Package ‘sourcoise’

January 7, 2026

Type Package
Title Source a Script and Cache
Version 1.1.0

Description Provides a function that behaves nearly as base::source() but
implements a caching mechanism on disk, project based. It allows to
quasi source() R scripts that gather data but can fail or consume to
much time to respond even if nothing new is expected. It comes with
tools to check and execute on demand or when cache is invalid the
script.

License MIT + file LICENSE

URL https://xtimbeau.github.io/sourcoise/,

https://github.com/xtimbeau/sourcoise

BugReports https://github.com/xtimbeau/sourcoise/issues
Depends R (>=4.2.0)

Imports cli, digest, dplyr, fs, glue, jsonlite, knitr, lobstr, logger,
lubridate, memoise, purrr, qs2, ReppSimdJson, rlang, rprojroot,
stringr, tibble, tidyr, utils

Suggests quarto, bench, rmarkdown, testthat (>= 3.0.0)
VignetteBuilder quarto

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.3

SystemRequirements Quarto command line tools
(https://github.com/quarto-dev/quarto-cli).

NeedsCompilation no

Author Xavier Timbeau [aut, cre, cph]

Maintainer Xavier Timbeau <xavier.timbeau@sciencespo.fr>
Repository CRAN

Date/Publication 2026-01-07 19:50:02 UTC

https://xtimbeau.github.io/sourcoise/
https://github.com/xtimbeau/sourcoise
https://github.com/xtimbeau/sourcoise/issues

2

set_sourcoise_root

Contents
SEt_SOUICOISE_TOOL . . . v v v v v v o e e e e e e e e e e e e e e 2
SOUICOISE .« v v v v o v e e e e e e e e e e e e e 3
SOUrCOISE_Clear o o o e e 6
sourcoise_clear_all 7
SOUrcOise_lapse e e e e 8
SOUICOISE_IMELA« v v v i v e e e e e e e e e e e e e e 9
SOUICOISE_PIiOTitY v o o o i i i it e e e e e e e e 10
sourcoise_refresh L e 11
SOUICOISE_TESEL . . « v v v v o e e e e e e e e e e e e e e e e e e e 13
SOUICOISE STALUS v v o v v e e e e e e e e e e e, 14
sourcoise_untrack L L L e e, 15

Index 17

set_sourcoise_root Set the Root Directory for Sourcoise
Description

This function allows you to manually set the root directory for the sourcoise package, bypassing the
automatic root detection mechanism used by sourcoise(). Setting the root directory affects where
sourcoise looks for files and stores cache data.

Usage
set_sourcoise_root(root = NULL, quiet = TRUE)
Arguments
root Path to the desired root directory. If NULL (default), sourcoise will attempt to
automatically detect the project root. Can be an absolute or relative path.
quiet Logical value indicating whether to suppress messages during root detection.
Default is TRUE (messages suppressed).
Details

By default, sourcoise automatically detects the project root. This function is equivalent to setting

the s

ourcoise.root option directly, except when dealing with file-level cache storage. To enable

file-level cache storage behavior, set root to NULL.

Value

The root path that was set (character string), invisibly returned by try_find_root().

sourcoise

Examples

Set root to a temporary directory

dir <- tempdir()

set_sourcoise_root(dir)

Reset to automatic detection
set_sourcoise_root (NULL)

Set root with messages enabled
set_sourcoise_root(dir, quiet = FALSE)

sourcoise

sources R script and caches results on disk

Description

sourcoise() is used as a drop in replacement for base: :source() but caches results on disk.
Cache is persistant over sessions and can be shared through github.

Usage

sourcoise(
path,

args = list(),
track = 1list(),

lapse = NULL,

force_exec =

getOption("sourcoise.force_exec"),

prevent_exec = getOption("sourcoise.prevent_exec”),
metadata = getOption("sourcoise.metadata”),

wd = getOption("sourcoise.wd”),

quiet = getOption("sourcoise.quiet"),

inform = FALSE

Arguments

path
args

track

lapse

force_exec

(character) path of the script to execute (see details).
(list) list of args that can be used in the script (in the form args$xxx).

(list) list of files which modification triggers cache invalidation and script exe-
cution. Default to NULLwich means no change in tracking.

(character) duration over which cache is invalidated. Could be NULL (ie no
change), never (default) x hours, x days, x week, x months, x quarters,
X years.

(boolean) execute code, disregarding cache valid or invalid.

4 sourcoise

prevent_exec (boolean) prevent execution, cache valid or not, returned previous cached data,
possibly invalid.

metadata (boolean) if TRUE sourcoise() returns a list with data is the $data and various
meta data (see details).

wd (character) if project working directory for the execution of script will be the
root of the project. If file then it will be the dir of the script (default) If gmd,
then working dir will be the dir in which the calling gmd is. Current directory is
restored after execution (successful or failed).

quiet (boolean) mute messages and warnings from script execution.
inform (boolean) Display logs on console, even if logging is disabled with threshold
level "INFO".
Details

sourcoise() looks like base: : source (). However, there are some differences.

First, the script called in sourcoise() must end by a return() or by an object returned. Assign-
ment made in the script won’t be kept as sourcoise() is executed locally. Only explicitly returned
object will be returned.

So soucoise() is used by assigning its result to something (aa <- sourcoise("mon_script.r)
or sourcoise() |> ggplot() ...).

Unless specified otherwise with wd parameter, the working directory for the script execution is
(temporarly) set to the dir in which is the script. That allows for simple access to companion files
and permit to move the script and companion files to another dir or project.

Second, an heuristic is applied to find the script, in the event the path given is incomplete. Whereas
it is not advised and comes with a performance cost, this can be useful when there is a change in
the structure of the project. The heuristic is simple, the script is searched inside the porject dir and
among all hits the closest to the caller is returned.

Third, if an error is triggered by the script, sourcoise() does not fail and return the error and
attempts to retrun a cache, even invalid. However, if there is no (invalid or valid) cache, then an
error is trigerred.

Cache is invalidated when : 1 - a cache is not found 2 - the script has been modified 3 - tracked files
have been modified 4 - last execution occurred a certain time ago and is considered as expired 5 -
execution is forced

Whatever values takes the option sourcoise. src_in, if the file path starts with a /, then the source
file will be interpreted from project root (if any). This is coherent whith naming convention in
quarto. Otherwise, the document path wil be used firstly (if any, that is to say executed from
quarto, rendering). Finally, working directory will be used. If everything fails, it will try to search
in the project directory a corresponding file and will keep the closest from the calling point.

Usually the fisrt call returns and caches the results. Results can be any R object and are serialized
and saved using gs2. Subsequent calls, supposing none of cache invalidation conditions are true,
are then very quick. No logging is used, data is fecteched from the cache and that’s it. For standard
size data, used in a table or a graph (< 1Mb roughly), return timing is under 10ms on a decent
computer.

lapse parameter is used for invalidation trigger 4. lapse = "1 day"” ou lapse="day" for instance
will trigger once a day the execution. lapse = "3 days" will do it every 72h. hours, weeks, months,

sourcoise 5

quarters or years are understood time units. When lapse is defined for a script it will be used as
long as a new lapse parameter is provided (such as "never" if you whish to stop expiration control)
More complex calendar instructions could be added, but sourcoise_refesh() provides a solution
more general and easy to adapt to any use case, as to my knowledge, there is no general mechanism
to be warned of data updates from websites.

track is the trigger #3. It is simply a list of files (following path convention defined by scr_in,
so either script dir of project dir as reference). If the files in the list are changed then the execution
is triggered. As for lapse, tracked files are accumulated over execution and a null track will not
change the list of tracked files. To untrack use the sourcoise_untrack() function. Track is done
with a hash and it is impossible to have a cross plateform hash for excel files. Nevertheless, hash is
done on text files with same results of different platforms.

Value

data (list ou ce que le code retourne)

Global options

In order to simplify usage and to avoid complex bugs, some parameters can be set only globally,
through options().

* sourcoise.root (character) force root, and bypass soucroise mechanism to find root. Useful
when you want to execute sourcoise in a non-project context (see examples). sourcoise.src_in
(character) if project stores the cache folder (.sourcoise) at the project root, if file,
.sourcoise is stored at the calling point.

* sourcoise.nocache (boolean) no caching, so makes sourcoise less useful, can be used for
testing purpose

* sourcoise.log (default "OFF") log threshold (see logger: :log_treshold()).

* sourcoise.grow_cache (integer) (default 5 par défaut) cache limit in number of data file
kept.

* sourcoise.limit_mb (integer) (default 50) individual cache data files size on disk limit. If
file size is above the limit no caching occurs.

Metadata

If metadata=TRUE, a list is returned, with some metadatas. Main ones are $data, the data returned,
$date, execution date, $timing execution timing, $size of the R object in memory, $data_file,
$data_date and $file_size documenting data file path, date size on disk and last modification
date, parameters of the call ($track, $wd, $src_in, $args and so on).

force_exec and prevent_exec are parameters that force the script execution (trigger #5) of prevent
it (so cache is returned or NULL if no cache). Those 2 parameters can be set for one specific
execution, but they are intendend to a global setting through the option sourcoise.force_exec or
sourcoise.prevent_exec.

If returned data after execution is not different than previously cached data, then no caching occurs
in order to limit the disk use and to avoid keeping an history of the same data files. This implies
the possibility of a difference between last execution date and last data modification date. If you are
insterested in the moment data was changed, then $data_date is to be preferred.

6 sourcoise_clear

Working with github

sourcoise() is designed to function with github. Cache information is specific to each user (avoid-
ing conflicts) and cached data is named with the hash. Conflicts could occur in the rare case the
same script is executed on different machines and that this script return each time a different result
(such as a random generator).

See Also

sourcoise_untrack() sourcoise_lapse() sourcoise_status() sourcoise_refresh()

Other sourcoise: sourcoise_clear(), sourcoise_clear_all(), sourcoise_refresh(), sourcoise_reset(),
sourcoise_status()

Examples

dir <- tempdir()
set_sourcoise_root(dir)
fs::file_copy(
fs::path_package("sourcoise”, "some_data.R"),
dir,
overwrite = TRUE)
Force execution (root is set explicitly here, it is normally deduced from project)
data <- sourcoise("some_data.R", force_exec = TRUE)
The second time cache is used
data <- sourcoise(”some_data.R")

Performance and mem test
dir <- tempdir()
set_sourcoise_root(dir)
fs::file_copy(
fs::path_package("sourcoise”, "some_data.R"),
dir,
overwrite = TRUE)
bench: :mark(
forced = data <- sourcoise("some_data.R", force_exec = TRUE),
cached = data <- sourcoise(”some_data.R"),
max_iterations = 1)

sourcoise_clear Cleans sourcoise cache

Description

removes every json and qs2 files found by sourcoise_status() unless a specific tibble (filtered
from sourcoise_status()) is passed as an argument.

sourcoise_clear_all 7

Usage
sourcoise_clear(what2keep = "all"”, root = NULL)
Arguments
what2keep (-) a string (such as "last", the default or "nothing" clears all or "all" removes
only non sourcoise files) or a tibble such as the one obtained by sourcoise_status(),
possibly filtered for the files you whish to keep
root to force root, not recommended (expert use only)
Value

list of cleared files, plus a side-effect as specified cache files are deleted (no undo possible)

See Also

Other sourcoise: sourcoise(), sourcoise_clear_all(), sourcoise_refresh(), sourcoise_reset(),
sourcoise_status()

Examples

dir <- tempdir()
set_sourcoise_root(dir)
fs::file_copy(
fs: :path_package("sourcoise”, "some_data.R"),
dir,
overwrite = TRUE)
Force execution
data <- sourcoise("”some_data.R", force_exec = TRUE)
we then clear all caches
sourcoise_clear()
sourcoise_status()

sourcoise_clear_all Cleans sourcoise cache

Description

removes every json and gs2 files found by sourcoise_status().

Usage

sourcoise_clear_all(root = NULL)

Arguments

root to force root, not recommended (expert use only)

8 sourcoise_lapse

Value

list of cleared files, plus a side-effect as specified cache files are deleted (no undo possible)

See Also

Other sourcoise: sourcoise(), sourcoise_clear(), sourcoise_refresh(), sourcoise_reset(),
sourcoise_status()

Examples

dir <- tempdir()
set_sourcoise_root(dir)
fs::file_copy(
fs::path_package("sourcoise”, "some_data.R"),
dir,
overwrite = TRUE)
Force execution
data <- sourcoise("”some_data.R", force_exec = TRUE)
we then clear all caches
sourcoise_clear_all()
sourcoise_status()

sourcoise_lapse Change Cache Lapse Policy

Description

Updates the lapse policy metadata for cached files associated with a given path. The lapse policy
determines when cached results should expire.

Usage
sourcoise_lapse(path, lapse = "never"”, root = getOption("sourcoise.root"))
Arguments
path Character string specifying the file path whose cache metadata should be up-
dated.
lapse Character string specifying the lapse policy. Default is "never". Common values
include "never", "daily", "weekly", or custom time periods.
root Character string specifying the root directory for the cache. Defaults to getOption(”sourcoise.root").
Details

The function locates all cache entries for the specified path, filters to the most recent entry for each
argument hash, and updates the lapse policy metadata only for entries where the current lapse value
differs from the specified value.

sourcoise_meta 9

Value
Invisibly returns the results of writing metadata for each updated cache entry. Returns a message
string if no files are found or no changes are needed.

Examples

Not run:
Set cache to expire daily
sourcoise_lapse("”scripts/analysis.R", lapse = "daily")

Set cache to never expire (default)
sourcoise_lapse("scripts/model.R", lapse = "never")

End(Not run)

sourcoise_meta Get Sourcoise Metadata for a Script

Description
Retrieves metadata about a cached script without fetching the actual data. This function provides
quick access to information about script execution, cache status, and related files.

Usage

sourcoise_meta(path, args = NULL, root = NULL, quiet = FALSE)

Arguments
path Path to the script file (character). Can be an absolute or relative path.
args Named list of arguments that were passed to the script, if any. Default is NULL.
This is used to identify the specific cached version when the script was executed
with different argument sets.
root (defaut NULL) the root of the project (you’d better rely on sourcoise for that one)
quiet (defaut FALSE) should we say something ?
Value

A named list containing cache metadata with the following elements:

ok Cache status indicator: "cache ok&valid", "invalid cache", or "no cache data"
timing Execution time of the full script (duration)

date Date and time of the last full execution

size Size of objects returned, measured in R memory

args Arguments given to sourcoise for the script

lapse Delay interval before reexecution is triggered

10 sourcoise_priority

track List of files being tracked for changes

gmd_file List of Quarto (.qmd) files calling this script
log_file Path to the last log file

file_size Size of cached data on disk

data_date Date of last data save (note: if no new data is generated during execution, no new data
file is saved)

data_file Path to the cached data file (stored as .qs2 format)

json_file Path to the JSON file storing metadata (located in .sourcoise directory)

Examples

dir <- tempdir()
set_sourcoise_root(dir)
fs::file_copy(
fs::path_package("sourcoise”, "some_data.R"),
dir,
overwrite = TRUE)
Force execution (root is set explicitly here, it is normally deduced from project)
data <- sourcoise("some_data.R", force_exec = TRUE)

Access metadata without loading the cached data
meta <- sourcoise_meta("some_data.R")
print(meta$timing) # View execution time

print(meta$ok) # Check cache status
sourcoise_priority Change Priority of Cached Files
Description

Updates the priority metadata for cached files associated with a given path. Only affects cache
entries where the priority differs from the specified value.

Usage

sourcoise_priority(path, priority = 10, root = getOption("sourcoise.root"))

Arguments
path Character string specifying the file path whose cache metadata should be up-
dated.
priority Numeric priority value to set. Default is 10. Lower values indicate higher prior-
ity.

root Character string specifying the root directory for the cache. Defaults to getOption("”sourcoise.root").

sourcoise_refresh 11

Details

The function locates all cache entries for the specified path, filters to the most recent entry for each
argument hash, and updates the priority metadata only for entries where the current priority differs
from the specified value.

Value
Invisibly returns the results of writing metadata for each updated cache entry. Returns a message
string if no files are found or no changes are needed.

Examples

Not run:
Set priority to 5 for cached results of a script
sourcoise_priority("scripts/analysis.R", priority = 5)

Use default priority of 10
sourcoise_priority("scripts/model.R")

End(Not run)

sourcoise_refresh Refresh sourcoise cache by executing sources selected

Description

All scripts (passed to sourcoise_refresh()) are executed with logging enabled.

Usage

sourcoise_refresh(
what = NULL,
force_exec = TRUE,
unfreeze = TRUE,
quiet = FALSE,
init_fn = getOption("sourcoise.init_fn"),
root = getOption("sourcoise.root"),
priotirize = TRUE,
log = "INFQO",
.progress = TRUE

Arguments

what (tibble) a tibble as generated by sourcoise_status(), possibly filtered, (defaut
to source_status()). What can also be a vector of strings to filter srouces files
by name.

12 sourcoise_refresh

force_exec (boolean) (default FALSE) if TRUE code is executed, no matter what is cached

unfreeze (boolean) (default TRUE) when possible, unfreeze and uncache .qmd files in a
quarto project when data used by those .qmd has been refreshed

quiet (boolean) (default FALSE) no message if TRUE

init_fn (function) (default NULL) execute a function before sourcing to allow initializa-
tion

root (default NULL) force root to be set, instead of letting the function finding the root,
for advanced uses

priotirize (boolean) (defaut TRUE) will set priority based on pattern of execution

log (character) (default "INFO") log levels as in logger: : log_threshold() (c("OFF",
"INFQ", ...)), comes with a small performance cost

.progress (boolean) (default TRUE) displays a progression bar based on previous execution
timings

Details

The function returns the list of script executed but its main effect is a side-effect as scripts are
executed and caches updates accordingly. Note also that log files reflect execution and track possible
errors. Because of logging the execution comes with a loss in performance, which is not an issue if
scripts are long to execute.

It is possible to execute sourcoise_refresh() without execution forcing (force_exec=FALSE) or
with it. Forced execution means that the script is executed even if the cache is valid. In the case of
non forced execution, execution is triggered by other cache invalidation tests (change in source file,
lapse or tacked files).

When scripts are linked to gqmds (i.e. when run in a quarto project), it is possible to unfreeeze
and uncache those qmds with the option unfreeze=TRUE. This allows to refresh the cahe and then
render the qmds using the new data.

It is possible to pass to refresh a function that will be executed before every script. This allows to
load packages and declare global variables that can be used in each script. If packages are loaded
inside the script, then this is not needed.

Parameters registered ins sourcoise_status() such as wd or args are used to execute the script.

Defining a priority in sourcoise(), will change the order of execution of refresh. This can be set
automatically using priotirize option. After execution of one refresh, by setting higher priority
to more used files.

Value

a list of r scripts (characters) executed, with timing and success and a side effect on caches

See Also

Other sourcoise: sourcoise(), sourcoise_clear(), sourcoise_clear_all(), sourcoise_reset(),
sourcoise_status()

sourcoise_reset 13

Examples

dir <- tempdir()
set_sourcoise_root(dir)
fs::file_copy(
fs::path_package("sourcoise”, "some_data.R"),
dir,
overwrite = TRUE)
Force execution
data <- sourcoise("”some_data.R"”, force_exec = TRUE)
we then refresh all caches
sourcoise_refresh()

sourcoise_reset Resets sourcoise

Description

Removes all . sourcoise folders found under the project root.

Usage

sourcoise_reset(root = NULL)

Arguments

root to force root (expert use)

Value

No return, effect is through removal of .sourcoise folders (this is a side effect, no undo possible)

See Also

Other sourcoise: sourcoise(), sourcoise_clear(), sourcoise_clear_all(), sourcoise_refresh(),
sourcoise_status()

Examples

dir <- tempdir()
set_sourcoise_root(dir)
fs::file_copy(
fs::path_package("sourcoise”, "some_data.R"),
dir,
overwrite = TRUE)
data <- sourcoise("”some_data.R"”, force_exec = TRUE)
sourcoise_reset()

14

sourcoise_status

sourcoise_status Cache status of sourcoise

Description

Given the current project, soucoise_status() collects all information about cache (could be
project level, file level) and return a tibble with this data.

Usage

sourcoise_status(short = TRUE, quiet = TRUE, root = NULL, prune = TRUE)

Arguments
short (boolean) (deafault TRUE) return a simplified tibble
quiet (boolean) (default TRUE) no messages during execution
root (string) (default NULL) force root to a defined path, advanced and not recom-
manded use
prune (boolean) (default TRUE) clean up status to display only on relevant cache. How-
ever, does not clean other cache files.
Details

sourcoise_status() reflects what is on the disk (and results indeed from a scan of all cached files
and their metadatas). So modifying the result of sourcoise_status() can produce complex bugs
when it is passed to sourcoise_refresh() or sourcoise_clean().

Data returned is:

src: path to the source file (r script)

date: last execution date

valid: is cache valid ?

uid: id of user

index: index of cache

timing: last execution timing

size: size of the R object(s) returned

lapse: periodic refresh trigger

wd: wd setting for execution of r script

args: arguments passed to R script

json_file: path to the file keeping cache information
gmd_file: list of path to qmd files calling this script (relevant only for quarto projects)
src_in: localisation of cache option

data_file: path to data cached

sourcoise_untrack 15

* data_date: date and time of last save of data

* log_file: path to log file, if logging activated

* root: path to the project root, used as reference for all paths
* scr_hash: hash of the source file

* track_hash: hash of the tracked files, if any

* track: list of files tracked

* args_hash: hash of arguments

e data_hash: hash of data cached

Value

tibble of cached files (see details for structure)

See Also

Other sourcoise: sourcoise(), sourcoise_clear(), sourcoise_clear_all(), sourcoise_refresh(),
sourcoise_reset()

Examples

dir <- tempdir()
set_sourcoise_root(dir)
fs::file_copy(
fs::path_package("sourcoise”, "some_data.R"),
dir,
overwrite = TRUE)
Force execution
data <- sourcoise("”some_data.R"”, force_exec = TRUE)
status returns the cache status
sourcoise_status()

sourcoise_untrack Remove Tracking from Cached Files

Description

Removes tracking metadata from cached files associated with a given path by setting the track field
to an empty list.

Usage

sourcoise_untrack(path, root = getOption("sourcoise.root"))

16 sourcoise_untrack

Arguments
path Character string specifying the file path whose cache metadata should be up-
dated.
root Character string specifying the root directory for the cache. Defaults to getOption("sourcoise.root").
Details

NOte that tracked fies are accumulated when specified in track argument of soucoise(). This
function allows to reset the list.

The function locates all cache entries for the specified path, filters to entries that currently have
tracking enabled (non-empty priority field), and removes tracking by setting the track field to an
empty list. Only affects the most recent cache entry for each argument hash.

Value
Invisibly returns the results of writing metadata for each updated cache entry. Returns a message
string if no files are found or no tracked files exist.

Examples

Not run:
Remove tracking from cached results
sourcoise_untrack(”scripts/analysis.R")

End(Not run)

Index

* sourcoise
sourcoise, 3
sourcoise_clear, 6
sourcoise_clear_all, 7
sourcoise_refresh, 11
sourcoise_reset, 13
sourcoise_status, 14

set_sourcoise_root, 2
sourcoise, 3,7,8,12, 13,15
sourcoise_clear, 6,6,8, 12, 13,15
sourcoise_clear_all,6,7,7,12, 13,15
sourcoise_lapse, 8
sourcoise_lapse(), 6
sourcoise_meta, 9
sourcoise_priority, 10
sourcoise_refresh, 6-8, 11, 13, 15
sourcoise_refresh(), 6
sourcoise_reset, 6-8, 12,13, 15
sourcoise_status, 6-8, 12, 13, 14
sourcoise_status(), 6
sourcoise_untrack, 15
sourcoise_untrack(), 6

17

	set_sourcoise_root
	sourcoise
	sourcoise_clear
	sourcoise_clear_all
	sourcoise_lapse
	sourcoise_meta
	sourcoise_priority
	sourcoise_refresh
	sourcoise_reset
	sourcoise_status
	sourcoise_untrack
	Index

