburn = round(niter/2),
nthin = 1,
learn_a_xi = TRUE,
learn_a_tau = TRUE,
a_xi 0.1,
a_tau = 0.1,
learn_c_xi = TRUE,
learn_c_tau = TRUE,
0.1

C_Xi R
c_tau = 0.1,
a_eq_c_xi = FALSE,

a_eq_c_tau = FALSE,
learn_kappa2_B = TRUE,
learn_lambda2_B = TRUE,
kappa2_B = 20,

lambda2_B = 20,
hyperprior_param,
display_progress = TRUE,
sv = FALSE,

shrinkTVP

sv_param,

MH_tuning,
starting_vals

)

Arguments

formula

data

mod_type

niter

nburn

nthin

learn_a_xi

learn_a_tau

a_tau

learn_c_xi

learn_c_tau

c_tau

23

object of class "formula": a symbolic representation of the model, as in the
function 1m. For details, see formula.

optional data frame containing the response variable and the covariates. If not
found in data, the variables are taken from environment(formula), typically
the environment from which shrinkTVP is called. No NAs are allowed in the
response variable and the covariates.

character string that reads either "triple”, "double” or "ridge". Determines
whether the triple gamma, double gamma or ridge prior are used for theta_sr
and beta_mean. The default is "double".

positive integer, indicating the number of MCMC iterations to perform, includ-
ing the burn-in. Has to be larger than or equal to nburn + 2. The default value
is 10000.

non-negative integer, indicating the number of iterations discarded as burn-in.
Has to be smaller than or equal to niter - 2. The default value is round(niter
/2).

positive integer, indicating the degree of thinning to be performed. Every nthin
draw is kept and returned. The default value is 1, implying that every draw is
kept.

logical value indicating whether to learn a_xi, the spike parameter of the state
variances. Ignored if mod_type is set to "ridge"”. The default value is TRUE.

logical value indicating whether to learn a_tau, the spike parameter of the mean
of the initial values of the states. Ignored if mod_type is set to "ridge"”. The
default value is TRUE.

positive, real number, indicating the (fixed) value for a_xi. Ignored if learn_a_xi
is TRUE or mod_type is set to "ridge”. The default value is 0.1.

positive, real number, indicating the (fixed) value for a_tau. Ignored if learn_a_tau
is TRUE or mod_type is set to "ridge”. The default value is 0.1.

logical value indicating whether to learn c_xi, the tail parameter of the state
variances. Ignored if mod_type is not set to "triple"” or a_eq_c_xi is set to
TRUE. The default value is TRUE.

logical value indicating whether to learn c_tau, the tail parameter of the mean
of the initial values of the states. Ignored if mod_type is not set to "triple” or
a_eq_c_tau is set to TRUE. The default value is TRUE.

positive, real number, indicating the (fixed) value for c¢_xi. Ignored if learn_c_xi
is TRUE, mod_type is not set to "triple” or a_eq_c_xi is set to TRUE. The de-
fault value is 0.1.

positive, real number, indicating the (fixed) value for c_tau. Ignored if learn_c_xi
is TRUE, mod_type is not set to "triple” or a_eq_c_tauis set to TRUE. The de-
fault value is 0.1.

24

a_eqg_c_xi

a_eqg_c_tau

learn_kappa2_B

learn_lambda2_B

kappa2_B

lambda2_B

shrinkTVP

logical value indicating whether to force a_xi and c_xi to be equal. If set to
TRUE, beta_a_xi and alpha_a_xi are used as the hyperparameters and beta_c_xi
and alpha_c_xi are ignored. Ignored if mod_type is not set to "triple”. The
default value is FALSE.

logical value indicating whether to force a_tau and c_tau to be equal. If set
to TRUE, beta_a_tau and alpha_a_tau are used as the hyperparameters and
beta_c_tau and alpha_c_tau are ignored. Ignored if mod_type is not set to
"triple”. The default value is FALSE.

logical value indicating whether to learn kappa2_B, the global level of shrinkage
for the state variances. The default value is TRUE.

logical value indicating whether to learn the lambda2_B parameter, the global
level of shrinkage for the mean of the initial values of the states. The default
value is TRUE.

positive, real number, indicating the (fixed) value for kappa2_B. Ignored if
learn_kappa2_B is TRUE. The default value is 20.

positive, real number, indicating the (fixed) value for lambda2_B. Ignored if
learn_lambda2_B is TRUE. The default value is 20.

hyperprior_param

optional named list containing hyperparameter values. Not all have to be sup-
plied, with those missing being replaced by the default values. Any list elements
that are misnamed will be ignored and a warning will be thrown. All hyperpa-
rameter values have to be positive, real numbers. The following hyperparame-
ters can be supplied:

¢ c0: The default value is 2.5.

¢ g0: The default value is 5.

¢ GO: The default value is 5/ (2.5 - 1).

* e1: The default value is 0.001.

* e2: The default value is 0.001.

e d1: The default value is 0.001.

e d2: The default value is 0.001.

e alpha_a_xi: The default value is 5.

¢ alpha_a_tau: The default value is 5.

e beta_a_xi: The default value is 10.

e beta_a_tau: The default value is 10.

¢ alpha_c_xi: The default value is 5.

¢ alpha_c_tau: The default value is 5.

e beta_c_xi: The default value is 2.

* beta_c_tau: The default value is 2.

display_progress

SV

logical value indicating whether the progress bar and other informative output
should be displayed. The default value is TRUE.

logical value indicating whether to use stochastic volatility for the error of the
observation equation. For details please see stochvol, in particular svsample.
The default value is FALSE.

shrinkTVP 25

sv_param optional named list containing hyperparameter values for the stochastic volatil-
ity parameters. Not all have to be supplied, with those missing being replaced
by the default values. Any list elements that are misnamed will be ignored and
a warning will be thrown. Ignored if sv is FALSE. The following elements can
be supplied:

e Bsigma_sv: positive, real number. The default value is 1.
* a0@_sv: positive, real number. The default value is 5.

* b@_sv: positive, real number. The default value is 1.5.

* bmu: real number. The default value is 0.

* Bmu: real number. larger than 0. The default value is 1.

MH_tuning optional named list containing values used to tune the MH steps for a_xi, a_tau,
c_xi, and c_tau. Not all have to be supplied, with those missing being re-
placed by the default values. Any list elements that are misnamed will be ig-
nored and a warning will be thrown. The arguments for a_xi(a_tau) are only
used if learn_a_xi(learn_a_tau) is set to TRUE and mod_type is not equal to
"ridge". The arguments for c_xi(c_tau) are only used if learn_c_xi(learn_c_tau)
is set to TRUE and mod_type is equal to "triple”. Arguments ending in "adap-
tive" are logical values indicating whether or not to make the MH step for the
respective parameter adaptive. Arguments ending in "tuning_par" serve two dif-
ferent purposes. If the respective MH step is not set to be adaptive, it acts as the
standard deviation of the proposal distribution. If the respective MH step is set
to be adaptive, it acts as the initial standard deviation. Arguments ending in "tar-
get_rate" define the acceptance rate the algorithm aims to achieve. Arguments
ending in "max_adapt" set the maximum value by which the logarithm of the
standard deviation of the proposal distribution is adjusted. Finally, arguments
ending in "batch_size" set the batch size after which the standard deviation of
the proposal distribution is adjusted. The following elements can be supplied:

* a_xi_adaptive: logical value. The default is TRUE.
* a_xi_tuning_par: positive, real number. The default value is 1.

* a_xi_target_rate: positive, real number, between 0 and 1. The default
value is 0.44.

* a_xi_max_adapt: positive, real number. The default value is 0.01.
* a_xi_batch_size: positive integer. The default value is 50.

* a_tau_adaptive: logical value. The default is TRUE.

e a_tau_tuning_par: positive, real number. The default value is 1.

* a_tau_target_rate: positive, real number, between 0 and 1. The default
value is 0.44.

* a_tau_max_adapt: positive, real number. The default value is 0.01.
* a_tau_batch_size: positive integer. The default value is 50.

* c_xi_adaptive: logical value. The default is TRUE.

e c_xi_tuning_par: positive, real number. The default value is 1.

e c_xi_target_rate: positive, real number, between 0 and 1. The default
value is 0.44.

* c_xi_max_adapt: positive, real number. The default value is 0.01.
* c_xi_batch_size: positive integer. The default value is 50.

26

starting_vals

Details

shrinkTVP

e c_tau_adaptive: logical value. The default is TRUE.
e c_tau_tuning_par: positive, real number. The default value is 1.

e c_tau_target_rate: positive, real number, between 0 and 1. The default
value is 0.44.

e c_tau_max_adapt: positive, real number. The default value is 0.01.
* c_tau_batch_size: positive integer. The default value is 50.

optional named list containing the values at which the MCMC algorithm will be
initialized. In the following d refers to the number of covariates, including the
intercept and expanded factors. Not all have to be supplied, with those missing
being replaced by the default values. Any list elements that are misnamed will be
ignored and a warning will be thrown. The following elements can be supplied:

* beta_mean_st: vector of length d containing single numbers. The default
is rep(0, d).

* theta_sr_st: vector of length d containing single, positive numbers. The
default is rep(1, d).

e tau2_st: vector of length d containing single, positive numbers. The de-
fault is rep(1, d).

* xi2_st: vector of length d containing single, positive numbers. The default
is rep(1, d).

* kappa2_st: vector of length d containing single, positive numbers. The
default is rep(1, d).

* lambda2_st: vector of length d containing single, positive numbers. The
default is rep(1, d).

* kappa2_B_st: positive, real number. The default value is 20.
e lambda2_B_st: positive, real number. The default value is 20.
* a_xi_st: positive, real number. The default value is 0.1.

* a_tau_st: positive, real number. The default value is 0.1.

* c_xi_st: positive, real number. The default value is 0.1. Note that the prior
for c_xi is restricted to (0, 0.5).

e c_tau_st: positive, real number. The default value is 0.1. Note that the
prior for c_tau is restricted to (0, 0.5).

* sv_mu_st: real number. The default value is -10.

* sv_phi_st: positive, real number between -1 and 1. The default value is
0.5.

* sv_sigma2_st : positive, real number. The default value is 1.

* CO_st: positive, real number. The default value is 1.

* sigma2_st: positive, real number if sv is FALSE, otherwise a vector of
positive, real numbers of length N. The default value is 1 or a vector thereof.
e ho_st: real number. The default value is 0.

For details concerning the algorithms please refer to the papers by Bitto and Frithwirth-Schnatter
(2019) and Cadonna et al. (2020). For more details on the package and the usage of the functions,
see Knaus et al. (2021). For the multivariate extension, see the shrinkTVPVAR function from the
shrinkTVPVAR package.

shrinkTVP

Value

27

The value returned is a list object of class shrinkTVP containing

beta

beta_mean

theta_sr

tau2

Xi2

lambda2

kappa2

a_xi

a_tau

c_xi

c_tau

lambda2_B

kappa2_B

sigma2

co

sv_mu

sv_phi

list object containing an mcmc.tvp object for the parameter draws from the
posterior distribution of the centered states, one for each covariate. In the case
that there is only one covariate, this becomes just a single mcmc. tvp object.

mcmc object containing the parameter draws from the posterior distribution of
beta_mean.

mcme object containing the parameter draws from the posterior distribution of
the square root of theta.

mcme object containing the parameter draws from the posterior distribution of
tau2.

mcmc object containing the parameter draws from the posterior distribution of
xi2.

(optional) mcmc object containing the parameter draws from the posterior distri-
bution of lambda2. Not returned if mod_type is not "triple”.

(optional) mcmc object containing the parameter draws from the posterior distri-
bution of kappa2. Not returned if mod_type is not "triple”.

(optional) mcmc object containing the parameter draws from the posterior distri-
bution of a_xi. Not returned if learn_a_xi is FALSE or mod_type is "ridge"”.

(optional) mcmc object containing the parameter draws from the posterior distri-
bution of a_tau. Not returned if learn_a_tau is FALSE or mod_type is "ridge"”.

(optional) mcmc object containing the parameter draws from the posterior dis-
tribution of c¢_xi. Not returned if learn_c_xi is FALSE or mod_type is not
"triple”.

(optional) mcmc object containing the parameter draws from the posterior dis-
tribution of c¢_tau. Not returned if learn_c_tau is FALSE or mod_type is not
"triple”.

(optional) mcmc object containing the parameter draws from the posterior distri-
bution of lambda2_B. Not returned if 1learn_lambda2_B is FALSE or mod_type
is "ridge".

(optional) mcmc object containing the parameter draws from the posterior distri-
bution of kappa2_B. Not returned if learn_kappa2_B is FALSE or mod_type is
"ridge".

mcmc object containing the parameter draws from the posterior distribution of
sigma2. If svis TRUE, sigmaz2 is additionally an mcmc. tvp object.

(optional) mcmc object containing the parameter draws from the posterior distri-
bution of CO. Not returned if sv is TRUE.

(optional) mcmc object containing the parameter draws from the posterior distri-
bution of the mu parameter for the stochastic volatility model on the errors. Not
returned if sv is FALSE.

(optional) mcmc object containing the parameter draws from the posterior distri-
bution of the phi parameter for the stochastic volatility model on the errors. Not
returned if sv is FALSE.

28 shrinkTVP

sv_sigma?2 (optional) mcmc object containing the parameter draws from the posterior distri-
bution of the sigma2 parameter for the stochastic volatility model on the errors.
Not returned if sv is FALSE.

MH_diag (optional) named list containing statistics for assessing MH performance. Not
returned if no MH steps are required or none of them are specified to be adaptive.

internals list object containing two arrays that are required for calculating the LPDS.

priorvals list object containing hyperparameter values of the prior distributions, as spec-
ified by the user.

model list object containing the model matrix, model response and formula used.

summaries list object containing a collection of summary statistics of the posterior draws.

To display the output, use plot and summary. The summary method displays the specified prior val-
ues stored in priorvals and the posterior summaries stored in summaries, while the plot method
calls coda’s plot.mcmc or the plot.mcmc. tvp method. Furthermore, all functions that can be ap-
plied to coda: :mcmc objects (e.g. coda::acfplot) can be applied to all output elements that are
coda compatible.

Author(s)

Peter Knaus <peter.knaus@wu.ac.at>

References

Bitto, A., & Frithwirth-Schnatter, S. (2019). "Achieving shrinkage in a time-varying parameter
model framework." Journal of Econometrics,210(1), 75-97. <doi:10.1016/j.jeconom.2018.11.006>

Cadonna, A., Frithwirth-Schnatter, S., & Knaus, P. (2020). "Triple the Gamma—A Unifying
Shrinkage Prior for Variance and Variable Selection in Sparse State Space and TVP Models."
Econometrics, 8(2), 20. <doi:10.3390/econometrics8020020>

Knaus, P, Bitto-Nemling, A., Cadonna, A., & Frithwirth-Schnatter, S. (2021) "Shrinkage in the
Time-Varying Parameter Model Framework Using the R Package shrinkTVP." Journal of Statistical
Software 100(13), 1-32. <do0i:10.18637/jss.v100.i113>

See Also

plot.shrinkTVP, plot.mcmc. tvp, shrinkTVPVAR
Examples

Example 1, learn everything

set.seed(123)

sim <- simTVP(theta = c(0.2, @, @), beta_mean = c(1.5, -0.3, 0))
data <- sim$data

res <- shrinkTVP(y ~ x1 + x2, data = data)
summarize output
summary(res)

simTVP 29

Example 2, hierarchical Bayesian Lasso

res <- shrinkTVP(y ~ x1 + x2, data = data,
learn_a_xi = FALSE, learn_a_tau = FALSE,
a_xi =1, a_tau = 1)

Example 3, non-hierarchical Bayesian Lasso

res <- shrinkTVP(y ~ x1 + x2, data = data,
learn_a_xi = FALSE, learn_a_tau = FALSE,
a_xi =1, a_tau =1,
learn_kappa2 = FALSE, learn_lambda2 = FALSE)

Example 4, adding stochastic volatility
res <- shrinkTVP(y ~ x1 + x2, data = data,
sv = TRUE)

Example 4, changing some of the default hyperparameters
res <- shrinkTVP(y ~ x1 + x2, data = data,
hyperprior_param = list(beta_a_xi = 5,
alpha_a_xi = 10))

Example 5, using the triple gamma prior
res <- shrinkTVP(y ~ x1 + x2, data = data,
mod_type = "triple")

simTVP Generate synthetic data from a time-varying parameter model

Description

simTVP generates synthetic data from a time-varying parameter model. The covariates are always
generated i.i.d. from a Normal(0,1) distribution.

Usage

simTVP(
N = 200,
d =3,
sv = FALSE,
DTG = FALSE,
sigma2 = 1,
theta,
beta_mean,
sv_mu = @,

30

Arguments

N

SV

DTG

sigma2

theta

beta_mean

sv_mu

sv_phi

sv_sigma2

a_psi

c_psi

rho

Value

simTVP

integer > 2. Indicates the length of the time series to be generated. The default
value is 200.

positive integer. Indicates the number of covariates to simulate. The default
value is 3.

logical value. If set to TRUE, the data will be generated with stochastic volatility
for the errors of the observation equation using svsim. The default value is
FALSE.

logical value. If set to TRUE, the betas will be generated as dynamic triple gamma
processes. The default value is FALSE.

positive real number. Determines the variance of the errors of the observation
equation. Ignored if sv is TRUE. The default value is 1.

(optional) vector containing positive real numbers. If supplied, these determine
the variances of the innovations of the state equation. Otherwise, the elements
of theta are generated from a X”2(1) distribution. Has to be of length d or an
error will be thrown.

(optional) vector containing real numbers. If supplied, these determine the mean
of the initial value of the state equation. Otherwise, the elements of beta_mean
are generated from a Normal(0,1) distribution. Has to be of length d or an error
will be thrown.

real number. Determines the mean of the logarithm of the volatility. Ignored if
sv is FALSE. The default value is 0.

real number between -1 and 1. Determines the persistence of the SV process.
Ignored if sv is FALSE. The default value is 0.98.

positive, real number. Determines the variance of the innovations of the loga-
rithm of the volatility. Ignored if sv is FALSE. The default value is 0.2.

positive, real number. Determines the pole parameter of the dynamic triple
gamma process. Ignored if DTG is FALSE. The default value is 0.5.

positive, real number. Determines the tail parameter of the dynamic triple gamma
process. Ignored if DTG is FALSE. The default value is 2.

real number between 0 and 1. Determines the persistence of the dynamic triple
gamma process. Ignored if DTG is FALSE. The default value is 0.9

The value returned is a list object containing:

data

data frame that holds the simulated data.

updateTVP

31

true_vals list object containing:

Author(s)

theta: the values of theta used in the data generating process.
beta_mean: the values of beta_mean used in the data generating process.
beta: the true paths of beta used for the data generating process.
sigma2: the value(s) of sigma?2 used in the data generating process.

lambda_p: the true paths of lambda_p used for the data generating process.
Not returned if DTG is FALSE.

lambda_p_@: the values of lambda_p_0 used for the data generating pro-
cess. Not returned if DTG is FALSE.

kappa_p: the true paths of kappa_p used for the data generating process.
Not returned if DTG is FALSE.

psi: the true paths of psi used for the data generating process. Not returned
if DTG is FALSE.

Peter Knaus <peter.knaus@wu.ac.at>

Examples

Generate a time series of length 300
res <- simTVP(N = 300)

Extract the generated data

data <- res$data

Now with stochastic volatility
res_sv <- simTVP(N = 300, sv = TRUE)

Now with dynamic triple gamma process

res_DTG <- simTVP(N =

300, DTG = TRUE, c_psi = 1)

updateTVP

One step update version of shrinkTVP with minimal overhead

Description

updateTVP draws a single sample from the joint posterior distribution of the parameters of a time-
varying parameter model with shrinkage potentially including stochastic volatility (SV). It performs
no input checks and must therefore be used with caution. It is designed to be used in a modular
fashion within other samplers, where speed is important. As such, no draws are saved and must be
stored manually if the user wants to analyze them further.

Usage

updateTVP(
Y,
X7
curr_draws,

updateTVP

mod_type = "double”,
learn_a_xi = TRUE,

learn_a_tau = TRUE,
a_xi = 0.1,
a_tau = 0.1,
learn_c_xi = TRUE,
learn_c_tau = TRUE,
c_xi = 0.1,
c_tau = 0.1,
a_eq_c_xi = FALSE,
a_eq_c_tau = FALSE,

learn_kappa2_B = TRUE,

learn_lambda2_B =

kappa2_B = 20,
lambda2_B = 20,
hyperprior_param,
sv = FALSE,
sv_param,
MH_tuning

Arguments

y
X

curr_draws

TRUE,

vector of length N containing the response variable.
matrix of dimension Nxd containing the covariates.

named list containing all the current draws from the joint posterior of the param-

eters. Not all values are required for all model setups. The following elements
can be supplied:

beta_mean_st: vector of length d containing single numbers.
theta_sr_st: vector of length d containing single, positive numbers.
tau2_st: optional vector of length d containing single, positive numbers.
Not required if mod_type is "ridge".

xi2_st: optional vector of length d containing single, positive numbers.
Not required if mod_type is "ridge"”.

kappa2_st: optional vector of length d containing single, positive numbers.
Only required if mod_type is "triple”.

lambda2_st: optional vector of length d containing single, positive num-
bers. Only required if mod_type is "triple”.
kappa2_B_st: optional positive, real number. Not required if mod_type is
"ridge" or learn_kappa2_B is FALSE.
lambda2_B_st: optional positive, real number. Not required if mod_type
is "ridge" or learn_lambda2_B is FALSE.

updateTVP

mod_type

learn_a_xi

learn_a_tau

a_xi

a_tau

learn_c_xi

learn_c_tau

c_xi

c_tau

a_eq_c_xi

33

e a_xi_st: optional positive, real number. Not required if mod_type is
"ridge" or learn_a_xi is FALSE.

* a_tau_st: optional positive, real number. Not required if mod_type is
"ridge" or learn_a_tauis FALSE.

e c_xi_st: optional positive, real number. Note that the prior for c_xi
is restricted to (0, 0.5). Not required if mod_type is not "triple” or
learn_c_xi is FALSE.

e c_tau_st: optional positive, real number. Note that the prior for c_tau
is restricted to (0, 0.5). Not required if mod_type is not "triple"” or
learn_c_tauis FALSE.

* sv_mu_st: optional real number. Not required if sv is FALSE.

* sv_phi_st: optional positive, real number between -1 and 1. Not required
if sv is FALSE.

* sv_sigma2_st : optional positive, real number. Not required if sv is FALSE.

* CO_st: optional positive, real number. Not required if sv is TRUE.

e sigma2_st: positive, real number if sv is FALSE, otherwise a vector of
positive, real numbers of length N. The default value is 1 or a vector thereof.

* h@_st: optional real number. The default value is 0. Not required if sv is
FALSE.

character string that reads either "triple”, "double” or "ridge”. Determines
whether the triple gamma, double gamma or ridge prior are used for theta_sr
and beta_mean. The default is "double".

logical value indicating whether to learn a_xi, the spike parameter of the state
variances. Ignored if mod_type is set to "ridge”. The default value is TRUE.

logical value indicating whether to learn a_tau, the spike parameter of the mean
of the initial values of the states. Ignored if mod_type is set to "ridge”. The
default value is TRUE.

positive, real number, indicating the (fixed) value for a_xi. Ignored if learn_a_xi
is TRUE or mod_type is set to "ridge”. The default value is 0.1.

positive, real number, indicating the (fixed) value for a_tau. Ignored if learn_a_tau
is TRUE or mod_type is set to "ridge”. The default value is 0.1.

logical value indicating whether to learn c_xi, the tail parameter of the state
variances. Ignored if mod_type is not set to "triple”. The default value is
TRUE.

logical value indicating whether to learn c_tau, the tail parameter of the mean of
the initial values of the states. Ignored if mod_type is not set to "triple”. The
default value is TRUE.

positive, real number, indicating the (fixed) value for c¢_xi. Ignored if learn_c_xi
is TRUE or mod_type is not set to "triple”. The default value is 0.1.

positive, real number, indicating the (fixed) value for c_tau. Ignored if learn_c_xi
is TRUE or mod_type is not set to "triple”. The default value is 0.1.

logical value indicating whether to force a_xi and c_xi to be equal. Ignored if
mod_type is not set to "triple”. The default value is FALSE.

34

a_eq_c_tau

updateTVP

logical value indicating whether to force a_tau and c_tau to be equal. Ignored
if mod_type is not set to "triple”. The default value is FALSE.

learn_kappa2_B logical value indicating whether to learn kappa2_B, the global level of shrinkage

learn_lambda2_B

kappa2_B

lambda2_B

for the state variances. The default value is TRUE.

logical value indicating whether to learn the lambda2_B parameter, the global
level of shrinkage for the mean of the initial values of the states. The default
value is TRUE.

positive, real number, indicating the (fixed) value for kappa2_B. Ignored if
learn_kappa2_B is TRUE. The default value is 20.

positive, real number, indicating the (fixed) value for lambda2_B. Ignored if
learn_lambda2_B is TRUE. The default value is 20.

hyperprior_param

SV

sv_param

optional named list containing hyperparameter values. Not all have to be sup-
plied, with those missing being replaced by the default values. Any list elements
that are misnamed will be ignored and a warning will be thrown. All hyperpa-
rameter values have to be positive, real numbers. The following hyperparame-
ters can be supplied:

¢ c0: The default value is 2.5.

¢ g0@: The default value is 5.

¢ GO: The default value is 5/ (2.5 - 1).

* e1: The default value is 0.001.

¢ e2: The default value is 0.001.

¢ d1: The default value is 0.001.

¢ d2: The default value is 0.001.

e beta_a_xi: The default value is 10.

* beta_a_tau: The default value is 10.

e alpha_a_xi: The default value is 5.

¢ alpha_a_tau: The default value is 5.

e beta_c_xi: The default value is 2.

e alpha_c_xi: The default value is 5.

* beta_c_tau: The default value is 2.

e alpha_c_tau: The default value is 5.
logical value indicating whether to use stochastic volatility for the error of the

observation equation. For details please see stochvol, in particular svsample.
The default value is FALSE.

optional named list containing hyperparameter values for the stochastic volatil-
ity parameters. Not all have to be supplied, with those missing being replaced
by the default values. Any list elements that are misnamed will be ignored and
a warning will be thrown. Ignored if sv is FALSE. The following elements can
be supplied:

* Bsigma_sv: positive, real number. The default value is 1.
* a@_sv: positive, real number. The default value is 5.
* b@_sv: positive, real number. The default value is 1.5.

updateTVP 35

* bmu: real number. The default value is 0.
e Bmu: real number. larger than 0. The default value is 1.

MH_tuning optional named list containing values used to tune the MH steps for a_xi, a_tau,
c_xi and c_tau. Not all have to be supplied, with those missing being re-
placed by the default values. Any list elements that are misnamed will be ig-
nored and a warning will be thrown. The arguments for a_xi(a_tau) are only
used if learn_a_xi(learn_a_tau) is set to TRUE and mod_type is not equal to
"ridge". The arguments for c_xi(c_tau) are only used if learn_c_xi(learn_c_tau)
is set to TRUE and mod_type is equal to "triple”. Arguments ending in "adap-
tive" are logical values indicating whether or not to make the MH step for the
respective parameter adaptive. Arguments ending in "tuning_par" serve two dif-
ferent purposes. If the respective MH step is not set to be adaptive, it acts as the
standard deviation of the proposal distribution. If the respective MH step is set
to be adaptive, it acts as the initial standard deviation. Arguments ending in "tar-
get_rate" define the acceptance rate the algorithm aims to achieve. Arguments
ending in "max_adapt" set the maximum value by which the logarithm of the
standard deviation of the proposal distribution is adjusted. Finally, arguments
ending in "batch_size" set the batch size after which the standard deviation of
the proposal distribution is adjusted. The following elements can be supplied:

* a_xi_adaptive: logical value. The default is TRUE.
e a_xi_tuning_par: positive, real number. The default value is 1.

e a_xi_target_rate: positive, real number, between 0 and 1. The default
value is 0.44.

* a_xi_max_adapt: positive, real number. The default value is 0.01.
* a_xi_batch_size: positive integer. The default value is 50.

* a_tau_adaptive: logical value. The default is TRUE.

* a_tau_tuning_par: positive, real number. The default value is 1.

* a_tau_target_rate: positive, real number, between 0 and 1. The default
value is 0.44.

* a_tau_max_adapt: positive, real number. The default value is 0.01.
* a_tau_batch_size: positive integer. The default value is 50.

* c_xi_adaptive: logical value. The default is TRUE.

e c_xi_tuning_par: positive, real number. The default value is 1.

e c_xi_target_rate: positive, real number, between 0 and 1. The default
value is 0.44.

e c_xi_max_adapt: positive, real number. The default value is 0.01.
* c_xi_batch_size: positive integer. The default value is 50.

e c_tau_adaptive: logical value. The default is TRUE.

* c_tau_tuning_par: positive, real number. The default value is 1.

* c_tau_target_rate: positive, real number, between 0 and 1. The default
value is 0.44.

* c_tau_max_adapt: positive, real number. The default value is 0.01.

* c_tau_batch_size: positive integer. The default value is 50.

Value

updateTVP

The value returned is a named list object which can be immediately used as the curr_draws ar-
gument for another draw from the posterior with updateTVP. Note that, depending on the model
setup, some elements may be matrices of dimension zero. It contains the following elements:

beta_st

beta_mean_st

theta_sr_st

tau2_st
xi2_st
lambda2_st
kappa2_st
a_xi_st
a_tau_st
c_xi_st
c_tau_st
lambda2_B_st

kappa2_B_st

sigma2_st

Co_st

sv_mu_st

sv_phi_st

sv_sigma2_st

ho_st

internals

Author(s)

dx(N + 1) matrix containing the current draw from the posterior distribution of
beta.

dx 1 matrix containing the current draws from the posterior distribution of beta_mean.

dx1 matrix containing the current draws from the posterior distribution of the
square root of theta.

dx1 matrix containing the current draws from the posterior distribution of tau2.
dx1 matrix containing the current draws from the posterior distribution of xi2.

dx 1 matrix containing the current draws from the posterior distribution of lambda2.
dx1 matrix containing the current draws from the posterior distribution of kappa?2.
number representing the current draw from the posterior distribution of a_xi.
number representing the current draw from the posterior distribution of a_tau.
number representing the current draw from the posterior distribution of c_xi.
number representing the current draw from the posterior distribution of c_tau.
number representing the current draw from the posterior distribution of lambda2_B.

mcme object containing the parameter draws from the posterior distribution of
kappa2_B.

number if sv is FALSE, otherwise a vector of length N containing the current
draws from the posterior distribution of sigma?2.

number representing the current draw from the posterior distribution of CO.

number representing the current draw from the posterior distribution of the mu
parameter for the stochastic volatility model on the errors.

number representing the current draw from the posterior distribution of the phi
parameter for the stochastic volatility model on the errors.

number representing the current draw from the posterior distribution of the
sigma?2 parameter for the stochastic volatility model on the errors.

number representing the current draw from the posterior distribution of the hO
parameter for the stochastic volatility model on the errors.

list object containing two arrays that are required for calculating the LPDS
and bookkeeping objects required for the adaptive MH algorithm to work.

Peter Knaus <peter.knaus@wu.ac.at>

updateTVP 37

References

Bitto, A., & Frithwirth-Schnatter, S. (2019). "Achieving shrinkage in a time-varying parameter
model framework." Journal of Econometrics,210(1), 75-97. <doi:10.1016/j.jeconom.2018.11.006>

Cadonna, A., Frithwirth-Schnatter, S., & Knaus, P. (2020). "Triple the Gamma—A Unifying
Shrinkage Prior for Variance and Variable Selection in Sparse State Space and TVP Models."
Econometrics, 8(2), 20. <doi:10.3390/econometrics8020020>

Knaus, P, Bitto-Nemling, A., Cadonna, A., & Frithwirth-Schnatter, S. (2021) "Shrinkage in the
Time-Varying Parameter Model Framework Using the R Package shrinkTVP." Journal of Statistical
Software 100(13), 1-32.<doi:10.18637/jss.v100.i13>

Examples

Simulate data
sim <- simTVP()
y <- sim$datasy
X <- as.matrix(sim$datal,2:4])

Create starting values

d <- ncol(x)

curr_draws <- list(beta_mean_st = rep(0, d),
theta_sr_st = rep(1, d),
tau2_st = rep(1, d),
xi2_st = rep(1, d),
lambda2_st = rep(1, d),
kappa2_B_st = 20,
lambda2_B_st = 20,
a_xi_st = 0.1
a_tau_st = 0.
c_tau_st = 0.
sv_mu_st = -10,
sv_phi_st = 0.5,
sv_sigma2_st = 1,

’

1
1 ’
0

Co_st =1,
sigma2_st = 1,
ho_st = 0)

Run the algorithm for 1000 iterations
Note that curr_draws is always re-written and immediately re-used
for (i in 1:1000){

curr_draws <- updateTVP(y, x, curr_draws)

}

Index

* plotting functions
plot.mcmc. tvp, 6
plot.shrinkTVP, 9
plot.shrinkTVP_forc, 10

* prediction functions
eval_pred_dens, 2
fitted.shrinkTVP, 3
forecast_shrinkTVP, 4
LPDS, 5
predict.shrinkTVP, 11
residuals.shrinkTVP, 13

eval_pred_dens, 2,4-6, 12, 13

fitted.shrinkTVP, 3,3, 5, 6, 11-13

forecast_shrinkTVP, 3, 4,4, 6, 12, 13

formula, 15, 23
LPDS, 3-5,5, 12, 13

plot.mecmc.tvp, 6, 10, 11,21, 28
plot.shrinkTVP, 8,9, 11,21, 28
plot.shrinkTVP_forc, 8, 10, 10
predict.shrinkTVP, 3-6, 11, 13
print.shrinkTVP, 12

residuals.shrinkTVP, 3-6, 12, 13

shrinkDTVP, 14
shrinkTVP, 22, 31
shrinkTVPVAR, 26, 28
simTVP, 29
stochvol, 17, 24, 34
svsample, 17, 24, 34
svsim, 30

updateTVP, 31

38

	eval_pred_dens
	fitted.shrinkTVP
	forecast_shrinkTVP
	LPDS
	plot.mcmc.tvp
	plot.shrinkTVP
	plot.shrinkTVP_forc
	predict.shrinkTVP
	print.shrinkTVP
	residuals.shrinkTVP
	shrinkDTVP
	shrinkTVP
	simTVP
	updateTVP
	Index

