Package ‘simulariatools’

January 8, 2026

Type Package
Title Simularia Tools for the Analysis of Air Pollution Data

Version 3.1.0
Maintainer Giuseppe Carlino <g.carlino@simularia.it>

Description A set of tools developed at Simularia for Simularia, to help
preprocessing and post-processing of meteorological and air quality data.

Depends R (>=3.3)

Imports ggplot2 (>= 3.3), lubridate, reticulate, scales, terra
Suggests magick, testthat (>= 3.0.0), openair, sf

License GPL (>=2)

URL https://www.simularia.it/simulariatools/,

https://github.com/Simularia/simulariatools

BugReports https://github.com/Simularia/simulariatools/issues
LazyLoad yes

LazyData yes

Encoding UTF-8

Language en

RoxygenNote 7.3.3

Config/testthat/edition 3

NeedsCompilation no

Author Giuseppe Carlino [aut, cre],
Matteo Paolo Costa [ctb],
Simularia [cph, fnd]

Repository CRAN
Date/Publication 2026-01-08 00:40:02 UTC

https://www.simularia.it/simulariatools/
https://github.com/Simularia/simulariatools
https://github.com/Simularia/simulariatools/issues

2 contourPlot2

Contents
contourPlot2 2
downloadBasemap e 5
importADSOBIN e 7
importRaster 9
importSurferGrd L. 10
plotAvgRad 11
plotAvgTemp o e 12
plotStabilityClass e 13
removeOutliers e e e e 15
rollingMax e 15
stabilityClass e e e e 16
SIMEIEO e e e e 17
turnerStabilityClass L 18
vectorField e 19

Index 22

contourPlot2 Contour Plot of pollutant concentration field
Description

The function contourPlot2 generates a contour plot of a scalar quantity, such as the ground con-
centration of an airborne pollutant or odour, defined on a regular grid.

Usage

contourPlot2(
data,

X

y
z

—_ n n
= "x",
—_— n n
=y,
n n

= Z ,

domain = NULL,
xlim = NULL,

ylim = NULL,
nticks = 5,
background = NULL,
basemap = NULL,
underlayer = NULL,
overlayer = NULL,
legend = NULL,
levels = NULL,

size = 0,
fill = TRUE,
tile = FALSE,

transparency = 0.75,

contourPlot2

colors = NULL,

mask = NULL,

inverse_mask = FALSE,

bare = FALSE,

theme_void = FALSE

Arguments

data

4

domain

xlim

ylim

nticks

background

basemap

underlayer

overlayer
legend

levels

size
fill
tile

A dataframe in long format with three columns for Easting, Northing and values
to be plotted.

character. Name of the column containing Easting (longitude) coordinates (de-
fault "x").

character. Name of the column containing Northing (latitude) coordinates (de-
fault "y").

character. Name of the column containing concentration values (default "z").

optional list of six numeric values defining the boundaries of the domain to be
plotted and the number of ticks on X & Y axis (minimum X, maximum X,
minimum Y, maximum Y, number of ticks on X axis, number of ticks on Y
axis). Example: ¢(340000, 346000, 4989500, 4995500, 5, 5). If missing, the
full domain of the input data is considered, with 5 ticks (deprecated, see x1im,
ylim, nticks).

optional list of two numeric values defining the abscissa axis boundaries of the
plot (minimum X, maximum X).

optional list of two numeric values defining the ordinate axis boundaries of the
plot (minimum y, maximum y).

optional list of one or two numeric integers defining the number of ticks on X &
Y axes. If a single number is given, the same number of ticks is plotted on both
axes (default = 5 ticks).

filename. Optional path to a raster file to be plotted as the basemap (deprecated,
see basemap)

filename. Optional path to a raster file to be plotted as the basemap (see Details).

optional list of layers to be plotted between basemap and contour plot. See
Details.

optional list of layers to be plotted on top of the contour plot. See Details.
character. Optional title of the legend.

numeric vector of levels for contour plot. If not set, automatic pretty levels are
computed. If -Inf and Inf are used as the lowest and highest limits of the
array, the lowest and highest bands are unbounded and the legend shows < and
>= symbols.

numeric. Width of the contour line.
logical. If TRUE, the contour plot is filled with colour (default = TRUE).
logical. If TRUE, rectangular tiles are plotted (default = FALSE).

4 contourPlot2

transparency transparency level of the contour plot between 0.0 (fully transparent) and 1.0
(fully opaque). Default = 0.75.

colors colour palette for contour plot, as an array of colours.
mask character. Path to shp file used as a mask. It must be a closed polygon.

inverse_mask logical. If TRUE, areas on mask are masked. Default is to mask areas outside
the polygon defined in the shp file.

bare boolean (default FALSE). Deprecated in favour of theme_void.

theme_void boolean (default FALSE). If TRUE, only the bare plot is shown: axis, legend,
titles and any other graphical element of the plot are removed.

Details

This is a convenience function to plot contour levels of a scalar quantity such as pollutants computed
by a dispersion model, with ggplot2 version >= 3.3.0.

Data are required to be on a regular grid, typically (but not necessarily) in UTM coordinates. Each
value is associated to the cell centre. The input dataframe has to be in long format, i.e. one line per
value to be plotted. The names of the columns corresponding to x, y and z can be specified in the
input parameters.

The basemap can be a geo-referenced TIFF file. In that case, the plot bounding box is automatically
derived from the picture extent. The axis limits can be explicitly overridden by x1im and ylim
arguments.

If tile = TRUE data are shown as they are, without any graphical interpolation required for contour
plots. This is helpful when you want to visualise the raw data. Since version 2.4.0, when tile =
TRUE the intervals include the lowest bound and exclude the highest bound: [min, max). Note: In
previous versions it was the opposite.

underlayer and overlayer layers are ggplot2 objects to be shown at different levels of the vertical
stack of the plot. These are useful to show topographical information related to the plot, such as
sources or receptors locations.

When a shp file is given to the mask argument, the plot is drawn only inside the polygon. In order to
avoid boundary artifacts due to reduced resolution, original data are resampled to higher resolution
(currently set to 10 times the original one). If inverse_mask is set to TRUE, the plot is drawn outside
the polygon. The mask feature is based on the terra: :mask() function. The CRS of the shp file is
applied to the data in the data.frame. Please keep in mind this feature is still experimental.

Value

A ggplot2 object.

Examples
Load example data in long format
data(volcano)
volcano <- as.data.frame(volcano)
volcano3d <- reshape(volcano, direction = "long",
varying = list(1:61),
idvar = "x", timevar = "y", v.names = "z")

Contour plot with default options

downloadBasemap

v <- contourPlot2(volcano3d)
v

Set levels, and properly format the legend title:
contourPlot2(

volcano3d,

levels = c(-Inf, seq(100, 200, 20), Inf),

legend = expression("PM"[10] ~ "[" * mu * "g m"*-3 x "]")

)

Sometimes, instead of a contour plot it is better to plot the original
raster data, without any interpolation:
contourPlot2(
volcano3d,
levels = c(-Inf, seq(100, 200, 20), Inf),
tile = TRUE
)

Since contourPlot2 returns a “ggplot2™ object, you can add instructions as:
library(ggplot2)
v +

ggtitle("Example volcano data”) +

labs(x = NULL, y = NULL)

downloadBasemap Download basemap from Italian National Geoportal

Description

Download the aerial orthophoto of the requested domain from the Italian National Geoportal.

Usage
downloadBasemap(
file = NULL,

xSW = NA,

ySW = NA,

xExt = NA,
YExt = NA,

crs = 32,
width = 1024,
height = 1024,
units = "px",
res = 72

https://gn.mase.gov.it/portale/home

downloadBasemap

Path to output file. If file exists, it will be overwritten.
South West Easting UTM coordinate of the basemap (in metres).
South West Northing UTM coordinate of the basemap (in metres).

Coordinate Reference System as UTM zone: either 32 (default) or 33.

The unit of measure of width and height. It can be px (pixels, the default), in

Arguments

file

xSW

ySW

XExt Easting extension in metres.

yExt Northing extension in metres.

crs

width The basemap width (default = 1024).

height The basemap height (default = 1024).

units

(inches), cm or mm

res The resolution in dpi (default = 72).

Details

The domain is specified by the South-West point coordinates, and its extension in the x and y
directions. The Coordinate Reference System (CRS) is in UTM 32 or 33.

Note that, even if the downloading is successful the file might be empty due to some weird behaviour

of the remote server from the PCN.

Value

The output is a tiff encoded with GeoTIFF metadata at the path provided. No value is returned.

in the UTM32 CRS and extension

5000m in both directions.

Examples
Not run:
Download a basemap of a domain with SW coordinates (410000, 5000500)
in the UTM32 CRS and extension 5000m in both directions.
downloadBasemap(
file = "./basemap.tif”,
xSW = 410000, ySW = 5000500, xExt = 5000, yExt = 5000
)
Download a basemap of a domain with SW coordinates (410000, 5000500)
in the UTM32 CRS and extension 5000m in both directions.
The file has to be 2048 x 2048 pixels.
downloadBasemap(
file = "./basemap.tif”,
XSW = 410000, ySW = 5000500, xExt = 5000, yExt = 5000,
width = 2048, height = 2048
)
Download a basemap of a domain with SW coordinates (410000, 5000500)

importADSOBIN 7

The file has to be 10cm x 10cm with a resolution of 150 dpi.

downloadBasemap(
file = "./basemap.tif”,
xSW = 410000, ySW = 5000500, xExt = 5000, yExt = 5000,
width = 10, height = 10, units = "cm", res = 144

)

End(Not run)

importADSOBIN ADSO/BIN data import function

Description

Import data from ADSO/BIN binary file. It requires an active Python installation with the arinfopy
library.

Usage

importADSOBIN(
file = file.choose(),
variable = NULL,

slice = 1,
deadline = 1,
k =1,

kz =1,

dx = 0,

dy = 0,

destaggering = FALSE,
raster.object = FALSE,
verbose = FALSE

)
Arguments

file Character. The path to the ADSO/BIN file to be imported.

variable Character. A string with the name of the variable to be imported.

slice An integer corresponding to the horizontal slice (vertical level) of 3D variables
(default = 1). In the case of a 2D variable, it is ignored.

deadline An integer representing the temporal deadline (default = 1). It can optionally be
a string with date time (see examples).

k A numeric factor to be applied to x and y coordinates (default = 1).

kz A numeric factor to be applied to z values to rescale them (default = 1).

dx A number to shift x coordinates by dx (default = 0).

dy A number to shift y coordinates by dy (default = 0).

8 importADSOBIN

destaggering Use TRUE to apply destaggering to X and Y coordinates (default = FALSE).

raster.object Use TRUE toreturn a raster object instead of a dataframe with (X, Y, Z) columns
(default = FALSE).

verbose Use TRUE to print out basic statistics (default = FALSE).

Details

The importADSOBIN() function imports data from an ADSO/BIN binary file. It relies on the
arinfopy (version >= 2.2.0) python library. For more information on the library see the GitHub
repository.

For more information on the active python installation, check the documentation of reticulate.

Value

In standard use, importADSOBIN() returns a data frame with (X, Y, Z) columns. Column Z
contains the values of the requested variable. If the raster.object option is set, it returns a
RasterLayer object.

See Also

importRaster(), importSurferGrd()

Examples

Not run:
Read ground level (slice = 1) value of variable M001S001.
pm1@ <- importADSOBIN(

file = "average_2018.bin",

variable = "M001S001",

slice =1

)

Read deadline 12 of the second vertical level of temperature:
temperature <- importADSOBIN(

file = "swift_surfpro_01-10_01_2018",

variable = "TEMPK",

slice = 2,

deadline = 12
)

Read variable M@@1S001 at ground level, at given date and time,
and print basic information:
nox <- importADSOBIN(
file = "conc_01-10_07_2018",
variable = "M0Q1S001",
slice = 1,
deadline = "2018/07/02 12:00",
verbose = TRUE
)

End(Not run)

https://github.com/Simularia/arinfopy
https://github.com/Simularia/arinfopy

importRaster

importRaster

Import generic raster file

Description

A function to import the first layer of a generic raster file.

Usage
importRaster(
file = file.choose(),
k=1,
kz =1,
dx = 0,
dy = 0,
destaggering = FALSE,
variable = NULL,
verbose = FALSE
)
Arguments
file character. Path to the raster file.
k numeric. Factor applied to x and y coordinates (default = 1). For example, it can
be used to convert the grid coordinates from km to m (k = 1000).
kz numeric. Factor applied to the variable values (default = 1).
dx, dy numeric. Constant to shift x and y coordinates (default = 0).
destaggering Use TRUE to apply destaggering to X and Y coordinates (default = FALSE). See
the Details section.
variable character. The name of the variable to be imported.
verbose logical. If TRUE, prints out basic statistics (default = FALSE).
Details

This function is based on the terra package and it can import any format managed by it as NetCDF.

Destaggering applies a shift equal to half grid size in both horizontal directions. It is useful for
importing data from the SPRAY air quality dispersion model and it is not applied by default.

An optional summary output can be printed out by setting the verbose parameter to TRUE.

Value

A data.frame with x, y and z columns for the grid cells coordinates and the variable value.

10 importSurferGrd

See Also

importADSOBIN(), importSurferGrd()

Examples

Not run:
Import binary (netcdf) file and convert coordinates from km to m,
without destaggering. Variable name is "NOx".
mydata <- importRaster(
file = "/path_to_file/filename.nc”,
variable = "NOx",
k = 1000,
destaggering = FALSE
)

Import binary (netcdf) file and convert coordinates from km to m,
with shift of 100 m in both directions:
mydata <- importRaster(

file = "/path_to_file/filename.nc”,

variable = "pm10”,
k = 1000,
dx = 100,
dy = 100

)

End(Not run)

importSurferGrd Import Grid file

Description

A function to import data from Surfer text grid file.

Usage
importSurferGrd(fname, k = 1000, destaggering = FALSE)

Arguments
fname Surfer grd file to be imported
k Factor to apply to x and y coordinates

destaggering Boolean variable to apply or not destaggering.

Details

Surfer grd file is imported and an array of X, y, z columns is returned X and y coordinates can be
converted from km to m (default k=1000) and vice versa. Destaggering is applied by default.

plotAvgRad 11

Value

A dataset with x, y and z columns is returned.

See Also

importRaster (), importADSOBIN()

Examples

Not run:

Import Surfer Grd file and convert coordinates from km to m,

with destaggering

mydata <- importSurferGrd("/path_to_file/filename.grd”, k = 1000)

Import Surfer Grd file and do not convert coordinates, without destaggering
mydata <- importSurferGrd(

"path_to_file/filename.grd"”,

k=1,

destaggering = FALSE
)

End(Not run)

plotAvgRad Plot hourly average radiation

Description

Plot a histogram with hourly average of solar radiation, together with hourly maxima for June and
December.

Usage

plotAvgRad(
mydata,
date = "date”,
rad = "radg",
ylabel = NULL,
title = "",
locale = NULL

Arguments

mydata A data frame containing data to plot.

date The name of the column representing date and time. Data must be of class
POSIX1t or POSIXct (default = "date"). If the timezone is unspecified, it is set
to GMT.

12 plotAvgTemp

rad Name of the column representing radiation (default = "radg").

ylabel The label along the y axis. If missing a default label is plotted.

title Optional plot title

locale Locale to use for legend. Default is English, the only other one currently sup-

ported is Italian.

Value

A ggplot2 plot.

See Also
plotStabilityClass(), plotAvgTemp()

Examples

data(stMeteo)
plotAvgRad(stMeteo, date = "date"”, rad = "radg")

plotAvgTemp Plot average temperature

Description

plotAvgTemp builds a bar plot of time average temperature and two line plots with maximum and
minimum temperature.

Usage
plotAvgTemp(
mydata,
date = "date”,
temp = "temp”,
avg.time = "1 month",
ylabel = NULL,
title = ",
locale = NULL
)
Arguments
mydata A dataframe containing data to plot.
date The name of the column representing date and time. Data must be of class
POSIX1t or POSIXct (default = "date"). If the timezone is unspecified, it is set
to GMT.

temp Name of the column representing temperature (default = "temp")

plotStabilityClass 13

avg.time Defines the time period to average to. Currently the only supported period is "1
month" (default).

ylabel The label along the y axis. If missing a default label is plotted.

title Optional plot title

locale Locale to use for day and month names. Default is current locale. Supported

locales are listed in stringi::stri_locale_list(). All other labels are in English by
default or in Italian if its locale is specified.
Value

A plot with average, min and max temperature in a given range of time.

See Also

plotStabilityClass(), plotAvgRad()

Examples

Plot average monthly temperature and curves with monthly maximum and minimum
data(stMeteo)

str(stMeteo)

plotAvgTemp(stMeteo)

Add a custom title

plotAvgTemp(stMeteo, title = "Monthly temperature”)

Override default locale
plotAvgTemp(stMeteo, avg.time = "1 month”, locale = "it_IT")

plotStabilityClass Plot stability class

Description

Histogram plot of stability classes by season or hour.

Usage

plotStabilityClass(
mydata,
date = "date”,
sc = "sc”,
type = "season”,
locale = NULL

14

Arguments

mydata
date

SC

type

locale

Details

plotStabilityClass

A dataframe containing data to plot.

The name of the column representing date and time. Data must be of class
POSIX1t or POSIXct (default = "date"). If the timezone is unspecified, it is set
to GMT.

The name of the column that represents the stability class (default = "sc").

Specify how the data are to be split and plotted. Accepted values are "season"
(default) and "hour".

Set the locale for day and month names. The system locale is used by de-
fault, but you can specify a different one from the supported ones listed in
stringi::stri_locale_list(). All other labels are in English by default or in Ital-
ian if its locale is specified.

Numerical values of stability classes are mapped as: 1 =A,2=B, ...,6 =F.

Value

A ggplot2 plot.

See Also

stabilityClass(), plotAvgRad(), plotAvgTemp()

Examples

data("stMeteo")

Season plot of PGT stability class
plotStabilityClass(stMeteo, date = "date", sc = "pgt", type = "season”)

Hourly plot of PGT stability class
plotStabilityClass(stMeteo, date = "date”, sc = "pgt", type = "hour")

Override default locale
plotStabilityClass(

stMeteo,

date = "date”,

sc = npgtu ,

type = "season"”,
locale = "it_IT"

removeQutliers 15

removeOutliers Remove data outliers

Description

Remove data outliers based on the interquartile range.

Usage

removeQutliers(x, k = 1.5)

Arguments

X vector of data.

k factor applied to the interquartile range (default = 1.5).
Details

The interquartile range IQR is computed from input dataset as IQR = Q3 - Q1, where Q1 is 25th
percentile and Q3 is the 75th percentile. Values larger than Q3 + k * IQR and smaller than Q1 - k *
IQR are deemed as outliers and substituted with NA’s.

The default value of k is 1.5.

Value

A numeric vector with the same length as input vector.

Examples

mydata <- ¢(-10 * runif(10), runif(10))
removeOutliers(mydata)

rollingMax Compute Rolling Max

Description

The function computes the rolling maximum value along a time series.

Usage

rollingMax(mydata, length = 24)

16 stabilityClass

Arguments
mydata A numeric vector of data values
length An integer specifying the window size (number of observations) to consider.
Must be at least 3 (default = 24).
Details

It calculates the maximum over consecutive elements centered within a specified window.

For each index i, it considers a window of length points centered around i. When length is odd,
the center falls exactly on i and the window extends equally to both sides. When length is even,
the window extends one less point to the left than to the right and the rolling max is not exactly
centered.

Values near the start of the series use windows with fewer than length data points if there are not
enough preceding elements to form a full window. Similarly for values at the end.

Value

A numeric vector containing rolling maximum values, with same dimensions as mydata.

Examples

Compute rolling max over a 24-hour period on hourly time series data
data(stMeteo)
ws_24h <- rollingMax(mydata = stMeteo$ws, length = 24)

stabilityClass Stability class.

Description

Computes stability class given net radiation, total cloud cover and wind speed.

Usage
stabilityClass(rad, tcc, ws, option = "iaea")
Arguments
rad The net radiation in W/m”2
tcc The total cloud cover in a range from 1 to 8
ws wind speed in m/s
option The method used to determine the stability class. It can be iaea (default),

pasquill or custom.

stMeteo 17

Details

stabilityClass() computes stability class according to IAEA method based on net radiation,
total cloud cover tcc and wind speed. Net radiation and wind are used by day; tcc and wind are used
by night.

Three different algorithms are implemented, selected by the option argument.

iaea option implements the *radiation-wind method recommended by the International Atomic
Energy Agency (IAEA) and it is based on the net radiation during the day and cloud cover by night.

pasquill option is based on the original Pasquill formulation and lacks the "very weak" solar
insolation present in the modified iaea version.

Eventually, the custom options is similar to iaea, with slightly different set of parameters for net
radiation, wind speed and cloud cover.

Previously used option impact is the same as iaea and it is now deprecated.

Value

stabilityClass returns a numeric vector with Pasquill stability classes coded as: A=1,B =2, ...
, F =6 ranging from "very unstable" to "very stable".

See Also

turnerStabilityClass() which computes stability class with Turner method. plotStabilityClass()
to produce graphical outputs with stability class.

Examples

Compute stability class with custom algorithm
stMeteo$cst <- stabilityClass(

rad = stMeteo$rad,

tcc = stMeteo$tcc,

ws = stMeteo$ws,

option = "custom”

stMeteo Meteorological dataset with hourly values

Description

A dataset containing 8760 hourly values of some meteorological variables corresponding to a full
solar year.

Usage

stMeteo

18 turnerStabilityClass

Format

A data frame with 8760 rows and 7 variables:

date date time in yyyy-mm-dd HH:MM:SS

ws wind speed in m/s

wd wind direction in deg.

temp air temperature in C

radg Global solar radiation in W/m”2

tec Total cloud cover in integers ranging from 0 to 8

pgt Pasquill-Gifford-Turner stability class

Source

Self derived dataset.

turnerStabilityClass Turner stability class

Description

Computes PGT stability class using Turner method, based on the local wind speed, cloud cover,
ceiling height and solar elevation.

Usage

turnerStabilityClass(
datetime,
longitude,
latitude,
ws,
cloud_cover,
ceiling_height

Arguments

datetime datetime object (class POSIXct). Either a single value or a vector
longitude, latitude
geographical coordinates (in degrees) of the point of interest

ws wind speed at 10 m (in m/s)
cloud_cover Total cloud cover in the range 1...8

ceiling_height Ceiling height in metres

vectorField 19

Details

If datetime is a vector, an equal length vector for the other input parameters is expected. It is also
possible to provide a single value for the other parameters; in that case the value is kept constant
along all the deadlines.

Value

A numeric value (or vector) in the range 1 to 6, where | = A,2=B, ...,6 =F.

See Also

stabilityClass() which computes stability class with other methods. plotStabilityClass()
to produce graphical outputs with stability class.

Examples

Single value example:
turnerStabilityClass(
datetime = as.POSIXct("2024-12-01 13:00", tz = "ETC/GMT-1"),
longitude = 7.12,
latitude = 45.10,
ws = 3,
cloud_cover = 3,
ceiling_height = 3000
)

datetime vector with constant values
deadlines <- seq(
from = as.POSIXct("2024-12-01 00:00"),
to = as.POSIXct("2024-12-31 23:00"),
length.out = 24 * 31
)
turnerStabilityClass(
datetime = deadlines,
longitude = 7.12,
latitude = 45.10,
ws = 3,
cloud_cover = 3,
ceiling_height = 3000

vectorField Vector field plot

Description

Simple function to plot a vector field given two components.

20 vectorField

Usage
vectorField(
data,
scale = 1,
everyx = 1,
everyy = 1,
size = 0.25,
preview = TRUE
)
Arguments
data A dataframe containing data to be plotted in the form of: (x, y, u, v).
scale length factor of vector components
everyx keep one out of every everyx values, along x direction.
everyy keep one out of every everyy values, along y direction.
size arrow size.
preview (default = TRUE) create a plot. If FALSE it only creates the ggplot2 directive to
be added to another plot.
Details

This function plots a vector field given a data.frame with coordinates (X, y) and corresponding ve-
locity components (u, v). Vectors are coloured by magnitude (speed). The coordinates are assumed
to be on a regular rectangular grid in the UTM reference system.

This function is heavily inspired by snippets of code in R Graphics Cookbook by Winston Chang
(https://r-graphics.org/index.html).
Value

A ggplot2 object if preview = TRUE. A ggplot2 layer otherwise. In the latter case, the output
should be piped to a plot, such as contourPlot2() and the vector field will be overlapped.

Examples
Not run:
metU <- importADSOBIN(
"/path/to/meteofile”,
variable = 'U',
slice = 2,
k = 1000,

verbose = TRUE
)
metU <- as.data.frame(metU)
metU <- metU %>%

mutate(u = z, z = NULL)

metV <- importADSOBIN(

vectorField

"/path/to/meteofile”,
variable = 'V',

slice = 2,

k = 1000,

verbose = TRUE
)
metV <- as.data.frame(metV)
metV <- metVv |>
mutate(v = z, z = NULL)

met <- merge(metU, metV, by = c("x", "y"))

vectorField(
met,
everyx = 2,
everyy = 2,
scale = 10

coord_fixed(ratio = 1, xlim = c(@, 1000), ylim = c(@, 1000)) +
scale_color_viridis_c()

Overlap the vector field to a contour plot and set vector colours to black
met$ws <- sqrt(met$u”2 + met$v*2)
contourPlot2(met, z = "ws") +
vectorField(
met,
everyx 2,
everyy = 2,
scale = 10
preview =
)+
scale_colour_gradient(low = "black”, high = "black”, guide = NULL)

FALSE

End(Not run)

Index

x datasets
stMeteo, 17

contourPlot2, 2
downloadBasemap, 5

importADSOBIN, 7
importADSOBIN(), 10, 11
importRaster, 9
importRaster(), 8, 11
importSurferGrd, 10
importSurferGrd(), 8, 10

plotAvgRad, 11

plotAvgRad(), 13, 14
plotAvgTemp, 12
plotAvgTemp(), 12, 14
plotStabilityClass, 13
plotStabilityClass(), 12, 13,17, 19

removeQutliers, 15
rollingMax, 15

stabilityClass, 16
stabilityClass(), 14, 19
stMeteo, 17

terra: :mask(), 4
turnerStabilityClass, 18
turnerStabilityClass(), 17

vectorField, 19

22

	contourPlot2
	downloadBasemap
	importADSOBIN
	importRaster
	importSurferGrd
	plotAvgRad
	plotAvgTemp
	plotStabilityClass
	removeOutliers
	rollingMax
	stabilityClass
	stMeteo
	turnerStabilityClass
	vectorField
	Index

