Package ‘simDAG’

January 8, 2026

Title Simulate Data from a (Time-Dependent) Causal DAG
Version 0.5.0
Maintainer Robin Denz <robin.denz@rub.de>

Description Simulate complex data from a given directed acyclic graph and informa-
tion about each individual node.
Root nodes are simply sampled from the specified distribution. Child Nodes are simulated ac-
cording to
one of many implemented regressions, such as logistic regression, linear
regression, poisson regression or any other function. Also includes a comprehensive frame-
work for discrete-time
simulation, discrete-event simulation, and networks-
based simulation which can generate even more complex longitudinal and dependent data.
For more details, see Robin Denz, Nina Timmesfeld (2025) <doi:10.48550/arXiv.2506.01498>.

License GPL (>= 3)

URL https://github.com/RobinDenz1/simDAG,
https://robindenz1.github.io/simDAG/

BugReports https://github.com/RobinDenz1/siMDAG/issues

Imports data.table (>= 1.15.0), Rfast, rlang, igraph (>= 2.0.0),
dagitty, ggdag

Suggests knitr, rmarkdown, testthat (>= 3.0.0), vdiffr (>= 1.0.0),

ggplot2, ggforce, MASS, covr, foreach, doSNOW, doRNG, parallel,
utils, simr, rsurv, survival

VignetteBuilder knitr
Config/testthat/edition 3

Contact <robin.denz@rub.de>
Encoding UTF-8
RoxygenNote 7.3.2
NeedsCompilation no

Author Robin Denz [aut, cre],
Katharina Meiszl [aut]

https://doi.org/10.48550/arXiv.2506.01498
https://github.com/RobinDenz1/simDAG
https://robindenz1.github.io/simDAG/
https://github.com/RobinDenz1/siMDAG/issues

2 Contents

Repository CRAN
Date/Publication 2026-01-08 18:00:02 UTC

Contents
simDAG-package 3
add_node e e e e 5
as.dagitty DAG 6
asdigraph.DAG e 7
as_tidy_dagitty DAG e 9
dag2matrix e e 10
dag_from_data 12
do . . e e e e 14
empty_dag. 16
lon@2start_StOp o e e e e 17
matrix2dag e e e e 18
NEL . . . o e e e e e e 20
network L e e e e 22
node L e e e 25
node_aalen s 30
node_binomial e e 32
node_competing_eventso e e 35
node_conditional_distr e 39
node_conditional_prob 42
NOde_COX o e e e e e e e e e e e e e e 45
node_gaussian e 47
node_identity e e e e e e 50
node_MiXtUre ot i i e e e e e e e e e e e e e e e e e 53
node_multinomial L L e 55
node_negative_binomial L L 57
node_Next_time v i e e e e e e e e e e 59
Node_poiSSONo e e 63
NOAE_TSUIV . . . o v v o o e e e e e e e e e 65
node_time_to_eVent i e e e e e e e e e 68
node_zeroinfl L e 73
PIOLDAG e e e 76
plot.simDT e 80
rbernoulli L 84
rcategorical L L e e e e e 85
TCONSLANL v o o e 86
rsample . ..o e 87
44 o J 88
sim2data e e e e e e 89
sim_diScrete_event L e e e e 94
sim_discrete_time o e e e e e e e e e e e 99
sim_from_dag 105

SIM_N_datasetS e e 108

simDAG-package 3

Index 111

simDAG-package Simulate Data from a DAG and Associated Node Information

Description

What is this package about?

This package aims to give a comprehensive framework to simulate static and longitudinal data given
a directed acyclic graph and some information about each node. Our goal is to make this package
as user-friendly and intuitive as possible, while allowing extreme flexibility and while keeping the
underlying code as fast and RAM efficient as possible.

What features are included in this package?

This package includes three main simulation functions: the sim_from_dag function, which can be

used to simulate data from a previously defined causal DAG and node information, the sim_discrete_time
function, which implements a framework to conduct discrete-time simulations and the sim_discrete_event
function for discrete-event simulations. The former is very easy to use, but cannot deal with time-

varying variable easily. The latter two are a little more difficult to use (usually requiring the user to

write some functions himself), but allow the simulation of arbitrarily complex longitudinal data in

discrete and continuous time.

Through a collection of implemented node types, this package allows the user to generate data
with a mix of binary, categorical, count and time-to-event data. The sim_discrete_time and
sim_discrete_event functions additionally enable the user to generate time-to-event data with,
if desired, a mix of competing events, recurrent events, time-varying variables that influence each
other and any types of censoring.

The package also includes a few functions to transform resulting data into multiple formats, to
augment existing DAGs, to plot DAGs and to plot a flow-chart of the data generation process.

All of the above mentioned features may also be combined with networks-based simulation, in
which user-specified network dependencies among individuals may be used directly when specify-
ing nodes. One or multiple networks (directed or undirected, weighted or unweighted) that may or
may not change over time (possibly as a function of other variables) are supported.

What does a typical workflow using this package look like?

Users should start by defining a DAG object using the empty_dag and node functions. This DAG can
then be passed to one of the two simulation functions included in this package. More information
on how to do this can be found in the respective documentation pages and the three vignettes of this
package.

When should I use sim_from_dag and when sim_discrete_time?

If you want to simulate data that is easily described using a standard DAG without time-varying
variables, you should use the sim_from_dag function. If the DAG includes time-varying variables,
but you only want to consider a few points in time and can easily describe the relations between
those manually, you can still use the sim_from_dag function. If you want more complex data with
time-varying variables, particularly with time-to-event outcomes, you should consider using the
sim_discrete_time or sim_discrete_event functions.

What features are missing from this package?

4 simDAG-package

The package currently only implements some possible child nodes. In the future we would like to
implement more child node types, such as more complex survival time models and extending the
already existing support for multilevel modeling to other node types.

Why should I use this package instead of the simcausal package?

The simcausal package was a big inspiration for this package. In contrast to it, however, it al-
lows quite a bit more flexibility. A big difference is that this package includes a comprehensive
framework for discrete-time and discrete-event simulations and the simcausal package does not.

Where can I get more information?
The documentation pages contain a lot of information, relevant examples and some literature refer-
ences. Additional examples can be found in the vignettes of this package, which can be accessed
using:

e vignette(topic="v_sim_from_dag", package="simDAG")

e vignette(topic="v_sim_discrete_time", package="simDAG")

e vignette(topic="v_sim_discrete_event"”, package="simDAG")

e vignette(topic="v_covid_example”, package="simDAG")

e vignette(topic="v_using_formulas”, package="simDAG")

e vignette(topic="v_custom_nodes"”, package="simDAG")

e vignette(topic="v_cookbook", package="simDAG")

e vignette(topic="v_sim_networks", package="simDAG")
A separate (already peer-reviewed) article about this package has been provisionally accepted in the

Journal of Statistical Software. The preprint version of this article is available on arXiv (Denz and
Timmesfeld 2025) and as a vignette in this package.

I have a problem using the sim_discrete_time or sim_discrete_event function

The sim_discrete_time and sim_discrete_event functions can become difficult to use depend-
ing on what kind of data the user wants to generate. For this reason we put in extra effort to make
the documentation and examples as clear and helpful as possible. Please consult the relevant docu-
mentation pages and the vignettes before contacting the authors directly with programming related
questions that are not clearly bugs in the code.

I want to suggest a new feature / I want to report a bug. Where can I do this?

Bug reports, suggestions and feature requests are highly welcome. Please file an issue on the official
github page or contact the author directly using the supplied e-mail address.
Author(s)

Robin Denz, <robin.denz @rub.de>

References
Denz, Robin and Nina Timmesfeld (2025). Simulating Complex Crossectional and Longitudinal
Data using the simDAG R Package. arXiv preprint, doi: 10.48550/arXiv.2506.01498.

Banks, Jerry, John S. Carson II, Barry L. Nelson, and David M. Nicol (2014). Discrete-Event
System Simulation. Vol. 5. Edinburgh Gate: Pearson Education Limited.

add_node 5

add_node Add a DAG.node or a DAG. network object to a DAG object

Description

This function allows users to add DAG. node objects created using the node or node_td function and
DAG. network objects created using the network or network_td function to DAG objects created us-
ing the empty_dag function, which makes it easy to fully specify a DAG to use in the sim_from_dag
function and sim_discrete_time.

Usage

add_node(dag, node)

S3 method for class 'DAG'
object_1 + object_2

Arguments
dag A DAG object created using the empty_dag function.
node Either a DAG. node object created using the node function or node_td function,
or a DAG.network object created using the network function or network_td
function.
object_1 Either a DAG object, a DAG. node object or a DAG. network object. The order of
the objects does not change the result.
object_2 See argument object_1.
Details

The two ways of adding a node or a network to a DAG object are: dag <- add_node (dag, node(...))
and dag <- dag + node(. . .), which give identical results (note that the . . . should be replaced with
actual arguments and that the initial dag should be created with a call to empty_dag). See node for
more information on how to specify a DAG for use in the sim_from_dag and node_td functions.

Value

Returns an DAG object with the DAG. node object or DAG. network object added to it.

Author(s)

Robin Denz

6 as.dagitty. DAG

Examples

library(simDAG)

add nodes to DAG using +
dag <- empty_dag() +
node("age"”, type="rnorm”, mean=50, sd=5) +
node("sex", type="rbernoulli”, p=0.5) +
node("income”, type="gaussian”, parents=c("age"”, "sex"), betas=c(1.1, 0.2),
intercept=-5, error=4)

add nodes to DAG using add_node()
dag <- empty_dag()
dag <- add_node(dag, node("age", type="rnorm”, mean=50, sd=5))

as.dagitty.DAG Transform a DAG object into a dagitty object

Description

This function extends the as.dagitty function from the dagitty package to allow the input of a
DAG object. The result is a dagitty object that includes only the structure of the DAG, without any
specifications. May be useful to perform identifiability checks etc. on the DAG.

Usage

S3 method for class 'DAG'

as.dagitty(x, include_root_nodes=TRUE,
include_td_nodes=TRUE, include_networks=FALSE,
layout=FALSE, ...)

Arguments

X A DAG object created using the empty_dag function with nodes added to it us-
ing the + syntax. See ?empty_dag or ?node for more details. Supports DAGs
with time-dependent nodes added using the node_td function. However, in-
cluding such DAGs may result in cyclic causal structures, because time is not
represented in the output matrix.

include_root_nodes
Whether to include root nodes in the output matrix. Should usually be kept at
TRUE (default).

include_td_nodes
Whether to include time-dependent nodes added to the dag using the node_td
function or not. When including these types of nodes, it is possible for the
adjacency matrix to contain cycles, e.g. that it is not a classic DAG anymore,
due to the matrix not representing the passage of time.

as.igraph. DAG

include_networks

Whether to include time-fixed networks added to the dag using the network
function or not. Usually it does not make sense to include those, because they

are not classical nodes.

layout Corresponds to the argument of the same name in the dagitty function.

Currently not used.

Value

Returns a dagitty object.

Author(s)
Robin Denz

See Also

empty_dag, node, node_td, as.igraph.DAG

Examples

library(simDAG)

some example DAG
dag <- empty_dag() +

node("death”, type="binomial”, parents=c("age", "sex"), betas=c(1, 2),

intercept=-10) +
node("age", type="rnorm”, mean=10, sd=2) +
node("sex", parents="", type="rbernoulli”, p=0.5) +
node("smoking"”, parents=c("sex", "age"), type="binomial”,
betas=c(0.6, 0.2), intercept=-2)

if (requireNamespace("dagitty”)) {
g <- dagitty::as.dagitty(dag)
3

as.igraph.DAG Transform a DAG object into an igraph object

Description

This function extends the as. igraph function from the igraph package to allow the input of a DAG
object. The result is an igraph object that includes only the structure of the DAG, without any

specifications. May be useful for plotting purposes.

Usage

S3 method for class 'DAG'
as.igraph(x, include_root_nodes=TRUE,
include_td_nodes=TRUE, include_networks=FALSE, ...)

Arguments

X

as.igraph. DAG

A DAG object created using the empty_dag function with nodes added to it us-
ing the + syntax. See ?empty_dag or ?node for more details. Supports DAGs
with time-dependent nodes added using the node_td function. However, in-
cluding such DAGs may result in cyclic causal structures, because time is not
represented in the output matrix.

include_root_nodes

Whether to include root nodes in the output matrix. Should usually be kept at
TRUE (default).

include_td_nodes

Whether to include time-dependent nodes added to the dag using the node_td
function or not. When including these types of nodes, it is possible for the
adjacency matrix to contain cycles, e.g. that it is not a classic DAG anymore,
due to the matrix not representing the passage of time.

include_networks

Value

Whether to include time-fixed networks added to the dag using the network
function or not. Usually it does not make sense to include those, because they
are not classical nodes.

Currently not used.

Returns an igraph object.

Author(s)

Robin Denz

See Also

empty_dag, node, node_td

Examples

library(simDAG)

some example DAG

dag <- empty_dag() +

node("death”, type="binomial”, parents=c("age", "sex"), betas=c(1, 2),
intercept=-10) +

node("age", type="rnorm”, mean=10, sd=2) +

node("sex", parents=

nn

, type="rbernoulli”, p=0.5) +

node("smoking"”, parents=c("sex", "age"), type="binomial”,
betas=c(0.6, 0.2), intercept=-2)

if (requireNamespace("igraph”)) {
g <- igraph::as.igraph(dag)

}

plot(g)

as_tidy_dagitty. DAG 9

as_tidy_dagitty.DAG Transform a DAG object into a tidy_dagitty object

Description

This function extends the as_tidy_dagitty function from the ggdag package to allow the input of
a DAG object. The resultis a tidy_dagitty object that includes only the structure of the DAG, with-
out any specifications. May be useful to plot DAGs using the ggdag package. Note that completely
unconnected nodes (no arrows going in or out) are ignored by this function.

Usage

S3 method for class 'DAG'

as_tidy_dagitty(x, include_root_nodes=TRUE,
include_td_nodes=TRUE, include_networks=FALSE,
seed=NULL, layout="nicely”, ...)

Arguments

X A DAG object created using the empty_dag function with nodes added to it us-
ing the + syntax. See ?empty_dag or ?node for more details. Supports DAGs
with time-dependent nodes added using the node_td function. However, in-
cluding such DAGs may result in cyclic causal structures, because time is not
represented in the output matrix.

include_root_nodes
Whether to include root nodes in the output matrix. Should usually be kept at
TRUE (default).

include_td_nodes
Whether to include time-dependent nodes added to the dag using the node_td
function or not. When including these types of nodes, it is possible for the
adjacency matrix to contain cycles, e.g. that it is not a classic DAG anymore,
due to the matrix not representing the passage of time.

include_networks
Whether to include time-fixed networks added to the dag using the network
function or not. Usually it does not make sense to include those, because they
are not classical nodes.

seed A numeric seed for reproducible layout generation.

layout A layout available in ggraph. See create_layout for details.

Optional arguments passed to ggraph: :create_layout().

Value

Returns a tidy_dagitty object.

Author(s)
Robin Denz

10 dag2matrix

See Also

empty_dag, node, node_td, as.igraph.DAG

Examples

library(simDAG)

some example DAG
dag <- empty_dag() +
node("death”, type="binomial”, parents=c(”age"”, "sex"), betas=c(1, 2),
intercept=-10) +
node("age", type="rnorm”, mean=10, sd=2) +
node("sex", parents="", type="rbernoulli”, p=0.5) +
node("smoking”, parents=c("sex", "age"), type="binomial”,
betas=c(0.6, 0.2), intercept=-2)

if (requireNamespace("ggdag"”)) {

library(ggdag)
g <- ggdag::as_tidy_dagitty(dag)
ggdag(g)
3
dag2matrix Obtain a Adjacency Matrix from a DAG object
Description

The sim_from_dag function requires the user to specify the causal relationships inside a DAG object
containing node information. This function takes this object as input and outputs the underlying
adjacency matrix. This can be useful to plot the theoretical DAG or to check if the nodes have been
specified correctly.

Usage

dag2matrix(dag, include_root_nodes=TRUE, include_td_nodes=FALSE,
include_networks=FALSE)

Arguments

dag A DAG object created using the empty_dag function with nodes added to it us-
ing the + syntax. See ?empty_dag or ?node for more details. Supports DAGs
with time-dependent nodes added using the node_td function. However, in-
cluding such DAGs may result in cyclic causal structures, because time is not
represented in the output matrix.

include_root_nodes

Whether to include root nodes in the output matrix. Should usually be kept at
TRUE (default).

dag2matrix 11

include_td_nodes
Whether to include time-dependent nodes added to the dag using the node_td
function or not. When including these types of nodes, it is possible for the
adjacency matrix to contain cycles, e.g. that it is not a classic DAG anymore,
due to the matrix not representing the passage of time.

include_networks
Whether to include time-fixed networks added to the dag using the network
function or not. Usually it does not make sense to include those, because they are
not classical nodes. This is mostly used internally to ensure that the generation
of nodes and networks is processed in the right order.

Details

An adjacency matrix is simply a square matrix in which each node has one column and one row
associated with it. For example, if the node A has a causal effect on node B, the matrix will contain
1 in the spot matrix["A", "B"].

If a time-varying node is also defined as a time-fixed node, the parents of both parts will be pooled
when creating the output matrix.
Value

Returns a numeric square matrix with one row and one column per used node in dag.

Author(s)
Robin Denz

See Also

empty_dag, node, node_td

Examples

library(simDAG)

some example DAG
dag <- empty_dag() +
node("death”, type="binomial”, parents=c("”age"”, "sex"), betas=c(1, 2),
intercept=-10) +
node("age", type="rnorm”, mean=10, sd=2) +
node("sex"”, parents="", type="rbernoulli”, p=0.5) +
node("smoking”, parents=c("sex", "age"), type="binomial”,
betas=c(0.6, 0.2), intercept=-2)

get adjacency matrix
dag2matrix(dag)

get adjacency matrix using only the child nodes
dag2matrix(dag, include_root_nodes=FALSE)

adding time-varying nodes

12 dag_from_data

dag <- dag +
node_td("disease”, type="time_to_event”, parents=c("age"”, "smoking"),
prob_fun=0.01) +
node_td("cve", type="time_to_event"”, parents=c("age"”, "sex", "smoking",

"disease"),
prob_fun=0.001, event_duration=Inf)

get adjacency matrix including all nodes
dag2matrix(dag, include_td_nodes=TRUE)

get adjacency matrix including only time-constant nodes
dag2matrix(dag, include_td_nodes=FALSE)

get adjacency matrix using only the child nodes
dag2matrix(dag, include_root_nodes=FALSE)

dag_from_data Fills a partially specified DAG object with parameters estimated from
reference data

Description

Given a partially specified DAG object, where only the name, type and the parents are specified
plus a data. frame containing realizations of these nodes, return a fully specified DAG (with beta-
coefficients, intercepts, errors, ...). The returned DAG can be used directly to simulate data with the
sim_from_dag function.

Usage

dag_from_data(dag, data, return_models=FALSE, na.rm=FALSE)

Arguments

dag A partially specified DAG object created using the empty_dag and node func-
tions. See ?node for a more detailed description on how to do this. All nodes
need to contain information about their name, type and parents. All other
attributes will be added (or overwritten if already in there) when using this func-
tion. Currently does not support DAGs with time-dependent nodes added with
the node_td function.

data A data.frame or data. table used to obtain the parameters needed in the DAG
object. It needs to contain a column for every node specified in the dag argu-
ment.

return_models Whether to return a list of all models that were fit to estimate the information
for all child nodes (elements in dag where the parents argument is not NULL).

na.rm Whether to remove missing values or not.

dag_from_data 13

Details

How it works:

It can be cumbersome to specify all the node information needed for the simulation, especially when
there are a lot of nodes to consider. Additionally, if data is available, it is natural to fit appropriate
models to the data to get an empirical estimate of the node information for the simulation. This
function automates this process. If the user has a reasonable DAG and knows the node types, this is
a very fast way to generate synthetic data that corresponds well to the empirical data.

All the user has to do is create a minimal DAG object including only information on the parents,
the name and the node type. For root nodes, the required distribution parameters are extracted
from the data. For child nodes, regression models corresponding to the specified type are fit to the
data using the parents as independent covariates and the name as dependent variable. All required
information is extracted from these models and added to the respective node. The output contains
a fully specified DAG object which can then be used directly in the sim_from_dag function. It may
also include a list containing the fitted models for further inspection, if return_models=TRUE.

Supported root node types:
Currently, the following root node types are supported:

* "rnorm”: Estimates parameters of a normal distribution.
* "rbernoulli”: Estimates the p parameter of a Bernoulli distribution.

* "rcategorical”: Estimates the class probabilities in a categorical distribution.

Other types need to be implemented by the user.
Supported child node types:
Currently, the following child node types are supported:

* "gaussian”: Estimates parameters for a node of type "gaussian”.

* "binomial”: Estimates parameters for a node of type "binomial”.

* "poisson”: Estimates parameters for a node of type "poisson”.

* "negative_binomial”: Estimates parameters for a node of type "negative_binomial”.

* "conditional_prob": Estimates parameters for a node of type "conditional_prob”.

Other types need to be implemented by the user.
Support for custom nodes:

The sim_from_dag function supports custom node functions, as described in the associated vi-
gnette. It is impossible for us to directly support these custom types in this function directly. How-
ever, the user can extend this function easily to accommodate any of his/her custom types. Similar to
defining a custom node type, the user simply has to write a function that returns a correctly specified
node.DAG object, given the named arguments name, parents, type, data and return_model. The
first three arguments should simply be added directly to the output. The data should be used inside
your function to fit a model or obtain the required parameters in some other way. The return_model
argument should control whether the model should be added to the output (in a named argument
called model). The function name should be paste@(”gen_node_", YOURTYPE). An examples is
given below.

Interactions & cubic terms:

14 do

This function currently does not support the usage of interaction effects or non-linear terms (such
as using A ~B + I(B*2) as a formula). Instead, it will be assumed that all values in parents have
a linear effect on the respective node. For example, using parents=c("A", "B") for a node named
"C" will use the formula C ~ A + B. If other behavior is desired, users need to integrate this into their
own custom function as described above.

Value

A list of length two containing the new fully specified DAG object named dag and a list of the fitted
models (if return_models=TRUE) in the object named models.

Author(s)

Robin Denz

Examples

library(simDAG)
set.seed(457456)

get some example data from a known DAG
dag <- empty_dag() +
node("death”, type="binomial”, parents=c("age", "sex"), betas=c(1, 2),
intercept=-10) +
node("age"”, type="rnorm”, mean=10, sd=2) +
node("sex", parents="", type="rbernoulli”, p=0.5) +
node("smoking"”, parents=c("sex", "age"), type="binomial”,
betas=c(0.6, 0.2), intercept=-2)

data <- sim_from_dag(dag=dag, n_sim=1000)

suppose we only know the causal structure and the node type:
dag <- empty_dag() +
node("death”, type="binomial”, parents=c("”age"”, "sex")) +
node("age", type="rnorm") +
node("sex", type="rbernoulli”) +
node("smoking"”, type="binomial"”, parents=c("sex", "age"))

get parameter estimates from data
dag_full <- dag_from_data(dag=dag, data=data)

can now be used to simulate data
data2 <- sim_from_dag(dag=dag_full$dag, n_sim=100)

do Pearls do-operator for DAG objects

do 15

Description
This function can be used to set one or more nodes in a given DAG object to a specific value, which
corresponds to an intervention on a DAG as defined by the do-operator introduced by Judea Pearl.
Usage

do(dag, names, values)

Arguments
dag A DAG object created using the empty_dag and node functions. See ?node for
more information on how to specify a DAG.
names A character string specifying names of nodes in the dag object. The value of
these nodes will be set to the corresponding value specified in the values argu-
ment. If the node is not already defined in dag, a new one will be added without
warning.
values A vector or list of any values or node / node_td definitions. These nodes defined
with the names argument will be set to those values or the new node definitions.
Details

Internally this function simply removes the old node definition of all nodes in names and replaces
it with a new node definition that defines the node as a constant value, irrespective of the original
definition, if the corresponding entry in values is a signle value. If it is a new node or node_td in-
stead, the new definition replaces the old one. The same effect can be created by directly specifying
the DAG in this way from the start (see examples).

This function does not alter the original DAG in place. Instead, it returns a modified version of the
DAG. In other words, using only do(dag, names="A", values=3) will not change the dag object.
Value

Returns a DAG object with updated node definitions.

Author(s)
Robin Denz

References

Judea Pearl (2009). Causality: Models, Reasoning and Inference. 2nd ed. Cambridge: Cambridge
University Press

Examples
library(simDAG)
define some initial DAG

dag <- empty_dag() +
node("death”, "binomial”, c("age"”, "sex"), betas=c(1, 2), intercept=-10) +

16 empty_dag

node("age"”, type="rnorm”, mean=10, sd=2) +

node("sex", parents="", type="rbernoulli”, p=0.5) +

node("smoking”, parents=c("sex", "age"), type="binomial”,
betas=c(0.6, 0.2), intercept=-2)

return new DAG with do(smoking = TRUE)
dag2 <- do(dag, names="smoking", values=TRUE)

which is equivalent to
dag2 <- empty_dag() +
node("death”, "binomial"”, c("age", "sex"), betas=c(1, 2), intercept=-10) +
node("age", type="rnorm”, mean=10, sd=2) +
node("sex", parents="", type="rbernoulli”, p=0.5) +
node("smoking”, type="rconstant”, constant=TRUE)

use do() on multiple variables: do(smoking = TRUE, sex = FALSE)
dag2 <- do(dag, names=c("smoking"”, "sex"), values=1ist(TRUE, FALSE))

set node in DAG to a completely new definition
dag <- empty_dag() +
node("death”, "binomial”, c("age"”, "sex"), betas=c(1, 2), intercept=-10) +
node("age"”, type="rnorm”, mean=10, sd=2) +
node("sex", parents="", type="rbernoulli”, p=0.5) +
node("smoking”, parents=c("sex", "age"), type="binomial”,
betas=c(0.6, 0.2), intercept=-2)

dag2 <- do(dag, names="smoking", values=list(

node(".", type="poisson”, formula= ~ -2 + age*0.2 + sex*1.2)
)
empty_dag Initialize an empty DAG object
Description

This function should be used in conjunction with multiple calls to node or node_td to create a DAG
object, which can then be used to simulate data using the sim_from_dag and sim_discrete_time
functions.

Usage

empty_dag()

Details

Note that this function is only used to initialize an empty DAG object. Actual information about the
respective nodes have to be added using the node function or the node_td function. The documen-
tation page of that function contains more information on how to correctly do this.

long2start_stop

Value

17

Returns an empty DAG object.

Author(s)
Robin Denz

Examples

library(simDAG)

just an empty DAG

empty_dag()

adding a node to it
empty_dag() + node("age"”, type="rnorm", mean=20, sd=5)

long2start_stop

Transform a data.table in the long-format to a data.table in the
start-stop format

Description

This function transforms a data.table in the long-format (one row per person per time point) to
a data.table in the start-stop format (one row per person-specific period in which no variables

changed).

Usage

long2start_stop(data, id, time, varying, overlap=FALSE,

Arguments

data

id

time
varying

overlap

check_inputs

check_inputs=TRUE)

A data.table or an object that can be coerced to a data.table (such as a
data. frame) including data in the long-format.

A single character string specifying a unique person identifier included in in
data.

A single character string specifying a time variable included in in data coded as
integers starting from 1.

A character vector specifying names of variables included in in data that may
change over time.

Specifies whether the intervals should overlap or not. If TRUE, the "stop” col-
umn is simply increased by one, as compared to the output when overlap=FALSE.
This means that changes for a given ¢ are recorded at the start of the next interval,
but the previous interval ends on that same day.

Whether to check if the user input is correct or not. Can be turned off by setting
it to FALSE to save computation time.

18 matrix2dag

Details

This function relies on data.table syntax to make the data transformation as RAM efficient and
fast as possible.

Value

Returns a data. table containing the columns . id (the unique person identifier), . time (an integer
variable encoding the time) and all other variables included in the input data in the long format.

Author(s)

Robin Denz

Examples

library(simDAG)
library(data. table)

generate example data in long format
long <- data.table(.id=rep(seq_len(10), each=5),
.time=rep(seq_len(5), 10),
A=c(rep(FALSE, 43), TRUE, TRUE, rep(FALSE, 3), TRUE,
TRUE),
B=FALSE)
setkey(long, .id, .time)

transform to start-stop format
long2start_stop(data=long, id=".id", time=".time", varying=c("A", "B"))

matrix2dag Obtain a DAG object from a Adjacency Matrix and a List of Node Types

Description

The sim_from_dag function requires the user to specify the causal relationships inside a DAG object
containing node information. This function creates such an object using a adjacency matrix and a
list of node types. The resulting DAG will be only partially specified, which may be useful for the
dag_from_data function.

Usage

matrix2dag(mat, type)

matrix2dag 19

Arguments
mat A p x p adjacency matrix where p is the number of variables. The matrix should
be filled with zeros. Only places where the variable specified by the row has a
direct causal effect on the variable specified by the column should be 1. Both the
columns and the rows should be named with the corresponding variable names.
type A named list with one entry for each variable in mat, specifying the type of the
corresponding node. See node for available node types.
Details

An adjacency matrix is simply a square matrix in which each node has one column and one row
associated with it. For example, if the node A has a causal effect on node B, the matrix will contain
1 in the spot matrix["”A", "B"]. This function uses this kind of matrix and additional information
about the node type to create a DAG object. The resulting DAG cannot be used in the sim_from_dag
function directly, because it will not contain the necessary parameters such as beta-coefficients or
intercepts etc. It may, however, be passed directly to the dag_from_data function. This is pretty
much it’s only valid use-case. If the goal is to to specify a full DAG manually, the user should
use the empty_dag function in conjunction with node calls instead, as described in the respective
documentation pages and the vignettes.

The output will never contain time-dependent nodes. If this is necessary, the user needs to manually
define the DAG.
Value

Returns a partially specified DAG object.

Author(s)
Robin Denz

See Also

empty_dag, node, node_td, dag_from_data

Examples

library(simDAG)

simple example adjacency matrix
mat <- matrix(c(o, o, 1, @, @, 1, @, @, @), ncol=3, byrow=TRUE)

colnames(mat) <- c("age", "sex", "death")
rownames(mat) <- c("age", "sex", "death")

type <- list(age="rnorm”, sex="rbernoulli”, death="binomial")

matrix2dag(mat=mat, type=type)

20

net

net

Specify Network Dependencies in a DAG

Description

This function may be used in the formula of nodes in which the value of the observation of one
individual are dependent on its’ neighbors in a defined static network or dynamic network_td.
Given the network and a previously generated variable, net() aggregates data of the neighbors
according to an arbitrary function under the hood. The resulting variable can then be used directly

in a formula.

Usage

net(expr, net=NULL, mode="all"”, order=1,
mindist=0, na=NA)

Arguments

expr

net

mode

order

mindist

na

Any R expression, usually containing one or more previously generated vari-
ables, that returns one numeric value given a vector, such as sum(variable) or
mean(variable).

A single character string specifying the name of the network that should be used
to define the neighbors of an observation. If only one network is present in the
DAG, this argument can be omitted. The single added network is then used by
default. If multiple networks are present and this argument is not defined, an
error will be produced.

A single character, specifying how to use the direction of the edges if a directed
network is supplied (ignored otherwise). If "all”, the direction of the edges is
ignored and both incoming and outgoing edges are used to define the neighbors
of each individual. If "out”, only the individuals who ¢ (the observation row) is
pointing to are used as neighbors and if "in" only the individuals who point to
1 are being used as neighbors.

A single integer giving the order of the neighborhood. If order=1 (default), only
the vertices that are directly connected to vertex ¢ are considered its neighbors.
If order=2, all vertices connected to those neighbors are also considered the
neighbors of vertex ¢ and so on.

A single integer >= 0, specifying the minimum distance the neighbors needs
to have to an observation to be considered neighbors. Only makes sense with
order > 1.

A single value assigned to the variable if expr could not be computed. This
can happen due to the nature of the expression (e.g. NA being returned directly
after evaluating the expression for some reason), or when an observation does
not have any neighbors in a network.

net 21

Details

How it works:

Internally the following procedure is used whenever a net () function call is included in a formula
of a node (regardless of whether time-fixed or time-dependent). First, the associated network (de-
fined using the net argument) is used to identify the neighbors of each observation. Every vertex
that is directly connected to an observation is considered its’ neighbor. The parent variable(s) spec-
ified in the net() call are then aggregated over these neighbors using the given expr. A simple
example: consider observation 1 with four neighbors named 2, 5, 8 and 10. The formula contains
the following net() call: net(sum(infected)). The value of the infected variable is 0, 0, 1, 1
for persons 2, 5, 8 and 10 respectively. These values are then summed up to result in a value of 2
for person 1. The same is done for every person in the simulated data. The resulting variable is then
used as-is in the simulation.

Supported inputs:

Any function that returns a single (usually numeric) value, given the neighbors’ values can be
used. It is therefore also possible to make the simulation dependent on specific neighbors only. For
example, using infected[1] instead of sum(infected) would return a value of O for observation
1 in the above example, because person 2 is the first neighbor and has a value of 0. Note that the
internally used variable named . . neighbor. . includes the ids of the neighbors. The entire expr is
evaluated in a data.table call of the form: datal, . (variable = eval(expr)), by=id], making it
also possible to use any data.table syntax such as .N (which would return the number of neighbors
a person has).

Specifying parents:

Whenever a net() call is used in a formula, we recommend specifying the parents argument
of the node as well. The reason for this recommendation is, that it is sometimes difficult to iden-
tify which variables are used in net() calls, depending on the expr. This may cause issues if a
DAG is not specified in a topologically sorted manner and users rely on the sort_dag argument
of sim_from_dag to re-order the variables. Specifying the parents ensures that this issue cannot
occur.

A small warning:
Note that it never really makes sense to use this function outside of a formula argument: if you look
at its source code you will realize that it does not actually do anything, except returning its input. It
is only a piece of syntax for the formula interface. Please consult the network documentation page
or the associated vignette for more information.

Value
"Returns" a vector of length n_sim when used properly in a sim_from_dag or sim_discrete_time
call. Returns a list of its input when used outside formula.

Author(s)
Robin Denz

Examples

library(igraph)

22

network

library(data.table)
library(simDAG)

define a random network for illustration, with 10 vertices
set.seed(234)
g <- igraph::sample_smallworld(1, 10, 2, 0.5)

a simple dag containing only two time-constant variables and the network
dag <- empty_dag() +

node("A", type="rnorm”, mean=0, sd=1) +

node("B", type="rbernoulli” , p=0.5) +

network(”"Net1”, net=g)

using the mean of A of each observations neighbor in a linear model
dag2 <- dag +
node("Y", type="gaussian", formula= ~ -2 + net(mean(A))*4, error=1)

using an indicator of whether any of an observations neighbors has
a1 in B in a linear model

dag3 <- dag +
node("Y", type="gaussian”, formula= ~ 1.5 + net(as.numeric(any(B==1)))%*3,
error=1.2)
network Create a network object for a DAG
Description

These functions (in conjunction with the empty_dag and node functions) allow users to create DAG
objects with one or more, possibly time-varying, network structures linking individual observations
to each other. This makes it possible to simulate data with complex network-based dependencies
among observations using the sim_from_dag function or the sim_discrete_time function.

Usage
network(name, net, parents=NULL, ...)
network_td(name, net, parents=NULL, create_at_t@=TRUE, ...)
Arguments
name A single character string, specifying the name of the network. Contrary to the
node function, multiple values are not allowed, because defining the same net-
work multiple times does not make sense.
net For network(), two kinds of inputs are allowed. The first is an igraph object

containing one vertex per observation (e.g. n_sim vertices) that should be gen-
erated when later calling sim_from_dag or sim_discrete_time. The second is
a function that generates such an object, given a named argument called n_sim
and any number of further named arguments. For network_td(), only the latter

network 23

kind of input is allowed. The vertices in the network defined by this variable
should not be named. Instead, the vertex with index 1 represents row 1 of the
generated data, the vertex with index 2 represents the second row and so on.
Further information is given in the details section.

parents A character vector of names, specifying the parents of the network or NULL (de-
fault). Similar to general nodes, specifying the parents allows users to generate a
network as a function of the values of the parents, whenever net is a function.
If NULL, it is assumed that the network is generated independently of the data
(or already passed as igraph object). For convenience, it is also allowed to set
parents="" to indicate that the node has no parents.

create_at_to Either TRUE or FALSE, specifying whether the network should be generated at
time O in discrete-time simulations (e.g. when other time-independent nodes
and networks are generated) or only after the creation of data time 0. Defaults
to TRUE.

Optional further named arguments passed to net if it is a function.

Details

What does it mean to add a network to a DAG?

When using only node or node_td to define a DAG, all observations are usually generated inde-
pendently from each other (if not explicitly done otherwise using a custom node function). This
reflects the classic i.i.d. assumption that is frequently used everywhere. For some data generation
processes, however, this assumption is insufficient. The spread of an infectious disease is a classic
example.

The network() function allows users to relax this assumption, by making it possible to define one
or more networks that can then be added to DAG objects using the + syntax. These networks should
contain a single vertex for each observation that should be generated, placing each row of the dataset
into one place in the network. Through the use of the net function it is then possible to define new
nodes as a function of the neighbors of an observation, where the neighbors of a vertex are defined as
any other vertex that is directly connected to this node. For example, one could use this capability to
use the mean age of an observations neighbors in a regression model, or use the number of infected
neighbors to model the probability of infection. By combining this network-simulation approach
with the already extensive simulation capabilities of DAG based simulations, almost any DGP can be
modelled. This approach is described more rigorously in the excellent paper given by Sofrygin et
al. (2017).

Supported network types:

Users may add any number of networks to a DAG object, making it possible to embed individuals
in multiple distinct networks at the same time. These networks can then be used simultaneously to
define a single or multiple (possibly time-varying) nodes, using multiple net function calls in the
respective formula arguments. It is also possible to define time-varying or dynamic networks that
change over time, possibly as a function of the generated data, simulation time or previous states of
the network. Examples are given below and in the associated vignette.

The package directly supports un-directed and directed, un-weighted and weighted networks. It
also supports different definitions of what the neighbors of an observation are. Note, however, that
only networks which include exactly one vertex per observation are supported.

Weighted Networks:

24 network

It is possible to supply weighted networks to network (). The weights are then also stored and avail-
able to the user when using the net function through the internal . .weight. . variable. For example,
if a weighted network was supplied, the following would be valid syntax: net(weighted.mean(A,
..weight..)) (assuming that A is a previously defined variable). Note that the . .weight.. must
be used explicitly, otherwise the weights are ignored.

Directed Networks:

Supplying directed networks is also possible. If this is done, users usually need to specify the mode
argument of the net function when defining the formula arguments. This argument allows users to
define different kinds of neighborhoods for each observation, based on the direction of the edges.

Order of Generation:

Generally, all networks are created in the order in which they were added to the DAG, unless
sort_dag or tx_nodes_order are changed in sim_from_dag or sim_discrete_time respectively.
The only exception is that all networks created using the network () function are created after all
other root nodes have already been generated.

Computational considerations:

Including net() terms in a node might significantly increase the amount of RAM used and the
required computation time, especially with very large networks and / or large values of n_sim
and / or max_t (the latter is only relevant in discrete-time simulations using sim_discrete_time).
The reason for this is that each time a node is generated or updated over time, the mapping of
individuals to their neighbors’ values plus the subsequent aggregation has to be performed, which
requires merge() calls etc. Usually this should not be a problem, but it might be for some large
discrete-time simulations. If the same net call is used in multiple nodes it can be beneficial to put
it into an extra node call and safe it to avoid re-calculating the same thing over and over again (see
examples).

Further information.

For a theoretical treatment, please consult the paper by Sofrygin et al. (2017), who also describe
their slightly different implementation of this method in the simcausal package. More information
on how to specify network-based dependencies in a DAG (using simDAG) after adding a network,
please consult the net documentation page or the associated vignette.

Value

Returns a DAG. network object which can be added to a DAG object directly.

Author(s)
Robin Denz

References

Sofrygin, Oleg, Romain Neugebauer and Mark J. van der Laan (2017). Conducting Simulations in
Causal Inference with Networks-Based Structural Equation Models. arXiv preprint, doi: 10.48550/arXiv.1705.10376

Examples

library(igraph)
library(data. table)

node 25

library(simDAG)
set.seed(2368)

generate random undirected / unweighted networks as examples
gl <- igraph::sample_gnm(n=20, m=30)
g2 <- igraph::sample_gnm(n=20, m=30)

adding a single network to a DAG, with Y being dependent on
the mean value of A of its neighbors
dag <- empty_dag() +
network(”"Net1"”, net=gl) +
node("A", type="rnorm") +
node("Y", type="gaussian”, formula= ~ -2 + net(mean(A))*1.3, error=1.5)

NOTE: because we supplied the network of size 20 directly, we can only
use n_sim=20 here
data <- sim_from_dag(dag, n_sim=20)

using multiple networks, with Y being differently dependent on
the mean value of A of its neighbors in both networks
dag <- empty_dag() +
network(”"Net1"”, net=gl) +
network(”Net2", net=g2) +
node("A", type="rnorm") +
node("Y", type="gaussian”, formula= ~ -2 + net(mean(A), net="Netl1")*1.3 +
net(mean(A), net="Net2")*-2, error=1.5)

using a function to add networks, to allow any value of 'n_sim' later

exemplary function that returns a random network of size 'n_sim'
gen_network <- function(n_sim) {
igraph::sample_gnm(n=n_sim, m=30)

}

same as first example, but using the function as input
dag <- empty_dag() +

network(”"Net1"”, net=gen_network) +

node("A", type="rnorm") +

node("Y", type="gaussian”, formula= ~ -2 + net(mean(A))*1.3, error=1.5)
data <- sim_from_dag(dag, n_sim=25)

node Create a node object for a DAG

Description

These functions should be used in conjunction with the empty_dag function to create DAG ob-
jects, which can then be used to simulate data using the sim_from_dag, sim_discrete_time or
sim_discrete_event functions.

26

Usage

node

node(name, type, parents=NULL, formula=NULL, ...)

node_td(name, type, parents=NULL, formula=NULL, ...)

Arguments

name

type

parents

formula

Details

A character vector with at least one entry specifying the name of the node. If
a character vector containing multiple different names is supplied, one separate
node will be created for each name. These nodes are completely independent,
but have the exact same node definition as supplied by the user. If only a single
character string is provided, only one node is generated.

A single character string specifying the type of the node. Depending on whether
the node is a root node, a child node or a time-dependent node different node
types are allowed. See details. Alternatively, a suitable function may be passed
directly to this argument.

A character vector of names, specifying the parents of the node or NULL (default).
If NULL, the node is treated as a root node. For convenience it is also allowed to
set parents="" to indicate that the node is a root node.

An optional formula object to describe how the node should be generated or
NULL (default). If supplied it should start with ~, having nothing else on the
left hand side. The right hand side should define the entire structural equa-
tion, including the betas and intercepts. It may contain any valid formula syn-
tax, such as ~ -2 + Ax3 + Bx4 or ~ -2 + Ax3 + Bx4 + I(A*2)*0.3 + A:Bx1.1, al-
lowing arbitrary non-linear effects, arbitrary interactions and multiple coeffi-
cients for categorical variables. Additionally, for some node types, random
effects and random slopes are supported. If this argument is defined, there is
no need to define the betas and intercept argument. The parents argu-
ment should still be specified whenever a categorical variable is used in the
formula. This argument is supported for build-in nodes of type "binomial”,

n on n on non n on

"gaussian”, "poisson”, "negative_binomial”, "cox", "aftreg"”, "ahreg"”,
"ehreg"”, "poreg”, "ypreg"”, "time_to_event” and "next_time" and for any
custom node defined by the user. It is also supported for nodes of type "identity",
but slightly different input is expected in that case. See examples and the asso-

ciated vignette for an in-depth explanation.

Further named arguments needed to specify the node. Those can be parameters
of distribution functions such as the p argument in the rbernoulli function
for root nodes or arbitrary named arguments such as the betas argument of the
node_gaussian function.

To generate data using the sim_from_dag, sim_discrete_time or sim_discrete_event func-
tions, it is required to create a DAG object first. This object needs to contain information about the
causal structure of the data (e.g. which variable causes which variable) and the specific structural
equations for each variable (information about causal coefficients, type of distribution etc.). In this

node 27

package, the node and/or node_td functions are used in conjunction with the empty_dag function
to create this object.

This works by first initializing an empty DAG using the empty_dag function and then adding multiple
calls to the node and/or node_td functions to it using a simple +, where each call to node and/or
node_td adds information about a single node that should be generated. Multiple examples are
given below.

In each call to node or node_td the user needs to indicate what the node should be called (name),
which function should be used to generate the node (type), whether the node has any parents and
if so which (parents) and any additional arguments needed to actually call the data-generating
function of this node later passed to the three-dot syntax (. . .).

node vs. node_td:

By calling node you are indicating that this node is a time-fixed variable which should only be
generated once. By using node_td you are indicating that it is a time-dependent node, which
will be updated at each step in time when using a discrete-time simulation, or at event changes in
discrete-event simulations.

node_td should only be used if you are planning to perform a discrete-time or discrete-event sim-
ulation with the sim_discrete_time or sim_discrete_event functions. DAG objects including
time-dependent nodes may not be used in the sim_from_dag function.

Implemented Root Node Types:

Any function can be used to generate root nodes. The only requirement is that the function has at
least one named argument called n which controls the length of the resulting vector. For example,
the user could specify a node of type "rnorm” to create a normally distributed node with no parents.
The argument n will be set internally, but any additional arguments can be specified using the . . .
syntax. In the type="rnorm” example, the user could set the mean and standard deviation using
node(name="example"”, type="rnorm”, mean=10, sd=5).

For convenience, this package additionally includes five custom root-node functions:

* "rbernoulli": Draws randomly from a bernoulli distribution.

* "rcategorical": Draws randomly from any discrete probability density function.
* "rsample": Draws random samples from a given vector.

* "rtexp": Draws random values from a left-truncated exponential distribution.

» "rconstant": Used to set a variable to a constant value.

Implemented Child Node Types:

Currently, the following node types are implemented directly for convenience:

* "gaussian": A node based on (mixed) linear regression.

* "binomial": A node based on (mixed) binomial regression.

* "conditional_prob": A node based on conditional probabilities.

¢ "conditional_distr": A node based on conditional draws from different distributions.
* "multinomial": A node based on multinomial regression.

* "poisson": A node based on (mixed) poisson regression.

* "negative_binomial": A node based on negative binomial regression.

28

node

* "zeroinfl": A node based on a zero-inflated poisson or negative binomial regression.
* "identity": A node that is just some R expression of other nodes.

* "mixture": A node that is a mixture of different node definitions.

* "cox": A node based on cox-regression.

* "aalen": A node based on an Aalen additive hazards model.

* "aftreg": A node based on an accelerated failure time model.

* "ahreg": A node based on an accelerated hazard model.
» "ehreg": A node based on a extended hazard model.
* "poreg": A node based on a proportional odds model.

* "ypreg": A node based on a Young and Prentice model.

For custom child node types, see below or consult the vignette on custom node definitions.
Implemented Time-Dependent Node Types:

Currently, the following node types are implemented directly for convenience to use in node_td
calls:

* "time_to_event": A node based on repeatedly checking whether an event occurs at each point
in time.

* "competing_events": A node based on repeatedly checking whether one of multiple mutually
exclusive events occurs at each point in time.

e "next_time": A node that draws the time of the next event in discrete-event simulation.

However, the user may also use any of the child node types in a node_td call directly. For custom
time-dependent node types, please consult the associated vignette.

Custom Node Types

It is very simple to write a new custom node_function to be used instead, allowing the user to
use any type of data-generation mechanism for any type of node (root / child / time-dependent).
All that is required of this function is, that it has the named arguments data (the sample as gen-
erated so far) and, if it’s a child node, parents (a character vector specifying the parents) and
outputs either a vector containing n_sim entries, or a data.frame with n_sim rows and an arbi-
trary amount of columns. More information about this can be found in the associated vignette:
vignette(topic="v_custom_nodes", package="simDAG").

Using child nodes as parents for other nodes:

If the data generated by a child node is categorical (such as when using node_multinomial) they
can still be used as parents of other nodes for most standard node types without issues. All the
user has to do is to use formula argument to supply an enhanced formula, instead of defining
the parents and betas argument directly. This works well for all node types that directly sup-
port formula input and for all custom nodes specified by the user. See the associated vignette:
vignette(topic="v_using_formulas”, package="simDAG") for more information on how to
correctly use formulas.

Cyclic causal structures:

The name DAG (directed acyclic graph) implies that cycles are not allowed. This means that if you
start from any node and only follow the arrows in the direction they are pointing, there should be no

node 29

way to get back to your original node. This is necessary both theoretically and for practical reasons
if we are dealing with static DAGs created using the node function. If the user attempts to generate
data from a static cyclic graph using the sim_from_dag function, an error will be produced.

However, in the realm of discrete-time or discrete-event simulations, cyclic causal structures are
perfectly reasonable. A variable A at ¢ = 1 may influence a variable B at t = 2, which in turn may
influence variable A at t = 3 again. Therefore, when using the node_td function to simulate time-
dependent data using the sim_discrete_time or sim_discrete_event function, cyclic structures
are allowed to be present and no error will be produced.

Value

Returns a DAG. node object which can be added to a DAG object directly.

Note

Contrary to the R standard, this function does NOT support partial matching of argument names.
This means that supplying nam="age" will not be recognized as name="age" and instead will be
added as additional node argument used in the respective data-generating function call when using
sim_from_dag.

Author(s)
Robin Denz

Examples

library(simDAG)

creating a DAG with a single root node
dag <- empty_dag() +
node("age", type="rnorm”, mean=30, sd=4)

creating a DAG with multiple root nodes
(passing the functions directly to 'type' works too)
dag <- empty_dag() +
node("sex", type=rbernoulli, p=0.5) +
node("income"”, type=rnorm, mean=2700, sd=500)

creating a DAG with multiple root nodes + multiple names in one node
dag <- empty_dag() +

node("sex", type="rbernoulli”, p=0.5) +

node(c("income_1", "income_2"), type="rnorm”, mean=2700, sd=500)

also using child nodes

dag <- empty_dag() +
node("sex", type="rbernoulli”, p=0.5) +
node("income”, type="rnorm”, mean=2700, sd=500) +

node("sickness"”, type="binomial"”, parents=c("sex"”, "income"),
betas=c(1.2, -0.3), intercept=-15) +
node("death”, type="binomial”, parents=c(”sex"”, "income"”, "sickness"),

betas=c(0.1, -0.4, 0.8), intercept=-20)

30 node_aalen

creating the same DAG as above, but using the enhanced formula interface
dag <- empty_dag() +
node("sex", type="rbernoulli”, p=0.5) +
node("income”, type="rnorm”, mean=2700, sd=500) +
node("sickness"”, type="binomial”,
formula= ~ -15 + sexTRUE*1.2 + income*-0.3) +
node("death”, type="binomial”,
formula= ~ -20 + sexTRUE*@.1 + incomex-0.4 + sicknessx@.8)

using time-dependent nodes
NOTE: to simulate data from this DAG, the sim_discrete_time() function needs
to be used due to "sickness” being a time-dependent node
dag <- empty_dag() +
node("sex", type="rbernoulli”, p=0.5) +
node("income”, type="rnorm”, mean=2700, sd=500) +
node_td("sickness”, type="binomial”, parents=c("sex", "income"),
betas=c(0.1, -0.4), intercept=-50)

we could also use a DAG with only time-varying variables
dag <- empty_dag() +
node_td("vaccine”, type="time_to_event”, prob_fun=0.001, event_duration=21) +
node_td("covid", type="time_to_event”, prob_fun=0.01, event_duration=15,
immunity_duration=100)

node_aalen Generate Data from an Aalen Additive Hazards Model

Description

Data from the parents is used to generate the node using Aalen additive hazards regression using
the inversion method. Currently, only time-constant coefficients and a constant baseline hazard
function are supported.

Usage

node_aalen(data, parents, formula=NULL, betas, intercept,
cens_dist=NULL, cens_args, name,
as_two_cols=TRUE, left=0)

Arguments
data A data.table (or something that can be coerced to a data. table) containing
all columns specified by parents.
parents A character vector specifying the names of the parents that this particular child

node has. If non-linear combinations or interaction effects should be included,
the user may specify the formula argument instead.

node_aalen 31

formula An optional formula object to describe how the node should be generated or
NULL (default). This argument only works if the function is used as a node type
in a node call. See ?node or the associated vignette for more information about
how the formula argument should be specified in this package.

betas A numeric vector with length equal to parents, specifying the causal beta co-
efficients used to generate the node.

intercept A single number, specifying the intercept of the model.

cens_dist A single character naming the distribution function that should be used to gen-

erate the censoring times or a suitable function. For example, "runif” could be
used to generate uniformly distributed censoring times. Set to NULL (default) to
get no censoring.

cens_args A list of named arguments which will be passed to the function specified by the
cens_dist argument.

name A single character string specifying the name of the node.

as_two_cols Either TRUE or FALSE, specifying whether the output should be divided into two
columns. When cens_dist is specified, this argument will always be treated as
TRUE because two columns are needed to encode both the time to the event and
the status indicator. When no censoring is applied, however, users may set this
argument to FALSE to simply return the numbers as they are.

left A single number, specifying the left-truncation time. If set to something > 0,
only times that are larger than this value will be generated. Is set to O by default,
so that no left-truncation is used.

Details

This function generates survival times according to a Aalen additive hazards model with time-
constant beta coefficients and a time-constant baseline hazard. Time-dependent effects or time-
dependent baseline hazards are currently not supported. To also include censoring, this function
allows the user to supply a function that generates random censoring times. If the censoring time is
smaller than the generated survival time, the individual is considered censored.

Like the other time-to-event based node type functions, this function usually adds two columns
to the resulting dataset instead of one. The first column is called paste@(name, "_status”) and
is a logical variable, where TRUE indicates that the event has happened and FALSE indicates right-
censoring. The second column is named paste@(name, "_time") and includes the survival or
censoring time corresponding to the previously mentioned event indicator. This is the standard
format for right-censored time-to-event data without time-varying covariates. If no censoring is
applied, this behavior can be turned off using the as_two_cols argument.

Value

Returns a data.table of length nrow(data) containing two columns if as_two_cols=TRUE and
always when cens_dist is specified. In this case, both columns start with the nodes name and end
with _status and _time. The firstis a logical vector, the second a numeric one. If as_two_cols=FALSE
and cens_dist is NULL, a numeric vector is returned instead.

Author(s)
Robin Denz

32 node_binomial

References

Aalen, Odd O. A Linear Regression Model for the Analysis of Life Times. Statistics in Medicine.
1989; (8): 907-925.

Examples

library(simDAG)
set.seed(34543)

define DAG, here with two baseline covariates and
no censoring of Y
dag <- empty_dag() +
node("A", type="runif") +
node("B", type="rbernoulli") +
node("Y", type="aalen”, formula= ~ 0.1 + A*0.2 + B*-0.05)

sim_dat <- sim_from_dag(dag=dag, n_sim=1000)
head(sim_dat)

node_binomial Generate Data from a (Mixed) Binomial Regression Model

Description

Data from the parents is used to generate the node using binomial regression (usually logistic re-
gression) by predicting the covariate specific probability and sampling from a Bernoulli distribution
accordingly. Allows inclusion of arbitrary random effects and slopes for logistic models.

Usage

node_binomial(data, parents, formula=NULL, betas, intercept,
return_prob=FALSE, output="logical”, labels=NULL,
var_corr=NULL, link="logit")

Arguments
data A data.table (or something that can be coerced to a data. table) containing
all columns specified by parents.
parents A character vector specifying the names of the parents that this particular child
node has. If non-linear combinations or interaction effects should be included,
the user may specify the formula argument instead.
formula An optional formula object to describe how the node should be generated or

NULL (default). If supplied it should start with ~, having nothing else on the
left hand side. The right hand side may contain any valid formula syntax, such
as A+Bor A+B+I(A*2), allowing non-linear effects. If this argument is de-
fined, there is no need to define the parents argument. For example, using

node_binomial 33

parents=c("A", "B") is equal to using formula= ~ A + B. May contain random
effects and random slopes, in which case the simr package is used to generate
the data. See details.

betas A numeric vector with length equal to parents, specifying the causal beta co-
efficients used to generate the node.

intercept A single number specifying the intercept that should be used when generating
the node.

return_prob Either TRUE or FALSE (default). If TRUE, the calculated probability is returned
instead of the results of bernoulli trials. This argument is ignored if random
effects or random slopes are specified in the formula input.

non

output A single character string, must be either "logical” (default), "numeric”, "character”
or "factor”. If output="character" or output="factor"”, the labels (or lev-
els in case of a factor) can be set using the labels argument.

labels A character vector of length 2 or NULL (default). If NULL, the resulting vector
is returned as is. If a character vector is supplied and output="character"” or
output="factor" is used, all TRUE values are replaced by the first entry of this
vector and all FALSE values are replaced by the second argument of this vector.
The output will then be a character variable or factor variable, depending on the
output argument. This argument is ignored if output is set to "numeric” or
"logical”.

var_corr Variances and covariances for random effects. Only used when formula con-
tains mixed model syntax. If there are multiple random effects, their parameters
should be supplied as a named list. More complex structures are also supported.
This argument is directly passed to the makeLmer function of the simr package.
Please consult the documentation of that package for more information on how
mixed models should be specified. Some guidance can also be found in the
"Issues" section of the official simr github page.

link The link function used to transform the linear predictor to the probability scale.
For a standard logistic regression model, this should be set to "logit"” (which is

the default). Other allowed values are "identity"”, "probit”, "log", "cloglog"
and "cauchit”, which are defined the same way as in the classic glm function.

Details

Using the normal form a logistic regression model, the observation specific event probability is
generated for every observation in the dataset. Using the rbernoulli function, this probability is
then used to take one bernoulli sample for each observation in the dataset. If only the probability
should be returned return_prob should be set to TRUE.

Formal Description:

Formally, the data generation (when using 1ink="1ogit") can be described as:

Y ~ Bernoulli(logit(intercept + parents; - betas; + ... + parents,, - betas,,)),

where Bernoulli(p) denotes one Bernoulli trial with success probability p, n is the number of
parents (1length(parents)) and the logit(x) function is defined as:

34 node_binomial

X

logit(z) = In().

1—2x

For example, given intercept=-15, parents=c("A", "B") and betas=c (0.2, 1.3) the data gen-
eration process is defined as:

Y ~ Bernoulli(logit(—15+ A- 0.2+ B - 1.3)).

It works the same way for other link functions, with the only difference being that logit() would
be replaced.

Output Format:

By default this function returns a logical vector containing only TRUE and FALSE entries, where
TRUE corresponds to an event and FALSE to no event. This may be changed by using the output and
labels arguments. The last three arguments of this function are ignored if return_prob is set to
TRUE.

Random Effects and Random Slopes:

This function also allows users to include arbitrary amounts of random slopes and random effects
using the formula argument. If this is done, the formula, and data arguments are passed to the
variables of the same name in the makeGlmer function of the simr package. The fixef argu-
ment of that function will be passed the numeric vector c(intercept, betas) and the VarCorr
argument receives the var_corr argument as input. If used as a node type in a DAG, all of this
is taken care of behind the scenes. Users can simply use the regular enhanced formula interface
of the node function to define these formula terms, as shown in detail in the formula vignette
(vignette(topic="v_using_formulas”, package="simDAG")). Please consult that vignette for
examples. Also, please note that inclusion of random effects or random slopes usually results in
significantly longer computation times.

Value

Returns a logical vector (or numeric vector if return_prob=TRUE) of length nrow(data).

Author(s)
Robin Denz

See Also

empty_dag, node, node_td, sim_from_dag, sim_discrete_time

Examples

library(simDAG)
set.seed(5425)

define needed DAG

dag <- empty_dag() +
node("age"”, type="rnorm”, mean=50, sd=4) +
node("sex", type="rbernoulli”, p=0.5) +

node_competing_events 35

node("smoking"”, type="binomial”, parents=c("age", "sex"),
betas=c(1.1, 0.4), intercept=-2)

define the same DAG, but using a pretty formula
dag <- empty_dag() +
node("age", type="rnorm”, mean=50, sd=4) +
node("sex", type="rbernoulli”, p=0.5) +
node("smoking”, type="binomial”,
formula= ~ -2 + age*1.1 + sexTRUE*0Q.4)

simulate data from it
sim_dat <- sim_from_dag(dag=dag, n_sim=100)

returning only the estimated probability instead
dag <- empty_dag() +
node("age"”, type="rnorm”, mean=50, sd=4) +
node("sex", type="rbernoulli”, p=0.5) +
node("smoking”, type="binomial”, parents=c("age"”, "sex"),
betas=c(1.1, 0.4), intercept=-2, return_prob=TRUE)

sim_dat <- sim_from_dag(dag=dag, n_sim=100)

an example using a random effect
if (requireNamespace("simr")) {

library(simr)

dag_mixed <- empty_dag() +
node("School”, type="rcategorical”, probs=rep(0.1, 10),
labels=LETTERS[1:10]) +
node("Age", type="rnorm”, mean=12, sd=2) +
node("Grade", type="binomial”, formula= ~ -10 + Age*1.2 + (1|School),
var_corr=9.3)

sim_dat <- sim_from_dag(dag=dag_mixed, n_sim=100)

3

node_competing_events Generate Data with Multiple Mutually Exclusive Events in Discrete-
Time Simulation

Description

This node essentially models a categorical time-dependent variable for which the time and the type
of the event will be important for later usage. It adds two columns to data: name_event (which
type of event the person is currently experiencing) and name_time (the time at which the current
event started). Can only be used inside of the sim_discrete_time function, not outside of it. Past
events and their kind are stored in two lists. See details.

36 node_competing_events

Usage

node_competing_events(data, parents, sim_time, name,
prob_fun, ..., event_duration=c(1, 1),
immunity_duration=max(event_duration),
save_past_events=TRUE, check_inputs=TRUE,

envir)
Arguments

data A data.table containing all columns specified by parents. Similar objects
such as data. frames are not supported.

parents A character vector specifying the names of the parents that this particular child
node has.

sim_time The current time of the simulation.

name The name of the node. This will be used as prefix before the _event, _time,
_past_event_times and _past_event_kind columns.

prob_fun A function that returns a numeric matrix with nrow(data) rows and one col-

umn storing probabilities of occurrence for each possible event type plus a col-
umn for no events. For example, if there are two possible events such as re-
currence and death, the matrix would need to contain three columns. The first
storing the probability of no-event and the other two columns storing probabil-
ities for recurrence and death per person. Since the numbers are probabilities,
the matrix should only contain numbers between 0 and 1 that sum to 1 in each
row. These numbers specify the person-specific probability of experiencing the
events modeled by this node at the particular point in time of the simulation.
The corresponding event will be generated internally using the rcategorical
function.

An arbitrary number of additional named arguments passed to prob_fun. Ignore
this if you do not want to pass any arguments.

event_duration A numeric vector containing one positive integer for each type of event of inter-
est, specifying how long that event should last. For example, if we are interested
in modelling the time to a cardiovascular event with death as competing event,
this argument would need 2 entries. One would specify the duration of the car-
diovascular event and the other would be Inf (because death is a terminal event).

immunity_duration
A single number >= max(event_duration) specifying how long the person
should be immune to all events after experiencing one. The count internally
starts when the event starts, so in order to use an immunity duration of 10 time
units after the event is over max(event_duration) + 10 should be used.

save_past_events
When the event modeled using this node is recurrent (immunity_duration <
Inf & any(event_duration < Inf)), the same person may experience multi-
ple events over the course of the simulation. Those are generally stored in the
ce_past_events list and ce_past_causes list which are included in the output
of the sim_discrete_time function. This extends the runtime and increases
RAM usage, so if you are not interested in the timing of previous events or if

node_competing_events 37

you are using save_states="all" this functionality can be turned off by setting
this argument to FALSE

check_inputs Whether to perform plausibility checks for the user input or not. Is set to TRUE
by default, but can be set to FALSE in order to speed things up when using this
function in a simulation study or something similar.

envir Only used internally to efficiently store the past event times. Cannot be used by
the user.

Details

When performing discrete-time simulation using the sim_discrete_time function, the standard
node functions implemented in this package are usually not sufficient because they don’t capture
the time-dependent nature of some very interesting variables. Often, the variable that should be
modelled has some probability of occurring at each point in time. Once it does occur, it has some
kind of influence on other variables for a period of time until it goes back to normal (or doesn’t).
This could be a car crash, a surgery, a vaccination etc. The node_time_to_event node function
can be used to model these kinds of nodes in a fairly straightforward fashion.

This function is an extended version of the node_time_to_event function. Instead of simulating a
binary event, it can generate multiple competing events, where the occurrence of one event at time
t is mutually exclusive with the occurrence of an other event at that time. In other words, multiple
events are possible, but only one can occur at a time.

How it Works:

Attt = 1, this node will be initialized for the first time. It adds two columns to the data: name_event
(whether the person currently has an event) and name_time (the time at which the current event
started) where name is the name of the node. Additionally, it adds a list with max_t entries to the
ce_past_events list returned by the sim_discrete_time function, which records which individ-
uals experienced a new event at each point in time. The ce_past_causes list additionally records
which kind of event happened at that time.

In a nutshell, it simply models the occurrence of some event by calculating the probability of oc-
currence at ¢ and drawing a single multinomial trial from this probability. If the trial is a "success",
the corresponding event column will be set to the drawn event type (described using integers, where
0 is no event and all other events are numbered consecutively), the time column will be set to the
current simulation time ¢ and the columns storing the past event times and types will receive an
entry.

The event column will stay at its new integer value until the event is over. The duration for that
is controlled by the event_duration parameter. When modeling terminal events such as death,
one can simply set this parameter to Inf, making the event eternal. In many cases it will also
be necessary to implement some kind of immunity after the event, which can be done using the
immunity_duration argument. This effectively sets the probability of another occurrence of the
event to 0 in the next immunity_duration time steps. During the immunity duration, the event
may be > 0 (if the event is still ongoing) or @ (if the event_duration for that event type has already
passed).

The probability of occurrence is calculated using the function provided by the user using the
prob_fun argument. This can be an arbitrary complex function. The only requirement is that it
takes data as a first argument. The columns defined by the parents argument will be passed to
this argument automatically. If it has an argument called sim_time, the current time of the sim-
ulation will automatically be passed to it as well. Any further arguments can be passed using the

38

node_competin g_events

prob_fun_args argument. A simple example could be a multinomial logistic regression node, in
which the probabilities are calculated as an additive linear combination of the columns defined by
parents. A more complex function could include simulation-time dependent effects, further effects
dependent on past event times etc. Examples can be found below and in the vignettes.

What can be done with it:

This type of node naturally support the implementation of competing events, where some may be
terminal or recurrent in nature and may be influenced by pretty much anything. By specifying the
parents and prob_fun arguments correctly, it is possible to create an event type that is dependent
on past events of itself or other time-to-event variables and other variables in general. The user can
include any amount of these nodes in their simulation. It may also be used to simulate any kind of
binary time-dependent variable that one would usually not associate with the name "event" as well.
It is very flexible, but it does require the user to do some coding by themselves.

What can’t be done with it:

This function may only be used to generate competing events, meaning that the occurrence of event
1 at ¢ = 1 makes it impossible for event 2 at ¢ = 1 to occur. If the user wants to generate multiple
events that are not mutually exclusive, he or she may add multiple node_time_to_event based
nodes to the dag argument of the sim_discrete_time function.

In fact, a competing events node may be simulated using multiple calls to the node_time_to_event
based nodes as well, by defining the prob_fun argument of these nodes in such a way that the
occurrence of event A makes the occurrence of event B impossible. This might actually be easier to
implement in some situations, because it doesn’t require the user to manually define a probability
function that outputs a matrix of subject-specific probabilities.

Value

Returns a data. table containing the updated columns of the node.

Note

This function cannot be called outside of the sim_discrete_time function. It only makes sense to
use it as a type in a node_td function call, as described in the documentation and vignettes.

Author(s)

Robin Denz

See Also

empty_dag, node, node_td, sim_from_dag, sim_discrete_time

Examples

library(simDAG)
a competing_events node with only terminal events, all with a constant
probability of occurrence, independent of any other variable

prob_death_illness <- function(data) {

simply repeat the same probabilities for everyone

node_conditional_distr 39

n <- nrow(data)
p_mat <- matrix(c(rep(0.9, n), rep(0.005, n), rep(0.005, n)),
byrow = FALSE, ncol=3)

return(p_mat)

}

dag <- empty_dag() +
node_td("death_illness"”, type="competing_events"”, prob_fun=prob_death_illness,
event_duration=c(Inf, Inf))

making one of the event-types terminal and the other recurrent
dag <- empty_dag() +
node_td("death_illness"”, type="competing_events"”, prob_fun=prob_death_illness,
event_duration=c(15, Inf))

call the sim_discrete_time function to generate data from it
sim <- sim_discrete_time(dag, n_sim=100, max_t=500)

more examples on how to use the sim_discrete_time function can be found
in the documentation page of the node_time_to_event function and
in the package vignettes

node_conditional_distr
Generate Data by Sampling from Different Distributions based on
Strata

Description

This function can be used to generate any kind of dichotomous, categorical or numeric variables de-
pendent on one or more categorical variables by randomly sampling from user-defined distributions
in each strata defined by the nodes parents. An even more flexible node type, allowing arbitrary
node definitions for different subsets of the previously generated data is included in node_mixture.

Usage

node_conditional_distr(data, parents, distr, default_distr=NULL,
default_distr_args=1ist(), default_val=NA_real_,
coerce2numeric=TRUE, check_inputs=TRUE)

Arguments
data A data.table (or something that can be coerced to a data. table) containing
all columns specified by parents.
parents A character vector specifying the names of the parents that this particular child

node has.

40

node_conditional_distr

distr A named list where each element corresponds to one stratum defined by par-
ents. If only one name is given in parents, this means that there should be
one element for possible values of the variable given in parents. If the node
has multiple parents, there needs to be one element for possible combinations
of parents (see examples). The values of those elements should be a list
themselves, with the first argument being a callable function (such as rnorm,
rcategorical, ...) and the rest should be named arguments of that function.
Any function can be used, as long as it returns a vector of n values, with n being
an argument of the function. n is set internally based on the stratum size and
cannot be set by the user. If this list does not contain one element for each possi-
ble strata defined by parents, the default_val or default_distr arguments
will be used.

default_distr A function that should be used to generate values for all strata that are not
explicitly mentioned in the distr argument, or NULL (default). If NULL, the
default_val argument will be used to fill the missing strata with values. A
function passed to this argument should contain the argument n, which should
define the number of samples to generate. It should return a vector with n values.
Some examples are (again), rnorm or rbernoulli.

default_distr_args
A named list of arguments which are passed to the function defined by the
default_distr argument. Ignored if default_distr is NULL.

default_val A single value which is used as an output for strata that are not mentioned in
distr. Ignored if default_distr is not NULL.

coerce2numeric A single logical value specifying whether to try to coerce the resulting variable
to numeric or not.

check_inputs A single logical value specifying whether to perform input checks or not. May
be set to TRUE to speed up things a little if you are sure your input is correct.

Details

Utilizing the user-defined distribution in each stratum of parents (supplied using the distr argu-
ment), this function simply calls the user-defined function with the arguments given by the user to
generate a new variable. This allows the new variable to consist of a mix of different distributions,
based on categorical parents.

Formal Description:

Formally, the data generation process can be described as a series of conditional equations. For
example, suppose that there is just one parent node sex with the levels male and female with the
goal of creating a continuous outcome that has a normal distribution of N(10,3) for males and
N(7,2) for females. The conditional equation is then:

N(10,3), if sex="male"
N(7,2), ifsex="female"’

If there are more than two variables, the conditional distribution would be stratified by the intersec-
tion of all subgroups defined by the variables.

node_conditional_distr 41

Value

Returns a numeric vector of length nrow(data).

Author(s)
Robin Denz

See Also

empty_dag, node, node_td, sim_from_dag, sim_discrete_time

Examples

library(simDAG)
set.seed(42)
with one parent node

define conditional distributions
distr <- list(male=list("rnorm”, mean=100, sd=5),
female=list("rcategorical”, probs=c(0.1, 0.2, 0.7)))

define DAG
dag <- empty_dag() +
node("sex", type="rcategorical”, labels=c("male”, "female"),
output="factor”, probs=c(0.4, 0.6)) +
node("chemo”, type="rbernoulli”, p=0.5) +
node("A", type="conditional_distr”, parents="sex", distr=distr)

generate data
data <- sim_from_dag(dag=dag, n_sim=1000)

with two parent nodes #it##

define conditional distributions with interaction between parents

distr <- list(male.FALSE=list("rnorm”, mean=100, sd=5),
male.TRUE=1list("rnorm”, mean=100, sd=20),
female.FALSE=1ist("rbernoulli”, p=0.5),
female.TRUE=1list("rcategorical”, probs=c(0.1, 0.2, 0.7)))

define DAG
dag <- empty_dag() +
node("sex", type="rcategorical”, labels=c("male"”, "female"),
output="factor”, probs=c(0.4, 0.6)) +
node("chemo”, type="rbernoulli”, p=0.5) +
node("A", type="conditional_distr"”, parents=c(”sex"”, "chemo"), distr=distr)

generate data
data <- sim_from_dag(dag=dag, n_sim=1000)

42

node_conditional_prob

node_conditional _

prob Generate Data Using Conditional Probabilities

Description

This function can be used to generate dichotomous or categorical variables dependent on one or
more categorical variables where the probabilities of occurrence in each strata defined by those

variables is known.

Usage

node_conditional_prob(data, parents, probs, default_probs=NULL,

Arguments

data

parents

probs

default_probs

default_val

default_val=NA, labels=NULL,
coerce2factor=FALSE, check_inputs=TRUE)

A data.table (or something that can be coerced to a data. table) containing
all columns specified by parents.

A character vector specifying the names of the parents that this particular child
node has.

A named list where each element corresponds to one stratum defined by par-
ents. If only one name is given in parents, this means that there should be one
element for possible value of the variable given in parents. If the node has
multiple parents, there needs to be one element for possible combinations of
parents (see examples). The values of those elements should either be a single
number, corresponding to the probability of occurrence of a single event/value in
case of a dichotomous variable, or a vector of probabilities that sum to 1, corre-
sponding to class probabilities. In either case, the length of all elements should
be the same. If possible strata of parents (or their possible combinations in
case of multiple parents) are omitted, the result will be set to default_val for
these omitted strata. See argument default_val and argument default_probs
for an alternative.

If not all possible strata of parents are included in probs, the user may set
default probabilities for all omitted strata. For example, if there are three strata
(A, B and C) defined by parents and probs only contains defined probabilities
for strata A, the probabilities for strata B and C can be set simultaneously by
using this argument. Should be a single value between 0 and 1 for Bernoulli
trials and a numeric vector with sum 1 for multinomial trials. If NULL (default)
the value of the produced output for missing strata will be set to default_val
(see below).

Value of the produced variable in strata that are not included in the probs argu-
ment. If default_probs is not NULL, that arguments functionality will be used
instead.

node_conditional_prob 43

labels A vector of labels for the generated output. If NULL (default) and the output
is dichotomous, a logical variable will be returned. If NULL and the output is
categorical, it simply uses integers starting from 1 as class labels.

coerce2factor A single logical value specifying whether to return the drawn events as a factor
or not.

check_inputs A single logical value specifying whether input checks should be performed or
not. Set to FALSE to save some computation time in simulations.

Details

Utilizing the user-defined discrete probability distribution in each stratum of parents (supplied
using the probs argument), this function simply calls either the rbernoulli or the rcategorical
function.

Formal Description:

Formally, the data generation process can be described as a series of conditional equations. For
example, suppose that there is just one parent node sex with the levels male and female with the
goal of creating a binary outcome that has a probability of occurrence of 0.5 for males and 0.7 for
females. The conditional equation is then:

Y ~ Bernoulli(p),

where:

] 0.5, if sex="male"
P= 0.7, if sex="female"’

and Bernoulli(p) is the Bernoulli distribution with success probability p. If the outcome has more
than two categories, the Bernoulli distribution would be replaced by Multinomial(p) with p being
replaced by a matrix of class probabilities. If there are more than two variables, the conditional
distribution would be stratified by the intersection of all subgroups defined by the variables.

An even more flexible node type, allowing arbitrary node definitions for different subsets of the
previously generated data is included in node_mixture.

Value

Returns a numeric vector of length nrow(data).

Author(s)

Robin Denz

See Also

empty_dag, node, node_td, sim_from_dag, sim_discrete_time

44

Examples

library(simDAG)
set.seed(42)
#i### two classes, one parent node ##i##

define conditional probs
probs <- list(male=0.5, female=0.8)

define DAG
dag <- empty_dag() +
node("sex", type="rcategorical”, labels=c("male"”, "female"),
output="factor”, probs=c(0.5, 0.5)) +
node("chemo”, type="rbernoulli”, p=0.5) +
node("A", type="conditional_prob”, parents="sex", probs=probs)

generate data
data <- sim_from_dag(dag=dag, n_sim=1000)

three classes, one parent node

define conditional probs
probs <- list(male=c(0.5, 0.2, 0.3), female=c(0.8, 0.1, 0.1))

define DAG
dag <- empty_dag() +
node("sex", type="rcategorical”, labels=c("male”, "female"),
output="factor”, probs=c(0.5, 0.5)) +
node("chemo”, type="rbernoulli”, p=0.5) +
node("A", type="conditional_prob”, parents="sex", probs=probs)

generate data
data <- sim_from_dag(dag=dag, n_sim=1000)

#i### two classes, two parent nodes ####

define conditional probs

probs <- list(male.FALSE=0.5,
male.TRUE=0.8,
female.FALSE=0.1,
female.TRUE=0.3)

define DAG
dag <- empty_dag() +
node("sex"”, type="rcategorical”, labels=c("male”, "female"),
output="factor”, probs=c(0.5, 0.5)) +
node("chemo”, type="rbernoulli”, p=0.5) +

node_conditional_prob

node("A", type="conditional_prob"”, parents=c("sex", "chemo"), probs=probs)

node_cox 45

generate data
data <- sim_from_dag(dag=dag, n_sim=1000)

three classes, two parent nodes #i#H##

define conditional probs

probs <- list(male.FALSE=c(0.5, 0.1, 0.4),
male.TRUE=c(0.8, 0.1, 0.1),
female.FALSE=c(0.1, 0.7, 0.2),
female.TRUE=c(0.3, 0.4, 0.3))

define dag
dag <- empty_dag() +
node("sex", type="rcategorical”, labels=c("male”, "female"),
output="factor”, probs=c(0.5, 0.5)) +
node("chemo”, type="rbernoulli”, p=0.5) +
node("A", type="conditional_prob”, parents=c("sex", "chemo"), probs=probs)

generate data
data <- sim_from_dag(dag=dag, n_sim=1000)

node_cox Generate Data from a Cox-Regression Model

Description
Data from the parents is used to generate the node using cox-regression using the method of Bender
et al. (2005).

Usage

node_cox(data, parents, formula=NULL, betas, surv_dist, lambda, gamma,
cens_dist=NULL, cens_args, name, as_two_cols=TRUE,

left=0)
Arguments

data A data.table (or something that can be coerced to a data. table) containing
all columns specified by parents.

parents A character vector specifying the names of the parents that this particular child
node has. If non-linear combinations or interaction effects should be included,
the user may specify the formula argument instead.

formula An optional formula object to describe how the node should be generated or

NULL (default). If supplied it should start with ~, having nothing else on the
left hand side. The right hand side may contain any valid formula syntax, such
as A+Bor A+B+I(A*2), allowing non-linear effects. If this argument is de-
fined, there is no need to define the parents argument. For example, using
parents=c("A", "B") is equal to using formula= ~ A + B.

46 node_cox

betas A numeric vector with length equal to parents, specifying the causal beta co-
efficients used to generate the node.

surv_dist A single character specifying the distribution that should be used when generat-
ing the survival times. Can be either "weibull” or "exponential”.

lambda A single number used as parameter defined by surv_dist.

gamma A single number used as parameter defined by surv_dist.

cens_dist A single character naming the distribution function that should be used to gen-

erate the censoring times or a suitable function. For example, "runif” could be
used to generate uniformly distributed censoring times. Set to NULL to get no
censoring (default).

cens_args A list of named arguments which will be passed to the function specified by the
cens_dist argument.

name A single character string specifying the name of the node.

as_two_cols Either TRUE or FALSE, specifying whether the output should be divided into two
columns. When cens_dist is specified, this argument will always be treated as
TRUE because two columns are needed to encode both the time to the event and
the status indicator. When no censoring is applied, however, users may set this
argument to FALSE to simply return the numbers as they are.

left Either a single number >= 0, or a numeric vector of length nrow(data) con-
taining only numbers >= 0. When simulating the survival times, only numbers
larger than these will be generated using correctly left-truncated sampling. Note
that this does not affect the censoring times, only the generated survival times
will be left-truncated. Set to 0 (default) to not use left-truncation.

Details

The survival times are generated according to the cox proportional-hazards regression model as
defined by the user. How exactly the data-generation works is described in detail in Bender et al.
(2005). To also include censoring, this function allows the user to supply a function that generates
random censoring times. If the censoring time is smaller than the generated survival time, the
individual is considered censored.

Unlike the other node type functions, this function usually adds two columns to the resulting dataset
instead of one. The first column is called paste@(name, "_status"”) and is a logical variable,
where TRUE indicates that the event has happened and FALSE indicates right-censoring. The second
column is named paste@(name, "_time") and includes the survival or censoring time correspond-
ing to the previously mentioned event indicator. This is the standard format for right-censored
time-to-event data without time-varying covariates. If no censoring is applied, this behavior can be
turned off using the as_two_cols argument.

To simulate more complex time-to-event data, the user may need to use the sim_discrete_time
function instead.

Value

Returns a data. table of length nrow(data) containing two columns if as_two_cols=TRUE and
always when cens_dist is specified. In this case, both columns start with the nodes name and end
with _status and _time. The firstis a logical vector, the second a numeric one. If as_two_cols=FALSE
and cens_dist is NULL, a numeric vector is returned instead.

node_gaussian 47

Note

This function was updated internally in version 0.5.0 to make it faster and to allow the left argu-
ment. Generating data using this updated version will generally result in different results as com-
pared to earlier versions, even when using the same random number generator seed. To replicate
earlier results, please install earlier versions of this package.

Author(s)

Robin Denz

References

Bender R, Augustin T, Blettner M. Generating survival times to simulate Cox proportional hazards
models. Statistics in Medicine. 2005; 24 (11): 1713-1723.

Examples

library(simDAG)
set.seed(3454)

define DAG
dag <- empty_dag() +
node("age", type="rnorm”, mean=50, sd=4) +
node("sex", type="rbernoulli”, p=0.5) +
node("death”, type="cox", parents=c("sex"”, "age"), betas=c(1.1, 0.4),
surv_dist="weibull”, lambda=1.1, gamma=0.7, cens_dist="runif"”,
cens_args=list(min=0, max=1))

sim_dat <- sim_from_dag(dag=dag, n_sim=1000)

node_gaussian Generate Data from a (Mixed) Linear Regression Model

Description

Data from the parents is used to generate the node using linear regression by predicting the covariate
specific mean and sampling from a normal distribution with that mean and a specified standard
deviation. Allows inclusion of arbitrary random effects and slopes.

Usage

node_gaussian(data, parents, formula=NULL, betas, intercept, error,
var_corr=NULL, link="identity")

48

Arguments

data

parents

formula

betas

intercept

error

var_corr

link

Details

node_gaussian

A data.table (or something that can be coerced to a data. table) containing
all columns specified by parents.

A character vector specifying the names of the parents that this particular child
node has. If non-linear combinations or interaction effects should be included,
the user may specify the formula argument instead.

An optional formula object to describe how the node should be generated or
NULL (default). If supplied it should start with ~, having nothing else on the
left hand side. The right hand side may contain any valid formula syntax, such
as A+Bor A+B+I(A*2), allowing non-linear effects. If this argument is de-
fined, there is no need to define the parents argument. For example, using
parents=c("A", "B") is equal to using formula= ~ A + B. May contain random
effects and random slopes, in which case the simr package is used to generate
the data. See details.

A numeric vector with length equal to parents, specifying the causal beta co-
efficients used to generate the node.

A single number specifying the intercept that should be used when generating
the node.

A single number specifying the sigma error that should be used when generating
the node. By setting this argument to 0, the linear predictor is returned directly.
If formula contains mixed model syntax, this argument is passed to the sigma
argument of the makeLmer function of the simr package.

Variances and covariances for random effects. Only used when formula con-
tains mixed model syntax. If there are multiple random effects, their parameters
should be supplied as a named list. More complex structures are also supported.
This argument is directly passed to the makeLmer function of the simr package.
Please consult the documentation of that package for more information on how
mixed models should be specified. Some guidance can also be found in the
"Issues" section of the official simr github page.

The link function used to transform the linear predictor before adding the ran-
dom error to it. For a standard linear regression model, this should be set to
link="identity" (which is the default). Other allowed values are "log" and
"inverse", which are defined the same way as in the classic glm function.

Using the general linear regression equation, the observation-specific value that would be expected
given the model is generated for every observation in the dataset generated thus far. We could
stop here, but this would create a perfect fit for the node, which is unrealistic. Instead, we add an
error term by taking one sample of a normal distribution for each observation with mean zero and
standard deviation error. This error term is then added to the predicted mean.

Formal Description:

Formally, the data generation can be described as:

Y ~ intercept + parents; - betas; + ... + parents,, - betas,, + N (0, error),

node_gaussian 49

where N (0, error) denotes the normal distribution with mean 0 and a standard deviation of error
and n is the number of parents (length(parents)).

For example, given intercept=-15, parents=c("A", "B"), betas=c (0.2, 1.3) and error=2 the
data generation process is defined as:

Y ~ =15+ A-02+ B-13+ N(0,2).

When using a 1ink other than "identity”, the procedure is equivalent, except that the link function
is applied to the linear predictor before adding the random error term. For example, when using
link="log", exp(—15+ A-0.2 4+ B -1.3) + N(0, 2) is used instead.

Random Effects and Random Slopes:

This function also allows users to include arbitrary amounts of random slopes and random effects
using the formula argument. If this is done, the formula, and data arguments are passed to
the variables of the same name in the makeLmer function of the simr package. The fixef argu-
ment of that function will be passed the numeric vector c(intercept, betas) and the VarCorr
argument receives the var_corr argument as input. If used as a node type in a DAG, all of this
is taken care of behind the scenes. Users can simply use the regular enhanced formula interface
of the node function to define these formula terms, as shown in detail in the formula vignette
(vignette(topic="v_using_formulas”, package="simDAG")). Please consult that vignette for
examples. Also, please note that inclusion of random effects or random slopes usually results in
significantly longer computation times.

Value

Returns a numeric vector of length nrow(data).

Author(s)
Robin Denz

See Also

empty_dag, node, node_td, sim_from_dag, sim_discrete_time

Examples

library(simDAG)
set.seed(12455432)

define a DAG
dag <- empty_dag() +
node("age", type="rnorm”, mean=50, sd=4) +
node("sex", type="rbernoulli”, p=0.5) +
node("bmi"”, type="gaussian”, parents=c("sex", "age"),
betas=c(1.1, 0.4), intercept=12, error=2)

define the same DAG, but with a pretty formula for the child node
dag <- empty_dag() +

50

node("age"”, type="rnorm"”, mean=50, sd=4) +

node("sex", type="rbernoulli”, p=0.5) +

node("bmi”, type="gaussian", error=2,
formula= ~ 12 + sexTRUE*1.1 + agex0.4)

sim_dat <- sim_from_dag(dag=dag, n_sim=100)

an example using a random effect
if (requireNamespace("simr")) {

library(simr)

dag_mixed <- empty_dag() +
node("School”, type="rcategorical”, probs=rep(0.1, 10),
labels=LETTERS[1:10]) +
node("Age", type="rnorm”, mean=12, sd=2) +
node("Grade", type="gaussian"”, formula= ~ -2 + Age*1.2 + (1|School),
var_corr=0.3, error=1)

sim_dat <- sim_from_dag(dag=dag_mixed, n_sim=20)

}

node_identity

node_identity Generate Data based on an expression

Description

This node type may be used to generate a new node given a regular R expression that may include
function calls or any other valid R syntax. This may be useful to combine components of a node
which need to be simulated with separate node calls, or just as a convenient shorthand for some
variable transformations. Also allows calculation of just the linear predictor and generation of

intermediary variables using the enhanced formula syntax.

Usage

node_identity(data, parents, formula, kind="expr",
betas, intercept, var_names=NULL,
name=NULL, dag=NULL)

Arguments
data A data. table (or something that can be coerced to a data. table) containing
all columns specified by parents.
parents A character vector specifying the names of the parents that this particular child

node has. When using this function as a node type in node or node_td, this
argument usually does not need to be specified because the formula argument

is required and contains all needed information already.

node_identity 51

formula A formula object. The specific way this argument should be specified depends
on the value of the kind argument used. It can be an expression (kind="expr"),
a simDAG style enhanced formula to calculate the linear predictor only (kind="1inpred")
or used as a way to store intermediary variable transformations (kind="data").

kind A single character string specifying how the formula should be interpreted,
with three allowed values: "expr”, "linpred” and "data”. If "expr” (de-
fault), the formula should contain a ~ symbol with nothing on the LHS, and any
valid R expression that can be evaluated on data on the RHS. This expression
needs to contain at least one variable name (otherwise users may simply use
rconstant as node type). It may contain any number of function calls or other
valid R syntax, given that all contained objects are included in the global en-
vironment. Note that the usual formula syntax, using for example A:B*0. 2 to
specify an interaction won’t work in this case. If that is the goal, users should
use kind="linpred"”, in which case the formula is interpreted in the normal
simDAG way and the linear combination of the variables is calculated. Finally, if
kind="data", the formula may contain any enhanced formula syntax, such as
A:B or net() calls, but it should not contain beta-coefficients or an intercept.
In this case, the transformed variables are returned in the order given, using the
name as column names. See examples.

betas Only used internally when kind="1inpred".

intercept Only used internally when kind="1inpred". If no intercept should be present,
it should still be added to the formula using a simple 0, for example ~ @ + Ax0@. 2
+B%0.3

var_names Only used when kind="data". In this case, and only if there are multiple terms

on the right-hand side of formula, the resulting columns will be re-named ac-
cording to this argument. Should have the same length as the number of terms in
formula. Names are given in the same order as the variables appear in formula.
If only a single term is on the right-hand side of formula, the name supplied in
the node function call will automatically be used as the nodes name and this
argument is ignored. Set to NULL (default) to just use the terms as names.

name A single character string, specifying the name of the node. Passed internally
only. See var_names.

dag The dag that this node is a part of. Will be passed internally if needed (for exam-
ple when performing networks-based simulations). This argument can therefore
always be ignored by users.

Details

When using kind="expr", custom functions and objects can be used without issues in the formula,
but they need to be present in the global environment, otherwise the underlying eval () function call
will fail. Using this function outside of node or node_td is essentially equal to using with(data,
eval(formula)) (without the ~ in the formula). If kind!="expr", this function cannot be used
outside of a defined DAG.

Please note that when using identity nodes with kind="data" and multiple terms in formula, the
printed structural equations and plots of a dag object may not be correct.

52 node_identity

Value

Returns a numeric vector of length nrow(data).

Author(s)
Robin Denz

See Also

empty_dag, node, node_td, sim_from_dag, sim_discrete_time

Examples

library(simDAG)
set.seed(12455432)
using kind = "expr”

define a DAG
dag <- empty_dag() +
node("age", type="rnorm”, mean=50, sd=4) +
node("sex", type="rbernoulli”, p=0.5) +
node("something”, type="identity", formula= ~ age + sex + 2)

sim_dat <- sim_from_dag(dag=dag, n_sim=100)
head(sim_dat)

more complex alternative
dag <- empty_dag() +
node("age", type="rnorm”, mean=50, sd=4) +
node("sex", type="rbernoulli”, p=0.5) +
node("something”, type="identity",
formula= ~ age / 2 + age*2 - ifelse(sex, 2, 3) + 2)

sim_dat <- sim_from_dag(dag=dag, n_sim=100)
head(sim_dat)

using kind = "linpred” #it##

this would work with both kind="expr"” and kind="linpred”
dag <- empty_dag() +
node("age", type="rnorm”, mean=50, sd=4) +
node("sex", type="rbernoulli”, p=0.5) +
node("pred”, type="identity", formula= ~ 1 + age*0.2 + sex*1.2,
kind="1linpred")

sim_dat <- sim_from_dag(dag=dag, n_sim=10)
head(sim_dat)

this only works with kind="linpred"”, due to the presence of a special term
dag <- empty_dag() +

node_mixture 53

node("age"”, type="rnorm"”, mean=50, sd=4) +

node("sex"”, type="rbernoulli”, p=0.5, output="numeric") +

node("pred”, type="identity"”, formula= ~ 1 + agex0.2 + sex*1.2 + age:sexx*-2,
kind="1linpred")

sim_dat <- sim_from_dag(dag=dag, n_sim=10)
head(sim_dat)

###H using kind = "data" ##H##

simply return the transformed data, useful if the terms are used
frequently in multiple nodes in the DAG to save computation time

using only a single interaction term

dag <- empty_dag() +
node("age"”, type="rnorm”, mean=50, sd=4) +
node("sex", type="rbernoulli”, p=0.5, output="numeric”) +
node("age_sex_interact”, type="identity"”, formula= ~ age:sex, kind="data")

sim_dat <- sim_from_dag(dag=dag, n_sim=10)
head(sim_dat)

using multiple terms
dag <- empty_dag() +
node("age"”, type="rnorm”, mean=50, sd=4) +
node("sex", type="rbernoulli”, p=0.5, output="numeric") +
node("name_not_used”, type="identity"”, formula= ~ age:sex + I(age*2),
kind="data", var_names=c("age_sex_interact”, "age_squared"))

sim_dat <- sim_from_dag(dag=dag, n_sim=10)
head(sim_dat)

node_mixture Generate Data from a Mixture of Node Definitions

Description

This node type allows users to apply different nodes to different subsets of the already gener-
ated data, making it possible to generate data for arbitrary mixture distributions. It is similar to
node_conditional_distr and node_conditional_prob, with the main difference being that the
former only allow univariate distributions conditional on categorical variables, while this function
allows any kind of node definition and condition. This makes it, for example, possible to generate
data for a variable from different regression models for different subsets of simulated individuals.

Usage

node_mixture(data, parents, name, distr, default=NA)

54

node_mixture

Arguments

data A data.table (or something that can be coerced to a data. table) containing
all columns specified by parents.

parents A character vector specifying the names of the parents that this particular child
node has. This vector should include all nodes that are used in the conditions
and the node calls specified in distr.

name A single character string specifying the name of the node.

distr A unnamed list that specifies both the conditions and the node definitions. It
should be specified in a similar way as the fcase function in pairs of conditions
(coded as strings) and node definitions. This means that a condition comes
first, for example "A==0", followed by some call node and so on. Arbitrary
numbers of those pairs are allowed with no restrictions to what can be specified
in the node calls. The name argument has to be specified in all node calls, but it
does not matter which value is used as it will be ignored in further processing.
Currently only supports time-fixed nodes defined using the node function, not
time-dependent nodes defined using the node_td function. See examples.

default A single value of some kind, used as a default value for those individuals not
covered by all the conditions defined in distr. Defaults to NA.

Details

Internally, the data is generated by extracting only the relevant part of the already generated data as
defined by the condition and using node function to generate the new response-part. This generation
is done in the order in which the distr was specified, meaning that data for the first condition is
checked first and so on. There are no safeguards to guarantee that the conditions do not overlap.
For example, users are free to set the first condition to something like A > 1@ and the next one to
A >11, in which case the value for every individual with A > 11 is generated twice (first with the
first specification, secondly with the next specification). In this case, only the last generated value
is retained.

Note that it is also possible to use the mixture node itself inside the conditions or node calls in
distr, because it is directly added to the data before the first condition is applied (by setting
everyone to the default value). See examples.

Additionally, because the output of each of the parts of the mixture distributions is forced into one
vector, they might be coerced from one class to another, depending on the input to distr and the
order used. This also needs to be taken care of by the user.

Value

Returns a vector of length nrow(data). The class of the vector is determined by what is specified
indistr.

Author(s)

Robin Denz

See Also

empty_dag, node, node_td, sim_from_dag, sim_discrete_time

node_multinomial 55

Examples

library(simDAG)
set.seed(1234)

different linear regression models per level of a different covariate
here, A is the group that is used for the conditioning, B is a predictor
and Y is the mixture distributed outcome
dag <- empty_dag() +

node("A", type="rbernoulli”) +

node("B", type="rnorm") +

node("Y", type="mixture”, parents="A",

distr=list(

"A==0", node(".", type="gaussian", formula= ~ -2 + Bx2, error=1),
"A==1", node(".", type="gaussian”, formula= ~ 3 + B*5, error=1)
)
data <- sim_from_dag(dag, n_sim=100)
head(data)

also works with multiple conditions
dag <- empty_dag() +
node(c("A", "C"), type="rbernoulli”) +
node("B", type="rnorm") +
node("Y", type="mixture"”, parents=c("A", "C"),
distr=list(

"A==@Q & C==1", node(".", type="gaussian”, formula= ~ -2 + Bx2, error=1),
"A==1", node(".", type="gaussian”, formula= ~ 3 + B%5, error=1)
)
data <- sim_from_dag(dag, n_sim=100)
head(data)

using the mixture node itself in the condition
see cookbook vignette, section on outliers for more info
dag <- empty_dag() +
node(c("A", "B", "C"), type="rnorm") +
node("Y", type="mixture”, parents=c("A", "B", "C"),
distr=list(

"TRUE", node(".", type="gaussian”, formula= ~ -2 + AxQ.1 + Bx1 + C%-2,
error=1),
"Y > 2", node(".", type="rnorm", mean=10000, sd=500)
))

data <- sim_from_dag(dag, n_sim=100)

node_multinomial Generate Data from a Multinomial Regression Model

Description

Data from the parents is used to generate the node using multinomial regression by predicting the
covariate specific probability of each class and sampling from a multinomial distribution accord-

ingly.

56

Usage

node_multinomial

node_multinomial (data, parents, betas, intercepts,

Arguments

data

parents

betas

intercepts

labels

output

return_prob

Details

labels=NULL, output="factor”,
return_prob=FALSE)

A data.table (or something that can be coerced to a data. table) containing
all columns specified by parents.

A character vector specifying the names of the parents that this particular child
node has.

A numeric matrix with length(parents) columns and one row for each class
that should be simulated, specifying the causal beta coefficients used to generate
the node.

A numeric vector with one entry for each class that should be simulated, speci-
fying the intercepts used to generate the node.

An optional character vector giving the factor levels of the generated classes. If
NULL (default), the integers are simply used as factor levels.

A single character string specifying the output format. Must be one of "factor”
(default), "character” or "numeric”. If the argument labels is supplied, the
output will coerced to "character” by default.

Either TRUE or FALSE (default). Specifies whether to return the matrix of class
probabilities or not. If you are using this function inside of a node call, you
cannot set this to TRUE because it will return a matrix. It may, however, be
useful when using this function by itself, or as a probability generating function
for the node_competing_events function.

This function works essentially like the node_binomial function. First, the matrix of betas coef-
ficients is used in conjunction with the values defined in the parents nodes and the intercepts to
calculate the expected subject-specific probabilities of occurrence for each possible category. This
is done using the standard multinomial regression equations. Using those probabilities in conjunc-
tion with the rcategorical function, a single one of the possible categories is drawn for each

individual.

When actually fitting a multinomial regression model (with functions such as multinom from the
nnet package), the coefficients will usually not be equal to the ones supplied in betas. The reason is
that these functions usually standardize the coefficients to the coefficient of the reference category.

Value

Returns a vector of length nrow(data). Depending on the used arguments, this vector may be of
type character, numeric of factor. If return_prob was used it instead returns a numeric matrix
containing one column per possible event and nrow(data) rows.

node_negative_binomial 57

Author(s)
Robin Denz

See Also

empty_dag, node, node_td, sim_from_dag, sim_discrete_time

Examples

library(simDAG)
set.seed(3345235)

dag <- empty_dag() +
node("age", type="rnorm”, mean=50, sd=4) +
node("sex", type="rbernoulli”, p=0.5) +
node("UICC", type="multinomial”, parents=c("sex", "age"),
betas=matrix(c(0.2, 0.4, 0.1, 0.5, 1.1, 1.2), ncol=2),
intercepts=1)

sim_dat <- sim_from_dag(dag=dag, n_sim=100)

node_negative_binomial
Generate Data from a Negative Binomial Regression Model

Description
Data from the parents is used to generate the node using negative binomial regression by applying
the betas to the design matrix and sampling from the rnbinom function.

Usage

node_negative_binomial(data, parents, formula=NULL, betas,
intercept, theta, link="log")

Arguments
data A data.table (or something that can be coerced to a data. table) containing
all columns specified by parents.
parents A character vector specifying the names of the parents that this particular child
node has. If non-linear combinations or interaction effects should be included,
the user may specify the formula argument instead.
formula An optional formula object to describe how the node should be generated or

NULL (default). If supplied it should start with ~, having nothing else on the
left hand side. The right hand side may contain any valid formula syntax,
such as A+B or A+ B+ I(A*2), allowing non-linear effects. If this argument

58

betas

intercept

theta
link

Details

node_negative_binomial

is defined, there is no need to define the parents argument. For example, us-
ing parents=c("A", "B") is equal to using formula= ~ A + B. Contrary to the
node_gaussian, node_binomial and node_poisson node types, random ef-
fects and random slopes are currently not supported here.

A numeric vector with length equal to parents, specifying the causal beta co-
efficients used to generate the node.

A single number specifying the intercept that should be used when generating
the node.

A single number specifying the theta parameter (size argument in rnbinom).

The link function used to transform the linear predictor to the mu value used
in rnbinom. For a standard negative binomial regression model, this should be
set to "log"” (which is the default). Other allowed values are "identity"” and
n sqr,t n A

This function uses the linear predictor defined by the betas and the input design matrix to sample
from a subject-specific negative binomial distribution. It does to by calculating the linear predictor
using the data, betas and intercept, applying the inverse of the link function to it and passing it
to the mu argument of the rnbinom function of the stats package.

This node type currently does not support inclusion of random effects or random slopes in the

formula.

Value

Returns a numeric vector of length nrow(data).

Author(s)

Robin Denz

See Also

empty_dag, node, node_td, sim_from_dag, sim_discrete_time

Examples

library(simDAG)

set.seed(124554)

dag <- empty_dag() +
node("age", type="rnorm”, mean=50, sd=4) +
node("sex", type="rbernoulli”, p=0.5) +
node("smoking"”, type="negative_binomial”, theta=0.05,
formula= ~ -2 + sexTRUE*1.1 + agex0.4)

sim_dat <- sim_from_dag(dag=dag, n_sim=100@, sort_dag=FALSE)

node_next_time 59

node_next_time Generate the Next Time of an Event in Discrete-Event Simulation

Description

This node essentially models a dichotomous time-dependent variable for which the time of the event
will be important for later usage. Can only be used inside of the sim_discrete_event function,
not outside of it or in other simulation functions. See details.

Usage

node_next_time(data, formula, prob_fun, .
distr_fun=rtexp, distr_fun_args=list(),
model=NULL, event_duration=Inf,
immunity_duration=event_duration,
event_count=FALSE)

Arguments

data A data.table containing all columns specified by parents. Similar objects
such as data. frames are not supported.

formula An optional formula that may be used to define the probability that will be
passed to distr_fun using a binomial regression model. If supplied, the node_binomial
function will be called internally with return_prob=TRUE (calculating only the
probability as estimated using the model). See ?node or the associated vignette
for more information about how a formula should be defined in this package.
Note that net terms are currently not supported in this node type. This argument
is ignored if prob_fun is specified.

prob_fun A function that returns a numeric vector of size nrow(data). These numbers
should be used to summarise the effect of the considered covariates per per-
son. The summarised score is then used in the distr_fun function call that
follows internally. For example, when using distr_fun="rtexp" (default), the
prob_fun should generate the person-specific probability of experiencing the
event during 1 time unit. Any function may be used, as long as it has a named
argument called data. Alternatively this argument can be set to a single number,
resulting in a fixed summary score being used for every simulated individual at
every point in time. The formula argument may be used as a convenient alter-
native if users want to specify a binomial regression model.

An arbitrary amount of additional named arguments passed to prob_fun if prob_fun
is specified. If formula is specified and both prob_fun and model are not, these
additional arguments are passed directly to the node_binomial function instead.

If model is specified, these arguments are passed to the respective model func-
tion. Ignore this if you do not want to pass any arguments. Also ignored if
prob_fun is a single number.

60 node_next_time

distr_fun A function that returns the (left-truncated) next time at which the variable turns
to TRUE. Any function that has at least three named arguments n (the number of
times to draw), rate (the summary score returned by prob_fun) and 1 (the time
of left-truncation) may be used. The function additionally needs to be vectorised
over both rate and 1, so that a vector of different values may be supplied. The
left-truncation is required, so that it only generated times that are strictly larger
than 1. A classic example for such a function is the rtexp function (the default).
See examples and the associated vignette.

distr_fun_args A list of named arguments that should be passed to the function specified in the
distr_fun argument.

model Alternative way to specify how the next time should be generated. Takes a single
character string, specifying a time-to-event node. Currently supported values are
"cox" (to use the node_cox function to generate the next time) and "aalen"” (to
use the node_aalen function to generate the next time). If this argument is
specified, both prob_fun and distr_fun are ignored. Concurrent use of the
formula argument is supported. Further arguments that need to be passed to the
respective node function can be passed through the . .. syntax.

event_duration A single number > 0 specifying how long the event should last. During this
period, the corresponding variable is set to TRUE.

immunity_duration
A single number >= event_duration specifying how long the person should be
immune to the event after it is over. The count internally starts when the event
starts, so in order to use an immunity duration of 10 time units after the event
is over event_duration + 10 should be used. The corresponding variable is set
to FALSE after the event_duration is up and until the immunity_duration is
over.

event_count Either TRUE or FALSE (default), specifying whether an additional column should
be added that counts the number of times this variable has been TRUE previously.
If TRUE, the column will be named by taking the name of the node and appending
"_event_count”. It is O at the beginning and increases by 1 at each point in
time that the variable changes its status from FALSE to TRUE. Note that this may
increase the time it takes to run the simulation. If the count of previous events
is only needed for processing in the variable itself, a faster alternative is to keep
this argument at FALSE and to use the internal .event_count column instead.
Only use this argument if other variables should be dependent on the event count
of this variable.

Details

This function is the only time-dependent node type that may currently be used when conduct-
ing discrete-event simulations using the sim_discrete_event function. It is very similar to the
node_time_to_event function in spirit, as it is used to model a binary variable over time. It is,
however, not usable in sim_discrete_time calls. Use the node_time_to_event function there
instead.

How it works:

At the beginning (¢t = 0) of the simulation, any variable added using this function is set to FALSE for
all individuals. Then, the function supplied in the prob_fun argument is applied to all individuals in

node_next_time 61

the current data, potentially using information from baseline covariates and other time-dependent
nodes (the latter of which are all FALSE at this stage). The obtained summary score is then passed
to the distr_fun in order to generate the time at which the variable changes from FALSE to TRUE
for each individual.

For example, consider the situation in which only one time-dependent variable is includded. In this
case, the simulation time for each individual jumps to the generated event time immediately. The
variable is then set to TRUE. Afterwards, the simulation time jumps until the end of the event_duration
(if that duration is Inf, the simulation is over). The variable is then set back to FALSE. Next, the
simulation time jumps to the end of the immunity_duration (again, if this is Inf, the simulation is
over).

With more then one time-dependent variable, the situation is a little more complicated. Consider
two time-dependent variables A and B. At ¢ = 0, both are FALSE for every individual. The prob_fun
and subsequently the distr_fun of both variables are called to generate the time of the next event
in each of them. Lets say those are 20 and 42, respectively. The simulation time is then advanced
to 20, setting A to TRUE. At this point, the prob_fun and distr_fun arguments are called again
for B, because B might be dependent on current values of A, drawing a new next event time for B.
Crucially, this time is drawn from a left-truncated distr_fun, so that it is always larger than the
current time of 20. Lets say that new time is 53.

The simulation is then advanced again, but not necessarily to 53. Lets say the event_duration of
A is only 10. In this case the simulation time is only advanced to 30. A is then set to FALSE again
and the next time for B is re-computed using its prob_fun and distr_fun. At this point, if the
immunity_duration of A is not Inf, the next time for A is also re-computed, left-truncated on the
current simulation time + the immunity_duration. Again, the time is advanced to the next event
and the cycle continues.

This process is repeated until either (1) all variables reach a terminal state, (2) the simulation time
for each individual is >= max_t, (3) a break condition defined by break_if is reached or (4) no
individuals are left after their removal through the remove_if argument. Otherwise, the simulation
runs forever.

What can be done with it:

This type of node naturally supports the implementation of terminal and recurrent events that may
be influenced by baseline variables and other such events over time dynamically. By specifying the
parents and prob_fun arguments correctly, it is possible to create an event type that is dependent
on past events of itself or other time-to-event variables and other variables in general, allowing non-
markovian data to be generated. The user can include any amount of these nodes in their simulation.
It may also be used to simulate any kind of binary time-dependent variable that one would usually
not associate with the name "event" as well.

What can’t be done with it:

Currently this function only allows binary events. Categorical event types or continuous time-
dependent variables are currently not supported. The event_duration and immunity_duration
can also only be fixed for each node, and are not allowed to vary per person.

Value

This function is never actually called. It is only used so that the node type "next_time" can be
safely specified in node_td calls. It does not make sense to ever use it outside a node_td call, as it
always returns NULL.

62 node_next_time

Author(s)
Robin Denz

See Also

empty_dag, node_td, sim_discrete_event, node_time_to_event

Examples

library(simDAG)

a simple terminal time-to-event node, with a constant probability of
occurrence, independent of any other variable
dag <- empty_dag() +
node_td("death”, type="next_time", prob_fun=0.0001,
event_duration=Inf)

a simple recurrent time-to-event node with a constant probability of
occurrence, independent of any other variable
dag <- empty_dag() +

node_td("car_crash”, type="next_time", prob_fun=0.001, event_duration=1)

a next-time node with a probability function dependent on a
time-fixed variable
prob_car_crash <- function(data) {
ifelse(data$sex==1, 0.001, 0.01)
3

dag <- empty_dag() +
node("sex", type="rbernoulli”, p=0.5) +
node_td("car_crash”, type="next_time"”, prob_fun=prob_car_crash,
parents="sex")

a little more complex car crash simulation, where the probability for
a car crash is dependent on the sex, and the probability of death is
highly increased for 3 days after a car crash happened
prob_car_crash <- function(data) {

ifelse(data$sex==1, 0.001, 0.01)
3

prob_death <- function(data) {
ifelse(data$car_crash, 0.1, 0.0001)
3

dag <- empty_dag() +
node("sex", type="rbernoulli”, p=0.5) +
node_td("car_crash”, type="next_time", prob_fun=prob_car_crash,
parents="sex", event_duration=3) +
node_td("death”, type="next_time"”, prob_fun=prob_death,
parents="car_crash”, event_duration=Inf)

use the sim_discrete_time function to simulate data from one of these DAGs:

node_poisson 63

sim <- sim_discrete_event(dag, n_sim=20, max_t=500)

more examples can be found in the vignettes of this package

node_poisson Generate Data from a (Mixed) Poisson Regression Model

Description

Data from the parents is used to generate the node using poisson regression by predicting the co-
variate specific lambda and sampling from a poisson distribution accordingly. Allows inclusion of
arbitrary random effects and slopes.

Usage

node_poisson(data, parents, formula=NULL, betas, intercept,
var_corr=NULL, link="log")

Arguments
data A data.table (or something that can be coerced to a data. table) containing
all columns specified by parents.
parents A character vector specifying the names of the parents that this particular child
node has. If non-linear combinations or interaction effects should be included,
the user may specify the formula argument instead.
formula An optional formula object to describe how the node should be generated or

NULL (default). If supplied it should start with ~, having nothing else on the
left hand side. The right hand side may contain any valid formula syntax, such
as A+ B or A+B+ I(A*2), allowing non-linear effects. If this argument is de-
fined, there is no need to define the parents argument. For example, using
parents=c("A", "B") is equal to using formula= ~ A + B. May contain random
effects and random slopes, in which case the simr package is used to generate
the data. See details.

betas A numeric vector with length equal to parents, specifying the causal beta co-
efficients used to generate the node.

intercept A single number specifying the intercept that should be used when generating
the node.
var_corr Variances and covariances for random effects. Only used when formula con-

tains mixed model syntax. If there are multiple random effects, their parameters
should be supplied as a named list. More complex structures are also supported.
This argument is directly passed to the makeLmer function of the simr package.
Please consult the documentation of that package for more information on how
mixed models should be specified. Some guidance can also be found in the
"Issues" section of the official simr github page.

link The link function used to transform the linear predictor to the 1ambda value used
in rpois. For a standard Poisson regression model, this should be set to "log"
(which is the default). Other allowed values are "identity” and "sqrt”, which
are defined the same way as in the classic glm function.

64 node_poisson

Details

Essentially, this function simply calculates the linear predictor defined by the betas-coefficients,
the intercept and the values of the parents. The 1ink function is then applied to this predictor
and the result is passed to the rpois function. The result is a draw from a subject-specific poisson
distribution, resembling the user-defined poisson regression model.

Formal Description:
Formally, the data generation (using 1ink="1og") can be described as:
Y ~ Poisson(\),

where Poisson() means that the variable is Poisson distributed with:

/\ke—)\
Py(k) = I

Here, k is the count and e is eulers number. The parameter X is determined as:

A = exp(intercept + parents; - betasy + ... + parents,, - betas,,),

where n is the number of parents (length(parents)).

For example, given intercept=-15, parents=c("A", "B"), betas=c(@.2, 1.3) the data genera-
tion process is defined as:

Y ~ Poisson(exp(—15+ A-0.2+ B - 1.3)).

Random Effects and Random Slopes:

This function also allows users to include arbitrary amounts of random slopes and random effects
using the formula argument. If this is done, the formula, and data arguments are passed to the
variables of the same name in the makeGlmer function of the simr package. The fixef argu-
ment of that function will be passed the numeric vector c(intercept, betas) and the VarCorr
argument receives the var_corr argument as input. If used as a node type in a DAG, all of this
is taken care of behind the scenes. Users can simply use the regular enhanced formula interface
of the node function to define these formula terms, as shown in detail in the formula vignette
(vignette(topic="v_using_formulas”, package="simDAG")). Please consult that vignette for
examples. Also, please note that inclusion of random effects or random slopes usually results in
significantly longer computation times.

Value

Returns a numeric vector of length nrow(data).

Author(s)
Robin Denz

See Also

empty_dag, node, node_td, sim_from_dag, sim_discrete_time

node_rsurv 65

Examples

library(simDAG)
set.seed(345345)

dag <- empty_dag() +
node("age"”, type="rnorm”, mean=50, sd=4) +
node("sex", type="rbernoulli”, p=0.5) +
node("smoking"”, type="poisson”,
formula= ~ -2 + sexTRUE*1.1 + agex0.4)

sim_dat <- sim_from_dag(dag=dag, n_sim=100)

an example using a random effect
if (requireNamespace("simr")) {

library(simr)

dag_mixed <- empty_dag() +
node("School”, type="rcategorical”, probs=rep(0.1, 10),
labels=LETTERS[1:10]) +
node("Age", type="rnorm”, mean=12, sd=2) +
node("Grade"”, type="poisson”, formula= ~ -2 + Agex1.2 + (1]|School),
var_corr=9.3)

sim_dat <- sim_from_dag(dag=dag_mixed, n_sim=20)

}

node_rsurv Generate Data from Parametric Survival Models

Description

Data from the parents is used to generate the node using either an accelerated failure time model,
an accelerated hazard model, an extended hazard model, a proportional odds model or a Young and
Prentice model, as implemented in the rsurv package (Demarqui 2024).

Usage

node_aftreg(data, parents, betas, baseline, dist=NULL,
package=NULL, u=stats::runif(nrow(data)),
cens_dist=NULL, cens_args, name, as_two_cols=TRUE,

>

node_ahreg(data, parents, betas, baseline, dist=NULL,
package=NULL, u=stats::runif(nrow(data)),
cens_dist=NULL, cens_args, name, as_two_cols=TRUE,

>

66

node_rsurv

node_ehreg(data, parents, betas, phi, baseline, dist=NULL,

package=NULL, u=stats::runif(nrow(data)),
cens_dist=NULL, cens_args, name, as_two_cols=TRUE,

node_poreg(data, parents, betas, baseline, dist=NULL,

package=NULL, u=stats::runif(nrow(data)),
cens_dist=NULL, cens_args, name, as_two_cols=TRUE,

node_ypreg(data, parents, betas, phi, baseline, dist=NULL,

Arguments

data

parents

betas

phi

baseline

dist

package

cens_dist

package=NULL, u=stats::runif(nrow(data)),
cens_dist=NULL, cens_args, name, as_two_cols=TRUE,

A data.table (or something that can be coerced to a data. table) containing
all columns specified by parents. Passed to the argument of the same name in
raftreg, rahreg, rehreg, rporeg or rypreg.

A character vector specifying the names of the parents that this particular child
node has. Converted into a formula and passed to the argument of the same
name in raftreg, rahreg, rehreg, rporeg or rypreg.

A numeric vector with length equal to parents, specifying the causal beta co-
efficients used to generate the node. Passed to the beta argument in raftreg,
rahreg, rehreg, rporeg or rypreg.

A numeric vector with length equal to parents, specifying the phi beta coeffi-
cients used to generate the node. Only required for extended hazard and Yang
and Prentice models. Passed to the phi argument in rehreg or rypreg.

A single character string, specifying the name of the baseline survival distribu-
tion. Passed to the argument of the same name in raftreg, rahreg, rehreg,
rporeg or rypreg.

An alternative way to specify the baseline survival distribution. Passed to the
argument of the same name in raftreg, rahreg, rehreg, rporeg or rypreg.

A single character string, specifying the name of the package where the assumed
quantile function is implemented. Passed to the argument of the same name in
raftreg, rahreg, rehreg, rporeg or rypreg.

A numeric vector of quantiles of length nrow(data). Usually this should simply
be passed a vector of randomly generated uniformly distributed values between
0 and 1, as defined by the default. Passed to the argument of the same name in
raftreg, rahreg, rehreg, rporeg or rypreg.

A single character naming the distribution function that should be used to gen-
erate the censoring times or a suitable function. For example, "runif"” could be
used to generate uniformly distributed censoring times. Set to NULL to get no
censoring.

node_rsurv 67

cens_args A list of named arguments which will be passed to the function specified by the
cens_dist argument.

name A single character string specifying the name of the node.

as_two_cols Either TRUE or FALSE, specifying whether the output should be divided into two
columns. When cens_dist is specified, this argument will always be treated as
TRUE because two columns are needed to encode both the time to the event and
the status indicator. When no censoring is applied, however, users may set this
argument to FALSE to simply return the numbers as they are.

Further arguments passed to raftreg, rahreg, rehreg, rporeg or rypreg.

Details

Survival times are generated according to the specified parametric survival model. The actual gener-
ation of the values is done entirely by calls to the rsurv package. All arguments are directly passed
to the corresponding function in rsurv. Only the censoring is added on top of it. These convenience
wrappers only exist to allow direct integration of these data generation functions with the interface
provided by simDAG. Please consult the documentation and excellent paper by Demarqui (2024)
for more information about the models and how to specify the arguments.

Value

Returns a data. table of length nrow(data) containing two columns if as_two_cols=TRUE and
always when cens_dist is specified. In this case, both columns start with the nodes name and end
with _event and _time. The firstis a logical vector, the second a numeric one. If as_two_cols=FALSE
and cens_dist is NULL, a numeric vector is returned instead.

Author(s)
Robin Denz

References

Demarqui Fabio N. Simulation of Survival Data with the Package rsurv. (2024) arXiv:2406.01750v1.

Examples

library(simDAG)

set.seed(3454)

if (requireNamespace("rsurv”)) {
library(rsurv)

accelerated failure time model
dag <- empty_dag() +
node(c("A", "B", "C"), type="rnorm", mean=0, sd=1) +
node("Y", type="aftreg”, formula= ~ -2 + A*0.2 + B*0.1 + A:Bx*1,
baseline="weibull”, shape=1, scale=2)
data <- sim_from_dag(dag, n_sim=100)

68 node_time_to_event

accelerated hazard model
dag <- empty_dag() +
node(c("A", "B", "C"), type="rnorm”, mean=0, sd=1) +
node("Y", type="ahreg", formula= ~ -2 + Ax0.2 + B%0.1,
baseline="weibull”, shape=1, scale=2)
data <- sim_from_dag(dag, n_sim=100)

extended hazard model
dag <- empty_dag() +
node(c("A", "B", "C"), type="rnorm", mean=0, sd=1) +
node("Y", type="ehreg", formula= ~ -2 + Ax0.2 + Bx0.1,
baseline="weibull”, shape=1, scale=2,
phi=c(-1, 1))
data <- sim_from_dag(dag, n_sim=100)

proportional odds model
dag <- empty_dag() +
node(c("A", "B", "C"), type="rnorm”, mean=0, sd=1) +
node("Y", type="poreg", formula= ~ -2 + Ax0.2 + Bx0.1,
baseline="weibull”, shape=1, scale=2)
data <- sim_from_dag(dag, n_sim=100)

Young and Prentice model
dag <- empty_dag() +
node(c("A", "B", "C"), type="rnorm", mean=0, sd=1) +
node("Y", type="ypreg", formula= ~ -2 + A*0.2 + B*0.1,
baseline="weibull”, shape=1, scale=2,
phi=c(-1, 1))
data <- sim_from_dag(dag, n_sim=100)

}

node_time_to_event Generate Data from repeated Bernoulli Trials in Discrete-Time Simu-
lation

Description

This node essentially models a dichotomous time-dependent variable for which the time of the event
will be important for later usage. It adds two columns to data: name_event (whether the person
currently has an event) and name_time (the time at which the current event started). Past events are
stored in a list. Can only be used inside of the sim_discrete_time function, not outside of it. See
details.

Usage

node_time_to_event(data, parents, sim_time, past_states, name,
formula, prob_fun=NULL, ..., event_duration=1,
immunity_duration=event_duration, unif=NULL,
time_since_last=FALSE, event_count=FALSE,

node_time_to_event 69

save_past_events=TRUE, check_inputs=TRUE,
envir)

Arguments

data A data.table containing all columns specified by parents. Similar objects
such as data. frames are not supported.

parents A character vector specifying the names of the parents that this particular child
node has. Those child nodes should be valid column names in data. Because
the state of this variable is by definition dependent on its previous states, the
columns produced by this function will automatically be considered its parents
without the user having to manually specify this.

sim_time The current time of the simulation. If sim_time is an argument in the function
passed to the prob_fun argument, this time will automatically be passed to it as
well.

past_states A list of data. tables including previous states of the simulation. This argu-
ment cannot be specified directly by the user. Instead, it is passed to this func-
tion internally whenever a function is passed to the prob_fun argument which
includes a named argument called past_states. May be useful to specify nodes
that are dependent on specific past states of the simulation.

name The name of the node. This will be used as prefix before the _event, _time
columns. If the time_since_last or event_count arguments are set to TRUE,
this will also be used as prefix for those respective columns.

formula An optional enhanced formula, as used throughout the package. This may
be used instead of the prob_fun argument, to specify a binomial regression
model that should be used to calculate the probability instead. If specified (and
prob_fun=NULL), the node_binomial function is used with return_prob=TRUE
to obtain the probabilities. If prob_fun is specified, this argument is ignored.

prob_fun A function that returns a numeric vector of size nrow(data) containing only
numbers between 0 and 1. These numbers specify the person-specific probabil-
ity of experiencing the event modeled by this node at the particular point in time
of the simulation. The corresponding event will be generated internally using
the rbernoulli function. The function needs to have a named argument called
data. If the function has an argument named sim_time, the current simulation
time will also be passed to this function automatically, allowing time-dependent
probabilities to be generated. Alternatively this argument can be set to a sin-
gle number (between 0 and 1), resulting in a fixed probability of occurrence for
every simulated individual at every point in time.

An arbitrary amount of additional named arguments passed to prob_fun if prob_fun
is specified, or to node_binomial if formula is specified and prob_fun is not.
Ignore this if you do not want to pass any arguments. Also ignored if prob_fun

is a single number.

event_duration A single number > 0 specifying how long the event should last. The point in
time at which an event occurs also counts into this duration. For example, if an
event occurs at £ = 2 and it has a duration of 3, the event will be set to TRUE
ont € {2,3,4}. Therefore, all events must have a duration of at least 1 unit
(otherwise they never happened).

70 node_time_to_event

immunity_duration
A single number >= event_duration specifying how long the person should be
immune to the event after it is over. The count internally starts when the event
starts, so in order to use an immunity duration of 10 time units after the event is
over event_duration + 10 should be used.

unif Specifies the (usually uniformly distributed) numeric vector that should be used
to perform the Bernoulli trials. If NULL (default), the uniform numbers are gen-
erated internally at each point in time. If a single character string is supplied,
a column with the same name in data will be used for these numbers (can, but
does not need to be mentioned in parents). If a numeric vector is supplied di-
rectly, these values will be used instead. This argument may be useful to make
two or more time-to-event nodes use the same "seed".

time_since_last
Either TRUE or FALSE (default), indicating whether an additional column should
be generated that tracks the number of time units since the individual had its
last event onset. For example, if the individual experienced a single event at
t = 10, this column would be NA before time 10, O at time 10 and increased
by 1 at each point in time. If another event happens, the time is set to 0 again.
The column is named paste@(name, "_time_since_last"”). The difference
to the column ending with "_time” is that this column will not be set to NA
again if the immunity_duration is over. It keeps counting until the end of
the simulation, which may be useful when constructing event-time dependent
probability functions.

event_count Either TRUE or FALSE (default), indicating whether an additional column should
be generated that tracks the number of events the individual has already experi-
enced. This column is O for all individuals at t = 0. Each time a new event occurs,
the counter is increased by one. Note that only new events increase this counter.
For example, an individual with an event at t = 10 that has an event_duration
of 15 will have a value of 0 before t = 10, and will have a value of 1 at t = 10
and afterwards. The column will be named paste@(name, "_event_count”).

save_past_events
When the event modeled using this node is recurrent (immunity_duration <
Inf & event_duration < Inf), the same person may experience multiple events
over the course of the simulation. Those are generally stored in the tte_past_events
list which is included in the output of the sim_discrete_time function. This
extends the runtime and increases RAM usage, so if you are not interested in the
timing of previous events or if you are using save_states="all" this function-
ality can be turned off by setting this argument to FALSE.

check_inputs Whether to perform plausibility checks for the user input or not. Is set to TRUE
by default, but can be set to FALSE in order to speed things up when using this
function in a simulation study or something similar.

envir Only used internally to efficiently store the past event times. Cannot be used by
the user.

Details

When performing discrete-time simulation using the sim_discrete_time function, the standard
node functions implemented in this package are usually not sufficient because they don’t capture

node_time_to_event 71

the time-dependent nature of some very interesting variables. Often, the variable that should be
modelled has some probability of occurring at each point in time. Once it does occur, it has some
kind of influence on other variables for a period of time until it goes back to normal (or doesn’t).
This could be a car crash, a surgery, a vaccination etc. The time_to_event node function can be
used to model these kinds of nodes in a fairly straightforward fashion.

How it Works:

At ¢ = 1, this node will be initialized for the first time. It adds two columns to the data: name_event
(whether the person currently has an event) and name_time (the time at which the current event
started) where name is the name of the node. Additionally, it adds a list with max_t entries to the
tte_past_events list returned by the sim_discrete_time function, which records which individ-
uals experienced a new event at each point in time.

In a nutshell, it simply models the occurrence of some event by calculating the probability of oc-
currence at ¢ and drawing a single bernoulli trial from this probability. If the trial is a "success",
the corresponding event column will be set to TRUE, the time column will be set to the current
simulation time ¢ and the column storing the past event times will receive an entry.

The _event column will stay TRUE until the event is over. The duration for that is controlled by
the event_duration parameter. When modeling terminal events such as death, one can simply set
this parameter to Inf, making the event eternal. In many cases it will also be necessary to imple-
ment some kind of immunity after the event, which can be done using the immunity_duration
argument. This effectively sets the probability of another occurrence of the event to O in the next
immunity_duration time steps. During the immunity duration, the event may be TRUE (if the event
is still ongoing) or FALSE (if the event_duration has already passed). The _time column is sim-
ilarly set to the time of occurrence of the event and reset to NA when the immunity_duration is
over.

The probability of occurrence is calculated using the function provided by the user using the
prob_fun argument. This can be an arbitrary complex function. The only requirement is that it
takes data as a first argument. The columns defined by the parents argument will be passed to
this argument automatically. If it has an argument called sim_time, the current time of the simula-
tion will automatically be passed to it as well. Any further arguments can be passed using the . . .
syntax. A simple example could be a logistic regression node, in which the probability is calculated
as an additive linear combination of the columns defined by parents (this could also be achieved
more cleanly using the formula argument). A more complex function could include simulation-
time dependent effects, further effects dependent on past event times etc. Examples can be found
below and in the vignettes.

How it is Used:

This function should never be called directly by the user. Instead, the user should define a DAG
object using the empty_dag and node_td functions and set the type argument inside of a node_td
callto "time_to_event". This DAG can be passed to the sim_discrete_time function to generate
the desired data. Many examples and more explanations are given below and in the vignettes of this
package.

What can be done with it:

This type of node naturally supports the implementation of terminal and recurrent events that may be
influenced by pretty much anything. By specifying the parents and prob_fun arguments correctly,
it is possible to create an event type that is dependent on past events of itself or other time-to-event
variables and other variables in general. The user can include any amount of these nodes in their
simulation. It may also be used to simulate any kind of binary time-dependent variable that one

72

node_time_to_event

would usually not associate with the name "event" as well. It is very flexible, but it does require the
user to do some coding by themselves (e.g. creating a suitable function for the prob_fun argument).

What can’t be done with it:

Currently this function only allows binary events. Categorical event types may be implemented
using the node_competing_events function, which works in a very similar fashion.

Value

Returns a data. table containing at least two columns with updated values of the node.

Note

This function cannot be called outside of the sim_discrete_time function. It only makes sense to
use it as a type in a node_td function call, as described in the documentation and vignettes.

Author(s)

Robin Denz, Katharina Meiszl

See Also

empty_dag, node_td, sim_discrete_time

Examples

library(simDAG)

a simple terminal time-to-event node, with a constant probability of
occurrence, independent of any other variable
dag <- empty_dag() +
node_td("death”, type="time_to_event”, prob_fun=0.0001,
event_duration=Inf)

a simple recurrent time-to-event node with a constant probability of
occurrence, independent of any other variable
dag <- empty_dag() +
node_td("car_crash”, type="time_to_event"”, prob_fun=0.001, event_duration=1)

a time-to-event node with a time-dependent probability function that
has an additional argument
prob_car_crash <- function(data, sim_time, base_p) {

return(base_p + sim_time * 0.0001)

3

dag <- empty_dag() +
node_td("car_crash”, type="time_to_event"”, prob_fun=prob_car_crash,
event_duration=1, base_p=0.0001)

a time-to-event node with a probability function dependent on a
time-fixed variable
prob_car_crash <- function(data) {

node_zeroinfl 73

ifelse(data$sex==1, 0.001, 0.01)
3

dag <- empty_dag() +
node("sex", type="rbernoulli”, p=0.5) +
node_td("car_crash”, type="time_to_event”, prob_fun=prob_car_crash,
parents="sex")

a little more complex car crash simulation, where the probability for
a car crash is dependent on the sex, and the probability of death is
highly increased for 3 days after a car crash happened
prob_car_crash <- function(data) {

ifelse(data$sex==1, 0.001, 0.01)
3

prob_death <- function(data) {
ifelse(data$car_crash_event, 0.1, 0.0001)
3

dag <- empty_dag() +
node("sex", type="rbernoulli”, p=0.5) +
node_td("car_crash”, type="time_to_event"”, prob_fun=prob_car_crash,
parents="sex") +
node_td("death”, type="time_to_event”, prob_fun=prob_death,
parents="car_crash_event")

use the sim_discrete_time function to simulate data from one of these DAGs:
sim <- sim_discrete_time(dag, n_sim=20, max_t=500)

using a logistic regression model to specify the probability with the
enhanced formula interface
dag <- empty_dag() +
node(c("A", "B"), type="rnorm") +
node_td("Y", type="time_to_event”, formula= ~ -2 + Ax1.2 + B*-0.2,
event_duration=10)

more examples can be found in the vignettes of this package

node_zeroinfl Generate Data from a Zero-Inflated Count Model

Description

Data from the parents is used to first simulate data for the regular count model, which may follow
either a poisson regression or a negative binomial regression, as implemented in node_poisson
and node_negative_binomial respectively. Then, zeros are simulated using a logistic regression
model as implemented in node_binomial. Whenever the second binomial part returned a 0, the
first part is set to O, leaving the rest untouched. Supports random effects and random slopes (if
possible) in both models. See examples.

74

Usage

node_zeroinfl(

Arguments

data

parents

parents_count

parents_zero

formula_count

formula_zero

betas_count

betas_zero

intercept_coun

intercept_zero

family_count

theta

node_zeroinfl

data, parents, parents_count,
parents_zero, formula_count, formula_zero,
betas_count, betas_zero,

intercept_count, intercept_zero,
family_count="poisson”, theta,

link_count, link_zero="logit",
var_corr_count, var_corr_zero)

A data.table (or something that can be coerced to a data. table) containing
all columns specified by parents, parents_count and parents_zero.

A character vector specifying the names of the parents that this particular child
node has. Note that this argument does not have to be specified if parents_count
and parents_zero are specified. If non-linear combinations or interaction ef-
fects should be included, the user should specify the formula_count and/or
formula_zero arguments instead.

Same as parents but should only contain the parents of the count model part of
the node.

Same as parents but should only contain the parents of the zero-inflation model
part of the node.

An enhanced formula passed to the node_poisson or the node_negative_binomial
function, used to generate the count part of the node. If this argument is speci-

fied, there is no need to specify the parents_count, betas_count and intercept_count
arguments. The syntax is the same as in the usual formula argument as de-

scribed in node.

An enhanced formula passed to the node_binomial function, used to generate
the zero-inflated part of the node. If this argument is specified, there is no need to
specify the parents_zero, betas_zero and intercept_zero arguments. The
syntax is the same as in the usual formula argument as described in node.

A numeric vector with length equal to parents_count, specifying the causal
beta coefficients used to generate the node in the count model.

A numeric vector with length equal to parents_zero, specifying the causal beta
coefficients used to generate the node in the zero-inflation model.

t
A single number specifying the intercept that should be used when generating
the count model part of the node.

A single number specifying the intercept that should be used when generating
the zero-inflated part of the node.

Either "poisson” for a zero-inflated poisson regression or "negative_binomial”
for a zero-inflated negative binomial regression.

A single number specifying the theta parameter (size argument in rnbinom).
Ignore if family_count="poisson".

node_zeroinfl

link_count

link_zero

var_corr_count

var_corr_zero

Details

75

A single character string, passed to the 1ink argument of the respective node
function used for the count model part. If not supplied, the default of the respec-
tive link function is used.

A single character string specifying the link in the node_binomial function.

If random effects or random slopes are included in formula_count, this argu-
ment should be specified to define the variance structure of these effects. It
will be passed to the var_corr argument of node_poisson. Random effects or
slopes are currently not supported with family_count="negative_binomial”.

If random effects or random slopes are included in formula_zero, this argument
should be specified to define the variance structure of these effects. It will be
passed to the var_corr argument of node_binomial.

It is important to note that data for both underlying models (the count model and the zero-inflation
model) are simulated from completely independent of each other. When using random effects in
either of the two models, they may therefore use completely different values for each process.

Value

Returns a numeric vector of length nrow(data).

Author(s)
Robin Denz

See Also

empty_dag, node, node_td, sim_from_dag, sim_discrete_time

Examples

library(simDAG)

set.seed(5425)

zero-inflated poisson regression
dag <- empty_dag() +
node(c("A", "B"), type="rnorm", mean=0, sd=1) +
node("Y", type="zeroinfl",
formula_count= ~ -2 + A%0.2 + B*0.1 + A:Bx0.4,
formula_zero= ~ 1 + Ax1 + Bx*2,
family_count="poisson"”,
parents=c("A", "B"))
data <- sim_from_dag(dag, n_sim=100)

above is functionally the same as:
dag <- empty_dag() +
node(c("A", "B"), type="rnorm", mean=0, sd=1) +

node("Y_count"”,

type="poisson”, formula= ~ -2 + A*x0.2 + Bx0.1 + A:Bx0.4) +

76 plot. DAG

node("Y_zero", type="binomial”, formula= ~ 1 + Ax1 + Bx2) +
node("Y", type="identity", formula= ~ Y_zero * Y_count)
data <- sim_from_dag(dag, n_sim=100)

same as above, but specifying each individual component instead of formulas
dag <- empty_dag() +
node(c("A", "B", "C"), type="rnorm”, mean=0, sd=1) +
node("Y", type="zeroinfl",
parents_count=c("A", "B"),
betas_count=c(0.2, 0.1),
intercept_count=-2,
parents_zero=c("A", "B"),
betas_zero=c(1, 2),
intercept_zero=1,
family_count="poisson",
parents=c("A", "B"))
data <- sim_from_dag(dag, n_sim=100)

zero-inflated negative-binomial regression
dag <- empty_dag() +
node(c("A", "B"), type="rnorm”, mean=0, sd=1) +
node("Y", type="zeroinfl”,
formula_count= ~ -2 + A%0.2 + B*3 + A:B*0.4,
formula_zero= ~ 3 + AxQ0.1 + B*0.3,
family_count="negative_binomial”, theta=1,
parents=c("A", "B"))
data <- sim_from_dag(dag, n_sim=100)

plot.DAG Plot a DAG object

Description

Using the node information contained in the DAG object this function plots the corresponding DAG
in a quick and convenient way. Some options to customize the plot are available, but it may be
advisable to use other packages made explicitly to visualize DAGs instead if those do not meet the
users needs.

Usage

S3 method for class 'DAG'

plot(x, layout="nicely"”, node_size=0.2,
node_names=NULL, node_color="black",
node_fill="red"”, node_linewidth=0.5,
node_linetype="solid”, node_alpha=1,
node_text_color="black"”, node_text_alpha=1,
node_text_size=8, node_text_family="sans",
node_text_fontface="bold", arrow_color="black"”
arrow_linetype="solid”, arrow_linewidth=1,

’

plot. DAG 77

arrow_alpha=1, arrow_head_size=0.3,
arrow_head_unit="cm", arrow_type="closed"”,
arrow_node_dist=0.03, gg_theme=ggplot2::theme_void(),
include_td_nodes=TRUE, mark_td_nodes=TRUE,

.2
Arguments

X A DAG object created using the empty_dag function with nodes added to it using
the + syntax. See empty_dag or node for more details.

layout A single character string specifying the layout of the plot. This internally calls
the layout_ function of the igraph package, which offers a great variety of ways
to layout the nodes of a graph. Defaults to "nicely”. Some other options are:
"as_star"”, "as_tree"”, "in_circle”, "on_sphere”, "randomly” and many
more. For more details see ?1ayout_.

node_size Either a single positive number or a numeric vector with one entry per node in
the DAG, specifying the radius of the circles used to draw the nodes. If a single
number is supplied, all nodes will be the same size (default).

node_names A character vector with one entry for each node in the DAG specifying names
that should be used for in the nodes or NULL (default). If NULL, the node names
that were set during the creation of the DAG object will be used as names.

node_color A single character string specifying the color of the outline of the node circles.

node_fill A single character string specifying the color with which the nodes are filled.

Ignored if time-varying nodes are present and both include_td_nodes and
mark_td_nodes are set to TRUE.

node_linewidth A single number specifying the width of the outline of the node circles.

node_linetype A single character string specifying the linetype of the outline of the node cir-
cles.
node_alpha A single number between 0 and 1 specifying the transparency level of the nodes.
node_text_color
A single character string specifying the color of the text inside the node circles.
node_text_alpha
A single number between 0 and 1 specifying the transparency level of the text
inside the node circles.
node_text_size A single number specifying the size of the text inside of the node circles.
node_text_family
A single character string specifying the family of the text inside the node circles.
node_text_fontface
A single character string specifying the fontface of the text inside the node cir-
cles.
arrow_color A single character string specifying the color of the arrows between the nodes.

arrow_linetype A single character string specifying the linetype of the arrows.
arrow_linewidth
A single number specifying the width of the arrows.

78

plot. DAG

arrow_alpha A single number between 0 and 1 specifying the transparency level of the ar-

TOWS.
arrow_head_size

A single number specifying the size of the arrow heads. The unit for this size

parameter can be changed using the arrow_head_unit argument.
arrow_head_unit

A single character string specifying the unit of the arrow_head_size argument.
arrow_type Either "open” or "closed”, which controls the type of head the arrows should

have. See ?arrow.
arrow_node_dist

A single positive number specifying the distance between nodes and the arrows.
By setting this to values greater than 0 the arrows will not touch the node circles,
leaving a bit of space instead.

gg_theme A ggplot2 theme. By default this is set to theme_void, to get rid off everything
but the plotted nodes (e.g. everything about the axis and the background). Might
be useful to change this to something else when searching for good parameters
of the number arguments of this function.

include_td_nodes
Whether to include time-varying nodes added to the dag using the node_td
function or not. If one node is both specified as a time-fixed and time-varying
node, it’s parents in both calls will be pooled and it will be considered a time-
varying node if this argument is TRUE. It will, however, also show up if it’s
argument is FALSE. In this case however, only the parents of that node in the
standard node call will be considered.

mark_td_nodes Whether to distinguish time-varying and time-fixed nodes by fill color. If
TRUE, the color will be set automatically using the standard ggplot2 palette, ig-
noring the color specified in node_fill. Ignored if include_td_nodes=FALSE
or if there are no time-varying variables.

Further arguments passed to the layout function specified by the argument of
the same name.

Details

This function uses the igraph package to find a suitable layout for the plot and then uses the ggplot2
package in conjunction with the geom_circle function of the ggforce package to plot the directed
acyclic graph defined by a DAG object. Since it returns a ggplot object, the user may use any
standard ggplot?2 syntax to augment the plot or to save it using the ggsave function.

Note that there are multiple great packages specifically designed to plot directed acyclic graphs,
such as the igraph package. See Pitts and Fowler (2024) for a review. This function is not meant
to be a competitor to those packages. The functionality offered here is rather limited. It is designed
to produce decent plots for small DAGs which are easy to create. If this function is not enough to
create an adequate plot, users can use the dag2matrix, as.igraph.DAG or as_tidy_dagitty.DAG
functions to transform the DAG into other formats, which allow usage of much better plotting rou-
tines, such as the ones provided by the igraph or ggdag packages.

If the DAG supplied to this function contains time-varying variables, the resulting plot may contain
cycles or even bi-directional arrows, depending on the DAG. The reason for that is, that the time-
dimension is not shown in the plot. Note also that even though, technically, every time-varying
node has itself as a parent, no arrows showing this dependence will be added to the plot.

plot DAG 79

Value

Returns a standard ggplot2 object.

Author(s)

Robin Denz

References

Pitts, Amy J. and Charlotte R. Fowler (2024). Comparison of Open-Source Software for Producing
Directed Acyclic Graphs. In: Journal of Causal Inference 12.1

See Also

empty_dag, node, node_td, as.igraph.DAG, as_tidy_dagitty.DAG

Examples

library(simDAG)

2 root nodes, 1 child node
dag <- empty_dag() +
node("age"”, type="rnorm”, mean=50, sd=4) +
node("sex", type="rbernoulli”, p=0.5) +
node("smoking”, type="binomial"”, parents=c("sex", "age"), betas=c(1.1, 0.4),
intercept=-2)

if (requireNamespace("ggplot2"”) & requireNamespace("ggforce”)) {

library(ggplot2)
library(igraph)
library(ggforce)

plot(dag)

get plot using the igraph package instead
gl <- as.igraph(dag)
plot(g1)

plot with a time-varying node
dag <- dag +
node_td("lottery”, type="time_to_event"”, parents=c("age"”, "smoking"))

plot(dag)
3

80

plot.simDT

plot.simDT

Plot a Flowchart for a Discrete-Time Simulation

Description

Given a simDT object obtained with the sim_discrete_time function, plots a relatively simple
flowchart of how the simulation was performed. Shows only some general information extracted

from the dag.

Usage

S3 method for class 'simDT'

plot(x, right_boxes=TRUE,
box_hdist=1, box_vdist=1,
box_1_width=0.35, box_l_height=0.23,
box_r_width=box_1_width,
box_r_height=box_1_height + 0.1,
box_alpha=0.5, box_linetype="solid",
box_linewidth=0.5, box_border_colors=NULL,
box_fill_colors=NULL, box_text_color="black",
box_text_alpha=1, box_text_angle=0,
box_text_family="sans”, box_text_fontface="plain”,
box_text_size=5, box_text_lineheight=1,
box_1_text_left="Create initial data”,
box_1_text_right=NULL, box_2_text="Increase t by 1",
box_1_node_labels=NULL, box_r_node_labels=NULL,
box_last_text=paste@("t <= ", x$max_t, "?"),
arrow_line_type="solid", arrow_line_width=0.5,
arrow_line_color="black"”, arrow_line_alpha=1,
arrow_head_angle=30, arrow_head_size=0.3,

—_n

arrow_head_unit="cm", arrow_head_type="closed",
arrow_left_pad=0.3, hline_width=0.5,
hline_type="dashed”, hline_color="black"”,
hline_alpha=1, ...)

Arguments

X

right_boxes

box_hdist

box_vdist
box_1_width
box_1_height

A simDT object created using the sim_discrete_time function.

Either TRUE (default) or FALSE, specifying whether to add boxes on the right
with some additional information about the nodes on the left.

A single positive number specifying the horizontal distance of the left and the
right boxes.

A single positive number specifying the vertical distance of the boxes.
A single positive number specifying the width of the boxes on the left side.

A single positive number specifying the height of the boxes on the left side.

plot.simDT 81

box_r_width A single positive number specifying the width of the boxes on the right side.
Ignored if right_boxes=FALSE.

box_r_height A single positive number specifying the height of the boxes on the right side.
Ignored if right_boxes=FALSE.

box_alpha A single number between 0 and 1 specifying the transparency level of the boxes.
box_linetype A single positive number specifying the linetype of the box outlines.

box_linewidth A single positive number specifying the width of the box outlines.
box_border_colors
A character vector of length two specifying the colors of the box outlines. Set
to NULL (default) to use ggplot2 default colors.
box_fill_colors
A character vector of length two specifying the colors of the inside of the boxes.
Set to NULL (default) to use ggplot2 default colors.
box_text_color A single character string specifying the color of the text inside the boxes.

box_text_alpha A single number between 0 and 1 specifying the transparency level of the text
inside the boxes.
box_text_angle A single positive number specifying the angle of the text inside the boxes.
box_text_family
A single character string specifying the family of the text inside the boxes. May
be one of "sans"”, "serif”, "mono”.
box_text_fontface
A single character string specifying the fontface of the text inside the boxes.
May be one of "plain”, "bold”, "italic"”, "bold.italic".
box_text_size A single number specifying the size of the text inside the boxes.
box_text_lineheight
A single number specifying the lineheight of the text inside the boxes.
box_1_text_left
A single character string specifying the text inside the first box from the top on

the left side.

box_1_text_right
A single character string specifying the text inside the first box from the top on
the right side or NULL. If NULL (default) it will simply state which variables were
generated at t = 0.

box_2_text A single character string specifying the text inside the second box from the top.

box_1_node_labels
A character vector with one entry for each time-varying node used in the sim-
ulation. These will be used to fill the boxes on the left side of the plot. Set to
NULL to use default values.

box_r_node_labels
A character vector with one entry for each time-varying node used in the simu-
lation. These will be used to fill the boxes on the right side of the plot. Set to
NULL to use default values. Ignored if right_boxes=FALSE.

box_last_text A single character string specifying the text inside the last box on the left side.
By default it uses the max_t argument from the initial function call to construct
a fitting text.

82 plot.simDT

arrow_line_type
A single character string specifying the linetype of the arrows.
arrow_line_width
A single positive number specifying the line width of the arrows.
arrow_line_color
A single character string specifying the color of the arrows.
arrow_line_alpha
A single number between 0 and 1 specifying the transparency level of the ar-
TOwWS.
arrow_head_angle
A single number specifying the angle of the arrow heads.
arrow_head_size
A single number specifying the size of the arrow heads. The unit is defined by
the arrow_head_size argument.
arrow_head_unit
A single character string specifying which unit to use when specifying the arrow_head_size
argument. Defaults to "cm”.
arrow_head_type
A single character string specifying which type of arrow head to use. See ?arrow
for more details.

arrow_left_pad A single positive number specifying the distance between the left boxes and the
arrow line to the left of it.

hline_width A single number specifying the width of the horizontal lines between the left
and right boxes.

hline_type A single character string specifying the linetype of the horizontal lines between
the left and right boxes.

hline_color A single character string specifying the color of the horizontal lines between the
left and right boxes.

hline_alpha A single number between 0 and 1 specifying the transparency level of the hori-

zontal lines between the left and right boxes.

Currently not used.

Details

The resulting flowchart includes two columns of boxes next to each other. On the left side it always
starts with the same two boxes: a box about the creation of the initial data and a box about increasing
the simulation time by 1. Next, there will be a box for each time-varying variable in the simDT
object. Afterwards there is another box which asks if the maximum simulation time was reached.
An arrow to the left that points back to the second box from the top indicates the iterative nature of
the simulation process. The right column of boxes includes additional information about the boxes
on the left.

The text in all boxes may be changed to custom text by using the box_1_text_left, box_1_text_right,
box_2_text, box_1_node_labels, box_r_node_labels and box_last_text arguments. It is also
possible to completely remove the left line of boxes and to change various sizes and appearances.
Although these are quite some options, it is still a rather fixed function in nature. One cannot add

plot.simDT 83

further boxes or arrows in a simple way. The general structure may also not be changed. It may
be useful to visualize a general idea of the simulation flow, but it may be too limited for usage in
scientific publications if the simulation is more complex.

The graphic is created using the ggplot2 package and the output is a standard ggplot object.
This means that the user can change the result using standard ggplot syntax (adding more stuff,
changing geoms, ...).

Value

Returns a standard ggplot object.

Author(s)
Robin Denz

See Also

empty_dag, node, node_td, sim_discrete_time

Examples

library(simDAG)
set.seed(435345)

exemplary car crash simulation, where the probability for
a car crash is dependent on the sex, and the probability of death is
highly increased for 3 days after a car crash happened
prob_car_crash <- function(data) {

ifelse(data$sex==1, 0.001, 0.01)
3

prob_death <- function(data) {
ifelse(data$car_crash_event, 0.1, 0.0001)
3

dag <- empty_dag() +
node("sex", type="rbernoulli”, p=0.5) +
node_td("car_crash”, type="time_to_event”, prob_fun=prob_car_crash,
parents="sex") +
node_td("death”, type="time_to_event”, prob_fun=prob_death,
parents="car_crash_event")

generate some data
sim <- sim_discrete_time(dag, n_sim=20, max_t=500, save_states="last")

if (requireNamespace("ggplot2"”)) {

default plot
plot(sim)

removing boxes on the right

84 rbernoulli

plot(sim, right_boxes=FALSE)
3

rbernoulli Generate Random Draws from a Bernoulli Distribution

Description

A very fast implementation for generating bernoulli trials. Can take a vector of probabilities which
makes it very useful for simulation studies.

Usage

rbernoulli(n, p=0.5, output="logical”, reference=NULL)

Arguments
n How many draws to make.
p A numeric vector of probabilities, used when drawing the trials.
output A single character string, specifying which format the output should be re-
turned as. Must be one of "logical” (default), "numeric”, "character"” or
"factor”.
reference A single character string, specifying which of the two possible values should be
considered the reference when output="factor"” (ignored otherwise).
Details

Internally, it uses only a single call to runif, making it much faster and more memory efficient than
using rbinomial.

Note that this function accepts values of p that are smaller then O and greater than 1. For p <@ it
will always return FALSE, for p > 1 it will always return TRUE.

Value

Returns a vector of length n in the desired output format.

Author(s)

Robin Denz

rcategorical

Examples

library(simDAG)

85

generating 5 bernoulli random draws from an unbiased coin
rbernoulli(n=5, p=0.5)

using different probabilities for each coin throw
rbernoulli(n=5, p=c(0.1, 0.2, 0.3, 0.2, 0.7))

return as numeric instead
rbernoulli(n=5, p=0.5, output="numeric")

rcategorical

Generate Random Draws from a Discrete Set of Labels with Associ-
ated Probabilities

Description

Allows different class probabilities for each person by supplying a matrix with one column for each
class and one row for each person.

Usage

rcategorical(n, probs, labels=NULL, output="numeric”,

Arguments

n

probs

labels

output

reference

Details

reference=NULL)

How many draws to make. Passed to the size argument of the sample function
if probs is not a matrix.

Either a numeric vector of probabilities which sums to one or a matrix with one
column for each desired class and n rows. Passed to the probs argument of the
sample function if a numeric vector is passed.

A vector of labels to draw from. If NULL (default), it simply uses integers starting
from 1. Passed to the x argument of the sample function if probs is not a matrix.

A single character string specifying the output format of the results. Must be
either "numeric"” (default), "character"” or "factor"”. If labels are supplied,
the output will be parsed as characters by default.

A single character string, specifying which of the possible values should be
considered the reference when output="factor"” (ignored otherwise).

In case of a simple numeric vector (class probabilities should be the same for all draws), this func-
tion is only a wrapper for the sample function, to make the code more consistent. It uses weighted
sampling with replacement. Otherwise, custom code is used which is faster than the standard
rmultinom function.

86 rconstant

Value

Returns a numeric vector (or factor vector if coerce2factor=TRUE) of length n.

Author(s)
Robin Denz

Examples
library(simDAG)
rcategorical(n=5, labels=c("A", "B", "C"), probs=c(0.1, 0.2, 0.7))

rcategorical(n=2, probs=matrix(c(0.1, 0.2, 0.5, 0.7, 0.4, 0.1), nrow=2))

rconstant Use a single constant value for a root node

Description
This is a small convenience function that simply returns the value passed to it, in order to allow the
use of a constant node as root node in the sim_from_dag function.

Usage

rconstant(n, constant)

Arguments
n The number of times the constant should be repeated.
constant A single value of any kind which is used as the only value of the resulting vari-
able.
Value

Returns a vector of length n with the same type as constant.

Author(s)
Robin Denz

Examples
library(simDAG)
rconstant(n=10, constant=7)

rconstant(n=4, constant="Male")

rsample 87

rsample Sample values from a given vector

Description
This function is a simple wrapper around the sample function, allowing users to directly sample
values from a given input vector (with or without replacement and with or without defining selection
probabilities) or data. frame like object.

Usage
rsample(n, x, replace=FALSE, prob=NULL)

Arguments

n How many draws to make.

X A vector containing one or more elements from which to sample from, or a
data. frame like object. If a data. frame is supplied, random rows from it will
be sampled. Note that if the supplied data. frame has more than one column and
this function is used as a node type, the names of the variables in the supplied
x will be used as variable names and the given node name will be discarded.

replace Either TRUE or FALSE, specifying whether the sampling should be performed
with or without replacement.

prob A numeric vector of probability weights for obtaining the elements of the vector
being sampled or NULL (default). If NULL, a simple random sample without
weights will be performed.

Details

This function is very similar to the rcategorical function, with the main difference being that
rsample() directly supports any kind of vector input, not just a few categorical values, but it does
not support matrix input in the prob argument. Use rcategorical if the goal is to sample from a
categorical distribution with few categories or different probabilities per person and use rsample()
for general sampling purposes.

Note that this function is just a wrapper around the sample function, with the only additional func-
tionality being that it also may be used to directly sample from data.frames. It is only meant to
conveniently allow sampling within the packages syntax (the original function does not use the n
argument, and can thus not be used directly without a wrapper).

Value
Returns a vector of length n with the same type as x if x is a vector and a data. frame with n rows
if x is a data. frame.

Author(s)
Robin Denz

88 rtexp

Examples

library(simDAG)

without replacement
dag <- empty_dag() +
node("A", type="rsample"”, x=1:10, replace=FALSE)
data <- sim_from_dag(dag, n_sim=5)
head(data)

with replacement and selection probabilities
dag <- empty_dag() +
node("X", type="rbernoulli”, p=0.5) +
node("A", type="rsample”, x=c(1, 2, 3, 4), replace=TRUE,
prob=c(0.1, 0.3, 0.1, 0.5))
data <- sim_from_dag(dag, n_sim=100)
head(data)

sampling rows from a data.frame object
NOTE: The node name for the rsample() node will be ignored, because
a data.frame is supplied to "x". The names of the variables in the
data are used directly instead.
dag <- empty_dag() +
node("placeholder”, type="rsample”, x=data) +
node("Y", type="binomial”, formula= ~ -2 + AxQ@.5 + Xx-1)
data2 <- sim_from_dag(dag, n_sim=50)
head(data2)

rtexp Sample values from a left-truncated exponential distribution

Description
This function is a simple wrapper around the rexp function, allowing users to directly sample values
from a left-truncated exponential distribution.

Usage

rtexp(n, rate, 1=NULL)

Arguments
n How many draws to make.
rate A numeric vector of numbers > 0, specifying the rate parameter of the exponen-
tial distribution.
1 A numeric vector of numbers > 0, specifying the value at which the distribution

should be left-truncated.

sim2data 89

Details
This function mostly exists so it can be used conveniently when performing discrete-event simula-
tions.

Value

Returns a numeric vector of length n.

Author(s)
Robin Denz

Examples

library(simDAG)
rtexp(n=10, rate=0.05, 1=20)

without replacement
dag <- empty_dag() +

node("A", type="rtexp", rate=0.01, 1=100)
data <- sim_from_dag(dag, n_sim=5)

head(data)
sim2data Transform sim_discrete_time output into the start-stop, long- or
wide-format
Description

This function transforms the output of the sim_discrete_time function into a single data. table
structured in the start-stop format (also known as counting process format), the long format (one
row per person per point in time) or the wide format (one row per person, one column per point in
time for time-varying variables). See details.

Usage

sim2data(sim, to, use_saved_states=sim$save_states=="all",
overlap=FALSE, target_event=NULL,
keep_only_first=FALSE, remove_not_at_risk=FALSE,
remove_vars=NULL, as_data_frame=FALSE,
check_inputs=TRUE, ...)

S3 method for class 'simDT'

as.data.table(x, keep.rownames=FALSE, to, overlap=FALSE,
target_event=NULL, keep_only_first=FALSE,
remove_not_at_risk=FALSE,
remove_vars=NULL,

90

sim2data

use_saved_states=x$save_states=="all",
check_inputs=TRUE, ...)

S3 method for class 'simDT'
as.data.frame(x, row.names=NULL, optional=FALSE, to,

Arguments

sim, X

to

overlap=FALSE, target_event=NULL,
keep_only_first=FALSE, remove_not_at_risk=FALSE,
remove_vars=NULL,
use_saved_states=x$save_states=="all",
check_inputs=TRUE, ...)

An object created with the sim_discrete_time function.

n o n

Specifies the format of the output data. Must be one of: "start_stop"”, "long",
"wide".

use_saved_states

overlap

target_event

Whether the saved simulation states (argument save_statesin sim_discrete_time
function) should be used to construct the resulting data or not. See details.

Only used when to="start_stop". Specifies whether the intervals should over-
lap or not. If TRUE, the "stop” column is simply increased by one, as compared
to the output when overlap=FALSE. This means that changes for a given ¢ are
recorded at the start of the next interval, but the previous interval ends on that
same day.

Only used when to="start_stop". By default (keeping this argument at NULL)
all time-to-event nodes are treated equally when creating the start-stop intervals.
This can be changed by supplying a single character string to this argument,
naming one time-to-event node. This node will then be treated as the outcome.
The output then corresponds to what would be needed to fit a Cox proportional
hazards model. See details.

keep_only_first

remove_not_at_

remove_vars

as_data_frame

Only used when to="start_stop"” and target_event is not NULL. Either TRUE
or FALSE (default). If TRUE, all information after the first event per person will be
discarded. Useful when target_event should be treated as a terminal variable.
risk

Only used when to="start_stop"” and target_event is not NULL. Either TRUE
or FALSE (default). If TRUE, the event_duration and immunity_duration of
the target_event are taken into account when constructing the start-stop data.
More precisely, the time in which individuals are not at-risk because they are
either still currently experiencing the event or because they are immune to the
event is removed from the start-stop data. This may be necessary when fit-
ting some survival regression models, because these time-periods should not be
counted as time at-risk.

An optional character vector specifying which variables should not be included
in the output. Set to NULL to include all variables included in the sim object
(default).

Set this argument to TRUE to return a data. frame instead of a data. table.

sim2data 91

check_inputs Whether to perform input checks (TRUE by default). Prints warning messages if
the output may be incorrect due to missing information.

keep.rownames Currently not used.

row.names Passed to the as.data. frame function which is called on the finished data. table.
See ?as.data. frame for more information.

optional Passed to the as.data. frame function which is called on the finished data. table.
See ?as.data. frame for more information.

Further arguments passed to as.data. frame (conversion from finished data. table
to data. frame). Only available when directly calling sim2data with as_data_frame=TRUE
or when using as.data.frame.simDT.

Details

The raw output of the sim_discrete_time function may be difficult to use for further analysis. Us-
ing one of these functions, it is straightforward to transform that output into three different formats,
which are described below. Note that some caution needs to be applied when using this function,
which is also described below. Both as.data. table and as.data. frame internally call sim2data
and only exist for user convenience.

The start-stop format:

—_n

The start-stop format (to="start_stop"), also known as counting process or period format cor-
responds to a data. table containing multiple rows per person, where each row corresponds to a
period of time in which no variables changed. These intervals are defined by the start and stop
columns. The start column gives the time at which the period started, the stop column denotes the
time when the period ended. By default these intervals are coded to be non-overlapping, meaning
that the edges of the periods are included in the period itself. For example, if the respective period
is exactly 1 point in time long, start will be equal to stop. If non-overlapping periods are desired,
the user can specify overlap=TRUE instead.

By default, all time-to-event nodes are treated equally. This is not optimal when the goal is to fit
survival regression models. In this case, we usually want the target event to be treated in a special
way (see for example Chiou et al. 2023). In general, instead of creating new intervals for it we want
existing intervals to end at event times with the corresponding event indicator. This can be achieved
by naming the target outcome in the target_event variable. The previously specified duration
of this target event is then ignored. To additionally remove all time periods in which individuals
are not at-risk due to the event still going on or them being immune to it (as specified using the
event_duration and immunity_duration parameters of node_time_to_event), users may set
remove_not_at_risk=TRUE. If only the first occurrence of the event is of interest, users may also
set keep_only_first=TRUE to keep only information up until the first event per person.

The long format:
The long format (to="1long") corresponds to a data.table in which there is one row per person

per point in time. The unique person identifier is stored in the . id column and the unique points in
time are given in the . time column.

The wide format:
The wide format (to="wide") corresponds to a data.table with exactly one row per person and
multiple columns per points in time for each time-varying variable. All time-varying variables are

coded as their original variable name with an underscore and the time-point appended to the end.
For example, the variable sickness at time-point 3 is named "sickness_3".

92 sim2data

Output with use_saved_states=TRUE:

If use_saved_states=TRUE, this function will use only the data that is stored in the past_states
list of the sim object to construct the resulting data. table. This results in the following behavior,
depending on which save_states option was used in the original sim_discrete_time function
call:

* save_states="all": A complete data.table in the desired format with information for all
observations at all points in time for all variables will be created. This is the safest option,
but also uses the most RAM and computational time.

* save_states="at_t": A data.table in the desired format with correct information for all
observations at the user specified times (save_states_at argument) for all variables will
be created. The state of the simulation at all other times will be ignored, because it wasn’t
stored. This may be useful in some scenarios, but is generally discouraged unless you have
good reasons to use it. A warning message about this is printed if check_inputs=TRUE.

* save_states="last": Since only the last state of the simulation was saved, an error message
is returned. No data. table is produced.

Output with use_saved_states=FALSE:

If use_saved_states=FALSE, this function will use only the data that is stored in the final state
of the simulation (data object in sim) and information about node_time_to_event objects. If all
tx_nodes are time_to_event nodes or if all the user cares about are the time_to_event nodes
and time-fixed variables, this is the best option.

A data.table in the desired format with correct information about all observations at all

times is produced, but only with correct entries for some time-varying variables, namely time_to_event
nodes. Note that this information will also only be correct if the user used save_past_events=TRUE

in all time_to_event nodes. Support for competing_events nodes will be implemented in the fu-

ture as well.

The other time-varying variables specified in the tx_nodes argument will still appear in the output,
but it will only be the value that was observed at the last state of the simulation.

Optional columns created using a time_to_event node:

When using a time-dependent node of type "time_to_event"” with event_count=TRUE or time_since_last=TRUE,
the columns created using either argument are not included in the output if to="start_stop"”, but

will be included if to is set to either "1ong"” or "wide". The reason for this behavior is that includ-

ing these columns would lead to nonsense intervals in the start-stop format, but makes sense in the

other formats.

What about tx_nodes that are not time_to_event nodes?:

If you want the correct output for all tx_nodes and one or more of those are not time_to_event
nodes, you will have to use save_states="all"” in the original sim_discrete_time call. We
plan to add support for competing_events with other save_states arguments in the near future.
Support for arbitrary tx_nodes will probably take longer.

Value

Returns a single data.table (or data.frame) containing all simulated variables in the desired
format.

sim2data 93

Note

n o n n n

Using the node names "start”, "stop”, ".id", ".time" or names that are automatically generated
by time-dependent nodes of type "time_to_event” may break this function.

Author(s)
Robin Denz

References

Sy Han Chiou, Gongjun Xu, Jun Yan, and Chiung-Yu Huang (2023). "Regression Modeling for
Recurrent Events Possibly with an Informative Terminal Event Using R Package reReg". In: Journal
of Statistical Software. 105.5, pp. 1-34.

See Also

sim_discrete_time

Examples

library(simDAG)
set.seed(435345)

exemplary car crash simulation, where the probability for
a car crash is dependent on the sex, and the probability of death is
highly increased for 3 days after a car crash happened
prob_car_crash <- function(data) {

ifelse(data$sex==1, 0.001, 0.01)
3

prob_death <- function(data) {
ifelse(data$car_crash_event, 0.1, 0.001)
3

dag <- empty_dag() +
node("sex", type="rbernoulli”, p=0.5) +
node_td("car_crash”, type="time_to_event”, prob_fun=prob_car_crash,
parents="sex", event_duration=3) +
node_td("death”, type="time_to_event”, prob_fun=prob_death,
parents="car_crash_event", event_duration=Inf)

generate some data, only saving the last state

not a problem here, because the only time-varying nodes are

time-to-event nodes where the event times are saved

sim <- sim_discrete_time(dag, n_sim=20, max_t=500, save_states="last")

transform to standard start-stop format
d_start_stop <- sim2data(sim, to="start_stop")
head(d_start_stop)

94 sim_discrete_event

transform to "death” centric start-stop format

and keep only information until death, cause it's a terminal event

(this could be used in a Cox model)

d_start_stop <- sim2data(sim, to="start_stop”, target_event="death”,
keep_only_first=TRUE, overlap=TRUE)

head(d_start_stop)

transform to long-format
d_long <- sim2data(sim, to="long")
head(d_long)

transform to wide-format
d_wide <- sim2data(sim, to="wide")
#head(d_wide)

sim_discrete_event Simulate Data from a DAG with Time-Dependent Variables in Continu-
ous Time

Description

Similar to sim_discrete_time, this function allows users to generate complex data with time-
varying variables from a DAG defined using node and node_td calls. In contrast to sim_discrete_time,
time is modelled as a continuous variable using a discrete-event simulation approach. See details.

Usage

sim_discrete_event(dag, n_sim=NULL, t@_sort_dag=FALSE,
t0_data=NULL, t@_transform_fun=NULL,
t@_transform_args=1list(),
max_t=Inf, remove_if, break_if,
max_iter=1000, redraw_at_t=NULL,
allow_ties=FALSE, censor_at_max_t=FALSE,
target_event=NULL, keep_only_first=FALSE,
remove_not_at_risk=FALSE,
include_event_counts=TRUE,
check_inputs=TRUE)

Arguments

dag A DAG object created using the empty_dag function with node_td calls added
to it (see details and examples). If the dag contains root nodes and child nodes
which are time-fixed (those who were added using node calls), data according
to this DAG will be generated for time = 0. That data will then be used as
starting data for the following simulation. Alternatively, the user can specify the
t@_data argument directly. In either case, the supplied dag needs to contain at
least one time-dependent node of type "next_time”, added using the node_td
function. Other time-dependent node types are currently not supported.

sim_discrete_event

n_sim

t@_sort_dag

t0_data

95

A single number specifying how many observations should be generated. If a
data. table is supplied to the t@_data argument, this argument is ignored. The
sample size will then correspond to the number of rows in t@_data.

Corresponds to the sort_dag argument in the sim_from_dag function. Ignored
if t@_data is specified.

An optional data. table like object (also accepts a data.frame, tibble etc.)
containing values for all relevant variables at ¢ = (0. This dataset will then
be transformed over time according to the nodes specified using node_td calls
in dag. Alternatively, data for ¢ = 0 may be generated automatically by this
function if standard node calls were added to the dag.

t0_transform_fun

An optional function that takes the data created at ¢ = 0 as the first argument.
The function will be applied to the starting data and its output will replace the
data.table. Can be used to perform arbitrary data transformations after the
starting data was created. Set to NULL (default) to not use this functionality.

t@_transform_args

max_t

remove_if

break_if

max_iter

redraw_at_t

A named list of additional arguments passed to the t@_transform_fun. Ignored
if to_transform_fun=NULL.

A single number specifying the time needs to be reached for all individuals for
the simulation to be terminated. This can be set to Inf, if the end of the simu-
lation can be terminated through other means (e.g. the remove_if or break_if
arguments, or when all variables have an event duration or immunity duration
that is infinite).

A condition that will be evaluated directly on the generated data.table after
each jump to the next event. All rows for which the condition is TRUE are re-
moved from the data at this point in time. The condition may contain names of
any variable that were generated. If all rows are removed through this condition,
the simulation stops early. This argument may be useful to save computation
time, if a large number of variables or many state changed need to be considered
and the user only cares about the first time a condition is met for some individ-
uals. Keep this argument unspecified (default) to not use this functionality.

A condition that will be evaluated after each jump to the next event (but after
subsetting, if remove_if was specified). If the condition is met, the simulation
stops early. Contrary to the remove_if argument, this condition should return
exactly one TRUE or FALSE value and is not directly evaluated on the data. To
use variables generated in the simulation in this condition, users should use the
$ syntax (e.g. use data$X instead of just X). Keep this argument unspecified
(default) to not use this functionality.

A single positive number, specifying the maximum amount of loops the simu-
lation is allowed to run before it terminates. This argument exists so that if all
of max_t, remove_if and break_if fail to terminate the simulation eventually,
the code does not run forever. In nearly all cases it is, however, preferable to
end the simulation using one of the other three arguments. A warning message
is therefore returned whenever the simulation is stopped through reaching this
limit.

A numeric vector of positive values specifying times at which the time to the
next event should be re-drawn, regardless of whether an event occurred at this

96 sim_discrete_event

time or not. This may be useful to specify effects or baseline probabilities that
vary over discrete intervals of time. Note that using this argument potentially
adds multiple additional rows to the output, in which no variables change. Set
to NULL to not use this functionality (default).

allow_ties Either TRUE or FALSE (default), specifying whether multiple events (or changes
from TRUE to FALSE in some variables) per individual at the exact same time
should be allowed. If the times until the next event are continuous, the chances
for an exact tie are astronomically small, so it is usually fine to keep this at
FALSE. Should a tie be found anyways, an error will be returned. If some custom
function is supplied to the distr_fun argument of one or more time-dependent
nodes, which produce integer times, this argument should be set to TRUE. Note
that this function is much faster with allow_ties=FALSE, especially with large
n_sim.

censor_at_max_t
Either TRUE or FALSE, specifying whether the last generated time should be cen-
sored at the user-specified value of max_t. Since the simulation jumps times
at events, the last observed event time may often be larger than max_t initially.
Setting this to TRUE censors these values appropriately and potentially discards
the last state-change.

target_event By default (keeping this argument at FALSE) all time-varying nodes are treated
equally when creating the start-stop intervals. This can be changed by supplying
a single character string to this argument, naming one of the nodes. This node
will then be treated as the outcome. The output then corresponds to what would
be needed to fit a Cox proportional hazards model with that node as the outcome.
keep_only_first
Only used when target_event is not NULL. Either TRUE or FALSE (default). If
TRUE, all information after the first event per person will be discarded. Useful
when target_event should be treated as a terminal variable.
remove_not_at_risk
Only used when target_event is not NULL. Either TRUE or FALSE (default). If
TRUE, all information after an event that is recorded during the immunity_duration
of an event (e.g. when the person is not at-risk for another event) is removed
from the start-stop data. This may be needed when the goal is to fit time-to-
event models to the data in some situations.
include_event_counts
Either TRUE or FALSE, specifying whether event counts of time-dependent nodes
in which event_count=TRUE was used should be included in the output or not.

check_inputs Whether to perform plausibility checks for the user input or not. Is set to TRUE
by default, but can be set to FALSE in order to speed things up when using this
function in a simulation study or something similar.

Details

This function and the corresponding node interface implemented through the node_next_time
function are still fairly new and may not have reached a stable state. The functionality is tested
and should work fine, but the arguments, syntax and general functionality may still change in up-
coming releases.

sim_discrete_event 97

What is Discrete-Event Simulation?:

In discrete-event simulations (DES), the system is modelled as a sequence of distinct events that
occur over time any may influence each other. In contrast to discrete-time simulations, the time in
a DES is only advanced by some amount whenever an event occurs. The state of the system is then
updated according to this event and the next advancement is made. The possibly simplest example
of a DES, as compared to a discrete-time simulation is a system with just one variable, Y for a single
individual. At the start, Y is zero. We are interested only in the time at which Y turns 1 for the first
time. The probability of Y turning one in a single unit of time is set to a fixed value of 0.01. In a
discrete-time simulation, we would perform a single Bernoulli trial with probability 0.01. If this
trial returns a 1, we are finished and save the current simulation time. If the Bernoulli trial returns
a 0, we increase the time by 1 and repeat the process until Y is eventually 1. In DES on the other
hand, we would simply draw the time until Y turns 1 from a suitable distribution (in this example a
simple exponential distribution with rate=0.01 would be sufficient).

In such simple cases, using a discrete-time simulation approach is clearly a worse strategy. There
is no reason to perform so many computations when drawing a single exponentially distributed
random number is enough. With more complex data generation processes, for example include
time-varying variables that influence each other over time, using DES gets more complicated.

How it Works:

Internally, this function works by first simulating data using the sim_from_dag function. Alterna-
tively, the user can supply a custom data.table using the td_data argument. This data defines
the state of all entities at t = 0. Afterwards, the following algorithm is used for each simulated
individual:

(1) The time of the next change in a variable is generated for each of the included time-varying
variable separately, possibly dependent on the other variables. (2) The minimum of these times is
used as the new simulation time. (3) The variable corresponding to the choosen time is updated.

This process is repeated until no changes are needed anymore (e.g. when all time-dependent vari-
ables have reached absorbing states, or max_t is reached), or when a user-specified break condition
is reached (argument break_if), or when no individuals are left after conditional subsetting (argu-
ment remove_if). After the first iteration, the times that are sampled in step (1) have to be sampled
from left-truncated distributions, where the truncation time is equal to the current simulation time.
This has to be the case because that time has already passed for that individual, so the next event
change must be at least some time afterwards. Users may specify any function to calculate the rate
or probability used depending on the state. Users may also use any function to draw the time of the
next change.

Specifying the dag argument:

The dag argument should be specified as described in the node documentation page. More examples
specific to discrete-event simulations can be found in the vignettes and the examples. The only
difference to specifying a dag for the sim_from_dag function is that the dag here should contain at
least one time-dependent node added using the node_td function, that uses type="next_time".

Networks-Based Simulation:

Currently only time-constant networks added using the network function are supported. They are
also only supported for data generation at ¢ = 0. All following calculations will be made ignoring
the network. If time-dependent networks or network dependencies in time-dependent variables are
desired, the sim_discrete_time function has to be used instead.

Speed Considerations:

98

sim_discrete_event

In general, this function should be a lot faster than a corresponding sim_discrete_time call,
because it does not require going through all considered points in time directly. Its computation
time therefore does not change substantially (or at all) with higher values of max_t. Instead, it
only increases with higher values of n_sim, the amount of time-dependent variables and, most
importantly, with the frequency by which these variables change. The more frequently a variable
changes back and forth between TRUE and FALSE, the more iterations are needed and thus the more
time is needed.

Current limitations:

Unlike the sim_discrete_time function, which does not assume any parametric distributions, this
function requires the user to specify a function that may be used to generate the time of the next
change in a binary variable. Multiple built-in options are provided, but it is nevertheless less flexible.
Additionally, only binary time-dependent variables are supported (with no restrictions set on time-
fixed variables). Some forms of dependencies are harder (but not impossible) to specify using the
discrete-event approach.

For example, simulating effects of variables or overall event probabilities that are smooth functions
of time is difficult. If the event probability is constant over time and only changes when some other
variable changed, a simple left-truncated exponential distribution (see rtexp) may be used. If only
the general event probability should vary over time, times may be generated using a Weibull or
some other parametric functions. In any case, users will have to know very clearly what functions
to use and then have to provide a function that is able to generate truncated random values from
this distribution. If these requirements cannot be met, discrete-time simulation may be the only
alternative.

Value

Returns a single data. table including at least the following columns:

e .id: The unique individual identifier, coded as integers.
 start: The start of the time period, coded as a numeric value.

* stop: The end of the time period, coded as a numeric value.

Additionally, the returned data will include all time-constant and time-dependent variables that were
generated. Some options on how this data should be formatted are given by the function itself (see
censor_at_max_t, target_event and keep_only_first). The long- and wide-format are not
supported, because the time is usually modelled as a continuous variable.

Author(s)

Robin Denz

References

Denz, Robin and Nina Timmesfeld (2025). Simulating Complex Crossectional and Longitudinal
Data using the simDAG R Package. arXiv preprint, doi: 10.48550/arXiv.2506.01498.

Tang, Jiangjun, George Leu, und Hussein A. Abbass. 2020. Simulation and Computational Red
Teaming for Problem Solving. Hoboken: IEEE Press.

Banks, Jerry, John S. Carson II, Barry L. Nelson, and David M. Nicol (2014). Discrete-Event
System Simulation. Vol. 5. Edinburgh Gate: Pearson Education Limited.

sim_discrete_time

See Also

empty_dag, node, node_td, node_next_time, sim_discrete_time

Examples

library(simDAG)

set.seed(454236)

simulating death dependent on age, sex, bmi
NOTE: this example is explained in detail in one of the vignettes

initializing a DAG with nodes for generating data at t@

dag <- empty_dag() +

node("age", type="rnorm”, mean=50, sd=4) +

node("sex", type="rbernoulli”, p=0.5) +

node("bmi”, type="gaussian", parents=c("sex", "age"),
betas=c(1.1, 0.4), intercept=12, error=2)

a function to calculate the probability of death as a
linear combination of age, sex and bmi on the log scale
prob_death <- function(data, beta_age, beta_sex, beta_bmi,

beta_sickness, intercept) {

prob <- intercept + data$agexbeta_age + data$sexxbeta_sex +
datasbmixbeta_bmi + data$sicknessxbeta_sickness
prob <- 1/(1 + exp(-prob))

return(prob)

}

adding time-dependent nodes to the dag

dag <- dag +

node_td("sickness”, type="next_time", prob_fun=0.01,
event_duration=50, immunity_duration=Inf) +

node_td("death”, type="next_time", parents=c("age", "sex", "bmi"),
prob_fun=prob_death, beta_age=0.1, beta_bmi=0.3, beta_sex=-0.2,
beta_sickness=1.1,
intercept=-20, event_duration=Inf)

run simulation for 100 people, until everyone died
sim_dt <- sim_discrete_event(n_sim=100, dag=dag, max_t=Inf,

remove_if=death==TRUE,
target_event="death")

99

sim_discrete_time

Simulate Data from a DAG with Time-Dependent Variables in Discrete
Time

100 sim_discrete_time

Description

Similar to the sim_from_dag function, this function can be used to generate data from a given DAG
created using the empty_dag and node or node_td functions (and possibly network or network_td
functions). In contrast to the sim_from_dag function, this function utilizes a discrete-time simu-
lation approach. This is not an "off-the-shelves" simulation function, it should rather be seen as
a "framework-function", making it easier to create discrete-time-simulations. It usually requires
custom functions written by the user. See details.

Usage

sim_discrete_time(dag, n_sim=NULL, t@_sort_dag=FALSE,
t@_data=NULL, t@_transform_fun=NULL,
t@_transform_args=1list(), max_t,
tx_nodes_order=NULL, tx_transform_fun=NULL,
tx_transform_args=1list(),
remove_if, break_if,
save_states="last", save_states_at=NULL,
save_networks=FALSE,
verbose=FALSE, check_inputs=TRUE)

Arguments

dag A DAG object created using the empty_dag function with node_td calls added
to it (see details and examples). If the dag contains root nodes and child nodes
which are time-fixed (those who were added using node calls), data according
to this DAG will be generated for time = 0. That data will then be used as
starting data for the following simulation. Alternatively, the user can specify the
t@_data argument directly. In either case, the supplied dag needs to contain at
least one time-dependent node added using the node_td function.

n_sim A single number specifying how many observations should be generated. If a
data. table is supplied to the t@_data argument, this argument is ignored. The
sample size will then correspond to the number of rows in t@_data.

t0_sort_dag Corresponds to the sort_dag argument in the sim_from_dag function. Ignored
if t@_data is specified.

to_data An optional data. table like object (also accepts a data.frame, tibble etc.)
containing values for all relevant variables at { = 0. This dataset will then
be transformed over time according to the nodes specified using node_td calls
in dag. Alternatively, data for £ = 0 may be generated automatically by this
function if standard node calls were added to the dag.

to_transform_fun
An optional function that takes the data created at ¢ = 0 as the first argument.
The function will be applied to the starting data and its output will replace the
data.table. Can be used to perform arbitrary data transformations after the
starting data was created. Set to NULL (default) to not use this functionality.

t@_transform_args

A named list of additional arguments passed to the t@_transform_fun. Ignored
if to_transform_fun=NULL.

sim_discrete_time

max_t

tx_nodes_order

101

A single integer specifying the final point in time to which the simulation should
be carried out. The simulation will start at £ = 1 (after creating the starting data
with the arguments above) and will continue until max_t by increasing the time
by one unit at every step, updating the time-dependent nodes along the way.

A numeric vector specifying the order in which the time-dependent nodes added
to the dag object using the node_td function should be executed at each time
step. If NULL (default), the nodes will be generated in the order in which they
were originally added.

tx_transform_fun

An optional function that takes the data created after every point in time ¢ > 0 as
the first argument and the simulation time as the second argument. The function
will be applied to that data after all node functions at that point in time have
been executed and its output will replace the previous data.table. Can be
used to perform arbitrary data transformations at every point in time. Set to
NULL (default) to not use this functionality.

tx_transform_args

remove_if

break_if

save_states

save_states_at

save_networks

verbose

A named list of additional arguments passed to the tx_transform_fun. Ignored
if tx_transform_fun=NULL.

A condition that will be evaluated directly on the generated data.table at the
beginning of each time-period. All rows for which the condition is TRUE are
removed from the data at this point in time. The condition may contain names
of any variable that were generated. If all individuals are removed through this
condition, the simulation stops early. This argument may be useful to save com-
putation time, if a large number of points in time should be considered and the
user only cares about the first time a condition is met for some individuals. Keep
this argument unspecified (default) to not use this functionality.

A condition that will be evaluated at the beginning of each time-period (but after
subsetting, if remove_if was specified). If the condition is met, the simulation
stops early. Contrary to the remove_if argument, this condition should return
exactly one TRUE or FALSE value and is not directly evaluated on the data. To
use variables generated in the simulation in this condition, users should use the
$ syntax (e.g. use data$X instead of just X). Keep this argument unspecified
(default) to not use this functionality.

Specifies the amount of simulation states that should be saved in the output
object. Has to be one of "all”, "at_t" or "last” (default). If set to "all”, a
list of containing the data. table after every point in time will be added to the
output object. If "at_t", only the states at specific points in time specified by
the save_states_at argument will be saved (plus the final state). If "last”,
only the final state of the data. table is added to the output.

The specific points in time at which the simulated data. table should be saved.
Ignored if save_states!="at_t".

Either TRUE or FALSE, specifying whether networks should be saved over time.
Only relevant if dag contains one or more network or network_td calls. If set
to TRUE all networks (including time-independent ones) are saved according to
the specification of the save_states argument.

If TRUE prints one line at every point in time before a node function is executed.
This can be useful when debugging custom node functions. Defaults to FALSE.

102 sim_discrete_time

check_inputs Whether to perform plausibility checks for the user input or not. Is set to TRUE
by default, but can be set to FALSE in order to speed things up when using this
function in a simulation study or something similar.

Details

Sometimes it is necessary to simulate complex data that cannot be described easily with a single
DAG and node information. This may be the case if the desired data should contain multiple time-
dependent variables or time-to-event variables in which the event has time-dependent effects on
other events. An example for this is data on vaccinations and their effects on the occurrence of
adverse events (see vignette). Discrete-Time Simulation can be an effective tool to generate these
kinds of datasets.

What is Discrete-Time Simulation?:

In a discrete-time simulation, there are entities who have certain states associated with them that
only change at discrete points in time. For example, the entities could be people and the state could
be alive or dead. In this example we could generate 100 people with some covariates such as age,
sex etc.. We then start by increasing the simulation time by one day. For each person we now check
if the person has died using a bernoulli trial, where the probability of dying is generated at each
point in time based on some of the covariates. The simulation time is then increased again and the
process is repeated until we reach max_t.

Due to the iterative process it is very easy to simulate arbitrarily complex data. The covariates may
change over time in arbitrary ways, the event probability can have any functional relationship with
the covariates and so on. If we want to model an event type that is not terminal, such as occurrence
of cardiovascular disease, events can easily be simulated to be dependent on the timing and number
of previous events. Since Discrete-Time Simulation is a special case of Discrete-Event Simulation,
introductory textbooks on the latter can be of great help in getting a better understanding of the
former.

How it Works:

Internally, this function works by first simulating data using the sim_from_dag function. Alterna-
tively, the user can supply a custom data.table using the td_data argument. This data defines
the state of all entities at ¢ = 0. Afterwards, the simulation time is increased by one unit and the
data is transformed in place by calling each node function defined by the time-dependent nodes
which were added to the dag using the node_td function (either in the order in which they were
added to the dag object or by the order defined by the tx_nodes_order argument). Usually, each
transformation changes the state of the entities in some way. For example if there is an age variable,
we would probably increase the age of each person by one time unit at every step. Once max_t is
reached, the resulting data. table will be returned. It contains the state of all entities at the last
step with additional information of when they experienced some events (if node_time_to_event
was used as time-dependent node). Multiple in-depth examples can be found in the vignettes of this
package.

Specifying the dag argument:

The dag argument should be specified as described in the node documentation page. More examples
specific to discrete-time simulations can be found in the vignettes and the examples. The only
difference to specifying a dag for the sim_from_dag function is that the dag here should contain at
least one time-dependent node added using the node_td function. Usage of the formula argument
with non-linear or interaction terms is discouraged for performance reasons.

sim_discrete_time 103

Networks-Based Simulation:

As in the sim_from_dag function, networks-based simulations are also directly supported. Users
may define static networks (using the network function) and / or dynamic networks that may evolve
over time(using the network_td function). By using the net function inside the formula argument
of node or node_td calls, complex dependencies among observations depending on the neighbors
of each observation may then be simulated. More information is given in the associated vignette
and the documentation pages of network and network_td.

Speed Considerations:

All functions in this package rely on the data. table backend in order to make them more memory
efficient and faster. It is however important to note that the time to simulate a dataset increases
non-linearly with an increasing max_t value and additional time-dependent nodes. This is usually
not a concern for smaller datasets, but if n_sim is very large (say > 1 million) this function will get
rather slow. Note also that using the formula argument is a lot more computationally expensive
than using the parents, betas approach to specify certain nodes.

In some cases, the remove_if or break_if arguments may reduce the computation time consider-
ably. For example, if the user is only interested in the first time that some variable Y turns TRUE,
it may make sense to use remove_if=Y==TRUE. Under the hood, the function then removes any
individual where Y is already TRUE, so that the data shrinks and no further computations are per-
formed for these individuals. Unfortunately, whether or not this actually does improve performance
is dependent on multiple factors. With large n_sim and max_t, a constant or skewed probability dis-
tribution of Y and especially when expensive calculations are performed at each point in time, the
performance gains may be very large. This is, however, not always the case. The added computa-
tional burden of actually doing the subsetting itself at each point in time may offset any performance
gains or even deteriorate performance in other scenarios. We recommend checking the computation
time on a single example with and without using either remove_if and/or break_if (if appropriate)
and making the decision based on that small benchmark.

If speed is of particular importance, it may make sense to use the sim_discrete_event function
instead. The discrete-event simulation framework is much faster, but a little less flexible than the
discrete-time framework. See the relevant documentation page for more information.

What do I do with the output?:

This function outputs a simDT object, not a data.table. To obtain an actual dataset from the
output of this function, users should use the sim2data function to transform it into the desired
format. Currently, the long-format, the wide-format and the start-stop format are supported. See
sim2data for more information.

A Few Words of Caution:

In most cases it will be necessary for the user to write their own functions in order to actually use the
sim_discrete_time function. Unlike the sim_from_dag function, in which many popular node
types can be implemented in a re-usable way, discrete-time simulation will always require some
custom input by the user. This is the price users have to pay for the almost unlimited flexibility
offered by this simulation methodology.

Value

Returns a simDT object, containing some general information about the simulated data as well
as the final state of the simulated dataset (and more states, depending on the specification of the
save_states argument). In particular, it includes the following objects:

104

sim_discrete_time

past_states: A list containing the generated data at the specified points in time.

past_networks: A list containing the generated / updated networks at the specified points in
time.

save_states: The value of the save_states argument supplied by the user.

data: The data at time max_t. Note that if remove_if was used, this data may not include all
n_sim individuals.

data_t@: The data at time 0. Only included if remove_if was specified.

tte_past_events: A list storing the times at which events happened in variables of type
"time_to_event”, if specified.

ce_past_events: A list storing the times at which events happened in variables of type
"competing_events”, if specified.

ce_past_causes: A list storing the types of events which happened at in variables of type
"competing_events”, if specified.

tx_nodes: A list of all time-varying nodes, as specified in the supplied dag object.
max_t: The value of max_t, as supplied by the user.

d_max_t: A data.table containing n_sim rows and the two columns .id (unique person
identifier) and max_t (the maximum time that an individual was actually included in the data
generation). This is only included if remove_if was specified by the user.

break_t: The time at which the simulation was stopped either because the break condition as
defined in the break_if argument was first met, or the time at which no further individuals
were included in the data because everyone was removed through the remove_if argument.
If neither break_if nor remove_if were specified, this is simply equal to max_t.

t@_var_names: A character vector containing the names of all variable names that do not vary
over time.

To obtain a single dataset from this function that can be processed further, please use the sim2data
function.

Author(s)

Robin Denz, Katharina Meiszl

References

Denz, Robin and Nina Timmesfeld (2025). Simulating Complex Crossectional and Longitudinal
Data using the simDAG R Package. arXiv preprint, doi: 10.48550/arXiv.2506.01498.

Tang, Jiangjun, George Leu, und Hussein A. Abbass. 2020. Simulation and Computational Red
Teaming for Problem Solving. Hoboken: IEEE Press.

Banks, Jerry, John S. Carson II, Barry L. Nelson, and David M. Nicol (2014). Discrete-Event
System Simulation. Vol. 5. Edinburgh Gate: Pearson Education Limited.

See Also

empty_dag, node, node_td, sim2data, plot.simDT

sim_from_dag 105

Examples

library(simDAG)
set.seed(454236)

simulating death dependent on age, sex, bmi
NOTE: this example is explained in detail in one of the vignettes

initializing a DAG with nodes for generating data at t@
dag <- empty_dag() +
node("age"”, type="rnorm”, mean=50, sd=4) +
node("sex", type="rbernoulli”, p=0.5) +
node("bmi"”, type="gaussian”, parents=c("sex", "age"),
betas=c(1.1, 0.4), intercept=12, error=2)

a function that increases age as time goes on

node_advance_age <- function(data) {
return(datasage + 1/365)

}

a function to calculate the probability of death as a

linear combination of age, sex and bmi on the log scale

prob_death <- function(data, beta_age, beta_sex, beta_bmi, intercept) {
prob <- intercept + data$agexbeta_age + data$sexxbeta_sex + data$bmixbeta_bmi
prob <- 1/(1 + exp(-prob))
return(prob)

3

adding time-dependent nodes to the dag
dag <- dag +
node_td("age", type="advance_age", parents="age") +
node_td("death”, type="time_to_event”, parents=c("age”, "sex"”, "bmi"),
prob_fun=prob_death, beta_age=0.1, beta_bmi=0.3, beta_sex=-0.2,
intercept=-20, event_duration=Inf, save_past_events=FALSE)

n

run simulation for 100 people, 50 days long

sim_dt <- sim_discrete_time(n_sim=100,
dag=dag,
max_t=50,
verbose=FALSE)

sim_from_dag Simulate Data from a DAG

Description

This function can be used to generate data from a given DAG. The DAG should be created using
the empty_dag and node functions, which require the user to fully specify all variables, including
information about distributions, beta coefficients and, depending on the node type, more parameters
such as intercepts. Network dependencies among observations may also be included using the
network function.

106 sim_from_dag

Usage

sim_from_dag(dag, n_sim, sort_dag=FALSE, return_networks=FALSE,
check_inputs=TRUE)

Arguments
dag A DAG object created using the empty_dag function with node calls (and poten-
tially network calls) added to it using the + syntax. See details.
n_sim A single number specifying how many observations should be generated.
sort_dag Whether to topologically sort the DAG before starting the simulation or not. If

the nodes in dag were already added in a topologically sorted manner, this argu-
ment can be kept at FALSE. It is recommended to not rely on this argument too
heavily, because sorting may sometimes fail when only a formula is supplied to
one or more node calls.
return_networks

Whether to also return networks that were included or generated due to the pres-
ence of network calls in the supplied dag or not. If set to TRUE, a named list of
length 2 will be returned instead of only returning the generated data. Defaults
to FALSE.

check_inputs Whether to perform plausibility checks for the user input or not. Is set to TRUE
by default, but can be set to FALSE in order to speed things up when using this
function in a simulation study or something similar.

Details
How it Works:

First, n_simi.i.d. samples from the root nodes are drawn. Children of these nodes are then generated
one by one according to specified relationships and causal coefficients. For example, lets suppose
there are two root nodes, age and sex. Those are generated from a normal distribution and a
bernoulli distribution respectively. Afterward, the child node height is generated using both of
these variables as parents according to a linear regression with defined coefficients, intercept and
sigma (random error). This works because every DAG has at least one topological ordering, which
is a linear ordering of vertices such that for every directed edge u v, vertex u comes before v in the
ordering. By using sort_dag=TRUE it is ensured that the nodes are processed in such an ordering.

This procedure is simple in theory, but can get very complex when manually coded. This function
offers a simplified workflow by only requiring the user to define the dag object with appropriate
information (see documentation of node function). A sample of size n_sim is then generated from
the DAG specified by those two arguments.

Specifying the DAG:

Concrete details on how to specify the needed dag object are given in the documentation page of
the node and network functions and in the vignettes of this package.

Can this function create longitudinal data?

Yes and no. It theoretically can, but only if the user-specified dag directly specifies a node for each
desired point in time. Using the sim_discrete_time or sim_discrete_event functions is better
in some cases. A brief discussion about this topic can be found in the vignettes of this package.

sim_from_dag 107

If time-dependent nodes were added to the dag using node_td calls, this function may not be used.
Only the sim_discrete_time and sim_discrete_event functions will work in that case.

Networks-Based Simulation

In some cases the assumption that observations (rows) are independent from each other is not suf-
ficient. This function allows to relax this assumption by directly supporting network-based depen-
dencies among individuals. Users may specify one or multiple networks of dependencies between
individuals and add those to the dag using the network function. It is then possible to use the net
function inside the formula argument of node calls to directly make the value of that node depen-
dent on some other variable values of its’ neighbors in the network. See the documentation and the
associated vignette for more information.

Value

If return_networks=FALSE, returns a single data.table including the simulated data with (at
least) one column per node specified in dag and n_sim rows. Otherwise it returns a named list
containing the data and the networks supplied or generated through the course of the simulation.

Author(s)
Robin Denz

References
Denz, Robin and Nina Timmesfeld (2025). Simulating Complex Crossectional and Longitudinal
Data using the simDAG R Package. arXiv preprint, doi: 10.48550/arXiv.2506.01498.

See Also

empty_dag, node, network, plot.DAG, sim_discrete_time

Examples

library(simDAG)
set.seed(345345)

dag <- empty_dag() +
node("age", type="rnorm”, mean=50, sd=4) +
node("sex", type="rbernoulli”, p=0.5) +
node("bmi”, type="gaussian", parents=c("sex", "age"),
betas=c(1.1, 0.4), intercept=12, error=2)

sim_dat <- sim_from_dag(dag=dag, n_sim=1000)

More examples for each directly supported node type as well as for custom
nodes can be found in the documentation page of the respective node function

108 sim_n_datasets

sim_n_datasets Simulate multiple datasets from a single DAG object

Description

This function takes a single DAG object and generates a list of multiple datasets, possible using
parallel processing

Usage

sim_n_datasets(dag, n_sim, n_repeats, n_cores=1,
data_format="raw"”, data_format_args=list(),
seed=NULL, progressbar=TRUE, ...)

Arguments

dag A DAG object created using the empty_dag function with nodes added to it using
the + syntax. See ?empty_dag or ?node for more details. If the dag contains
time-varying nodes added using the node_td function, the sim_discrete_time
or sim_discrete_event functions will be used to generate the data (depending
on the types of the included time-dependent nodes). Otherwise, the sim_from_dag
function will be used.

n_sim A single number specifying how many observations per dataset should be gen-
erated.

n_repeats A single number specifying how many datasets should be generated.

n_cores A single number specifying the amount of cores that should be used. If n_cores
=1, a simple for loop is used to generate the datasets with no parallel process-
ing. If n_cores > 1 is used, the doSNOW package is used in conjunction with
the doRNG package to generate the datasets in parallel. By using the doRNG
package, the results are completely reproducible by setting a seed.

data_format An optional character string specifying the output format of the generated datasets,

or a function. If "raw” (default), the dataset will be returned as generated by
the respective data generation function. If the dag contains time-varying nodes
added using the node_td function that are appropriate for discrete-time simu-
lation and this argument is set to either "start_stop”, "long"” or "wide", the
sim2data function will be called to transform the dataset into the defined for-
mat. If any other string is supplied, regardless of whether time-varying nodes are
included in the dag or not, the function with the name given in the string is called
to transform the data. If a function is supplied directly, it will also be applied.
This can be any function. The only requirement is that it has a named argument
called data. Arguments to the function can be set using the data_format_args
argument (see below).

data_format_args

An optional list of named arguments passed to the function specified by data_format.
Set to list() to use no arguments. Ignored if data_format="raw".

sim_n_datasets 109

seed A seed for the random number generator. By supplying a value to this argument,
the results will be replicable, even if parallel processing is used to generate the
datasets (using n_cores > 1), thanks to the magic performed by the doRNG
package. See details.

progressbar Either TRUE (default) or FALSE, specifying whether a progressbar should be used.
Currently only works if n_cores > 1, ignored otherwise.

Further arguments passed to the sim_from_dag function (if the dag does not
contain time-varying nodes) or the sim_discrete_time/sim_discrete_event
function (if the dag contains time-varying nodes).

Details

Generating a number of datasets from a single defined dag object is usually the first step when
conducting Monte-Carlo simulation studies. This is simply a convenience function which automates
this process using parallel processing (if specified).

Note that for more complex Monte-Carlo simulations this function may not be ideal, because it
does not allow the user to vary aspects of the data-generation mechanism inside the main for loop,
because it can only handle a single dag. For example, if the user wants to simulate n_repeats
datasets with confounding and n_repeats datasets without confounding, he/she has to call this
function twice. This is not optimal, because setting up the clusters for parallel processing takes
some processing time. If many different dags should be used, it would make more sense to write a
single function that generates the dag itself for each of the desired settings. This can sadly not be
automated by us though.

Value

Returns a list of length n_repeats containing datasets generated according to the supplied dag
object.

Note

In previous versions (< 0.4.1) the seed argument was set to stats: : runif (1), which is equivalent
to using seed=0. This was a mistake, because it results in the same output being generated regard-
less of any set.seed call used before calling sim_n_datasets(). This default has been changed
to NULL, which is equivalent to not setting a seed. To obtain the same results as in versions < 0.4.1
(when no ‘seed‘ was specified), use seed=0.

Author(s)

Robin Denz

See Also

empty_dag, node, node_td, sim_from_dag, sim_discrete_time, sim2data, sim_discrete_event

110

Examples

library(simDAG)

some example DAG
dag <- empty_dag() +
node("death”, type="binomial”, parents=c("age", "sex"), betas=c(1, 2),
intercept=-10) +
node("age"”, type="rnorm”, mean=10, sd=2) +
node("sex", parents="", type="rbernoulli”, p=0.5) +
node("smoking"”, parents=c("”sex", "age"), type="binomial”,
betas=c(0.6, 0.2), intercept=-2)

generate 10 datasets without parallel processing
out <- sim_n_datasets(dag, n_repeats=10, n_cores=1, n_sim=100)

if (requireNamespace("doSNOW") & requireNamespace("doRNG") &
requireNamespace("foreach”)) {

generate 10 datasets with parallel processing
out <- sim_n_datasets(dag, n_repeats=10, n_cores=2, n_sim=100)

}

generate 10 datasets and transforming the output

(using the sim2data function internally)

dag <- dag + node_td("CV", type="time_to_event”, prob_fun=0.01)

out <- sim_n_datasets(dag, n_repeats=10, n_cores=1, n_sim=100,
max_t=20, data_format="start_stop")

sim_n_datasets

Index

+.DAG (add_node), 5
.N, 21

aalen, 28

add_node, 5

aftreg, 28

ahreg, 28

as.dagitty.DAG, 6
as.data.frame.simDT (sim2data), 89
as.data.table.simDT (sim2data), 89
as.igraph.DAG, 7,7, 10,78, 79
as_tidy_dagitty.DAG,9, 78, 79

binomial, /3, 27

competing_events, 28
conditional_distr, 27
conditional_prob, 13,27
cox, 28

create_layout, 9

dag2matrix, 10, 78
dag_from_data, 12, I8, 19
dagitty, 7

do, 14

ehreg, 28

empty_dag, 3, 512, 15, 16, 19, 22, 25, 27, 34,
38,41,43,49, 52, 54, 57, 58, 62, 64,
71,72,75,77,79,83, 94, 99, 100,
104-109

fcase, 54

gaussian, 13,27
glm, 33, 48, 63

identity, 28
long2start_stop, 17

makeGlmer, 34, 64

111

makelLmer, 33, 48, 49, 63
matrix2dag, 18
mixture, 28
multinomial, 27

negative_binomial, 13,27

net, 20, 23, 24, 59, 103, 107

network, 5, 7-9, 11, 20, 21, 22, 97, 100, 101,
103, 105-107

network_td, 5, 20, 100, 101, 103

network_td (network), 22

next_time, 28

node, 3,5,7,8,10-12, 15, 16, 19, 21-24, 25,
31,34, 38, 39,41,43, 46, 49-52, 54,
56-58, 64,74, 75, 77-79, 83, 94, 95,
97,99, 100, 102—-107, 109

node_aalen, 30, 60

node_aftreg (node_rsurv), 65

node_ahreg (node_rsurv), 65

node_binomial, 32, 56, 58, 59, 69, 73-75

node_competing_events, 35, 56, 72

node_conditional_distr, 39, 53

node_conditional_prob, 42, 53

node_cox, 45, 60

node_ehreg (node_rsurv), 65

node_gaussian, 26, 47, 58

node_identity, 50

node_mixture, 39, 43, 53

node_multinomial, 55

node_negative_binomial, 57, 73, 74

node_next_time, 59, 96, 99

node_poisson, 58, 63, 73-75

node_poreg (node_rsurv), 65

node_rsurv, 65

node_td, 5-12, 15, 16, 19, 23, 34, 38,41, 43,
49-52, 54, 57, 58,61, 62, 64,71, 72,
75,78, 79,83, 94, 95,97, 99-104,
107-109

node_td (node), 25

112 INDEX

node_time_to_event, 37, 38, 60, 62, 68, 91,
102

node_ypreg (node_rsurv), 65

node_zeroinfl, 73

plot.DAG, 76, 107
plot.simDT, 80, 104
poisson, 13,27
poreg, 28

raftreg, 66, 67

rahreg, 66, 67
rbernoulli, 26, 27, 40, 43, 69, 84
rcategorical, 27, 36, 43, 56, 85, 87
rconstant, 27, 51, 86
rehreg, 66, 67

rexp, 88

rnbinom, 58

rnorm, 40

rpois, 63, 64

rporeg, 66, 67

rsample, 27, 87
rtexp, 27, 60, 88, 98
rypreg, 66, 67

sample, 87

set.seed, 109

sim2data, 89, 103, 104, 108, 109

sim_discrete_event, 3, 4, 25-27, 29, 59, 60,
62,94, 103, 106—109

sim_discrete_time, 3-5, 16, 21, 22, 24-27.
29, 34, 35, 37, 38,41, 43,46, 49, 52,
54,57, 58, 60, 64, 68, 70-72, 75, 80,
83, 89, 90, 93, 94, 97-99, 99,
106-109

sim_from_dag, 3, 5, 10, 12, 13, 16, 18, 19, 21,
22,24-27,29, 34, 38,41, 43,49, 52,
54,57, 58, 64,75, 86, 95, 97, 100,
102, 103, 105, 108, 109

sim_n_datasets, 108

simDAG-package, 3

time_to_event, 28
ypreg, 28

zeroinfl, 28

	simDAG-package
	add_node
	as.dagitty.DAG
	as.igraph.DAG
	as_tidy_dagitty.DAG
	dag2matrix
	dag_from_data
	do
	empty_dag
	long2start_stop
	matrix2dag
	net
	network
	node
	node_aalen
	node_binomial
	node_competing_events
	node_conditional_distr
	node_conditional_prob
	node_cox
	node_gaussian
	node_identity
	node_mixture
	node_multinomial
	node_negative_binomial
	node_next_time
	node_poisson
	node_rsurv
	node_time_to_event
	node_zeroinfl
	plot.DAG
	plot.simDT
	rbernoulli
	rcategorical
	rconstant
	rsample
	rtexp
	sim2data
	sim_discrete_event
	sim_discrete_time
	sim_from_dag
	sim_n_datasets
	Index

