
Package ‘spatialRF’
December 20, 2025

Title Easy Spatial Modeling with Random Forest

Version 1.1.5

URL https://blasbenito.github.io/spatialRF/

BugReports https://github.com/BlasBenito/spatialRF/issues/

Description Automatic generation and selection of spatial predictors for Random Forest models fit-
ted to spatially structured data. Spatial predictors are constructed from a distance ma-
trix among training samples using Moran's Eigenvector Maps (MEMs; Dray, Legen-
dre, and Peres-Neto 2006 <DOI:10.1016/j.ecolmodel.2006.02.015>) or the RFsp ap-
proach (Hengl et al. <DOI:10.7717/peerj.5518>). These predictors are used alongside user-
supplied explanatory variables in Random Forest models. The package provides func-
tions for model fitting, multicollinearity reduction, interaction identification, hyperparameter tun-
ing, evaluation via spatial cross-validation, and result visualization using partial depen-
dence and interaction plots. Model fitting relies on the 'ranger' pack-
age (Wright and Ziegler 2017 <DOI:10.18637/jss.v077.i01>).

License MIT + file LICENSE

Depends R (>= 2.10)

Imports dplyr, ggplot2, magrittr, stats, tibble, utils, foreach,
doParallel, ranger, rlang, tidyr, tidyselect, huxtable (>=
5.8.0), patchwork (>= 1.3.2), viridis

Suggests testthat, spelling

Encoding UTF-8

LazyData true

LazyDataCompression xz

RoxygenNote 7.3.3

Language en-US

NeedsCompilation no

Author Blas M. Benito [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0001-5105-7232>)

Maintainer Blas M. Benito <blasbenito@gmail.com>

Repository CRAN

Date/Publication 2025-12-19 23:40:02 UTC

1

https://blasbenito.github.io/spatialRF/
https://github.com/BlasBenito/spatialRF/issues/
https://doi.org/10.1016/j.ecolmodel.2006.02.015
https://doi.org/10.7717/peerj.5518
https://doi.org/10.18637/jss.v077.i01
https://orcid.org/0000-0001-5105-7232

2 Contents

Contents
.vif_to_df . 3
auc . 4
auto_cor . 5
auto_vif . 6
beowulf_cluster . 8
case_weights . 10
default_distance_thresholds . 11
double_center_distance_matrix . 12
filter_spatial_predictors . 13
get_evaluation . 15
get_importance . 16
get_importance_local . 17
get_moran . 18
get_performance . 19
get_predictions . 20
get_residuals . 21
get_response_curves . 22
get_spatial_predictors . 24
is_binary . 25
make_spatial_fold . 26
make_spatial_folds . 28
mem . 30
mem_multithreshold . 32
moran . 34
moran_multithreshold . 36
objects_size . 38
optimization_function . 39
pca . 41
pca_multithreshold . 43
plants_df . 45
plants_distance . 46
plants_predictors . 47
plants_response . 47
plants_rf . 48
plants_rf_spatial . 49
plants_xy . 50
plot_evaluation . 50
plot_importance . 52
plot_moran . 54
plot_optimization . 56
plot_residuals_diagnostics . 57
plot_response_curves . 58
plot_response_surface . 60
plot_training_df . 61
plot_training_df_moran . 63
plot_tuning . 64

.vif_to_df 3

prepare_importance_spatial . 66
print.rf . 67
print_evaluation . 68
print_importance . 69
print_moran . 70
print_performance . 71
rank_spatial_predictors . 71
rescale_vector . 75
residuals_diagnostics . 76
residuals_test . 77
rf . 77
rf_compare . 80
rf_evaluate . 83
rf_importance . 86
rf_repeat . 88
rf_spatial . 91
rf_tuning . 96
root_mean_squared_error . 98
select_spatial_predictors_recursive . 99
select_spatial_predictors_sequential . 102
setup_parallel_execution . 105
standard_error . 106
statistical_mode . 107
the_feature_engineer . 107
thinning . 111
thinning_til_n . 112
weights_from_distance_matrix . 113

Index 115

.vif_to_df Convert VIF values to data frame

Description

Computes variance inflation factors for all variables in a data frame and returns them in a tidy
format, sorted by VIF in descending order.

Usage

.vif_to_df(x)

Arguments

x Data frame with numeric predictors for which to compute VIF values.

4 auc

Value

Data frame with two columns: variable (character, variable names) and vif (numeric, VIF scores),
sorted by VIF in descending order.

See Also

Other utilities: auc(), beowulf_cluster(), objects_size(), optimization_function(), prepare_importance_spatial(),
rescale_vector(), root_mean_squared_error(), setup_parallel_execution(), standard_error(),
statistical_mode(), thinning(), thinning_til_n()

auc Area under the ROC curve

Description

Computes the area under the ROC curve (AUC) for binary classification.

Usage

auc(o, p)

Arguments

o Numeric vector of actual binary labels (0 or 1). Must have the same length as p.

p Numeric vector of predicted probabilities (typically 0 to 1). Must have the same
length as o.

Value

Numeric value between 0 and 1 representing the AUC. Higher values indicate better classification
performance, with 0.5 indicating random performance and 1.0 indicating perfect classification.

See Also

Other utilities: .vif_to_df(), beowulf_cluster(), objects_size(), optimization_function(),
prepare_importance_spatial(), rescale_vector(), root_mean_squared_error(), setup_parallel_execution(),
standard_error(), statistical_mode(), thinning(), thinning_til_n()

Examples

auc(
o = c(0, 0, 1, 1),
p = c(0.1, 0.6, 0.4, 0.8)
)

auto_cor 5

auto_cor Multicollinearity reduction via Pearson correlation

Description

Filters predictors using sequential evaluation of pairwise correlations. Predictors are ranked by user
preference (or column order) and evaluated sequentially. Each candidate is added to the selected
pool only if its maximum absolute correlation with already-selected predictors does not exceed the
threshold.

Usage

auto_cor(
x = NULL,
preference.order = NULL,
cor.threshold = 0.5,
verbose = TRUE

)

Arguments

x Data frame with predictors, or a variable_selection object from auto_vif().
Default: NULL.

preference.order

Character vector specifying variable preference order. Does not need to include
all variables in x. If NULL, column order is used. Default: NULL.

cor.threshold Numeric between 0 and 1 (recommended: 0.5 to 0.9). Maximum allowed abso-
lute Pearson correlation between selected variables. Default: 0.50

verbose Logical. If TRUE, prints messages about operations and removed variables. De-
fault: TRUE

Details

The algorithm follows these steps:

1. Rank predictors by preference.order (or use column order if NULL).
2. Initialize selection pool with first predictor.
3. For each remaining candidate:

• Compute maximum absolute correlation with selected predictors.
• If max correlation equal or lower than cor.threshold, add to selected pool.
• Otherwise, skip candidate.

4. Return selected predictors.

Data cleaning: Variables in preference.order not found in colnames(x) are silently removed.
Non-numeric columns are removed with a warning. Rows with NA values are removed via na.omit().
Zero-variance columns trigger a warning but are not removed.

This function can be chained with auto_vif() through pipes (see examples).

6 auto_vif

Value

List with class variable_selection containing:

• cor: Correlation matrix of selected variables (only if 2+ variables selected).

• selected.variables: Character vector of selected variable names.

• selected.variables.df: Data frame containing selected variables.

See Also

auto_vif()

Other preprocessing: auto_vif(), case_weights(), default_distance_thresholds(), double_center_distance_matrix(),
is_binary(), make_spatial_fold(), make_spatial_folds(), the_feature_engineer(), weights_from_distance_matrix()

Examples

data(
plants_df,
plants_predictors

)

y <- auto_cor(
x = plants_df[, plants_predictors]

)

y$selected.variables
y$cor
head(y$selected.variables.df)

auto_vif Multicollinearity reduction via Variance Inflation Factor

Description

Filters predictors using sequential evaluation of variance inflation factors. Predictors are ranked
by user preference (or column order) and evaluated sequentially. Each candidate is added to the
selected pool only if the maximum VIF of all predictors (candidate plus already-selected) does not
exceed the threshold.

Usage

auto_vif(x = NULL, preference.order = NULL, vif.threshold = 5, verbose = TRUE)

auto_vif 7

Arguments

x Data frame with predictors, or a variable_selection object from auto_cor().
Default: NULL.

preference.order

Character vector specifying variable preference order. Does not need to include
all variables in x. If NULL, column order is used. Default: NULL.

vif.threshold Numeric (recommended: 2.5 to 10). Maximum allowed VIF among selected
variables. Higher values allow more collinearity. Default: 5.

verbose Logical. If TRUE, prints messages about operations and removed variables. De-
fault: TRUE

Details

The algorithm follows these steps:

1. Rank predictors by preference.order (or use column order if NULL).

2. Initialize selection pool with first predictor.

3. For each remaining candidate:

• Compute VIF for candidate plus all selected predictors.
• If max VIF equal or lower than vif.threshold, add candidate to selected pool.
• Otherwise, skip candidate.

4. Return selected predictors with their VIF values.

Data cleaning: Variables in preference.order not found in colnames(x) are silently removed.
Non-numeric columns are removed with a warning. Rows with NA values are removed via na.omit().
Zero-variance columns trigger a warning but are not removed.

This function can be chained with auto_cor() through pipes (see examples).

Value

List with class variable_selection containing:

• vif: Data frame with selected variable names and their VIF scores.

• selected.variables: Character vector of selected variable names.

• selected.variables.df: Data frame containing selected variables.

See Also

auto_cor()

Other preprocessing: auto_cor(), case_weights(), default_distance_thresholds(), double_center_distance_matrix(),
is_binary(), make_spatial_fold(), make_spatial_folds(), the_feature_engineer(), weights_from_distance_matrix()

8 beowulf_cluster

Examples

data(
plants_df,
plants_predictors

)

y <- auto_vif(
x = plants_df[, plants_predictors]

)

y$selected.variables
y$vif
head(y$selected.variables.df)

beowulf_cluster Create a Beowulf cluster for parallel computing

Description

Creates a Beowulf cluster configuration from machine IPs, core counts, and user credentials.

Usage

beowulf_cluster(
cluster.ips = NULL,
cluster.cores = NULL,
cluster.user = Sys.info()[["user"]],
cluster.port = "11000",
outfile = NULL

)

Arguments

cluster.ips Character vector of machine IP addresses in the cluster. The first IP is the main
node (typically the machine running this code). Default: NULL.

cluster.cores Integer vector of core counts for each machine. Must match the length of
cluster.ips. Default: NULL.

cluster.user Character string for the user name across all machines. Default: current system
user.

cluster.port Character string specifying the communication port. Default: "11000".

outfile Character string or NULL. Path to append worker messages, "" to print to console,
or NULL (default) for /dev/null (Linux) or nul: (Windows).

beowulf_cluster 9

Details

Network requirements: Firewalls on all machines must allow traffic on the specified port.

Usage workflow:

1. Create cluster with this function

2. Register with doParallel::registerDoParallel()

3. Run parallelized code (e.g., foreach loops)

4. Stop cluster with parallel::stopCluster()

Value

Cluster object created by parallel::makeCluster(), ready for registration with doParallel::registerDoParallel().

See Also

Other utilities: .vif_to_df(), auc(), objects_size(), optimization_function(), prepare_importance_spatial(),
rescale_vector(), root_mean_squared_error(), setup_parallel_execution(), standard_error(),
statistical_mode(), thinning(), thinning_til_n()

Examples

Not run:
Create cluster with 3 machines
beowulf.cluster <- beowulf_cluster(

cluster.ips = c(
"192.168.1.10", # main node
"192.168.1.11",
"192.168.1.12"

),
cluster.cores = c(7, 4, 4),
cluster.user = "username",
cluster.port = "11000"

)

Register cluster for parallel processing
doParallel::registerDoParallel(cl = beowulf.cluster)

Run parallelized code (e.g., foreach loop)
your_parallel_code_here

Stop cluster when done
parallel::stopCluster(cl = beowulf.cluster)

End(Not run)

10 case_weights

case_weights Generate case weights for imbalanced binary data

Description

Generates case weights to balance binary response variables for use with ranger models. Used
internally by rf().

Usage

case_weights(data = NULL, dependent.variable.name = NULL)

Arguments

data Data frame containing the response variable. Default: NULL.
dependent.variable.name

Character string specifying the response variable name. Must be a column in
data. Default: NULL.

Details

The weighting scheme assigns higher weights to the minority class to balance training:

• Cases with value 0: weight = 1 / n_zeros

• Cases with value 1: weight = 1 / n_ones

This ensures both classes contribute equally to model training regardless of class imbalance.

Value

Numeric vector of length nrow(data) with case weights. Each weight is the inverse of the class
frequency: 1/n_zeros for 0s and 1/n_ones for 1s.

See Also

Other preprocessing: auto_cor(), auto_vif(), default_distance_thresholds(), double_center_distance_matrix(),
is_binary(), make_spatial_fold(), make_spatial_folds(), the_feature_engineer(), weights_from_distance_matrix()

Examples

Imbalanced dataset: 3 zeros, 2 ones
weights <- case_weights(

data = data.frame(
response = c(0, 0, 0, 1, 1)

),
dependent.variable.name = "response"

)

weights

default_distance_thresholds 11

Returns: 0.333, 0.333, 0.333, 0.5, 0.5
Zeros get weight 1/3, ones get weight 1/2

default_distance_thresholds

Default distance thresholds for spatial predictors

Description

Generates four evenly-spaced distance thresholds for spatial predictor generation, ranging from 0
to half the maximum distance in the matrix.

Usage

default_distance_thresholds(distance.matrix = NULL)

Arguments

distance.matrix

Numeric distance matrix (typically square and symmetric). Default: NULL.

Details

The maximum threshold is set to half the maximum distance to avoid spatial predictors based on
distances that are too large to capture meaningful spatial autocorrelation. The four thresholds are
evenly spaced using seq() with length.out = 4.

Value

Numeric vector of length 4 with distance thresholds (floored to integers).

See Also

Other preprocessing: auto_cor(), auto_vif(), case_weights(), double_center_distance_matrix(),
is_binary(), make_spatial_fold(), make_spatial_folds(), the_feature_engineer(), weights_from_distance_matrix()

Examples

data(plants_distance)

thresholds <- default_distance_thresholds(
distance.matrix = plants_distance

)

thresholds
Example output: c(0, 3333, 6666, 10000)
Four evenly-spaced thresholds from 0 to max(plants_distance)/2

12 double_center_distance_matrix

double_center_distance_matrix

Double-center a distance matrix

Description

Double-centers a distance matrix by converting it to weights and centering to zero row and column
means. Required for computing Moran’s Eigenvector Maps.

Usage

double_center_distance_matrix(distance.matrix = NULL, distance.threshold = 0)

Arguments

distance.matrix

Numeric distance matrix. Default: NULL.
distance.threshold

Numeric distance threshold for weight calculation. Distances above this thresh-
old are set to 0 during weighting. Default: 0.

Details

Double-centering is performed in two steps:

1. Convert distances to weights using weights_from_distance_matrix()

2. Center the matrix: subtract row means, subtract column means, and add the grand mean

The resulting matrix is symmetric with zero row and column means, suitable for Moran’s Eigen-
vector Maps computation.

Value

Double-centered numeric matrix with the same dimensions as distance.matrix. The matrix has
row means and column means of zero.

See Also

weights_from_distance_matrix(), mem(), mem_multithreshold()

Other preprocessing: auto_cor(), auto_vif(), case_weights(), default_distance_thresholds(),
is_binary(), make_spatial_fold(), make_spatial_folds(), the_feature_engineer(), weights_from_distance_matrix()

filter_spatial_predictors 13

Examples

data(plants_distance)

Double-center the distance matrix
centered <- double_center_distance_matrix(

distance.matrix = plants_distance
)

Verify row means are zero
head(rowMeans(centered))

Verify column means are zero
head(colMeans(centered))

filter_spatial_predictors

Remove redundant spatial predictors

Description

Removes spatial predictors that are highly correlated with other spatial predictors or with non-
spatial predictors. Particularly useful when using multiple distance thresholds that produce corre-
lated spatial predictors.

Usage

filter_spatial_predictors(
data = NULL,
predictor.variable.names = NULL,
spatial.predictors.df = NULL,
cor.threshold = 0.5

)

Arguments

data Data frame containing the predictor variables. Default: NULL.
predictor.variable.names

Character vector of non-spatial predictor names. Must match column names in
data. Can also be a variable_selection object. Default: NULL.

spatial.predictors.df

Data frame of spatial predictors (e.g., from mem_multithreshold()). Default:
NULL.

cor.threshold Numeric between 0 and 1 (recommended: 0.5 to 0.75). Maximum allowed
absolute Pearson correlation. Default: 0.50.

14 filter_spatial_predictors

Details

Filtering is performed in two steps:

1. Remove spatial predictors correlated with each other (using auto_cor())

2. Remove spatial predictors correlated with non-spatial predictors

This two-step process ensures the retained spatial predictors are independent of both each other and
the environmental predictors, improving model interpretability and reducing multicollinearity.

Value

Data frame containing only spatial predictors with correlations below cor.threshold (both among
themselves and with non-spatial predictors).

See Also

Other spatial_analysis: mem(), mem_multithreshold(), moran(), moran_multithreshold(), pca(),
pca_multithreshold(), rank_spatial_predictors(), residuals_diagnostics(), residuals_test(),
select_spatial_predictors_recursive(), select_spatial_predictors_sequential()

Examples

data(
plants_df,
plants_predictors,
plants_distance

)

Generate spatial predictors using multiple distance thresholds
mem.df <- mem_multithreshold(

distance.matrix = plants_distance,
distance.thresholds = c(0, 1000)

)

Filter spatial predictors to remove redundancy
Removes spatial predictors correlated > 0.50 with each other
or with environmental predictors
spatial.predictors.filtered <- filter_spatial_predictors(

data = plants_df,
predictor.variable.names = plants_predictors,
spatial.predictors.df = mem.df,
cor.threshold = 0.50

)

Check dimensions
ncol(mem.df) # original number
ncol(spatial.predictors.filtered) # after filtering

get_evaluation 15

get_evaluation Extract evaluation metrics from cross-validated model

Description

Extracts aggregated performance metrics from a model evaluated with rf_evaluate().

Usage

get_evaluation(model)

Arguments

model Model object with class rf_evaluate from rf_evaluate().

Details

This function returns aggregated statistics across all cross-validation repetitions. The "Testing"
model metrics indicate the model’s ability to generalize to unseen spatial locations.

Value

Data frame with aggregated evaluation metrics containing:

• model: Model type - "Full" (original model), "Training" (trained on training folds), or "Test-
ing" (performance on testing folds, representing generalization ability).

• metric: Metric name - "rmse", "nrmse", "r.squared", or "pseudo.r.squared".

• mean, sd, min, max: Summary statistics across cross-validation repetitions.

See Also

rf_evaluate(), plot_evaluation(), print_evaluation()

Other model_info: get_importance(), get_importance_local(), get_moran(), get_performance(),
get_predictions(), get_residuals(), get_response_curves(), get_spatial_predictors(),
print.rf(), print_evaluation(), print_importance(), print_moran(), print_performance()

Examples

if(interactive()){

data(plants_rf, plants_xy)

Evaluate model with spatial cross-validation
m_evaluated <- rf_evaluate(

model = plants_rf,
xy = plants_xy,
repetitions = 5,
n.cores = 1

16 get_importance

)

Extract evaluation metrics
eval_metrics <- get_evaluation(m_evaluated)
eval_metrics

}

get_importance Extract variable importance from model

Description

Extracts variable importance scores from models fitted with rf(), rf_repeat(), or rf_spatial().

Usage

get_importance(model)

Arguments

model Model object from rf(), rf_repeat(), or rf_spatial().

Details

For spatial models (rf_spatial()) with many spatial predictors, this function returns aggregated
importance statistics for spatial predictors to improve readability. Non-spatial models return per-
variable importance scores directly.

Value

Data frame with columns variable (character) and importance (numeric), sorted by decreasing
importance.

See Also

rf(), rf_repeat(), rf_spatial(), plot_importance(), print_importance()

Other model_info: get_evaluation(), get_importance_local(), get_moran(), get_performance(),
get_predictions(), get_residuals(), get_response_curves(), get_spatial_predictors(),
print.rf(), print_evaluation(), print_importance(), print_moran(), print_performance()

get_importance_local 17

Examples

data(plants_rf)

Extract variable importance
importance <- get_importance(plants_rf)
head(importance)

View top 5 most important variables
importance[1:5,]

get_importance_local Extract local variable importance from model

Description

Extracts local (case-specific) variable importance scores from models fitted with rf(), rf_repeat(),
or rf_spatial().

Usage

get_importance_local(model)

Arguments

model Model object from rf(), rf_repeat(), or rf_spatial().

Details

Local importance measures how much each predictor contributes to predictions for individual ob-
servations, unlike global importance which summarizes contributions across all observations. This
can reveal spatial or contextual patterns in variable influence.

Value

Data frame with one row per observation and one column per predictor variable. Each cell contains
the local importance score for that variable at that observation.

See Also

rf(), rf_repeat(), rf_spatial(), get_importance(), plot_importance(), print_importance()

Other model_info: get_evaluation(), get_importance(), get_moran(), get_performance(),
get_predictions(), get_residuals(), get_response_curves(), get_spatial_predictors(),
print.rf(), print_evaluation(), print_importance(), print_moran(), print_performance()

18 get_moran

Examples

data(plants_rf)

Extract local importance scores
local_imp <- get_importance_local(plants_rf)

View structure: rows = observations, columns = variables
dim(local_imp)
head(local_imp)

Find which variable is most important for first observation
colnames(local_imp)[which.max(local_imp[1,])]

get_moran Extract Moran’s I test results for model residuals

Description

Extracts Moran’s I test results for spatial autocorrelation in model residuals from models fitted with
rf(), rf_repeat(), or rf_spatial().

Usage

get_moran(model)

Arguments

model Model object from rf(), rf_repeat(), or rf_spatial().

Details

Moran’s I tests for spatial autocorrelation in model residuals. Significant positive values indicate
residuals are spatially clustered, suggesting the model hasn’t fully captured spatial patterns. For spa-
tial models (rf_spatial()), low or non-significant Moran’s I values indicate successful removal
of spatial autocorrelation.

Value

Data frame with Moran’s I statistics at multiple distance thresholds. Columns include distance.threshold,
moran.i (statistic), p.value, interpretation, and method.

See Also

moran(), moran_multithreshold(), plot_moran(), print_moran()

Other model_info: get_evaluation(), get_importance(), get_importance_local(), get_performance(),
get_predictions(), get_residuals(), get_response_curves(), get_spatial_predictors(),
print.rf(), print_evaluation(), print_importance(), print_moran(), print_performance()

get_performance 19

Examples

data(plants_rf)

Extract Moran's I test results
moran_results <- get_moran(plants_rf)
moran_results

Check for significant spatial autocorrelation
significant <- moran_results[moran_results$p.value < 0.05,]
significant

get_performance Extract out-of-bag performance metrics from model

Description

Extracts out-of-bag (OOB) performance metrics from models fitted with rf(), rf_repeat(), or
rf_spatial().

Usage

get_performance(model)

Arguments

model Model object from rf(), rf_repeat(), or rf_spatial().

Details

Out-of-bag (OOB) performance is computed using observations not included in bootstrap sam-
ples during model training. Metrics typically include R-squared, pseudo R-squared, RMSE, and
normalized RMSE. For repeated models, the median and median absolute deviation summarize
performance across repetitions.

Value

Data frame with performance metrics:

• For rf() and rf_spatial(): columns metric and value

• For rf_repeat(): columns metric, median, and median_absolute_deviation (MAD across
repetitions)

See Also

rf(), rf_repeat(), rf_spatial(), print_performance()

Other model_info: get_evaluation(), get_importance(), get_importance_local(), get_moran(),
get_predictions(), get_residuals(), get_response_curves(), get_spatial_predictors(),
print.rf(), print_evaluation(), print_importance(), print_moran(), print_performance()

20 get_predictions

Examples

data(plants_rf)

Extract OOB performance metrics
performance <- get_performance(plants_rf)
performance

For repeated models, median and MAD are returned
(example would require rf_repeat model)

get_predictions Extract fitted predictions from model

Description

Extracts fitted (in-sample) predictions from models fitted with rf(), rf_repeat(), or rf_spatial().

Usage

get_predictions(model)

Arguments

model Model object from rf(), rf_repeat(), or rf_spatial().

Details

This function returns fitted predictions for the training data used to build the model, not predictions
for new data. For out-of-sample predictions on new data use stats::predict().

Value

Numeric vector of fitted predictions with length equal to the number of training observations. For
rf_repeat() models, returns the median prediction across repetitions.

See Also

rf(), rf_repeat(), rf_spatial(), get_residuals()

Other model_info: get_evaluation(), get_importance(), get_importance_local(), get_moran(),
get_performance(), get_residuals(), get_response_curves(), get_spatial_predictors(),
print.rf(), print_evaluation(), print_importance(), print_moran(), print_performance()

get_residuals 21

Examples

data(plants_rf)

Extract fitted predictions
predictions <- get_predictions(plants_rf)
head(predictions)

Check length matches number of observations
length(predictions)

Compare with observed values to assess fit
(observed values would be in original data)

get_residuals Extract model residuals

Description

Extracts residuals (observed - predicted values) from models fitted with rf(), rf_repeat(), or
rf_spatial().

Usage

get_residuals(model)

Arguments

model Model object from rf(), rf_repeat(), or rf_spatial().

Details

Residuals are calculated as observed minus predicted values. They can be used to assess model
fit, check assumptions, and diagnose patterns such as spatial autocorrelation (see get_moran()).
Ideally, residuals should be randomly distributed with no systematic patterns.

Value

Numeric vector of residuals with length equal to the number of training observations. For rf_repeat()
models, returns the median residual across repetitions.

See Also

rf(), rf_repeat(), rf_spatial(), get_predictions(), get_moran(), plot_residuals_diagnostics()

Other model_info: get_evaluation(), get_importance(), get_importance_local(), get_moran(),
get_performance(), get_predictions(), get_response_curves(), get_spatial_predictors(),
print.rf(), print_evaluation(), print_importance(), print_moran(), print_performance()

22 get_response_curves

Examples

data(plants_rf)

Extract residuals
residuals <- get_residuals(plants_rf)
head(residuals)

Check basic statistics
summary(residuals)

Plot distribution to check for patterns
hist(residuals, main = "Residual Distribution", xlab = "Residuals")

get_response_curves Extract response curve data for plotting

Description

Extracts data for plotting partial dependence (response) curves showing how predictions vary with
each predictor from models fitted with rf(), rf_repeat(), or rf_spatial().

Usage

get_response_curves(
model = NULL,
variables = NULL,
quantiles = c(0.1, 0.5, 0.9),
grid.resolution = 200,
verbose = TRUE

)

Arguments

model Model object from rf(), rf_repeat(), or rf_spatial().

variables Character vector of predictor names to plot. If NULL, automatically selects the
top 50% most important variables. Default: NULL.

quantiles Numeric vector of quantiles (0 to 1) at which to fix non-plotted predictors.
Multiple quantiles show response variation under different scenarios. Default:
c(0.1, 0.5, 0.9).

grid.resolution

Integer (20 to 500) specifying the number of points along the predictor axis.
Higher values produce smoother curves. Default: 200.

verbose Logical. If TRUE, prints progress messages. Default: TRUE.

get_response_curves 23

Details

Response curves (also called partial dependence plots) show how predicted values change as a focal
predictor varies while holding other predictors constant at specified quantile values. This reveals
the marginal effect of each predictor.

The function generates curves by:

1. Creating a grid of values for the focal predictor

2. Fixing non-plotted predictors at each quantile (e.g., 0.1, 0.5, 0.9)

3. Predicting responses across the grid

4. Repeating for each selected predictor and quantile combination

Multiple quantiles reveal whether the effect of a predictor is consistent across different environmen-
tal contexts (parallel curves) or varies depending on other conditions (non-parallel curves).

Value

Data frame with the following columns:

• response: Predicted response values.

• predictor: Predictor values along the gradient.

• quantile: Factor indicating which quantile was used to fix other predictors.

• model: Model index (only for rf_repeat() models with multiple repetitions).

• predictor.name: Character name of the focal predictor.

• response.name: Character name of the response variable.

See Also

rf(), rf_repeat(), rf_spatial(), plot_response_curves(), get_importance()

Other model_info: get_evaluation(), get_importance(), get_importance_local(), get_moran(),
get_performance(), get_predictions(), get_residuals(), get_spatial_predictors(), print.rf(),
print_evaluation(), print_importance(), print_moran(), print_performance()

Examples

data(plants_rf)

Extract response curve data for plotting
curves <- get_response_curves(

model = plants_rf,
variables = NULL, # auto-select important variables
quantiles = c(0.1, 0.5, 0.9)

)

View structure
head(curves)
str(curves)

Check unique predictors included

24 get_spatial_predictors

unique(curves$predictor.name)

get_spatial_predictors

Extract spatial predictors from spatial model

Description

Extracts the spatial predictors (Moran’s Eigenvector Maps) used in a model fitted with rf_spatial().

Usage

get_spatial_predictors(model)

Arguments

model Model object from rf_spatial() (must have class rf_spatial).

Details

Spatial predictors are Moran’s Eigenvector Maps (MEMs) automatically generated and selected by
rf_spatial() to capture spatial autocorrelation patterns in the data. This function extracts these
predictors, which can be useful for understanding spatial structure or for making predictions on new
spatial locations.

Value

Data frame containing the spatial predictor values for each observation, with predictors ordered by
decreasing importance.

See Also

rf_spatial(), mem(), mem_multithreshold(), get_importance()

Other model_info: get_evaluation(), get_importance(), get_importance_local(), get_moran(),
get_performance(), get_predictions(), get_residuals(), get_response_curves(), print.rf(),
print_evaluation(), print_importance(), print_moran(), print_performance()

Examples

data(plants_rf_spatial)

Extract spatial predictors
spatial_preds <- get_spatial_predictors(plants_rf_spatial)
head(spatial_preds)

Check dimensions
dim(spatial_preds)

is_binary 25

View predictor names (ordered by importance)
colnames(spatial_preds)

is_binary Check if variable is binary with values 0 and 1

Description

Tests whether a variable contains only the values 0 and 1.

Usage

is_binary(data = NULL, dependent.variable.name = NULL)

Arguments

data Data frame containing the variable to check.
dependent.variable.name

Character string with the name of the variable to test. Must be a column name
in data.

Details

This function is used internally by spatialRF to determine whether to apply classification-specific
methods (e.g., case weighting with case_weights()). The function returns FALSE if:

• The variable has more than two unique values

• The variable has only one unique value (constant)

• The unique values are not exactly 0 and 1 (e.g., 1 and 2, or TRUE and FALSE)

Missing values (NA) are ignored when determining unique values.

Value

Logical. TRUE if the variable contains exactly two unique values (0 and 1), FALSE otherwise.

See Also

case_weights()

Other preprocessing: auto_cor(), auto_vif(), case_weights(), default_distance_thresholds(),
double_center_distance_matrix(), make_spatial_fold(), make_spatial_folds(), the_feature_engineer(),
weights_from_distance_matrix()

26 make_spatial_fold

Examples

Binary variable (returns TRUE)
is_binary(

data = data.frame(response = c(0, 0, 0, 1, 1)),
dependent.variable.name = "response"

)

Non-binary variable (returns FALSE)
is_binary(

data = data.frame(response = c(1, 2, 3, 4, 5)),
dependent.variable.name = "response"

)

Binary but wrong values (returns FALSE)
is_binary(

data = data.frame(response = c(1, 1, 2, 2)),
dependent.variable.name = "response"

)

make_spatial_fold Create spatially independent training and testing folds

Description

Generates two spatially independent data folds by growing a rectangular buffer from a focal point
until a specified fraction of records falls inside. Used internally by make_spatial_folds() and
rf_evaluate() for spatial cross-validation.

Usage

make_spatial_fold(
data = NULL,
dependent.variable.name = NULL,
xy.i = NULL,
xy = NULL,
distance.step.x = NULL,
distance.step.y = NULL,
training.fraction = 0.8

)

Arguments

data Data frame containing response variable and predictors. Required only for bi-
nary response variables.

dependent.variable.name

Character string with the name of the response variable. Must be a column name
in data. Required only for binary response variables.

make_spatial_fold 27

xy.i Single-row data frame with columns "x" (longitude), "y" (latitude), and "id"
(record identifier). Defines the focal point from which the buffer grows.

xy Data frame with columns "x" (longitude), "y" (latitude), and "id" (record identi-
fier). Contains all spatial coordinates for the dataset.

distance.step.x

Numeric value specifying the buffer growth increment along the x-axis. Default:
NULL (automatically set to 1/1000th of the x-coordinate range).

distance.step.y

Numeric value specifying the buffer growth increment along the y-axis. Default:
NULL (automatically set to 1/1000th of the y-coordinate range).

training.fraction

Numeric value between 0.1 and 0.9 specifying the fraction of records to include
in the training fold. Default: 0.8.

Details

This function creates spatially independent training and testing folds for spatial cross-validation.
The algorithm works as follows:

1. Starts with a small rectangular buffer centered on the focal point (xy.i)

2. Grows the buffer incrementally by distance.step.x and distance.step.y

3. Continues growing until the buffer contains the desired number of records (training.fraction * total records)

4. Assigns records inside the buffer to training and records outside to testing

Special handling for binary response variables:

When data and dependent.variable.name are provided and the response is binary (0/1), the
function ensures that training.fraction applies to the number of presences (1s), not total records.
This prevents imbalanced sampling in presence-absence models.

Value

List with two elements:

• training: Integer vector of record IDs (from xy$id) in the training fold.

• testing: Integer vector of record IDs (from xy$id) in the testing fold.

See Also

make_spatial_folds(), rf_evaluate(), is_binary()

Other preprocessing: auto_cor(), auto_vif(), case_weights(), default_distance_thresholds(),
double_center_distance_matrix(), is_binary(), make_spatial_folds(), the_feature_engineer(),
weights_from_distance_matrix()

28 make_spatial_folds

Examples

data(plants_df, plants_xy)

Create spatial fold centered on first coordinate
fold <- make_spatial_fold(

xy.i = plants_xy[1,],
xy = plants_xy,
training.fraction = 0.6

)

View training and testing record IDs
fold$training
fold$testing

Visualize the spatial split (training = red, testing = blue, center = black)
if (interactive()) {

plot(plants_xy[c("x", "y")], type = "n", xlab = "", ylab = "")
points(plants_xy[fold$training, c("x", "y")], col = "red4", pch = 15)
points(plants_xy[fold$testing, c("x", "y")], col = "blue4", pch = 15)
points(plants_xy[1, c("x", "y")], col = "black", pch = 15, cex = 2)

}

make_spatial_folds Create multiple spatially independent training and testing folds

Description

Applies make_spatial_fold() to every row in xy.selected, generating one spatially independent
fold centered on each focal point. Used for spatial cross-validation in rf_evaluate().

Usage

make_spatial_folds(
data = NULL,
dependent.variable.name = NULL,
xy.selected = NULL,
xy = NULL,
distance.step.x = NULL,
distance.step.y = NULL,
training.fraction = 0.75,
n.cores = parallel::detectCores() - 1,
cluster = NULL

)

Arguments

data Data frame containing response variable and predictors. Required only for bi-
nary response variables.

make_spatial_folds 29

dependent.variable.name

Character string with the name of the response variable. Must be a column name
in data. Required only for binary response variables.

xy.selected Data frame with columns "x" (longitude), "y" (latitude), and "id" (record iden-
tifier). Defines the focal points for fold creation. Typically a spatially thinned
subset of xy created with thinning() or thinning_til_n().

xy Data frame with columns "x" (longitude), "y" (latitude), and "id" (record identi-
fier). Contains all spatial coordinates for the dataset.

distance.step.x

Numeric value specifying the buffer growth increment along the x-axis. Default:
NULL (automatically set to 1/1000th of the x-coordinate range).

distance.step.y

Numeric value specifying the buffer growth increment along the y-axis. Default:
NULL (automatically set to 1/1000th of the y-coordinate range).

training.fraction

Numeric value between 0.1 and 0.9 specifying the fraction of records to include
in the training fold. Default: 0.75.

n.cores Integer specifying the number of CPU cores for parallel execution. Default:
parallel::detectCores() - 1.

cluster Optional cluster object created with parallel::makeCluster(). If provided,
overrides n.cores. User is responsible for stopping the cluster with parallel::stopCluster().
Default: NULL.

Details

This function creates multiple spatially independent folds for spatial cross-validation by calling
make_spatial_fold() once for each row in xy.selected. Each fold is created by growing a rect-
angular buffer from the corresponding focal point until the desired training.fraction is achieved.

Parallel execution:

The function uses parallel processing to speed up fold creation. You can control parallelization with
n.cores or provide a pre-configured cluster object.

Typical workflow:

1. Thin spatial points with thinning() or thinning_til_n() to create xy.selected

2. Create spatial folds with this function

3. Use the folds for spatial cross-validation in rf_evaluate()

Value

List where each element corresponds to a row in xy.selected and contains:

• training: Integer vector of record IDs (from xy$id) in the training fold.

• testing: Integer vector of record IDs (from xy$id) in the testing fold.

30 mem

See Also

make_spatial_fold(), rf_evaluate(), thinning(), thinning_til_n()

Other preprocessing: auto_cor(), auto_vif(), case_weights(), default_distance_thresholds(),
double_center_distance_matrix(), is_binary(), make_spatial_fold(), the_feature_engineer(),
weights_from_distance_matrix()

Examples

data(plants_df, plants_xy)

Thin to 10 focal points to speed up example
xy.thin <- thinning_til_n(

xy = plants_xy,
n = 10

)

Create spatial folds centered on the 10 thinned points
folds <- make_spatial_folds(

xy.selected = xy.thin,
xy = plants_xy,
distance.step.x = 0.05,
training.fraction = 0.6,
n.cores = 1

)

Each element is a fold with training and testing indices
length(folds) # 10 folds
names(folds[[1]]) # "training" and "testing"

Visualize first fold (training = red, testing = blue, center = black)
if (interactive()) {

plot(plants_xy[c("x", "y")], type = "n", xlab = "", ylab = "")
points(plants_xy[folds[[1]]$training, c("x", "y")], col = "red4", pch = 15)
points(plants_xy[folds[[1]]$testing, c("x", "y")], col = "blue4", pch = 15)
points(
plants_xy[folds[[1]]$training[1], c("x", "y")],
col = "black",
pch = 15,
cex = 2

)
}

mem Compute Moran’s Eigenvector Maps from distance matrix

Description

Computes Moran’s Eigenvector Maps (MEMs) from a distance matrix. Returns only eigenvectors
with positive spatial autocorrelation, which capture broad to medium-scale spatial patterns.

mem 31

Usage

mem(distance.matrix = NULL, distance.threshold = 0, colnames.prefix = "mem")

Arguments

distance.matrix

Numeric distance matrix between spatial locations.

distance.threshold

Numeric value specifying the maximum distance for spatial neighbors. Dis-
tances above this threshold are set to zero. Default: 0 (no thresholding).

colnames.prefix

Character string used as prefix for column names in the output. Default: "mem".

Details

Moran’s Eigenvector Maps (MEMs) are spatial variables that represent spatial structures at different
scales. The function creates MEMs through the following steps:

1. Double-centers the distance matrix using double_center_distance_matrix()

2. Computes eigenvectors and eigenvalues using base::eigen()

3. Normalizes eigenvalues by dividing by the maximum absolute eigenvalue

4. Selects only eigenvectors with positive normalized eigenvalues

Positive vs. negative eigenvalues:

Eigenvectors with positive eigenvalues represent positive spatial autocorrelation (nearby locations
are similar), capturing broad to medium-scale spatial patterns. Eigenvectors with negative eigen-
values represent negative spatial autocorrelation (nearby locations are dissimilar) and are excluded.
The returned MEMs are ordered by eigenvalue magnitude, with the first columns capturing the
broadest spatial patterns.

These MEMs are used as spatial predictors in rf_spatial() to account for spatial autocorrelation
in model residuals.

Value

Data frame where each column is a MEM (spatial predictor) representing a different scale of spatial
pattern. Columns are named with the pattern <prefix>_<number> (e.g., "mem_1", "mem_2").

See Also

mem_multithreshold(), rf_spatial(), double_center_distance_matrix()

Other spatial_analysis: filter_spatial_predictors(), mem_multithreshold(), moran(), moran_multithreshold(),
pca(), pca_multithreshold(), rank_spatial_predictors(), residuals_diagnostics(), residuals_test(),
select_spatial_predictors_recursive(), select_spatial_predictors_sequential()

32 mem_multithreshold

Examples

data(plants_distance)

Compute MEMs from distance matrix
mems <- mem(distance.matrix = plants_distance)

View structure
head(mems)
dim(mems)

Check column names
colnames(mems)[1:5]

mem_multithreshold Compute Moran’s Eigenvector Maps across multiple distance thresh-
olds

Description

Computes Moran’s Eigenvector Maps (MEMs) using mem() at multiple distance thresholds and
combines them into a single data frame. This creates spatial predictors capturing patterns at different
spatial scales.

Usage

mem_multithreshold(
distance.matrix = NULL,
distance.thresholds = NULL,
max.spatial.predictors = NULL

)

Arguments

distance.matrix

Numeric distance matrix between spatial locations.

distance.thresholds

Numeric vector of distance thresholds. Each threshold defines the maximum
distance for spatial neighbors at that scale. Default: NULL (automatically com-
puted with default_distance_thresholds()).

max.spatial.predictors

Integer specifying the maximum number of spatial predictors to return. If the to-
tal number of MEMs exceeds this value, only the first max.spatial.predictors
columns are returned. Default: NULL (no limit).

mem_multithreshold 33

Details

This function generates spatial predictors at multiple spatial scales by computing MEMs at different
distance thresholds. Different thresholds capture spatial patterns at different scales:

• Smaller thresholds (e.g., 0) capture fine-scale spatial patterns

• Larger thresholds capture broad-scale spatial patterns

Algorithm:

1. For each distance threshold, calls mem() to compute MEMs

2. Each mem() call applies the threshold, double-centers the matrix, and extracts positive eigen-
vectors

3. Combines all MEMs into a single data frame

4. Optionally limits the total number of predictors with max.spatial.predictors

The resulting MEMs are used as spatial predictors in rf_spatial() to model spatial autocorrelation
at multiple scales simultaneously.

Value

Data frame with one row per observation (matching distance.matrix dimensions) and columns
representing MEMs at different distance thresholds. Column names follow the pattern spatial_predictor_<threshold>_<number>
(e.g., "spatial_predictor_0_1", "spatial_predictor_1000_2").

See Also

mem(), rf_spatial(), default_distance_thresholds(), double_center_distance_matrix()

Other spatial_analysis: filter_spatial_predictors(), mem(), moran(), moran_multithreshold(),
pca(), pca_multithreshold(), rank_spatial_predictors(), residuals_diagnostics(), residuals_test(),
select_spatial_predictors_recursive(), select_spatial_predictors_sequential()

Examples

data(plants_distance)

Compute MEMs for multiple distance thresholds
mems <- mem_multithreshold(

distance.matrix = plants_distance,
distance.thresholds = c(0, 1000, 5000)

)

View structure
head(mems)
dim(mems)

Check column names showing threshold and predictor number
colnames(mems)[1:6]

Limit number of spatial predictors
mems_limited <- mem_multithreshold(

34 moran

distance.matrix = plants_distance,
distance.thresholds = c(0, 1000, 5000),
max.spatial.predictors = 20

)
dim(mems_limited)

moran Moran’s I test for spatial autocorrelation

Description

Computes Moran’s I, a measure of spatial autocorrelation that tests whether values are more simi-
lar (positive autocorrelation) or dissimilar (negative autocorrelation) among spatial neighbors than
expected by chance.

Usage

moran(
x = NULL,
distance.matrix = NULL,
distance.threshold = NULL,
verbose = TRUE

)

Arguments

x Numeric vector to test for spatial autocorrelation. Typically model residuals or
a response variable.

distance.matrix

Numeric distance matrix between observations. Must have the same number of
rows as the length of x.

distance.threshold

Numeric value specifying the maximum distance for spatial neighbors. Dis-
tances above this threshold are set to zero during weighting. Default: NULL
(automatically set to 0, meaning no thresholding).

verbose Logical. If TRUE, displays a Moran’s scatterplot. Default: TRUE.

Details

Moran’s I is a measure of spatial autocorrelation that quantifies the degree to which nearby obser-
vations have similar values. The statistic ranges approximately from -1 to +1:

• Positive values: Similar values cluster together (positive spatial autocorrelation)

• Values near zero: Random spatial pattern (no spatial autocorrelation)

• Negative values: Dissimilar values are adjacent (negative spatial autocorrelation, rare in prac-
tice)

moran 35

Statistical testing:
The function compares the observed Moran’s I to the expected value under the null hypothesis of
no spatial autocorrelation (EI = -1/(n-1)). The p-value is computed using a normal approximation.
Results are interpreted at 0.05 significance level.

Moran’s scatterplot:
The plot shows original values (x-axis) against spatially lagged values (y-axis). The slope of the
fitted line approximates Moran’s I. Points in quadrants I and III indicate positive spatial autocorre-
lation; points in quadrants II and IV indicate negative spatial autocorrelation.

This implementation is inspired by the Moran.I() function in the ape package.

Value

List of class "moran" with three elements:

• test: Data frame containing:

– distance.threshold: The distance threshold used
– moran.i.null: Expected Moran’s I under null hypothesis of no spatial autocorrelation
– moran.i: Observed Moran’s I statistic
– p.value: Two-tailed p-value from normal approximation
– interpretation: Text interpretation of the result

• plot: ggplot object showing Moran’s scatterplot (values vs. spatial lag values with linear fit).

• plot.df: Data frame with columns x (original values) and x.lag (spatially lagged values)
used to generate the plot.

See Also

moran_multithreshold(), get_moran()

Other spatial_analysis: filter_spatial_predictors(), mem(), mem_multithreshold(), moran_multithreshold(),
pca(), pca_multithreshold(), rank_spatial_predictors(), residuals_diagnostics(), residuals_test(),
select_spatial_predictors_recursive(), select_spatial_predictors_sequential()

Examples

data(plants_df, plants_distance, plants_response)

Test for spatial autocorrelation in response variable
moran_test <- moran(

x = plants_df[[plants_response]],
distance.matrix = plants_distance,
distance.threshold = 1000

)

View test results
moran_test$test

Access components
moran_test$test$moran.i # Observed Moran's I
moran_test$test$p.value # P-value

https://cran.r-project.org/package=ape

36 moran_multithreshold

moran_test$test$interpretation # Text interpretation

moran_multithreshold Moran’s I test across multiple distance thresholds

Description

Computes Moran’s I at multiple distance thresholds to assess spatial autocorrelation across different
neighborhood scales. Identifies the distance threshold with the strongest spatial autocorrelation.

Usage

moran_multithreshold(
x = NULL,
distance.matrix = NULL,
distance.thresholds = NULL,
verbose = TRUE

)

Arguments

x Numeric vector to test for spatial autocorrelation. Typically model residuals or
a response variable.

distance.matrix

Numeric distance matrix between observations. Must have the same number of
rows as the length of x.

distance.thresholds

Numeric vector of distance thresholds defining different neighborhood scales.
Each threshold specifies the maximum distance for spatial neighbors at that
scale. Default: NULL (automatically computed with default_distance_thresholds()).

verbose Logical. If TRUE, displays a plot of Moran’s I values across distance thresholds.
Default: TRUE.

Details

This function applies moran() at multiple distance thresholds to explore spatial autocorrelation at
different spatial scales. This multi-scale approach is valuable for several reasons:

• Scale exploration: Different processes may operate at different spatial scales. Testing multi-
ple thresholds reveals the scale(s) at which spatial autocorrelation is strongest.

• Optimal neighborhood definition: Identifies the distance threshold that best captures the
spatial structure in the data.

• Uncertainty assessment: Spatial neighborhoods are often uncertain in ecological and spatial
data. Testing multiple thresholds accounts for this uncertainty.

moran_multithreshold 37

Interpreting results:
The plot shows Moran’s I values across distance thresholds. Peaks in Moran’s I indicate spatial
scales where autocorrelation is strongest. The max.moran and max.moran.distance.threshold
values identify the optimal scale. Significant results (p equal or lower than 0.05) indicate spatial
autocorrelation at that particular scale.

This function is commonly used to:

1. Detect spatial autocorrelation in model residuals at multiple scales

2. Determine appropriate distance thresholds for generating spatial predictors with mem_multithreshold()

3. Assess whether spatial patterns vary across scales

Value

List with four elements:

• per.distance: Data frame with one row per distance threshold, containing columns:

– distance.threshold: Distance threshold used
– moran.i: Observed Moran’s I statistic
– moran.i.null: Expected Moran’s I under null hypothesis
– p.value: Two-tailed p-value
– interpretation: Text interpretation of the result

• plot: ggplot object showing how Moran’s I varies across distance thresholds, highlighting
significant results.

• max.moran: Numeric value of the maximum Moran’s I observed across all thresholds.

• max.moran.distance.threshold: Distance threshold (in distance matrix units) where Moran’s
I is maximized.

See Also

moran(), mem_multithreshold(), default_distance_thresholds(), get_moran()

Other spatial_analysis: filter_spatial_predictors(), mem(), mem_multithreshold(), moran(),
pca(), pca_multithreshold(), rank_spatial_predictors(), residuals_diagnostics(), residuals_test(),
select_spatial_predictors_recursive(), select_spatial_predictors_sequential()

Examples

data(plants_df, plants_distance, plants_response)

Test spatial autocorrelation at multiple distance thresholds
moran_multi <- moran_multithreshold(

x = plants_df[[plants_response]],
distance.matrix = plants_distance,
distance.thresholds = c(0, 1000, 5000)

)

View results for all thresholds
moran_multi$per.distance

38 objects_size

Find optimal distance threshold
moran_multi$max.moran.distance.threshold
moran_multi$max.moran

Plot shows spatial autocorrelation across scales
moran_multi$plot

objects_size Display sizes of objects in current R environment

Description

Returns a summary of objects in the current R workspace, sorted from largest to smallest by memory
size. Useful for identifying memory-intensive objects and diagnosing memory issues.

Usage

objects_size(n = 10)

Arguments

n Integer specifying the number of largest objects to display. Default: 10.

Details

This utility function helps monitor memory usage by displaying the largest objects in your workspace.
It’s particularly useful for:

• Identifying memory bottlenecks during large spatial analyses

• Deciding which objects to remove to free memory

• Understanding the memory footprint of different data structures

The function examines all objects in the global environment (.GlobalEnv) and calculates their
memory usage using utils::object.size(). Objects are automatically sorted by size in de-
scending order.

Value

Data frame with object names as row names and four columns:

• Type: Object class (e.g., "data.frame", "matrix", "list").

• Size: Memory size with automatic unit formatting (e.g., "1.2 Mb", "500 bytes").

• Length/Rows: Number of elements (for vectors) or rows (for data frames/matrices).

• Columns: Number of columns (for data frames/matrices; NA for vectors and other objects).

optimization_function 39

See Also

utils::object.size(), base::ls(), base::rm()

Other utilities: .vif_to_df(), auc(), beowulf_cluster(), optimization_function(), prepare_importance_spatial(),
rescale_vector(), root_mean_squared_error(), setup_parallel_execution(), standard_error(),
statistical_mode(), thinning(), thinning_til_n()

Examples

Create some objects of different sizes
small_vector <- runif(100)
medium_matrix <- matrix(runif(10000), 100, 100)
large_matrix <- matrix(runif(100000), 1000, 100)

View the 5 largest objects
objects_size(n = 5)

Check all objects (up to 10 by default)
objects_size()

optimization_function Compute optimization scores for spatial predictor selection

Description

Computes optimization scores for candidate spatial predictor sets using either the "moran.i" or
"p.value" method. Higher scores indicate better trade-offs between spatial autocorrelation reduc-
tion, model performance, and parsimony.

Usage

optimization_function(
x = NULL,
weight.r.squared = NULL,
weight.penalization.n.predictors = NULL,
optimization.method = "moran.i"

)

Arguments

x Data frame containing optimization metrics for candidate spatial predictor sets.
Generated internally by select_spatial_predictors_sequential() or select_spatial_predictors_recursive().
Must include columns: moran.i, r.squared, penalization.per.variable,
and p.value.binary (for "p.value" method).

weight.r.squared

Numeric value between 0 and 1 specifying the weight for R-squared in the opti-
mization score. Higher values prioritize model performance.

40 optimization_function

weight.penalization.n.predictors

Numeric value between 0 and 1 specifying the weight for penalizing the number
of spatial predictors. Higher values favor more parsimonious models.

optimization.method

Character string specifying the optimization method: "moran.i" (default) or
"p.value". Default: "moran.i".

Details

This function balances three objectives when selecting spatial predictors:

1. Reduce spatial autocorrelation: Maximize 1 - Moran's I to minimize residual spatial
autocorrelation

2. Maintain model performance: Account for model R-squared

3. Favor parsimony: Penalize models with many spatial predictors

Optimization methods:

The "moran.i" method computes:
score = (1 - Moran's I) + w1 × R² - w2 × penalization

where all components are rescaled to the range 0 to 1, w1 = weight.r.squared, and w2 = weight.penalization.n.predictors.

The "p.value" method computes:
score = max(1 - Moran's I, binary p-value) + w1 × R² - w2 × penalization

where the binary p-value is 1 if p equal or lower than 0.05 (no significant spatial autocorrelation),
and 0 otherwise.

Practical differences:

• The "moran.i" method uses continuous Moran’s I values and typically selects more spatial
predictors to achieve lower spatial autocorrelation

• The "p.value" method uses binary significance thresholds and typically selects fewer predic-
tors, stopping once spatial autocorrelation becomes non-significant

The optimal model is the one with the highest optimization score.

Value

Numeric vector of optimization scores, one per row in x. Higher scores indicate better solutions.
All values are rescaled between 0 and 1 for comparability.

See Also

select_spatial_predictors_recursive(), select_spatial_predictors_sequential(), moran()

Other utilities: .vif_to_df(), auc(), beowulf_cluster(), objects_size(), prepare_importance_spatial(),
rescale_vector(), root_mean_squared_error(), setup_parallel_execution(), standard_error(),
statistical_mode(), thinning(), thinning_til_n()

pca 41

Examples

Not run:
This function is typically called internally during spatial predictor selection
Example showing the structure of input data:

Simulated optimization data frame
opt_data <- data.frame(

moran.i = c(0.5, 0.3, 0.2, 0.15),
r.squared = c(0.6, 0.65, 0.68, 0.69),
penalization.per.variable = c(0.1, 0.2, 0.3, 0.4),
p.value.binary = c(0, 0, 1, 1)

)

Compute optimization scores
scores_moran <- optimization_function(

x = opt_data,
weight.r.squared = 0.5,
weight.penalization.n.predictors = 0.5,
optimization.method = "moran.i"

)

Compare methods
scores_pvalue <- optimization_function(

x = opt_data,
weight.r.squared = 0.5,
weight.penalization.n.predictors = 0.5,
optimization.method = "p.value"

)

Higher score indicates better solution
which.max(scores_moran)
which.max(scores_pvalue)

End(Not run)

pca Compute Principal Component Analysis

Description

Computes principal components from a numeric matrix or data frame with automatic scaling and
zero-variance removal. Returns all principal components as a data frame. Wrapper for stats::prcomp().

Usage

pca(x = NULL, colnames.prefix = "pca_factor")

42 pca

Arguments

x Numeric matrix or data frame to decompose into principal components.
colnames.prefix

Character string used as prefix for column names in the output. Default: "pca_factor".

Details

This function performs Principal Component Analysis (PCA) to create uncorrelated linear combi-
nations of the original variables. The PCA process:

1. Removes columns with zero variance (constant values)

2. Scales all remaining variables to mean = 0 and standard deviation = 1

3. Computes principal components using singular value decomposition

4. Returns all principal components ordered by decreasing variance explained

Usage in spatial analysis:
PCA is useful for dimension reduction when working with spatial distance matrices or multiple
correlated spatial predictors. It creates orthogonal (uncorrelated) variables that capture the main
patterns of variation while reducing dimensionality.

For spatial modeling with rf_spatial(), principal components of distance matrices can serve as
alternative spatial predictors to Moran’s Eigenvector Maps (MEMs). Use pca_multithreshold()
to compute PCA across multiple distance thresholds for multi-scale spatial modeling.

Value

Data frame where each column is a principal component, ordered by decreasing variance explained.
Columns are named with the pattern <prefix>_<number> (e.g., "pca_factor_1", "pca_factor_2").
The number of rows matches the number of rows in x.

See Also

pca_multithreshold(), mem(), stats::prcomp()

Other spatial_analysis: filter_spatial_predictors(), mem(), mem_multithreshold(), moran(),
moran_multithreshold(), pca_multithreshold(), rank_spatial_predictors(), residuals_diagnostics(),
residuals_test(), select_spatial_predictors_recursive(), select_spatial_predictors_sequential()

Examples

data(plants_distance)

Compute principal components from distance matrix
pca_components <- pca(x = plants_distance)

View structure
head(pca_components)
dim(pca_components)

Check column names

pca_multithreshold 43

colnames(pca_components)[1:5]

Custom column prefix
pca_custom <- pca(

x = plants_distance,
colnames.prefix = "distance_pc"

)
colnames(pca_custom)[1:3]

pca_multithreshold Compute Principal Component Analysis at multiple distance thresh-
olds

Description

Computes principal components of a distance matrix at multiple distance thresholds to generate
multi-scale spatial predictors for rf_spatial(). Each distance threshold defines a different neigh-
borhood scale, and PCA is applied to the weighted distance matrix at each scale.

Usage

pca_multithreshold(
distance.matrix = NULL,
distance.thresholds = NULL,
max.spatial.predictors = NULL

)

Arguments

distance.matrix

Numeric distance matrix between observations.
distance.thresholds

Numeric vector of distance thresholds defining different neighborhood scales.
Each threshold specifies the maximum distance for spatial neighbors at that
scale. If NULL, automatically computed with default_distance_thresholds().
Default: NULL.

max.spatial.predictors

Integer specifying the maximum number of spatial predictors to retain. If the to-
tal number of generated predictors exceeds this value, only the first max.spatial.predictors
are kept (ordered by variance explained). Useful for managing memory when
distance.matrix is very large. Default: NULL (keeps all predictors).

Details

This function generates multi-scale spatial predictors by applying PCA to distance matrices at dif-
ferent neighborhood scales. The process for each distance threshold:

44 pca_multithreshold

1. Converts the distance matrix to weights using weights_from_distance_matrix(), where
distances above the threshold are set to zero

2. Applies pca() to the weighted distance matrix to extract principal components

3. Names the resulting predictors with the distance threshold for identification

4. Filters out predictors with all near-zero values

Multi-scale spatial modeling:
Different distance thresholds capture spatial patterns at different scales. Combining predictors from
multiple thresholds allows rf_spatial() to account for spatial autocorrelation operating at mul-
tiple spatial scales simultaneously. This is analogous to mem_multithreshold() but uses PCA
instead of Moran’s Eigenvector Maps.

Comparison with MEMs:
Both pca_multithreshold() and mem_multithreshold() generate spatial predictors from dis-
tance matrices, but differ in their approach:

• PCA: Captures the main patterns of variation in the weighted distance matrix without consid-
ering spatial autocorrelation structure

• MEMs: Explicitly extracts spatial patterns with specific autocorrelation scales (positive and
negative eigenvalues)

In practice, MEMs are generally preferred for spatial modeling because they explicitly target spatial
autocorrelation patterns, but PCA can serve as a simpler alternative or for comparison.

Value

Data frame where each column is a spatial predictor derived from PCA at a specific distance thresh-
old. Columns are named with the pattern spatial_predictor_<distance>_<number> (e.g., "spa-
tial_predictor_1000_1", "spatial_predictor_5000_2"), where <distance> is the distance threshold
and <number> is the principal component rank. The number of rows matches the number of obser-
vations in distance.matrix.

See Also

pca(), mem_multithreshold(), weights_from_distance_matrix(), default_distance_thresholds()

Other spatial_analysis: filter_spatial_predictors(), mem(), mem_multithreshold(), moran(),
moran_multithreshold(), pca(), rank_spatial_predictors(), residuals_diagnostics(),
residuals_test(), select_spatial_predictors_recursive(), select_spatial_predictors_sequential()

Examples

data(plants_distance)

Compute PCA spatial predictors at multiple distance thresholds
pca_predictors <- pca_multithreshold(

distance.matrix = plants_distance,
distance.thresholds = c(0, 1000, 5000)

)

plants_df 45

View structure
head(pca_predictors)
dim(pca_predictors)

Check predictor names (show scale information)
colnames(pca_predictors)[1:6]

Limit number of predictors to save memory
pca_limited <- pca_multithreshold(

distance.matrix = plants_distance,
distance.thresholds = c(0, 1000, 5000),
max.spatial.predictors = 20

)
ncol(pca_limited) # At most 20 predictors

plants_df Plant richness and predictors for American ecoregions

Description

Vascular plant species richness for American ecoregions as defined in Ecoregions 2017.

Usage

data(plants_df)

Format

A data frame with 227 rows and 22 columns:

• ecoregion_id: Ecoregion identifier.

• x: Longitude in degrees (WGS84).

• y: Latitude in degrees (WGS84).

• richness_species_vascular: Number of vascular plant species (response variable).

• bias_area_km2: Ecoregion area in square kilometers.

• bias_species_per_record: Species count divided by GBIF spatial records (sampling bias
metric).

• climate_aridity_index_average: Average aridity index.

• climate_hypervolume: Climatic envelope volume computed with hypervolume.

• climate_velocity_lgm_average: Average climate velocity since the Last Glacial Maxi-
mum.

• neighbors_count: Number of immediate neighbors (connectivity metric).

• neighbors_percent_shared_edge: Percentage of shared edge with neighbors (connectivity
metric).

https://ecoregions2017.appspot.com/
https://cran.r-project.org/package=hypervolume

46 plants_distance

• human_population_density: Human population density.

• topography_elevation_average: Average elevation.

• landcover_herbs_percent_average: Average herb cover from MODIS Vegetation Contin-
uous Fields.

• fragmentation_cohesion: Cohesion index computed with landscapemetrics.

• fragmentation_division: Division index computed with landscapemetrics.

• neighbors_area: Total area of immediate neighbors.

• human_population: Total human population.

• human_footprint_average: Average human footprint index.

• climate_bio1_average: Average mean annual temperature.

• climate_bio15_minimum: Minimum precipitation seasonality.

See Also

Other data: plants_distance, plants_predictors, plants_response, plants_rf, plants_rf_spatial,
plants_xy

plants_distance Distance matrix between ecoregion edges

Description

Distance matrix (in km) between the edges of American ecoregions in plants_df.

Usage

data(plants_distance)

Format

Numeric matrix with 227 rows and 227 columns.

See Also

Other data: plants_df, plants_predictors, plants_response, plants_rf, plants_rf_spatial,
plants_xy

https://CRAN.R-project.org/package=landscapemetrics
https://CRAN.R-project.org/package=landscapemetrics

plants_predictors 47

plants_predictors Predictor variable names for plant richness examples

Description

Character vector of predictor variable names from plants_df (columns 5 to 21).

Usage

data(plants_predictors)

Format

A character vector of length 17.

See Also

Other data: plants_df, plants_distance, plants_response, plants_rf, plants_rf_spatial,
plants_xy

plants_response Response variable name for plant richness examples

Description

Character string containing the name of the response variable in plants_df: "richness_species_vascular".

Usage

data(plants_response)

Format

A character string of length 1.

See Also

Other data: plants_df, plants_distance, plants_predictors, plants_rf, plants_rf_spatial,
plants_xy

48 plants_rf

plants_rf Example fitted random forest model

Description

Fitted random forest model using plants_df. Provided for testing and examples without requiring
model fitting. Fitted with reduced complexity for faster computation and smaller object size.

Usage

data(plants_rf)

Format

An object of class rf fitted with the following parameters:

• data: plants_df

• dependent.variable.name: plants_response ("richness_species_vascular")

• predictor.variable.names: plants_predictors (17 variables)

• distance.matrix: plants_distance

• xy: plants_xy

• distance.thresholds: c(100, 1000, 2000, 4000)

• num.trees: 50

• min.node.size: 30

• n.cores: 1

Details

This model uses reduced complexity (50 trees, min.node.size = 30) to keep object size small for
package distribution. For actual analyses, use higher values (e.g., num.trees = 500, min.node.size =
5).

See Also

rf(), plants_df, plants_response, plants_predictors

Other data: plants_df, plants_distance, plants_predictors, plants_response, plants_rf_spatial,
plants_xy

plants_rf_spatial 49

plants_rf_spatial Example fitted spatial random forest model

Description

Fitted spatial random forest model using plants_df with spatial predictors from Moran’s Eigenvector
Maps. Provided for testing and examples without requiring model fitting. Fitted with reduced
complexity for faster computation and smaller object size.

Usage

data(plants_rf_spatial)

Format

An object of class rf fitted with the following parameters:

• data: plants_df

• dependent.variable.name: plants_response ("richness_species_vascular")

• predictor.variable.names: plants_predictors (17 variables)

• distance.matrix: plants_distance

• xy: plants_xy

• distance.thresholds: c(100, 1000, 2000, 4000)

• method: "mem.effect.recursive"

• num.trees: 50

• min.node.size: 30

• n.cores: 14

Details

This spatial model includes spatial predictors (Moran’s Eigenvector Maps) selected using the re-
cursive method to minimize residual spatial autocorrelation. Uses reduced complexity (50 trees,
min.node.size = 30) to keep object size small for package distribution. For actual analyses, use
higher values (e.g., num.trees = 500, min.node.size = 5).

See Also

rf_spatial(), rf(), plants_rf, plants_df, plants_response, plants_predictors

Other data: plants_df, plants_distance, plants_predictors, plants_response, plants_rf,
plants_xy

50 plot_evaluation

plants_xy Coordinates for plant richness data

Description

Spatial coordinates (longitude and latitude) extracted from plants_df for use in spatial modeling
functions.

Usage

data(plants_xy)

Format

A data frame with 227 rows and 2 columns:

• x: Longitude in degrees (WGS84).

• y: Latitude in degrees (WGS84).

See Also

Other data: plants_df, plants_distance, plants_predictors, plants_response, plants_rf,
plants_rf_spatial

plot_evaluation Visualize spatial cross-validation results

Description

Creates boxplots comparing model performance metrics across training, testing, and full datasets
from spatial cross-validation performed by rf_evaluate(). Displays distributions of R-squared,
RMSE, and other metrics across all spatial folds.

Usage

plot_evaluation(
model,
fill.color = viridis::viridis(3, option = "F", alpha = 0.8, direction = -1),
line.color = "gray30",
verbose = TRUE,
notch = TRUE

)

plot_evaluation 51

Arguments

model Model fitted with rf_evaluate(). Must be of class "rf_evaluate".

fill.color Character vector with three colors (one for each model type: Testing, Train-
ing, Full) or a function that generates a color palette. Accepts hexadecimal
codes (e.g., c("#440154FF", "#21908CFF", "#FDE725FF")) or palette func-
tions (e.g., viridis::viridis(3)). Default: viridis::viridis(3, option
= "F", alpha = 0.8, direction = -1).

line.color Character string specifying the color of boxplot borders. Default: "gray30".

verbose Logical. If TRUE, prints the plot to the graphics device. Default: TRUE.

notch Logical. If TRUE, displays notched boxplots where notches represent approx-
imate 95% confidence intervals around the median. Non-overlapping notches
suggest significant differences between medians. Default: TRUE.

Details

This function visualizes the distribution of performance metrics across spatial folds, with separate
boxplots for three model variants:

• Testing: Performance on spatially independent testing folds (most reliable estimate of gener-
alization)

• Training: Performance on training folds (typically optimistic)

• Full: Performance on the complete dataset (reference baseline)

Interpreting the plot:

The boxplots show the distribution of each metric across all spatial folds. Ideally:

• Testing performance should be reasonably close to training performance (indicates good gen-
eralization)

• Large gaps between training and testing suggest overfitting

• Low variance across folds indicates stable, consistent model performance

• High variance suggests performance depends strongly on spatial location

The plot includes a title showing the number of spatial folds used in the evaluation.

Available metrics:

Displayed metrics depend on the response variable type:

• Continuous response: R-squared, RMSE (Root Mean Squared Error), NRMSE (Normalized
RMSE)

• Binary response: AUC (Area Under ROC Curve), pseudo R-squared

Value

ggplot object that can be further customized or saved. The plot displays boxplots of performance
metrics (R-squared, RMSE, NRMSE, pseudo R-squared, or AUC depending on model type) across
spatial folds, faceted by metric.

52 plot_importance

See Also

rf_evaluate(), get_evaluation(), print_evaluation()

Other visualization: plot_importance(), plot_moran(), plot_optimization(), plot_residuals_diagnostics(),
plot_response_curves(), plot_response_surface(), plot_training_df(), plot_training_df_moran(),
plot_tuning()

Examples

if(interactive()){

data(plants_rf, plants_xy)

Perform spatial cross-validation
plants_rf <- rf_evaluate(

model = plants_rf,
xy = plants_xy,
repetitions = 5,
n.cores = 1

)

Visualize evaluation results
plot_evaluation(plants_rf)

Without notches for simpler boxplots
plot_evaluation(plants_rf, notch = FALSE)

Custom colors
plot_evaluation(

plants_rf,
fill.color = c("#E64B35FF", "#4DBBD5FF", "#00A087FF")

)

Print summary statistics
print_evaluation(plants_rf)

Extract evaluation data for custom analysis
evaluation_data <- get_evaluation(plants_rf)
head(evaluation_data)

}

plot_importance Visualize variable importance scores

Description

Creates a visualization of variable importance scores from models fitted with rf(), rf_repeat(),
or rf_spatial(). For single-run models (rf(), rf_spatial()), displays points ordered by im-
portance. For repeated models (rf_repeat()), displays violin plots showing the distribution of
importance scores across model repetitions.

plot_importance 53

Usage

plot_importance(
model,
fill.color = viridis::viridis(100, option = "F", direction = -1, alpha = 1, end = 0.9),
line.color = "white",
verbose = TRUE

)

Arguments

model Model fitted with rf(), rf_repeat(), or rf_spatial(). Alternatively, a data
frame with variable importance scores (for internal use only).

fill.color Character vector of colors or a function generating a color palette. Accepts
hexadecimal codes (e.g., c("#440154FF", "#21908CFF", "#FDE725FF")) or
palette functions (e.g., viridis::viridis(100)). For single-run models, cre-
ates a continuous gradient. For repeated models, assigns discrete colors to
variables. Default: viridis::viridis(100, option = "F", direction = -1,
alpha = 1, end = 0.9).

line.color Character string specifying the color of point borders (single-run models) or
violin plot outlines (repeated models). Default: "white".

verbose Logical. If TRUE, prints the plot to the graphics device. Default: TRUE.

Details

This function creates different visualizations depending on the model type:

Single-run models (rf(), rf_spatial() without repetitions):

• Displays points showing the importance value for each variable

• Variables ordered top-to-bottom by importance (most important at top)

• Point color represents importance magnitude using a continuous gradient

Repeated models (rf_repeat(), rf_spatial() with repetitions):

• Displays violin plots showing the distribution of importance across repetitions

• Variables ordered top-to-bottom by median importance (most important at top)

• The median line within each violin shows the center of the distribution

• Width of violin reflects the density of importance values at each level

• Each variable receives a distinct fill color

Importance metric:

The x-axis shows permutation importance, which measures the increase in prediction error when
a variable’s values are randomly shuffled. Higher values indicate more important variables. Im-
portance is computed on out-of-bag (OOB) samples, providing an unbiased estimate of variable
contribution.

Spatial predictors:

54 plot_moran

In rf_spatial() models, all spatial predictors (MEMs or PCA factors) are grouped into a single
category labeled "spatial_predictors" to simplify comparison with non-spatial predictors.

Note on violin plots:

Violin plots display kernel density estimates. The median line shown is the median of the density
estimate, which may differ slightly from the actual data median. However, variables are always
ordered by the true median importance to ensure accurate ranking.

Cross-validated importance:

This function does not plot results from rf_importance(). For cross-validated importance plots,
access model$importance$cv.per.variable.plot after running rf_importance().

Value

ggplot object that can be further customized or saved. The plot displays variable importance on the
x-axis and variable names on the y-axis, ordered by importance (highest at top).

See Also

print_importance(), get_importance(), rf_importance()

Other visualization: plot_evaluation(), plot_moran(), plot_optimization(), plot_residuals_diagnostics(),
plot_response_curves(), plot_response_surface(), plot_training_df(), plot_training_df_moran(),
plot_tuning()

Examples

data(plants_rf, plants_rf_spatial)

Plot importance from Random Forest model
plot_importance(plants_rf)

Plot importance from Spatial Random Forest model
plot_importance(plants_rf_spatial)

plot_moran Plots a Moran’s I test of model residuals

Description

Plots the results of spatial autocorrelation tests for a variety of functions within the package. The
x axis represents the Moran’s I estimate, the y axis contains the values of the distance thresholds,
the dot sizes represent the p-values of the Moran’s I estimate, and the red dashed line represents the
theoretical null value of the Moran’s I estimate.

plot_moran 55

Usage

plot_moran(
model,
point.color = viridis::viridis(
100,
option = "F",
direction = -1

),
line.color = "gray30",
option = 1,
ncol = 1,
verbose = TRUE

)

Arguments

model A model fitted with rf(), rf_repeat(), or rf_spatial(), or a data frame
generated by moran(). Default: NULL

point.color Colors of the plotted points. Can be a single color name (e.g. "red4"), a character
vector with hexadecimal codes (e.g. "#440154FF" "#21908CFF" "#FDE725FF"),
or function generating a palette (e.g. viridis::viridis(100)). Default: viridis::viridis(100,
option = "F")

line.color Character string, color of the line produced by ggplot2::geom_smooth(). De-
fault: "gray30"

option Integer, type of plot. If 1 (default) a line plot with Moran’s I and p-values across
distance thresholds is returned. If 2, scatterplots of residuals versus lagged resid-
uals per distance threshold and their corresponding slopes are returned. In mod-
els fitted with rf_repeat(), the residuals and lags of the residuals are computed
from the median residuals across repetitions. Option 2 is disabled if x is a data
frame generated by moran().

ncol Number of columns of the plot. Only relevant when option = 2. Argument
ncol of wrap_plots.

verbose Logical, if TRUE, the resulting plot is printed, Default: TRUE

Value

A ggplot.

See Also

moran(), moran_multithreshold()

Other visualization: plot_evaluation(), plot_importance(), plot_optimization(), plot_residuals_diagnostics(),
plot_response_curves(), plot_response_surface(), plot_training_df(), plot_training_df_moran(),
plot_tuning()

56 plot_optimization

Examples

data(plants_rf)

plot_moran(plants_rf)

plot_moran(plants_rf, option = 2)

plot_optimization Optimization plot of a selection of spatial predictors

Description

Plots optimization data frames produced by select_spatial_predictors_sequential() and
select_spatial_predictors_recursive().

Usage

plot_optimization(
model,
point.color = viridis::viridis(
100,
option = "F",
direction = -1

),
verbose = TRUE

)

Arguments

model A model produced by rf_spatial(), or an optimization data frame produced
by select_spatial_predictors_sequential() or select_spatial_predictors_recursive().

point.color Colors of the plotted points. Can be a single color name (e.g. "red4"), a character
vector with hexadecimal codes (e.g. "#440154FF" "#21908CFF" "#FDE725FF"),
or function generating a palette (e.g. viridis::viridis(100)). Default: viridis::viridis(100,
option = "F", direction = -1)

verbose Logical, if TRUE the plot is printed. Default: TRUE

Details

The function returns NULL invisibly (without plotting) when:

• The method used to fit a model with rf_spatial() is "hengl" (no optimization required)

• No spatial predictors were selected during model fitting

• The model is non-spatial

plot_residuals_diagnostics 57

Value

A ggplot, or NULL invisibly if no optimization data is available.

See Also

Other visualization: plot_evaluation(), plot_importance(), plot_moran(), plot_residuals_diagnostics(),
plot_response_curves(), plot_response_surface(), plot_training_df(), plot_training_df_moran(),
plot_tuning()

Examples

data(plants_rf_spatial)

plot_optimization(plants_rf_spatial)

plot_residuals_diagnostics

Plot residuals diagnostics

Description

Plots normality and autocorrelation tests of model residuals.

Usage

plot_residuals_diagnostics(
model,
point.color = viridis::viridis(100, option = "F"),
line.color = "gray10",
fill.color = viridis::viridis(4, option = "F", alpha = 0.95)[2],
option = 1,
ncol = 1,
verbose = TRUE

)

Arguments

model A model produced by rf(), rf_repeat(), or rf_spatial().

point.color Colors of the plotted points. Can be a single color name (e.g. "red4"), a character
vector with hexadecimal codes (e.g. "#440154FF" "#21908CFF" "#FDE725FF"),
or function generating a palette (e.g. viridis::viridis(100)). Default: viridis::viridis(100,
option = "F")

line.color Character string, color of the line produced by ggplot2::geom_smooth(). De-
fault: "gray30"

fill.color Character string, fill color of the bars produced by ggplot2::geom_histogram().
Default: viridis::viridis(4, option = "F", alpha = 0.95)[2]

58 plot_response_curves

option (argument of plot_moran()) Integer, type of plot. If 1 (default) a line plot with
Moran’s I and p-values across distance thresholds is returned. If 2, scatterplots
of residuals versus lagged residuals per distance threshold and their correspond-
ing slopes are returned. In models fitted with rf_repeat(), the residuals and
lags of the residuals are computed from the median residuals across repetitions.
Option 2 is disabled if x is a data frame generated by moran().

ncol (argument of plot_moran()) Number of columns of the Moran’s I plot if option
= 2.

verbose Logical, if TRUE, the resulting plot is printed, Default: TRUE

Value

A patchwork object.

See Also

Other visualization: plot_evaluation(), plot_importance(), plot_moran(), plot_optimization(),
plot_response_curves(), plot_response_surface(), plot_training_df(), plot_training_df_moran(),
plot_tuning()

Examples

data(plants_rf)

plot_residuals_diagnostics(plants_rf)

plot_response_curves Plots the response curves of a model.

Description

Plots the response curves of models fitted with rf(), rf_repeat(), or rf_spatial().

Usage

plot_response_curves(
model = NULL,
variables = NULL,
quantiles = c(0.1, 0.5, 0.9),
grid.resolution = 200,
line.color = viridis::viridis(length(quantiles), option = "F", end = 0.9),
ncol = 2,
show.data = FALSE,
verbose = TRUE

)

plot_response_curves 59

Arguments

model A model fitted with rf(), rf_repeat(), or rf_spatial().

variables Character vector, names of predictors to plot. If NULL, the most important vari-
ables (importance higher than the median) in x are selected. Default: NULL.

quantiles Numeric vector with values between 0 and 1, argument probs of quantile. Quan-
tiles to set the other variables to. Default: c(0.1, 0.5, 0.9)

grid.resolution

Integer between 20 and 500. Resolution of the plotted curve Default: 100

line.color Character vector with colors, or function to generate colors for the lines repre-
senting quantiles. Must have the same number of colors as quantiles are de-
fined. Default: viridis::viridis(length(quantiles), option = "F", end
= 0.9)

ncol Integer, argument of wrap_plots. Defaults to the rounded squared root of the
number of plots. Default: 2

show.data Logical, if TRUE, the observed data is plotted along with the response curves.
Default: FALSE

verbose Logical, if TRUE the plot is printed. Default: TRUE

Details

All variables that are not plotted in a particular response curve are set to the values of their respective
quantiles, and the response curve for each one of these quantiles is shown in the plot. When the input
model was fitted with rf_repeat() with keep.models = TRUE, then the plot shows the median of
all model runs, and each model run separately as a thinner line. The output list can be plotted all at
once with patchwork::wrap_plots(p) or cowplot::plot_grid(plotlist = p), or one by one
by extracting each plot from the list.

Value

A list with slots named after the selected variables, with one ggplot each.

See Also

plot_response_surface()

Other visualization: plot_evaluation(), plot_importance(), plot_moran(), plot_optimization(),
plot_residuals_diagnostics(), plot_response_surface(), plot_training_df(), plot_training_df_moran(),
plot_tuning()

Examples

data(plants_rf)

plot_response_curves(
model = plants_rf,
variables = "climate_bio1_average"

)

60 plot_response_surface

plot_response_curves(
model = plants_rf,
variables = "climate_bio1_average",
show.data = TRUE

)

plot_response_surface Plots the response surfaces of a random forest model

Description

Plots response surfaces for any given pair of predictors in a rf(), rf_repeat(), or rf_spatial()
model.

Usage

plot_response_surface(
model = NULL,
a = NULL,
b = NULL,
quantiles = 0.5,
grid.resolution = 100,
point.size.range = c(0.5, 2.5),
point.alpha = 1,
fill.color = viridis::viridis(100, option = "F", direction = -1, alpha = 0.9),
point.color = "gray30",
verbose = TRUE

)

Arguments

model A model fitted with rf(), rf_repeat(), or rf_spatial(). Default NULL

a Character string, name of a model predictor. If NULL, the most important variable
in model is selected. Default: NULL

b Character string, name of a model predictor. If NULL, the second most important
variable in model is selected. Default: NULL

quantiles Numeric vector between 0 and 1. Argument probs of the function quantile.
Quantiles to set the other variables to. Default: 0.5

grid.resolution

Integer between 20 and 500. Resolution of the plotted surface Default: 100
point.size.range

Numeric vector of length 2 with the range of point sizes used by geom_point.
Using c(-1, -1) removes the points. Default: c(0.5, 2.5)

point.alpha Numeric between 0 and 1, transparency of the points. Setting it to 0 removes all
points. Default: 1.

plot_training_df 61

fill.color Character vector with hexadecimal codes (e.g. "#440154FF" "#21908CFF" "#FDE725FF"),
or function generating a palette (e.g. viridis::viridis(100)). Default: viridis::viridis(100,
option = "F", direction = -1, alpha = 0.9)

point.color Character vector with a color name (e.g. "red4"). Default: gray30

verbose Logical, if TRUE the plot is printed. Default: TRUE

Details

All variables that are not a or b in a response curve are set to the values of their respective quantiles
to plot the response surfaces. The output list can be plotted all at once with patchwork::wrap_plots(p)
or cowplot::plot_grid(plotlist = p), or one by one by extracting each plot from the list.

Value

A list with slots named after the selected quantiles, each one with a ggplot.

See Also

plot_response_curves()

Other visualization: plot_evaluation(), plot_importance(), plot_moran(), plot_optimization(),
plot_residuals_diagnostics(), plot_response_curves(), plot_training_df(), plot_training_df_moran(),
plot_tuning()

Examples

data(plants_rf)

plot_response_surface(
model = plants_rf,
a = "climate_bio1_average",
b = "human_population",
grid.resolution = 50

)

plot_training_df Scatterplots of a training data frame

Description

Plots the dependent variable against each predictor.

62 plot_training_df

Usage

plot_training_df(
data = NULL,
dependent.variable.name = NULL,
predictor.variable.names = NULL,
ncol = 4,
method = "loess",
point.color = viridis::viridis(100, option = "F"),
line.color = "gray30"

)

Arguments

data Data frame with a response variable and a set of predictors. Default: NULL
dependent.variable.name

Character string with the name of the response variable. Must be in the column
names of data. If the dependent variable is binary with values 1 and 0, the argu-
ment case.weights of ranger is populated by the function case_weights().
Default: NULL

predictor.variable.names

Character vector with the names of the predictive variables. Every element of
this vector must be in the column names of data. Optionally, the result of
auto_cor() or auto_vif() Default: NULL

ncol Number of columns of the plot. Argument ncol of wrap_plots.

method Method for geom_smooth, one of: "lm", "glm", "gam", "loess", or a function,
for example mgcv::gam Default: ’loess’

point.color Colors of the plotted points. Can be a single color name (e.g. "red4"), a character
vector with hexadecimal codes (e.g. "#440154FF" "#21908CFF" "#FDE725FF"),
or function generating a palette (e.g. viridis::viridis(100)). Default: viridis::viridis(100,
option = "F")

line.color Character string, color of the line produced by ggplot2::geom_smooth(). De-
fault: "gray30"

Value

A wrap_plots object.

See Also

Other visualization: plot_evaluation(), plot_importance(), plot_moran(), plot_optimization(),
plot_residuals_diagnostics(), plot_response_curves(), plot_response_surface(), plot_training_df_moran(),
plot_tuning()

Examples

data(
plants_df,
plants_response,

plot_training_df_moran 63

plants_predictors
)

plot_training_df(
data = plants_df,
dependent.variable.name = plants_response,
predictor.variable.names = plants_predictors[1:4]

)

plot_training_df_moran

Moran’s I plots of a training data frame

Description

Plots the the Moran’s I test of the response and the predictors in a training data frame.

Usage

plot_training_df_moran(
data = NULL,
dependent.variable.name = NULL,
predictor.variable.names = NULL,
distance.matrix = NULL,
distance.thresholds = NULL,
fill.color = viridis::viridis(100, option = "F", direction = -1),
point.color = "gray30"

)

Arguments

data Data frame with a response variable and a set of predictors. Default: NULL
dependent.variable.name

Character string with the name of the response variable. Must be in the column
names of data. If the dependent variable is binary with values 1 and 0, the argu-
ment case.weights of ranger is populated by the function case_weights().
Default: NULL

predictor.variable.names

Character vector with the names of the predictive variables. Every element of
this vector must be in the column names of data. Optionally, the result of
auto_cor() or auto_vif() Default: NULL

distance.matrix

Squared matrix with the distances among the records in data. The number of
rows of distance.matrix and data must be the same. If not provided, the
computation of the Moran’s I of the residuals is omitted. Default: NULL

64 plot_tuning

distance.thresholds

Numeric vector, distances below each value are set to 0 on separated copies
of the distance matrix for the computation of Moran’s I at different neigh-
borhood distances. If NULL, it defaults to seq(0, max(distance.matrix)/4,
length.out = 2). Default: NULL

fill.color Character vector with hexadecimal codes (e.g. "#440154FF" "#21908CFF" "#FDE725FF"),
or function generating a palette (e.g. viridis::viridis(100)). Default: viridis::viridis(100,
option = "F", direction = -1)

point.color Character vector with a color name (e.g. "red4"). Default: gray30

Value

A ggplot2 object.

See Also

Other visualization: plot_evaluation(), plot_importance(), plot_moran(), plot_optimization(),
plot_residuals_diagnostics(), plot_response_curves(), plot_response_surface(), plot_training_df(),
plot_tuning()

Examples

data(
plants_df,
plants_response,
plants_predictors,
plants_distance

)

plot_training_df_moran(
data = plants_df,
dependent.variable.name = plants_response,
predictor.variable.names = plants_predictors[1:4],
distance.matrix = plants_distance,
distance.thresholds = c(1000, 2000, 4000)

)

plot_tuning Plots a tuning object produced by rf_tuning()

Description

Plots the tuning of the hyperparameters num.trees, mtry, and min.node.size performed by
rf_tuning().

plot_tuning 65

Usage

plot_tuning(
model,
point.color = viridis::viridis(
100,
option = "F"

),
verbose = TRUE

)

Arguments

model A model fitted with rf_tuning(). Default: NULL

point.color Colors of the plotted points. Can be a single color name (e.g. "red4"), a character
vector with hexadecimal codes (e.g. "#440154FF" "#21908CFF" "#FDE725FF"),
or function generating a palette (e.g. viridis::viridis(100)). Default: viridis::viridis(100,
option = "F")

verbose Logical, if TRUE, the plot is printed. Default: TRUE

Value

A ggplot.

See Also

rf_tuning()

Other visualization: plot_evaluation(), plot_importance(), plot_moran(), plot_optimization(),
plot_residuals_diagnostics(), plot_response_curves(), plot_response_surface(), plot_training_df(),
plot_training_df_moran()

Examples

if(interactive()){
data(
plants_rf,
plants_xy

)

plants_rf_tuned <- rf_tuning(
model = plants_rf,
num.trees = c(25, 50),
mtry = c(5, 10),
min.node.size = c(10, 20),
xy = plants_xy,
repetitions = 5,
n.cores = 1

)

plot_tuning(plants_rf_tuned)

66 prepare_importance_spatial

}

prepare_importance_spatial

Prepares variable importance objects for spatial models

Description

Prepares variable importance data frames and plots for models fitted with rf_spatial().

Usage

prepare_importance_spatial(model)

Arguments

model An importance data frame with spatial predictors, or a model fitted with rf_spatial().

Value

A list with importance data frames in different formats depending on whether the model was fitted
with rf() or rf_repeat().

See Also

Other utilities: .vif_to_df(), auc(), beowulf_cluster(), objects_size(), optimization_function(),
rescale_vector(), root_mean_squared_error(), setup_parallel_execution(), standard_error(),
statistical_mode(), thinning(), thinning_til_n()

Examples

data(plants_rf_spatial)

prepare_importance_spatial(plants_rf_spatial) %>%
head()

print.rf 67

print.rf Custom print method for random forest models

Description

Custom print method for models fitted with rf(), rf_repeat(), and rf_spatial().

Usage

S3 method for class 'rf'
print(x, ...)

Arguments

x A model fitted with rf(), rf_repeat(), or rf_spatial().

... Additional arguments for print methods.

Value

Prints model details to the console.

See Also

print_evaluation(), print_importance(), print_moran(), print_performance()

Other model_info: get_evaluation(), get_importance(), get_importance_local(), get_moran(),
get_performance(), get_predictions(), get_residuals(), get_response_curves(), get_spatial_predictors(),
print_evaluation(), print_importance(), print_moran(), print_performance()

Examples

data(plants_rf)

print(plants_rf)

#or
plants_rf

68 print_evaluation

print_evaluation Prints cross-validation results

Description

Prints the results of an spatial cross-validation performed with rf_evaluate().

Usage

print_evaluation(model)

Arguments

model A model resulting from rf_evaluate().

Value

A table printed to the standard output.

See Also

plot_evaluation(), get_evaluation()

Other model_info: get_evaluation(), get_importance(), get_importance_local(), get_moran(),
get_performance(), get_predictions(), get_residuals(), get_response_curves(), get_spatial_predictors(),
print.rf(), print_importance(), print_moran(), print_performance()

Examples

if(interactive()){

data(
plants_rf,
plants_xy

)

plants_rf <- rf_evaluate(
model = plants_rf,
xy = plants_xy,
repetitions = 5,
n.cores = 1

)

print_evaluation(plants_rf)

}

print_importance 69

print_importance Prints variable importance

Description

Prints variable importance scores from rf, rf_repeat, and rf_spatial models.

Usage

print_importance(
model,
verbose = TRUE

)

Arguments

model A model fitted with rf, rf_repeat, or rf_spatial.

verbose Logical, if TRUE, variable importance is returned. Default: TRUE

Value

A table printed to the standard output.

See Also

plot_importance(), get_importance()

Other model_info: get_evaluation(), get_importance(), get_importance_local(), get_moran(),
get_performance(), get_predictions(), get_residuals(), get_response_curves(), get_spatial_predictors(),
print.rf(), print_evaluation(), print_moran(), print_performance()

Examples

data(plants_rf)

print_importance(plants_rf)

70 print_moran

print_moran Prints results of a Moran’s I test

Description

Prints the results of a Moran’s I test on the residuals of a model.

Usage

print_moran(
model,
caption = NULL,
verbose = TRUE

)

Arguments

model A model fitted with rf(), rf_repeat(), or rf_spatial().

caption Character, caption of the output table, Default: NULL

verbose Logical, if TRUE, the resulting table is printed into the console, Default: TRUE

Value

Prints a table in the console using the huxtable package.

See Also

moran(), moran_multithreshold(), get_moran(), plot_moran()

Other model_info: get_evaluation(), get_importance(), get_importance_local(), get_moran(),
get_performance(), get_predictions(), get_residuals(), get_response_curves(), get_spatial_predictors(),
print.rf(), print_evaluation(), print_importance(), print_performance()

Examples

data(plants_rf)

print_moran(plants_rf)

print_performance 71

print_performance print_performance

Description

Prints the performance slot of a model fitted with rf(), rf_repeat(), or rf_spatial(). For
models fitted with rf_repeat() it shows the median and the median absolute deviation of each
performance measure.

Usage

print_performance(model)

Arguments

model Model fitted with rf(), rf_repeat(), or rf_spatial().

Value

Prints model performance scores to the console.

See Also

print_performance(), get_performance()

Other model_info: get_evaluation(), get_importance(), get_importance_local(), get_moran(),
get_performance(), get_predictions(), get_residuals(), get_response_curves(), get_spatial_predictors(),
print.rf(), print_evaluation(), print_importance(), print_moran()

Examples

data(plants_rf)

print_performance(plants_rf)

rank_spatial_predictors

Ranks spatial predictors

72 rank_spatial_predictors

Description

Ranks spatial predictors generated by mem_multithreshold() or pca_multithreshold() by their
effect in reducing the Moran’s I of the model residuals (ranking.method = "effect"), or by their
own Moran’s I (ranking.method = "moran").

In the former case, one model of the type y ~ predictors + spatial_predictor_X is fitted per
spatial predictor, and the Moran’s I of this model’s residuals is compared with the one of the model
without spatial predictors (y ~ predictors), to finally rank the spatial predictor from maximum to
minimum difference in Moran’s I.

In the latter case, the spatial predictors are ordered by their Moran’s I alone (this is the faster option).

In both cases, spatial predictors that are redundant with others at a Pearson correlation > 0.5 and
spatial predictors with no effect (no reduction of Moran’s I or Moran’s I of the spatial predictor
equal or lower than 0) are removed.

This function has been designed to be used internally by rf_spatial() rather than directly by a
user.

Usage

rank_spatial_predictors(
data = NULL,
dependent.variable.name = NULL,
predictor.variable.names = NULL,
distance.matrix = NULL,
distance.thresholds = NULL,
ranger.arguments = NULL,
spatial.predictors.df = NULL,
ranking.method = c("moran", "effect"),
reference.moran.i = 1,
verbose = FALSE,
n.cores = parallel::detectCores() - 1,
cluster = NULL

)

Arguments

data Data frame with a response variable and a set of predictors. Default: NULL

dependent.variable.name

Character string with the name of the response variable. Must be in the column
names of data. Default: NULL

predictor.variable.names

Character vector with the names of the predictive variables. Every element of
this vector must be in the column names of data. Default: NULL

distance.matrix

Squared matrix with the distances among the records in data. The number of
rows of distance.matrix and data must be the same. If not provided, the
computation of the Moran’s I of the residuals is omitted. Default: NULL

rank_spatial_predictors 73

distance.thresholds

Numeric vector with neighborhood distances. All distances in the distance ma-
trix below each value in dustance.thresholds are set to 0 for the computation
of Moran’s I. If NULL, it defaults to seq(0, max(distance.matrix), length.out = 4).
Default: NULL

ranger.arguments

List with ranger arguments. See rf or rf_repeat for further details.

spatial.predictors.df

Data frame of spatial predictors.

ranking.method Character, method used by to rank spatial predictors. The method "effect" ranks
spatial predictors according how much each predictor reduces Moran’s I of the
model residuals, while the method "moran" ranks them by their own Moran’s I.
Default: "moran".

reference.moran.i

Moran’s I of the residuals of the model without spatial predictors. Default: 1

verbose Logical, ff TRUE, messages and plots generated during the execution of the func-
tion are displayed, Default: TRUE

n.cores Integer, number of cores to use for parallel execution. Creates a socket cluster
with parallel::makeCluster(), runs operations in parallel with foreach and
%dopar%, and stops the cluster with parallel::clusterStop() when the job
is done. Default: parallel::detectCores() - 1

cluster A cluster definition generated with parallel::makeCluster(). If provided,
overrides n.cores. When cluster = NULL (default value), and model is pro-
vided, the cluster in model, if any, is used instead. If this cluster is NULL, then
the function uses n.cores instead. The function does not stop a provided clus-
ter, so it should be stopped with parallel::stopCluster() afterwards. The
cluster definition is stored in the output list under the name "cluster" so it can
be passed to other functions via the model argument, or using the %>% pipe.
Default: NULL

Value

A list with four slots:

• method: Character, name of the method used to rank the spatial predictors.

• criteria: Data frame with two different configurations depending on the ranking method. If
ranking.method = "effect", the columns contain the names of the spatial predictors, the r-
squared of the model, the Moran’s I of the model residuals, the difference between the Moran’s
I of the model including the given spatial predictor, and the Moran’s I of the model fitted
without spatial predictors, and the interpretation of the Moran’s I value. If ranking.method =
"moran", only the name of the spatial predictor and it’s Moran’s I are in the output data frame.

• ranking: Ordered character vector with the names of the spatial predictors selected.

• spatial.predictors.df: data frame with the selected spatial predictors in the order of the
ranking.

74 rank_spatial_predictors

See Also

Other spatial_analysis: filter_spatial_predictors(), mem(), mem_multithreshold(), moran(),
moran_multithreshold(), pca(), pca_multithreshold(), residuals_diagnostics(), residuals_test(),
select_spatial_predictors_recursive(), select_spatial_predictors_sequential()

Examples

if(interactive()){

data(
plants_df,
plants_response,
plants_distance

)

#subset to speed up example
idx <- 50:90
plants_distance_sub <- plants_distance[idx, idx]

y <- mem(
distance.matrix = plants_distance_sub,
distance.threshold = 1000

)

#rank spatial predictors by Moran's I
y_rank <- rank_spatial_predictors(

distance.matrix = plants_distance_sub,
distance.thresholds = 1000,
spatial.predictors.df = y,
ranking.method = "moran",
n.cores = 1

)

y_rank$criteria
y_rank$ranking

#rank spatial predictors by association with response
y_rank <- rank_spatial_predictors(

data = plants_df[idx,],
dependent.variable.name = plants_response,
distance.matrix = plants_distance_sub,
distance.thresholds = 1000,
spatial.predictors.df = y,
ranking.method = "effect",
n.cores = 1

)

y_rank$criteria
y_rank$ranking

}

rescale_vector 75

rescale_vector Rescales a numeric vector into a new range

Description

Rescales a numeric vector to a new range.

Usage

rescale_vector(
x = NULL,
new.min = 0,
new.max = 1,
integer = FALSE

)

Arguments

x Numeric vector. Default: NULL

new.min New minimum value. Default: 0

new.max New maximum value. Default: 1

integer Logical, if TRUE, coerces the output to integer. Default: FALSE

Value

A numeric vector of the same length as x, but with its values rescaled between new.min and
new.max.

See Also

Other utilities: .vif_to_df(), auc(), beowulf_cluster(), objects_size(), optimization_function(),
prepare_importance_spatial(), root_mean_squared_error(), setup_parallel_execution(),
standard_error(), statistical_mode(), thinning(), thinning_til_n()

Examples

y <- rescale_vector(
x = rnorm(100),
new.min = 0,
new.max = 100,
integer = TRUE

)
y

76 residuals_diagnostics

residuals_diagnostics Normality test of a numeric vector

Description

Applies a Shapiro-Wilks test to a numeric vector, and plots the qq plot and the histogram.

Usage

residuals_diagnostics(residuals, predictions)

Arguments

residuals Numeric vector, model residuals.

predictions Numeric vector, model predictions.

Details

The function shapiro.test() has a hard limit of 5000 cases. If the model residuals have more than
5000 cases, then sample(x = residuals, size = 5000) is applied to the model residuals before the
test.

Value

A list with four slots:
/item w W statistic returned by shapiro.test(). /item p.value p-value of the Shapiro test.
/item interpretation Character vector, one of "x is normal", "x is not normal". /item plot
A patchwork plot with the qq plot and the histogram of x.

See Also

ggplot,aes,geom_qq_line,ggtheme,labs,geom_freqpoly,geom_abline plot_annotation

Other spatial_analysis: filter_spatial_predictors(), mem(), mem_multithreshold(), moran(),
moran_multithreshold(), pca(), pca_multithreshold(), rank_spatial_predictors(), residuals_test(),
select_spatial_predictors_recursive(), select_spatial_predictors_sequential()

Examples

data(plants_rf)

y <- residuals_diagnostics(
residuals = get_residuals(plants_rf),
predictions = get_predictions(plants_rf)

)
y

residuals_test 77

residuals_test Normality test of a numeric vector

Description

Applies a Shapiro-Wilks test to a numeric vector, and returns a list with the statistic W, its p-value,
and a character string with the interpretation.

Usage

residuals_test(residuals)

Arguments

residuals Numeric vector, model residuals.

Value

A list with four slots:
/item w W statistic returned by shapiro.test(). /item p.value p-value of the Shapiro test.
/item interpretation Character vector, one of "x is normal", "x is not normal". /item plot
A patchwork plot with the qq plot and the histogram of x.

See Also

Other spatial_analysis: filter_spatial_predictors(), mem(), mem_multithreshold(), moran(),
moran_multithreshold(), pca(), pca_multithreshold(), rank_spatial_predictors(), residuals_diagnostics(),
select_spatial_predictors_recursive(), select_spatial_predictors_sequential()

Examples

residuals_test(residuals = runif(100))

rf Random forest models with Moran’s I test of the residuals

Description

Fits a random forest model using ranger and extends it with spatial diagnostics: residual au-
tocorrelation (Moran’s I) at multiple distance thresholds, performance metrics (RMSE, NRMSE
via root_mean_squared_error()), and variable importance scores computed on scaled data (via
scale).

78 rf

Usage

rf(
data = NULL,
dependent.variable.name = NULL,
predictor.variable.names = NULL,
distance.matrix = NULL,
distance.thresholds = NULL,
xy = NULL,
ranger.arguments = NULL,
scaled.importance = FALSE,
seed = 1,
verbose = TRUE,
n.cores = parallel::detectCores() - 1,
cluster = NULL

)

Arguments

data Data frame with a response variable and a set of predictors. Default: NULL
dependent.variable.name

Character string with the name of the response variable. Must be a column name
in data. For binary response variables (0/1), case weights are automatically
computed using case_weights() to balance classes. Default: NULL

predictor.variable.names

Character vector with predictor variable names. All names must be columns
in data. Alternatively, accepts the output of auto_cor() or auto_vif() for
automated variable selection. Default: NULL

distance.matrix

Square matrix with pairwise distances between observations in data. Must have
the same number of rows as data. If NULL, spatial autocorrelation of residuals
is not computed. Default: NULL

distance.thresholds

Numeric vector of distance thresholds for spatial autocorrelation analysis. For
each threshold, distances below that value are set to zero when computing Moran’s
I. If NULL, defaults to seq(0, max(distance.matrix), length.out = 4). De-
fault: NULL

xy Data frame or matrix with two columns containing coordinates, named "x" and
"y". Not used by this function but stored in the model for use by rf_evaluate()
and rf_tuning(). Default: NULL

ranger.arguments

Named list with ranger arguments. Arguments for this function can also be
passed here. The default importance method is ’permutation’ instead of ranger’s
default ’none’. The x, y, and formula arguments are not supported. See ranger
help for available arguments. Default: NULL

scaled.importance

If TRUE, variable importance is computed on scaled data using scale, making
importance scores comparable across models with different predictor units. De-
fault: FALSE

rf 79

seed Random seed for reproducibility. Default: 1

verbose If TRUE, display messages and plots during execution. Default: TRUE

n.cores Number of cores for parallel execution. Default: parallel::detectCores() -
1

cluster Cluster object from parallel::makeCluster(). Not used by this function but
stored in the model for use in downstream functions. Default: NULL

Details

See ranger documentation for additional details. The formula interface is supported via ranger.arguments,
but variable interactions are not permitted. For feature engineering including interactions, see
the_feature_engineer().

Value

A ranger model object with additional slots:

• ranger.arguments: Arguments used to fit the model.

• importance: List with global importance data frame (predictors ranked by importance), im-
portance plot, and local importance scores (per-observation difference in accuracy between
permuted and non-permuted predictors, based on out-of-bag data).

• performance: Model performance metrics including R-squared (out-of-bag and standard),
pseudo R-squared, RMSE, and NRMSE.

• residuals: Model residuals with normality diagnostics (residuals_diagnostics()) and
spatial autocorrelation (moran_multithreshold()).

See Also

Other main_models: rf_spatial()

Examples

data(
plants_df,
plants_response,
plants_predictors,
plants_distance

)

m <- rf(
data = plants_df,
dependent.variable.name = plants_response,
predictor.variable.names = plants_predictors,
distance.matrix = plants_distance,
distance.thresholds = c(100, 1000, 2000),
ranger.arguments = list(
num.trees = 50,
min.node.size = 20

),

80 rf_compare

verbose = FALSE,
n.cores = 1

)

class(m)
#variable importance
m$importance$per.variable
m$importance$per.variable.plot

#model performance
m$performance

#autocorrelation of residuals
m$residuals$autocorrelation$per.distance
m$residuals$autocorrelation$plot

#model predictions
m$predictions$values

#predictions for new data (using stats::predict)
y <- stats::predict(

object = m,
data = plants_df[1:5,],
type = "response"

)$predictions

#alternative: pass arguments via ranger.arguments list
args <- list(

data = plants_df,
dependent.variable.name = plants_response,
predictor.variable.names = plants_predictors,
distance.matrix = plants_distance,
distance.thresholds = c(100, 1000, 2000),
num.trees = 50,
min.node.size = 20,
num.threads = 1

)

m <- rf(
ranger.arguments = args,
verbose = FALSE

)

rf_compare Compares models via spatial cross-validation

Description

Uses rf_evaluate() to compare the performance of several models on independent spatial folds
via spatial cross-validation.

rf_compare 81

Usage

rf_compare(
models = NULL,
xy = NULL,
repetitions = 30,
training.fraction = 0.75,
metrics = c("r.squared", "pseudo.r.squared", "rmse", "nrmse", "auc"),
distance.step = NULL,
distance.step.x = NULL,
distance.step.y = NULL,
fill.color = viridis::viridis(100, option = "F", direction = -1, alpha = 0.8),
line.color = "gray30",
seed = 1,
verbose = TRUE,
n.cores = parallel::detectCores() - 1,
cluster = NULL

)

Arguments

models Named list with models resulting from rf(), rf_spatial(), rf_tuning(), or
rf_evaluate(). Example: models = list(a = model.a, b = model.b). De-
fault: NULL

xy Data frame or matrix with two columns containing coordinates and named "x"
and "y". Default: NULL

repetitions Integer, number of spatial folds to use during cross-validation. Must be lower
than the total number of rows available in the model’s data. Default: 30

training.fraction

Proportion between 0.5 and 0.9 indicating the proportion of records to be used
as training set during spatial cross-validation. Default: 0.75

metrics Character vector, names of the performance metrics selected. The possible
values are: "r.squared" (cor(obs, pred) ^ 2), "pseudo.r.squared" (cor(obs,
pred)), "rmse" (sqrt(sum((obs - pred)^2)/length(obs))), "nrmse" (rmse/(quantile(obs,
0.75) - quantile(obs, 0.25))). Default: c("r.squared", "pseudo.r.squared",
"rmse", "nrmse")

distance.step Numeric, argument distance.step of thinning_til_n(). distance step used
during the selection of the centers of the training folds. These fold centers
are selected by thinning the data until a number of folds equal or lower than
repetitions is reached. Its default value is 1/1000th the maximum distance
within records in xy. Reduce it if the number of training folds is lower than
expected.

distance.step.x

Numeric, argument distance.step.x of make_spatial_folds(). Distance
step used during the growth in the x axis of the buffers defining the training
folds. Default: NULL (1/1000th the range of the x coordinates).

82 rf_compare

distance.step.y

Numeric, argument distance.step.x of make_spatial_folds(). Distance
step used during the growth in the y axis of the buffers defining the training
folds. Default: NULL (1/1000th the range of the y coordinates).

fill.color Character vector with hexadecimal codes (e.g. "#440154FF" "#21908CFF" "#FDE725FF"),
or function generating a palette (e.g. viridis::viridis(100)). Default: viridis::viridis(100,
option = "F", direction = -1)

line.color Character string, color of the line produced by ggplot2::geom_smooth(). De-
fault: "gray30"

seed Integer, random seed to facilitate reproduciblity. If set to a given number, the
results of the function are always the same. Default: 1.

verbose Logical. If TRUE, messages and plots generated during the execution of the func-
tion are displayed, Default: TRUE

n.cores Integer, number of cores to use for parallel execution. Creates a socket cluster
with parallel::makeCluster(), runs operations in parallel with foreach and
%dopar%, and stops the cluster with parallel::clusterStop() when the job
is done. Default: parallel::detectCores() - 1

cluster A cluster definition generated with parallel::makeCluster(). If provided,
overrides n.cores. When cluster = NULL (default value), and model is pro-
vided, the cluster in model, if any, is used instead. If this cluster is NULL, then
the function uses n.cores instead. The function does not stop a provided clus-
ter, so it should be stopped with parallel::stopCluster() afterwards. The
cluster definition is stored in the output list under the name "cluster" so it can
be passed to other functions via the model argument, or using the %>% pipe.
Default: NULL

Value

A list with three slots:

• comparison.df: Data frame with one performance value per spatial fold, metric, and model.

• spatial.folds: List with the indices of the training and testing records for each evaluation
repetition.

• plot: Violin-plot of comparison.df.

See Also

rf_evaluate()

Other model_workflow: rf_evaluate(), rf_importance(), rf_repeat(), rf_tuning()

Examples

if(interactive()){

data(
plants_rf,
plants_rf_spatial,

rf_evaluate 83

plants_xy
)

comparison <- rf_compare(
models = list(
`Non spatial` = plants_rf,
Spatial = plants_rf_spatial

),
repetitions = 5,
xy = plants_xy,
metrics = "rmse",
n.cores = 1

)

}

rf_evaluate Evaluates random forest models with spatial cross-validation

Description

Evaluates the performance of random forest on unseen data over independent spatial folds.

Usage

rf_evaluate(
model = NULL,
xy = NULL,
repetitions = 30,
training.fraction = 0.75,
metrics = c("r.squared", "pseudo.r.squared", "rmse", "nrmse", "auc"),
distance.step = NULL,
distance.step.x = NULL,
distance.step.y = NULL,
grow.testing.folds = FALSE,
seed = 1,
verbose = TRUE,
n.cores = parallel::detectCores() - 1,
cluster = NULL

)

Arguments

model Model fitted with rf(), rf_repeat(), or rf_spatial().

xy Data frame or matrix with two columns containing coordinates and named "x"
and "y". If NULL, the function will throw an error. Default: NULL

84 rf_evaluate

repetitions Integer, number of spatial folds to use during cross-validation. Must be lower
than the total number of rows available in the model’s data. Default: 30

training.fraction

Proportion between 0.5 and 0.9 indicating the proportion of records to be used
as training set during spatial cross-validation. Default: 0.75

metrics Character vector, names of the performance metrics selected. The possible
values are: "r.squared" (cor(obs, pred) ^ 2), "pseudo.r.squared" (cor(obs,
pred)), "rmse" (sqrt(sum((obs - pred)^2)/length(obs))), "nrmse" (rmse/(quantile(obs,
0.75) - quantile(obs, 0.25))), and "auc" (only for binary responses with
values 1 and 0). Default: c("r.squared", "pseudo.r.squared", "rmse",
"nrmse")

distance.step Numeric, argument distance.step of thinning_til_n(). distance step used
during the selection of the centers of the training folds. These fold centers
are selected by thinning the data until a number of folds equal or lower than
repetitions is reached. Its default value is 1/1000th the maximum distance
within records in xy. Reduce it if the number of training folds is lower than
expected.

distance.step.x

Numeric, argument distance.step.x of make_spatial_folds(). Distance
step used during the growth in the x axis of the buffers defining the training
folds. Default: NULL (1/1000th the range of the x coordinates).

distance.step.y

Numeric, argument distance.step.x of make_spatial_folds(). Distance
step used during the growth in the y axis of the buffers defining the training
folds. Default: NULL (1/1000th the range of the y coordinates).

grow.testing.folds

Logic. By default, this function grows contiguous training folds to keep the spa-
tial structure of the data as intact as possible. However, when setting grow.testing.folds
= TRUE, the argument training.fraction is set to 1 - training.fraction,
and the training and testing folds are switched. This option might be useful
when the training data has a spatial structure that does not match well with the
default behavior of the function. Default: FALSE

seed Integer, random seed to facilitate reproduciblity. If set to a given number, the
results of the function are always the same. Default: 1.

verbose Logical. If TRUE, messages and plots generated during the execution of the func-
tion are displayed, Default: TRUE

n.cores Integer, number of cores to use for parallel execution. Creates a socket cluster
with parallel::makeCluster(), runs operations in parallel with foreach and
%dopar%, and stops the cluster with parallel::clusterStop() when the job
is done. Default: parallel::detectCores() - 1

cluster A cluster definition generated with parallel::makeCluster(). If provided,
overrides n.cores. When cluster = NULL (default value), and model is pro-
vided, the cluster in model, if any, is used instead. If this cluster is NULL, then
the function uses n.cores instead. The function does not stop a provided clus-
ter, so it should be stopped with parallel::stopCluster() afterwards. The
cluster definition is stored in the output list under the name "cluster" so it can

rf_evaluate 85

be passed to other functions via the model argument, or using the %>% pipe.
Default: NULL

Details

The evaluation algorithm works as follows: the number of repetitions and the input dataset
(stored in model$ranger.arguments$data) are used as inputs for the function thinning_til_n(),
that applies thinning() to the input data until as many cases as repetitions are left, and as sepa-
rated as possible. Each of these remaining records will be used as a "fold center". From that point,
the fold grows, until a number of points equal (or close) to training.fraction is reached. The
indices of the records within the grown spatial fold are stored as "training" in the output list, and the
remaining ones as "testing". Then, for each spatial fold, a "training model" is fitted using the cases
corresponding with the training indices, and predicted over the cases corresponding with the testing
indices. The model predictions on the "unseen" data are compared with the observations, and the
performance measures (R squared, pseudo R squared, RMSE and NRMSE) computed.

Value

A model of the class "rf_evaluate" with a new slot named "evaluation", that is a list with the follow-
ing slots:

• training.fraction: Value of the argument training.fraction.

• spatial.folds: Result of applying make_spatial_folds() on the data coordinates. It is
a list with as many slots as repetitions are indicated by the user. Each slot has two slots
named "training" and "testing", each one having the indices of the cases used on the training
and testing models.

• per.fold: Data frame with the evaluation results per spatial fold (or repetition). It contains
the ID of each fold, it’s central coordinates, the number of training and testing cases, and
the training and testing performance measures: R squared, pseudo R squared (cor(observed,
predicted)), rmse, and normalized rmse.

• per.model: Same data as above, but organized per fold and model ("Training", "Testing", and
"Full").

• aggregated: Same data, but aggregated by model and performance measure.

See Also

Other model_workflow: rf_compare(), rf_importance(), rf_repeat(), rf_tuning()

Examples

if(interactive()){

data(
plants_rf,
plants_xy

)

plants_rf <- rf_evaluate(
model = plants_rf,

86 rf_importance

xy = plants_xy,
repetitions = 5,
n.cores = 1

)

plot_evaluation(plants_rf, notch = FALSE)

print_evaluation(plants_rf)

get_evaluation(plants_rf)

}

rf_importance Contribution of each predictor to model transferability

Description

Evaluates the contribution of the predictors to model transferability via spatial cross-validation.
The function returns the median increase or decrease in a given evaluation metric (R2, pseudo R2,
RMSE, nRMSE, or AUC) when a variable is introduced in a model, by comparing and evaluating
via spatial cross-validation models with and without the given variable. This function was devised
to provide importance scores that would be less sensitive to spatial autocorrelation than those com-
puted internally by random forest on the out-of-bag data. This function is experimental.

Usage

rf_importance(
model = NULL,
xy = NULL,
repetitions = 30,
training.fraction = 0.75,
metric = c("r.squared", "pseudo.r.squared", "rmse", "nrmse", "auc"),
distance.step = NULL,
distance.step.x = NULL,
distance.step.y = NULL,
fill.color = viridis::viridis(100, option = "F", direction = -1, alpha = 1, end = 0.9),
line.color = "white",
seed = 1,
verbose = TRUE,
n.cores = parallel::detectCores() - 1,
cluster = NULL

)

Arguments

model Model fitted with rf() and/or rf_spatial(). The function doesn’t work with
models fitted with rf_repeat(). Default: NULL

rf_importance 87

xy Data frame or matrix with two columns containing coordinates and named "x"
and "y". If NULL, the function will throw an error. Default: NULL

repetitions Integer, number of spatial folds to use during cross-validation. Must be lower
than the total number of rows available in the model’s data. Default: 30

training.fraction

Proportion between 0.5 and 0.9 indicating the proportion of records to be used
as training set during spatial cross-validation. Default: 0.75

metric Character, nams of the performance metric to use. The possible values are:
"r.squared" (cor(obs, pred) ^ 2), "pseudo.r.squared" (cor(obs, pred)), "rmse"
(sqrt(sum((obs - pred)^2)/length(obs))), "nrmse" (rmse/(quantile(obs,
0.75) - quantile(obs, 0.25))), and "auc" (only for binary responses with
values 1 and 0). Default: "r.squared"

distance.step Numeric, argument distance.step of thinning_til_n(). distance step used
during the selection of the centers of the training folds. These fold centers
are selected by thinning the data until a number of folds equal or lower than
repetitions is reached. Its default value is 1/1000th the maximum distance
within records in xy. Reduce it if the number of training folds is lower than
expected.

distance.step.x

Numeric, argument distance.step.x of make_spatial_folds(). Distance
step used during the growth in the x axis of the buffers defining the training
folds. Default: NULL (1/1000th the range of the x coordinates).

distance.step.y

Numeric, argument distance.step.x of make_spatial_folds(). Distance
step used during the growth in the y axis of the buffers defining the training
folds. Default: NULL (1/1000th the range of the y coordinates).

fill.color Character vector with hexadecimal codes (e.g. "#440154FF" "#21908CFF" "#FDE725FF"),
or function generating a palette (e.g. viridis::viridis(100)). Default: viridis::viridis(100,
option = "F", direction = -1, alpha = 0.8, end = 0.9)

line.color Character string, color of the line produced by ggplot2::geom_smooth(). De-
fault: "white"

seed Integer, random seed to facilitate reproduciblity. If set to a given number, the
results of the function are always the same. Default: 1.

verbose Logical. If TRUE, messages and plots generated during the execution of the func-
tion are displayed, Default: TRUE

n.cores Integer, number of cores to use for parallel execution. Creates a socket cluster
with parallel::makeCluster(), runs operations in parallel with foreach and
%dopar%, and stops the cluster with parallel::clusterStop() when the job
is done. Default: parallel::detectCores() - 1

cluster A cluster definition generated with parallel::makeCluster(). If provided,
overrides n.cores. When cluster = NULL (default value), and model is pro-
vided, the cluster in model, if any, is used instead. If this cluster is NULL, then
the function uses n.cores instead. The function does not stop a provided clus-
ter, so it should be stopped with parallel::stopCluster() afterwards. The
cluster definition is stored in the output list under the name "cluster" so it can
be passed to other functions via the model argument, or using the %>% pipe.
Default: NULL

88 rf_repeat

Value

The input model with new data in its "importance" slot. The new importance scores are included in
the data frame model$importance$per.variable, under the column names "importance.cv" (me-
dian contribution to transferability over spatial cross-validation repetitions), "importance.cv.mad"
(median absolute deviation of the performance scores over spatial cross-validation repetitions), "im-
portance.cv.percent" ("importance.cv" expressed as a percent, taking the full model’s performance
as baseline), and "importance.cv.mad" (median absolute deviation of "importance.cv"). The plot is
stored as "cv.per.variable.plot".

See Also

Other model_workflow: rf_compare(), rf_evaluate(), rf_repeat(), rf_tuning()

Examples

if(interactive()){
data(plants_rf)

m_importance <- rf_importance(
model = plants_rf,
repetitions = 5

)
}

rf_repeat Fits several random forest models on the same data

Description

Fits several random forest models on the same data in order to capture the effect of the algo-
rithm’s stochasticity on the variable importance scores, predictions, residuals, and performance
measures. The function relies on the median to aggregate performance and importance values
across repetitions. It is recommended to use it after a model is fitted (rf() or rf_spatial()),
tuned (rf_tuning()), and/or evaluated (rf_evaluate()). This function is designed to be used af-
ter fitting a model with rf() or rf_spatial(), tuning it with rf_tuning() and evaluating it with
rf_evaluate().

Usage

rf_repeat(
model = NULL,
data = NULL,
dependent.variable.name = NULL,
predictor.variable.names = NULL,
distance.matrix = NULL,
distance.thresholds = NULL,

rf_repeat 89

xy = NULL,
ranger.arguments = NULL,
scaled.importance = FALSE,
repetitions = 10,
keep.models = TRUE,
seed = 1,
verbose = TRUE,
n.cores = parallel::detectCores() - 1,
cluster = NULL

)

Arguments

model A model fitted with rf(). If provided, the data and ranger arguments are taken
directly from the model definition (stored in model$ranger.arguments). De-
fault: NULL

data Data frame with a response variable and a set of predictors. Default: NULL
dependent.variable.name

Character string with the name of the response variable. Must be in the column
names of data. If the dependent variable is binary with values 1 and 0, the argu-
ment case.weights of ranger is populated by the function case_weights().
Default: NULL

predictor.variable.names

Character vector with the names of the predictive variables. Every element of
this vector must be in the column names of data. Default: NULL

distance.matrix

Squared matrix with the distances among the records in data. The number of
rows of distance.matrix and data must be the same. If not provided, the
computation of the Moran’s I of the residuals is omitted. Default: NULL

distance.thresholds

Numeric vector with neighborhood distances. All distances in the distance ma-
trix below each value in dustance.thresholds are set to 0 for the computation
of Moran’s I. If NULL, it defaults to seq(0, max(distance.matrix), length.out = 4).
Default: NULL

xy (optional) Data frame or matrix with two columns containing coordinates and
named "x" and "y". It is not used by this function, but it is stored in the slot
ranger.arguments$xy of the model, so it can be used by rf_evaluate() and
rf_tuning(). Default: NULL

ranger.arguments

Named list with ranger arguments (other arguments of this function can also go
here). All ranger arguments are set to their default values except for ’impor-
tance’, that is set to ’permutation’ rather than ’none’. Please, consult the help
file of ranger if you are not familiar with the arguments of this function.

scaled.importance

Logical. If TRUE, and ’importance = "permutation’, the function scales ’data’
with scale and fits a new model to compute scaled variable importance scores.
Default: FALSE

90 rf_repeat

repetitions Integer, number of random forest models to fit. Default: 10

keep.models Logical, if TRUE, the fitted models are returned in the models slot. Set to FALSE if
the accumulation of models is creating issues with the RAM memory available.
Default: TRUE.

seed Integer, random seed to facilitate reproduciblity. If set to a given number, the
results of the function are always the same. Default: 1.

verbose Logical, ff TRUE, messages and plots generated during the execution of the func-
tion are displayed, Default: TRUE

n.cores Integer, number of cores to use for parallel execution. Creates a socket cluster
with parallel::makeCluster(), runs operations in parallel with foreach and
%dopar%, and stops the cluster with parallel::clusterStop() when the job
is done. Default: parallel::detectCores() - 1

cluster A cluster definition generated with parallel::makeCluster(). If provided,
overrides n.cores. When cluster = NULL (default value), and model is pro-
vided, the cluster in model, if any, is used instead. If this cluster is NULL, then
the function uses n.cores instead. The function does not stop a provided clus-
ter, so it should be stopped with parallel::stopCluster() afterwards. The
cluster definition is stored in the output list under the name "cluster" so it can
be passed to other functions via the model argument, or using the %>% pipe.
Default: NULL

Value

A ranger model with several new slots:

• ranger.arguments: Stores the values of the arguments used to fit the ranger model.

• importance: A list containing a data frame with the predictors ordered by their importance,
a ggplot showing the importance values, and local importance scores.

• performance: out-of-bag performance scores: R squared, pseudo R squared, RMSE, and
normalized RMSE (NRMSE).

• pseudo.r.squared: computed as the correlation between the observations and the predic-
tions.

• residuals: residuals, normality test of the residuals computed with residuals_test(), and
spatial autocorrelation of the residuals computed with moran_multithreshold().

See Also

Other model_workflow: rf_compare(), rf_evaluate(), rf_importance(), rf_tuning()

Examples

if(interactive()){

data(plants_rf)

m_repeat <- rf_repeat(
model = plants_rf,

rf_spatial 91

repetitions = 5,
n.cores = 1

)

#performance scores across repetitions
m_repeat$performance
print_performance(m_repeat)

#variable importance
plot_importance(m_repeat)

#response curves
plot_response_curves(

model = m_repeat,
variables = "climate_bio1_average",
quantiles = 0.5

)

}

rf_spatial Fits spatial random forest models

Description

Fits spatial random forest models using different methods to generate, rank, and select spatial pre-
dictors acting as proxies of spatial processes not considered by the non-spatial predictors. The end
goal is providing the model with information about the spatial structure of the data to minimize
the spatial correlation (Moran’s I) of the model residuals and generate honest variable importance
scores.

Usage

rf_spatial(
model = NULL,
data = NULL,
dependent.variable.name = NULL,
predictor.variable.names = NULL,
distance.matrix = NULL,
distance.thresholds = NULL,
xy = NULL,
ranger.arguments = NULL,
scaled.importance = TRUE,
method = c("mem.moran.sequential", "mem.effect.sequential", "mem.effect.recursive",

"hengl", "hengl.moran.sequential", "hengl.effect.sequential",
"hengl.effect.recursive", "pca.moran.sequential", "pca.effect.sequential",
"pca.effect.recursive"),

max.spatial.predictors = NULL,

92 rf_spatial

weight.r.squared = NULL,
weight.penalization.n.predictors = NULL,
seed = 1,
verbose = TRUE,
n.cores = parallel::detectCores() - 1,
cluster = NULL

)

Arguments

model A model fitted with rf(). If used, the arguments data, dependent.variable.name,
predictor.variable.names, distance.matrix, distance.thresholds, ranger.arguments,
and scaled.importance are taken directly from the model definition. Default:
NULL

data Data frame with a response variable and a set of predictors. Default: NULL
dependent.variable.name

Character string with the name of the response variable. Must be in the column
names of data. If the dependent variable is binary with values 1 and 0, the argu-
ment case.weights of ranger is populated by the function case_weights().
Default: NULL

predictor.variable.names

Character vector with the names of the predictive variables. Every element of
this vector must be in the column names of data. Default: NULL

distance.matrix

Squared matrix with the distances among the records in data. The number of
rows of distance.matrix and data must be the same. If not provided, the
computation of the Moran’s I of the residuals is omitted. Default: NULL

distance.thresholds

Numeric vector with distances in the same units as distance.matrix Distances
below each distance threshold are set to 0 on separated copies of the distance
matrix to compute Moran’s I at different neighborhood distances. If NULL, it
defaults to seq(0, max(distance.matrix)/2, length.out = 4) (defined by
default_distance_thresholds()). Default: NULL

xy (optional) Data frame or matrix with two columns containing coordinates and
named "x" and "y". It is not used by this function, but it is stored in the slot
ranger.arguments$xy of the model, so it can be used by rf_evaluate() and
rf_tuning(). Default: NULL

ranger.arguments

Named list with ranger arguments (other arguments of this function can also go
here). All ranger arguments are set to their default values except for ’impor-
tance’, that is set to ’permutation’ rather than ’none’. Please, consult the help
file of ranger if you are not familiar with the arguments of this function.

scaled.importance

Logical. If TRUE, and ’importance = "permutation’, the function scales ’data’
with scale and fits a new model to compute scaled variable importance scores.
Default: TRUE

method Character, method to build, rank, and select spatial predictors. One of:

rf_spatial 93

• "hengl"
• "hengl.moran.sequential" (experimental)
• "hengl.effect.sequential" (experimental)
• "hengl.effect.recursive" (experimental)
• "pca.moran.sequential" (experimental)
• "pca.effect.sequential" (experimental)
• "pca.effect.recursive" (experimental)
• "mem.moran.sequential"
• "mem.effect.sequential"
• "mem.effect.recursive"

max.spatial.predictors

Integer, maximum number of spatial predictors to generate. Useful when mem-
ory problems arise due to a large number of spatial predictors, Default: NULL

weight.r.squared

Numeric between 0 and 1, weight of R-squared in the selection of spatial com-
ponents. See Details, Default: NULL

weight.penalization.n.predictors

Numeric between 0 and 1, weight of the penalization for adding an increasing
number of spatial predictors during selection. Default: NULL

seed Integer, random seed to facilitate reproducibility. Default: 1.
verbose Logical. If TRUE, messages and plots generated during the execution of the

function are displayed, Default: TRUE
n.cores Integer, number of cores to use for parallel execution. Creates a socket cluster

with parallel::makeCluster(), runs operations in parallel with foreach and
%dopar%, and stops the cluster with parallel::clusterStop() when the job
is done. Default: parallel::detectCores() - 1

cluster A cluster definition generated with parallel::makeCluster(). If provided,
overrides n.cores. When cluster = NULL (default value), and model is pro-
vided, the cluster in model, if any, is used instead. If this cluster is NULL, then
the function uses n.cores instead. The function does not stop a provided clus-
ter, so it should be stopped with parallel::stopCluster() afterwards. The
cluster definition is stored in the output list under the name "cluster" so it can
be passed to other functions via the model argument, or using the %>% pipe.
Default: NULL

Details

The function uses three different methods to generate spatial predictors ("hengl", "pca", and "mem"),
two methods to rank them in order to define in what order they are introduced in the model ("effect"
and "moran), and two methods to select the spatial predictors that minimize the spatial correlation
of the model residuals ("sequential" and "recursive"). All method names but "hengl" (that uses the
complete distance matrix as predictors in the spatial model) are named by combining a method to
generate the spatial predictors, a method to rank them, and a method to select them, separated by
a point. Examples are "mem.moran.sequential" or "mem.effect.recursive". All combinations are
not possible, since the ranking method "moran" cannot be used with the selection method "recur-
sive" (because the logics behind them are very different, see below). Methods to generate spatial
predictors:

94 rf_spatial

• "hengl": named after the method RFsp presented in the paper "Random forest as a generic
framework for predictive modeling of spatial and spatio-temporal variables", by Hengl et al.
(2018), where the authors propose to use the distance matrix among records as predictors
in spatial random forest models (RFsp method). In this function, all methods starting with
"hengl" use either the complete distance matrix, or select columns of the distance matrix as
spatial predictors.

• "mem": Generates Moran’s Eigenvector Maps, that is, the eigenvectors of the double-centered
weights of the distance matrix. The method is described in "Spatial modelling: a comprehen-
sive framework for principal coordinate analysis of neighbour matrices (PCNM)", by Dray
et al. (2006), and "Statistical methods for temporal and space–time analysis of community
composition data", by Legendre and Gauthier (2014).

• "pca": Computes spatial predictors from the principal component analysis of a weighted
distance matrix (see weights_from_distance_matrix()). This is an experimental method,
use with caution.

Methods to rank spatial predictors (see rank_spatial_predictors()):

• "moran": Computes the Moran’s I of each spatial predictor, selects the ones with positive
values, and ranks them from higher to lower Moran’s I.

• "effect": If a given non-spatial random forest model is defined as y = p1 + ... + pn, being
p1 + ... + pn the set of predictors, for every spatial predictor generated (spX) a spatial model
y = p1 + ... + pn + spX is fitted, and the Moran’s I of its residuals is computed. The spatial
predictors are then ranked by how much they help to reduce spatial autocorrelation between
the non-spatial and the spatial model.

Methods to select spatial predictors:

• "sequential" (see select_spatial_predictors_sequential()): The spatial predictors
are added one by one in the order they were ranked, and once all spatial predictors are in-
troduced, the best first n predictors are selected. This method is similar to the one employed
in the MEM methodology (Moran’s Eigenvector Maps) described in the paper "Spatial mod-
elling: a comprehensive framework for principal coordinate analysis of neighbour matrices
(PCNM)", by Dray et al. (2006), and "Statistical methods for temporal and space–time analy-
sis of community composition data", by Legendre and Gauthier (2014). This method generally
introduces tens of predictors into the model, but usually offers good results.

• "recursive" (see select_spatial_predictors_recursive()): This method tries to find
the smallest combination of spatial predictors that reduce the spatial correlation of the model’s
residuals the most. The algorithm goes as follows: 1. The first ranked spatial predictor is
introduced into the model; 2. the remaining predictors are ranked again using the "effect"
method, using the model in 1. as reference. The first spatial predictor in the resulting ranking
is then introduced into the model, and the steps 1. and 2. are repeated until spatial predictors
stop having an effect in reducing the Moran’s I of the model residuals. This method takes
longer to compute, but generates smaller sets of spatial predictors. This is an experimental
method, use with caution.

Once ranking procedure is completed, an algorithm is used to select the minimal subset of spatial
predictors that reduce the most the Moran’s I of the residuals: for each new spatial predictor intro-
duced in the model, the Moran’s I of the residuals, it’s p-value, a binary version of the p-value (0 if <

rf_spatial 95

0.05 and 1 if >= 0.05), the R-squared of the model, and a penalization linear with the number of spa-
tial predictors introduced (computed as (1 / total spatial predictors) * introduced spatial predictors)
are rescaled between 0 and 1. Then, the optimization criteria is computed as max(1 - Moran's I, p-value binary) + (weight.r.squared * R-squared) - (weight.penalization.n.predictors * penalization).
The predictors from the first one to the one with the highest optimization criteria are then selected
as the best ones in reducing the spatial correlation of the model residuals, and used along with data
to fit the final spatial model.

Value

A ranger model with several new slots:

• ranger.arguments: Values of the arguments used to fit the ranger model.

• importance: A list containing the vector of variable importance as originally returned by
ranger (scaled or not depending on the value of ’scaled.importance’), a data frame with the
predictors ordered by their importance, and a ggplot showing the importance values.

• performance: With the out-of-bag R squared, pseudo R squared, RMSE and NRMSE of the
model.

• residuals: residuals, normality test of the residuals computed with residuals_test(), and
spatial autocorrelation of the residuals computed with moran_multithreshold().

• spatial: A list with four slots:

– method: Character, method used to generate, rank, and select spatial predictors.
– names: Character vector with the names of the selected spatial predictors. Not returned if

the method is "hengl".
– optimization: Criteria used to select the spatial predictors. Not returned if the method

is "hengl".
– plot: Plot of the criteria used to select the spatial predictors. Not returned if the method

is "hengl".

See Also

Other main_models: rf()

Examples

if (interactive()) {
data(
plants_df,
plants_response,
plants_predictors,
plants_distance,
plants_rf

)

#subset to speed up example
idx <- 1:100
plants_df <- plants_df[idx,]
plants_distance <- plants_distance[idx, idx]

#fit spatial model from scratch

96 rf_tuning

m_spatial <- rf_spatial(
data = plants_df,
dependent.variable.name = plants_response,
predictor.variable.names = plants_predictors,
distance.matrix = plants_distance,
distance.thresholds = c(100, 1000, 2000),
method = "mem.moran.sequential",
ranger.arguments = list(num.trees = 30),
n.cores = 1

)

plot_residuals_diagnostics(m_spatial)

#optimization of MEM selection
plot_optimization(m_spatial)

#from non-spatial to spatial model
m_spatial <- rf_spatial(

model = plants_rf
)

}

rf_tuning Tuning of random forest hyperparameters via spatial cross-validation

Description

Finds the optimal set of random forest hyperparameters num.trees, mtry, and min.node.size via
grid search by maximizing the model’s R squared, or AUC, if the response variable is binomial, via
spatial cross-validation performed with rf_evaluate().

Usage

rf_tuning(
model = NULL,
num.trees = NULL,
mtry = NULL,
min.node.size = NULL,
xy = NULL,
repetitions = 30,
training.fraction = 0.75,
seed = 1,
verbose = TRUE,
n.cores = parallel::detectCores() - 1,
cluster = NULL

)

rf_tuning 97

Arguments

model A model fitted with rf(). If provided, the training data is taken directly from
the model definition (stored in model$ranger.arguments). Default: NULL

num.trees Numeric integer vector with the number of trees to fit on each model repetition.
Default: c(500, 1000, 2000).

mtry Numeric integer vector, number of predictors to randomly select from the com-
plete pool of predictors on each tree split. Default: floor(seq(1, length(predictor.variable.names),
length.out = 4))

min.node.size Numeric integer, minimal number of cases in a terminal node. Default: c(5,
10, 20, 40)

xy Data frame or matrix with two columns containing coordinates and named "x"
and "y". If NULL, the function will throw an error. Default: NULL

repetitions Integer, number of independent spatial folds to use during the cross-validation.
Default: 30.

training.fraction

Proportion between 0.2 and 0.9 indicating the number of records to be used in
model training. Default: 0.75

seed Integer, random seed to facilitate reproduciblity. If set to a given number, the
results of the function are always the same. Default: 1.

verbose Logical. If TRUE, messages and plots generated during the execution of the
function are displayed, Default: TRUE

n.cores Integer, number of cores to use for parallel execution. Creates a socket cluster
with parallel::makeCluster(), runs operations in parallel with foreach and
%dopar%, and stops the cluster with parallel::clusterStop() when the job
is done. Default: parallel::detectCores() - 1

cluster A cluster definition generated with parallel::makeCluster(). If provided,
overrides n.cores. When cluster = NULL (default value), and model is pro-
vided, the cluster in model, if any, is used instead. If this cluster is NULL, then
the function uses n.cores instead. The function does not stop a provided clus-
ter, so it should be stopped with parallel::stopCluster() afterwards. The
cluster definition is stored in the output list under the name "cluster" so it can
be passed to other functions via the model argument, or using the %>% pipe.
Default: NULL

Value

A model with a new slot named tuning, with a data frame with the results of the tuning analysis.

See Also

rf_evaluate()

Other model_workflow: rf_compare(), rf_evaluate(), rf_importance(), rf_repeat()

98 root_mean_squared_error

Examples

if(interactive()){
data(
plants_rf,
plants_xy

)

plants_rf_tuned <- rf_tuning(
model = plants_rf,
num.trees = c(25, 50),
mtry = c(5, 10),
min.node.size = c(10, 20),
xy = plants_xy,
repetitions = 5,
n.cores = 1

)

plot_tuning(plants_rf_tuned)
}

root_mean_squared_error

RMSE and normalized RMSE

Description

Computes the rmse or normalized rmse (nrmse) between two numeric vectors of the same length
representing observations and model predictions.

Usage

root_mean_squared_error(
o,
p,
normalization = c("rmse", "all", "mean", "sd", "maxmin", "iq")

)

Arguments

o Numeric vector with observations, must have the same length as p.

p Numeric vector with predictions, must have the same length as o.

normalization character, normalization method, Default: "rmse" (see Details).

select_spatial_predictors_recursive 99

Details

The normalization methods go as follows:

• "rmse": RMSE with no normalization.

• "mean": RMSE dividied by the mean of the observations (rmse/mean(o)).

• "sd": RMSE dividied by the standard deviation of the observations (rmse/sd(o)).

• "maxmin": RMSE divided by the range of the observations (rmse/(max(o) - min(o))).

• "iq": RMSE divided by the interquartile range of the observations (rmse/(quantile(o, 0.75) -
quantile(o, 0.25)))

Value

Named numeric vector with either one or 5 values, as selected by the user.

See Also

Other utilities: .vif_to_df(), auc(), beowulf_cluster(), objects_size(), optimization_function(),
prepare_importance_spatial(), rescale_vector(), setup_parallel_execution(), standard_error(),
statistical_mode(), thinning(), thinning_til_n()

Examples

root_mean_squared_error(
o = runif(10),
p = runif(10)

)

select_spatial_predictors_recursive

Finds optimal combinations of spatial predictors

Description

Selects spatial predictors following these steps:

1. Gets the spatial predictors ranked by rank_spatial_predictors() and fits a model of the
form y ~ predictors + best_spatial_predictor_1. The Moran’s I of the residuals of this
model is used as reference value for the next step.

2. The remaining spatial predictors are introduced again into rank_spatial_predictors(),
and the spatial predictor with the highest ranking is introduced in a new model of the form y
~ predictors + best_spatial_predictor_1 + best_spatial_predictor_2.

3. Steps 1 and 2 are repeated until the Moran’s I doesn’t improve for a number of repetitions
equal to the 20 percent of the total number of spatial predictors introduced in the function.

100 select_spatial_predictors_recursive

This method allows to select the smallest set of spatial predictors that have the largest joint effect in
reducing the spatial correlation of the model residuals, while maintaining the model’s R-squared as
high as possible. As a consequence of running rank_spatial_predictors() on each iteration, this
method includes less spatial predictors in the final model than the sequential method implemented
in select_spatial_predictors_sequential() would do, while minimizing spatial correlation
and maximizing the R squared of the model as much as possible.

Usage

select_spatial_predictors_recursive(
data = NULL,
dependent.variable.name = NULL,
predictor.variable.names = NULL,
distance.matrix = NULL,
distance.thresholds = NULL,
ranger.arguments = NULL,
spatial.predictors.df = NULL,
spatial.predictors.ranking = NULL,
weight.r.squared = 0.25,
weight.penalization.n.predictors = 0,
n.cores = parallel::detectCores() - 1,
cluster = NULL

)

Arguments

data Data frame with a response variable and a set of predictors. Default: NULL
dependent.variable.name

Character string with the name of the response variable. Must be in the column
names of data. Default: NULL

predictor.variable.names

Character vector with the names of the predictive variables. Every element of
this vector must be in the column names of data. Default: NULL

distance.matrix

Squared matrix with the distances among the records in data. The number of
rows of distance.matrix and data must be the same. If not provided, the
computation of the Moran’s I of the residuals is omitted. Default: NULL

distance.thresholds

Numeric vector with neighborhood distances. All distances in the distance ma-
trix below each value in dustance.thresholds are set to 0 for the computation
of Moran’s I. If NULL, it defaults to seq(0, max(distance.matrix), length.out = 4).
Default: NULL

ranger.arguments

Named list with ranger arguments (other arguments of this function can also go
here). All ranger arguments are set to their default values except for ’impor-
tance’, that is set to ’permutation’ rather than ’none’. Please, consult the help
file of ranger if you are not familiar with the arguments of this function.

spatial.predictors.df

Data frame of spatial predictors.

select_spatial_predictors_recursive 101

spatial.predictors.ranking

Ranking of predictors returned by rank_spatial_predictors().
weight.r.squared

Numeric between 0 and 1, weight of R-squared in the optimization index. De-
fault: 0.25

weight.penalization.n.predictors

Numeric between 0 and 1, weight of the penalization for the number of spatial
predictors added in the optimization index. Default: 0

n.cores Integer, number of cores to use. Default: parallel::detectCores() - 1

cluster A cluster definition generated by parallel::makeCluster(). Default: NULL

Details

The algorithm works as follows. If the function rank_spatial_predictors() returns 10 ranked
spatial predictors (sp1 to sp10, being sp7 the best one), select_spatial_predictors_recursive()
is going to first fit the model y ~ predictors + sp7. Then, the spatial predictors sp2 to sp9 are
again ranked with rank_spatial_predictors() using the model y ~ predictors + sp7 as refer-
ence (at this stage, some of the spatial predictors might be dropped due to lack of effect). When
the new ranking of spatial predictors is ready (let’s say they are sp5, sp3, and sp4), the best one
(sp5) is included in the model y ~ predictors + sp7 + sp5, and the remaining ones go again to
rank_spatial_predictors() to repeat the process until spatial predictors are depleted.

Value

A list with two slots: optimization, a data frame with the index of the spatial predictor added on
each iteration, the spatial correlation of the model residuals, and the R-squared of the model, and
best.spatial.predictors, that is a character vector with the names of the spatial predictors that
minimize the Moran’s I of the residuals and maximize the R-squared of the model.

See Also

Other spatial_analysis: filter_spatial_predictors(), mem(), mem_multithreshold(), moran(),
moran_multithreshold(), pca(), pca_multithreshold(), rank_spatial_predictors(), residuals_diagnostics(),
residuals_test(), select_spatial_predictors_sequential()

Examples

if (interactive()) {
data(
plants_df,
plants_response,
plants_predictors,
plants_distance,
plants_rf

)

#subset to speed up example
idx <- 1:20
plants_df <- plants_df[idx,]
plants_distance <- plants_distance[idx, idx]

102 select_spatial_predictors_sequential

#generate spatial predictors
mems <- mem_multithreshold(

distance.matrix = plants_distance,
distance.thresholds = 100

)

#rank them from higher to lower moran
mems.rank <- rank_spatial_predictors(

ranking.method = "moran",
spatial.predictors.df = mems,
reference.moran.i = plants_rf$residuals$autocorrelation$max.moran,
distance.matrix = plants_distance,
distance.thresholds = 100,
n.cores = 1

)

#select best subset via sequential addition
selection <- select_spatial_predictors_recursive(

data = plants_df,
dependent.variable.name = plants_response,
predictor.variable.names = plants_predictors,
distance.matrix = plants_distance,
distance.thresholds = 0,
spatial.predictors.df = mems,
spatial.predictors.ranking = mems.rank,
ranger.arguments = list(num.trees = 30),
n.cores = 1

)

#names of selected spatial predictors
selection$best.spatial.predictors

#optimization plot
plot_optimization(selection$optimization)

}

select_spatial_predictors_sequential

Sequential introduction of spatial predictors into a model

Description

Selects spatial predictors by adding them sequentially into a model while monitoring the Moran’s
I of the model residuals and the model’s R-squared. Once all the available spatial predictors have
been added to the model, the function identifies the first n predictors that minimize the spatial
correlation of the residuals and maximize R-squared, and returns the names of the selected spatial
predictors and a data frame with the selection criteria.

select_spatial_predictors_sequential 103

Usage

select_spatial_predictors_sequential(
data = NULL,
dependent.variable.name = NULL,
predictor.variable.names = NULL,
distance.matrix = NULL,
distance.thresholds = NULL,
ranger.arguments = NULL,
spatial.predictors.df = NULL,
spatial.predictors.ranking = NULL,
weight.r.squared = 0.75,
weight.penalization.n.predictors = 0.25,
verbose = FALSE,
n.cores = parallel::detectCores() - 1,
cluster = NULL

)

Arguments

data Data frame with a response variable and a set of predictors. Default: NULL
dependent.variable.name

Character string with the name of the response variable. Must be in the column
names of data. Default: NULL

predictor.variable.names

Character vector with the names of the predictive variables. Every element of
this vector must be in the column names of data. Default: NULL

distance.matrix

Squared matrix with the distances among the records in data. The number of
rows of distance.matrix and data must be the same. If not provided, the
computation of the Moran’s I of the residuals is omitted. Default: NULL

distance.thresholds

Numeric vector with neighborhood distances. All distances in the distance ma-
trix below each value in dustance.thresholds are set to 0 for the computation
of Moran’s I. If NULL, it defaults to seq(0, max(distance.matrix), length.out = 4).
Default: NULL

ranger.arguments

Named list with ranger arguments (other arguments of this function can also go
here). All ranger arguments are set to their default values except for ’impor-
tance’, that is set to ’permutation’ rather than ’none’. Please, consult the help
file of ranger if you are not familiar with the arguments of this function.

spatial.predictors.df

Data frame of spatial predictors.
spatial.predictors.ranking

Ranking of the spatial predictors returned by rank_spatial_predictors().
weight.r.squared

Numeric between 0 and 1, weight of R-squared in the optimization index. De-
fault: 0.75

104 select_spatial_predictors_sequential

weight.penalization.n.predictors

Numeric between 0 and 1, weight of the penalization for the number of spatial
predictors added in the optimization index. Default: 0.25

verbose Logical, ff TRUE, messages and plots generated during the execution of the func-
tion are displayed, Default: FALSE

n.cores Integer, number of cores to use. Default: parallel::detectCores() - 1

cluster A cluster definition generated by parallel::makeCluster(). Default: NULL

Details

The algorithm works as follows: If the function rank_spatial_predictors returns 10 spatial predictors
(sp1 to sp10, ordered from best to worst), select_spatial_predictors_sequential is going to fit the
models y ~ predictors + sp1, y ~ predictors + sp1 + sp2, until all spatial predictors are used in
y ~ predictors + sp1 ... sp10. The model with lower Moran’s I of the residuals and higher
R-squared (computed on the out-of-bag data) is selected, and its spatial predictors returned.

Value

A list with two slots: optimization, a data frame with the index of the spatial predictor added on
each iteration, the spatial correlation of the model residuals, and the R-squared of the model, and
best.spatial.predictors, that is a character vector with the names of the spatial predictors that
minimize the Moran’s I of the residuals and maximize the R-squared of the model.

See Also

Other spatial_analysis: filter_spatial_predictors(), mem(), mem_multithreshold(), moran(),
moran_multithreshold(), pca(), pca_multithreshold(), rank_spatial_predictors(), residuals_diagnostics(),
residuals_test(), select_spatial_predictors_recursive()

Examples

if(interactive()){
data(

plants_df,
plants_response,
plants_predictors,
plants_distance,
plants_rf

)

#subset to speed up example
idx <- 1:20
plants_df <- plants_df[idx,]
plants_distance <- plants_distance[idx, idx]

#generate spatial predictors
mems <- mem_multithreshold(

distance.matrix = plants_distance,
distance.thresholds = 100

)

setup_parallel_execution 105

#rank them from higher to lower moran
mems.rank <- rank_spatial_predictors(

ranking.method = "moran",
spatial.predictors.df = mems,
reference.moran.i = plants_rf$residuals$autocorrelation$max.moran,
distance.matrix = plants_distance,
distance.thresholds = 100,
n.cores = 1

)

#select best subset via sequential addition
selection <- select_spatial_predictors_sequential(

data = plants_df,
dependent.variable.name = plants_response,
predictor.variable.names = plants_predictors,
distance.matrix = plants_distance,
distance.thresholds = 0,
spatial.predictors.df = mems,
spatial.predictors.ranking = mems.rank,
ranger.arguments = list(num.trees = 30),
n.cores = 1

)

#names of selected spatial predictors
selection$best.spatial.predictors

#optimization plot
plot_optimization(selection$optimization)
}

setup_parallel_execution

Setup parallel execution with automatic backend detection

Description

Internal helper to manage parallel backend setup with support for user-managed backends, external
clusters, and internal clusters.

Usage

setup_parallel_execution(cluster = NULL, n.cores = parallel::detectCores() - 1)

Arguments

cluster A cluster object from parallel::makeCluster(), or NULL

n.cores Number of cores for internal cluster creation

106 standard_error

Value

A list with:

• cluster: The cluster object to pass to child functions (or NULL)

• mode: One of "user_backend", "external_cluster", "internal_cluster", "sequential"

• cleanup: A function to call in on.exit() for proper cleanup

See Also

Other utilities: .vif_to_df(), auc(), beowulf_cluster(), objects_size(), optimization_function(),
prepare_importance_spatial(), rescale_vector(), root_mean_squared_error(), standard_error(),
statistical_mode(), thinning(), thinning_til_n()

standard_error Standard error of the mean of a numeric vector

Description

Computes the standard error of the mean of a numeric vector as round(sqrt(var(x)/length(x)),
3)

Usage

standard_error(x)

Arguments

x A numeric vector.

Details

The function removes NA values before computing the standard error, and rounds the result to 3
decimal places.

Value

A numeric value.

See Also

Other utilities: .vif_to_df(), auc(), beowulf_cluster(), objects_size(), optimization_function(),
prepare_importance_spatial(), rescale_vector(), root_mean_squared_error(), setup_parallel_execution(),
statistical_mode(), thinning(), thinning_til_n()

Examples

standard_error(x = runif(10))

statistical_mode 107

statistical_mode Statistical mode of a vector

Description

Computes the mode of a numeric or character vector

Usage

statistical_mode(x)

Arguments

x Numeric or character vector.

Value

Statistical mode of x.

See Also

Other utilities: .vif_to_df(), auc(), beowulf_cluster(), objects_size(), optimization_function(),
prepare_importance_spatial(), rescale_vector(), root_mean_squared_error(), setup_parallel_execution(),
standard_error(), thinning(), thinning_til_n()

Examples

statistical_mode(x = c(10, 9, 10, 8))

the_feature_engineer Suggest variable interactions and composite features for random for-
est models

Description

Suggests candidate variable interactions and composite features able to improve predictive accuracy
over data not used to train the model via spatial cross-validation with rf_evaluate(). For a pair
of predictors a and b, interactions are build via multiplication (a * b), while composite features are
built by extracting the first factor of a principal component analysis performed with pca(), after
rescaling a and b between 1 and 100. Interactions and composite features are named a..x..b and
a..pca..b respectively.

Candidate variables a and b are selected from those predictors in predictor.variable.names
with a variable importance above importance.threshold (set by default to the median of the
importance scores).

108 the_feature_engineer

For each interaction and composite feature, a model including all the predictors plus the interaction
or composite feature is fitted, and it’s R squared (or AUC if the response is binary) computed via
spatial cross-validation (see rf_evaluate()) is compared with the R squared of the model without
interactions or composite features.

From all the potential interactions screened, only those with a positive increase in R squared (or
AUC when the response is binomial) of the model, a variable importance above the median, and a
maximum correlation among themselves and with the predictors in predictor.variable.names
not higher than cor.threshold (set to 0.5 by default) are selected. Such a restrictive set of rules
ensures that the selected interactions can be used right away for modeling purposes without increas-
ing model complexity unnecessarily. However, the suggested variable interactions might not make
sense from a domain expertise standpoint, so please, examine them with care.

The function returns the criteria used to select the interactions, and the data required to use these
interactions a model.

Usage

the_feature_engineer(
data = NULL,
dependent.variable.name = NULL,
predictor.variable.names = NULL,
xy = NULL,
ranger.arguments = NULL,
repetitions = 30,
training.fraction = 0.75,
importance.threshold = 0.75,
cor.threshold = 0.75,
point.color = viridis::viridis(100, option = "F", alpha = 0.8),
seed = NULL,
verbose = TRUE,
n.cores = parallel::detectCores() - 1,
cluster = NULL

)

Arguments

data Data frame with a response variable and a set of predictors. Default: NULL
dependent.variable.name

Character string with the name of the response variable. Must be in the column
names of data. If the dependent variable is binary with values 1 and 0, the argu-
ment case.weights of ranger is populated by the function case_weights().
Default: NULL

predictor.variable.names

Character vector with the names of the predictive variables, or object of class
"variable_selection" produced by auto_vif() and/or auto_cor(). Every
element of this vector must be in the column names of data. Default: NULL

xy Data frame or matrix with two columns containing coordinates and named "x"
and "y". If not provided, the comparison between models with and without
variable interactions is not done.

the_feature_engineer 109

ranger.arguments

Named list with ranger arguments (other arguments of this function can also go
here). All ranger arguments are set to their default values except for ’impor-
tance’, that is set to ’permutation’ rather than ’none’. Please, consult the help
file of ranger if you are not familiar with the arguments of this function.

repetitions Integer, number of spatial folds to use during cross-validation. Must be lower
than the total number of rows available in the model’s data. Default: 30

training.fraction

Proportion between 0.5 and 0.9 indicating the proportion of records to be used
as training set during spatial cross-validation. Default: 0.75

importance.threshold

Numeric between 0 and 1, quantile of variable importance scores over which to
select individual predictors to explore interactions among them. Larger values
reduce the number of potential interactions explored. Default: 0.75

cor.threshold Numeric, maximum Pearson correlation between any pair of the selected inter-
actions, and between any interaction and the predictors in predictor.variable.names.
Default: 0.75

point.color Colors of the plotted points. Can be a single color name (e.g. "red4"), a character
vector with hexadecimal codes (e.g. "#440154FF" "#21908CFF" "#FDE725FF"),
or function generating a palette (e.g. viridis::viridis(100)). Default: viridis::viridis(100,
option = "F", alpha = 0.8)

seed Integer, random seed to facilitate reproduciblity. If set to a given number, the
results of the function are always the same. Default: NULL

verbose Logical. If TRUE, messages and plots generated during the execution of the func-
tion are displayed. Default: TRUE

n.cores Integer, number of cores to use for parallel execution. Creates a socket cluster
with parallel::makeCluster(), runs operations in parallel with foreach and
%dopar%, and stops the cluster with parallel::clusterStop() when the job
is done. Default: parallel::detectCores() - 1

cluster A cluster definition generated with parallel::makeCluster(). If provided,
overrides n.cores. When cluster = NULL (default value), and model is pro-
vided, the cluster in model, if any, is used instead. If this cluster is NULL, then
the function uses n.cores instead. The function does not stop a provided clus-
ter, so it should be stopped with parallel::stopCluster() afterwards. The
cluster definition is stored in the output list under the name "cluster" so it can
be passed to other functions via the model argument, or using the %>% pipe.
Default: NULL

Value

A list with seven slots:

• screening: Data frame with selection scores of all the interactions considered.

• selected: Data frame with selection scores of the selected interactions.

• df: Data frame with the computed interactions.

110 the_feature_engineer

• plot: List of plots of the selected interactions versus the response variable. The output list can
be plotted all at once with patchwork::wrap_plots(p) or cowplot::plot_grid(plotlist
= p), or one by one by extracting each plot from the list.

• data: Data frame with the response variable, the predictors, and the selected interactions,
ready to be used as data argument in the package functions.

• dependent.variable.name: Character, name of the response.

• predictor.variable.names: Character vector with the names of the predictors and the se-
lected interactions.

See Also

Other preprocessing: auto_cor(), auto_vif(), case_weights(), default_distance_thresholds(),
double_center_distance_matrix(), is_binary(), make_spatial_fold(), make_spatial_folds(),
weights_from_distance_matrix()

Examples

if (interactive()) {
data(
plants_df,
plants_response,
plants_predictors,
plants_xy,
plants_rf

)

#get five most important predictors from plants_rf to speed-up example
predictors <- get_importance(plants_rf)[1:5, "variable"]

#subset to speed-up example
idx <- 1:30
plants_df <- plants_df[idx,]
plants_xy <- plants_xy[idx,]

#data subsetted to speed-up example runtime
y <- the_feature_engineer(

data = plants_df,
dependent.variable.name = plants_response,
predictor.variable.names = predictors,
xy = plants_xy,
repetitions = 5,
n.cores = 1,
ranger.arguments = list(

num.trees = 30
),
verbose = TRUE

)

#all tested interactions
y$screening

thinning 111

#selected interaction (same as above in this case)
y$selected

#new column added to data
head(y$data[, y$selected$interaction.name])

}

thinning Applies thinning to pairs of coordinates

Description

Resamples a set of points with x and y coordinates to impose a minimum distance among nearby
points.

Usage

thinning(xy, minimum.distance = NULL)

Arguments

xy A data frame with columns named "x" and "y" representing geographic coordi-
nates.

minimum.distance

Numeric, minimum distance to be set between nearby points, in the same units
as the coordinates of xy.

Details

Generally used to remove redundant points that could produce pseudo-replication, and to limit
sampling bias by disaggregating clusters of points.

Value

A data frame with the same columns as xy with points separated by the defined minimum distance.

See Also

thinning_til_n()

Other utilities: .vif_to_df(), auc(), beowulf_cluster(), objects_size(), optimization_function(),
prepare_importance_spatial(), rescale_vector(), root_mean_squared_error(), setup_parallel_execution(),
standard_error(), statistical_mode(), thinning_til_n()

112 thinning_til_n

Examples

data(plants_xy)

y <- thinning(
xy = plants_xy,
minimum.distance = 10

)

if (interactive()) {
plot(
plants_xy[, c("x", "y")],
col = "blue",
pch = 15

)

points(
y[, c("x", "y")],
col = "red",
pch = 15

)
}

thinning_til_n Applies thinning to pairs of coordinates until reaching a given n

Description

Resamples a set of points with x and y coordinates by increasing the distance step by step until a
given sample size is obtained.

Usage

thinning_til_n(
xy,
n = 30,
distance.step = NULL

)

Arguments

xy A data frame with columns named "x" and "y" representing geographic coordi-
nates. Default: NULL

n Integer, number of samples to obtain. Must be lower than nrow(xy). Default:
30

distance.step Numeric, distance step used during the thinning iterations. If NULL, the one
percent of the maximum distance among points in xy is used. Default: NULL

weights_from_distance_matrix 113

Value

A data frame with the same columns as xy with a row number close to n.

See Also

thinning()

Other utilities: .vif_to_df(), auc(), beowulf_cluster(), objects_size(), optimization_function(),
prepare_importance_spatial(), rescale_vector(), root_mean_squared_error(), setup_parallel_execution(),
standard_error(), statistical_mode(), thinning()

Examples

data(plants_xy)

y <- thinning_til_n(
xy = plants_xy,
n = 10

)

if (interactive()) {
plot(
plants_xy[, c("x", "y")],
col = "blue",
pch = 15

)

points(
y[, c("x", "y")],
col = "red",
pch = 15,
cex = 1.5

)
}

weights_from_distance_matrix

Transforms a distance matrix into a matrix of weights

Description

Transforms a distance matrix into weights (1/distance.matrix) normalized by the row sums. Used
to compute Moran’s I values and Moran’s Eigenvector Maps. Allows to apply a threshold to the
distance matrix before computing the weights.

114 weights_from_distance_matrix

Usage

weights_from_distance_matrix(
distance.matrix = NULL,
distance.threshold = 0

)

Arguments

distance.matrix

Distance matrix. Default: NULL.
distance.threshold

Numeric, positive, in the range of values of distance.matrix. Distances below
this value in the distance matrix are set to 0., Default: 0.

Value

A weighted distance matrix.

See Also

Other preprocessing: auto_cor(), auto_vif(), case_weights(), default_distance_thresholds(),
double_center_distance_matrix(), is_binary(), make_spatial_fold(), make_spatial_folds(),
the_feature_engineer()

Examples

data(plants_distance)

y <- weights_from_distance_matrix(
distance.matrix = plants_distance

)

y[1:5, 1:5]

Index

∗ datasets
plants_df, 45
plants_distance, 46
plants_predictors, 47
plants_response, 47
plants_rf, 48
plants_rf_spatial, 49
plants_xy, 50

∗ data
plants_df, 45
plants_distance, 46
plants_predictors, 47
plants_response, 47
plants_rf, 48
plants_rf_spatial, 49
plants_xy, 50

∗ main_models
rf, 77
rf_spatial, 91

∗ model_info
get_evaluation, 15
get_importance, 16
get_importance_local, 17
get_moran, 18
get_performance, 19
get_predictions, 20
get_residuals, 21
get_response_curves, 22
get_spatial_predictors, 24
print.rf, 67
print_evaluation, 68
print_importance, 69
print_moran, 70
print_performance, 71

∗ model_workflow
rf_compare, 80
rf_evaluate, 83
rf_importance, 86
rf_repeat, 88

rf_tuning, 96
∗ preprocessing

auto_cor, 5
auto_vif, 6
case_weights, 10
default_distance_thresholds, 11
double_center_distance_matrix, 12
is_binary, 25
make_spatial_fold, 26
make_spatial_folds, 28
the_feature_engineer, 107
weights_from_distance_matrix, 113

∗ spatial_analysis
filter_spatial_predictors, 13
mem, 30
mem_multithreshold, 32
moran, 34
moran_multithreshold, 36
pca, 41
pca_multithreshold, 43
rank_spatial_predictors, 71
residuals_diagnostics, 76
residuals_test, 77
select_spatial_predictors_recursive,

99
select_spatial_predictors_sequential,

102
∗ utilities

.vif_to_df, 3
auc, 4
beowulf_cluster, 8
objects_size, 38
optimization_function, 39
prepare_importance_spatial, 66
rescale_vector, 75
root_mean_squared_error, 98
setup_parallel_execution, 105
standard_error, 106
statistical_mode, 107

115

116 INDEX

thinning, 111
thinning_til_n, 112

∗ visualization
plot_evaluation, 50
plot_importance, 52
plot_moran, 54
plot_optimization, 56
plot_residuals_diagnostics, 57
plot_response_curves, 58
plot_response_surface, 60
plot_training_df, 61
plot_training_df_moran, 63
plot_tuning, 64

.vif_to_df, 3, 4, 9, 39, 40, 66, 75, 99, 106,
107, 111, 113

aes, 76
auc, 4, 4, 9, 39, 40, 66, 75, 99, 106, 107, 111,

113
auto_cor, 5, 7, 10–12, 25, 27, 30, 110, 114
auto_cor(), 7, 14, 62, 63, 78, 108
auto_vif, 6, 6, 10–12, 25, 27, 30, 110, 114
auto_vif(), 5, 6, 62, 63, 78, 108

base::eigen(), 31
base::ls(), 39
base::rm(), 39
beowulf_cluster, 4, 8, 39, 40, 66, 75, 99,

106, 107, 111, 113

case_weights, 6, 7, 10, 11, 12, 25, 27, 30,
110, 114

case_weights(), 25, 62, 63, 78, 89, 92, 108

default_distance_thresholds, 6, 7, 10, 11,
12, 25, 27, 30, 110, 114

default_distance_thresholds(), 32, 33,
36, 37, 43, 44, 92

doParallel::registerDoParallel(), 9
double_center_distance_matrix, 6, 7, 10,

11, 12, 25, 27, 30, 110, 114
double_center_distance_matrix(), 31, 33

filter_spatial_predictors, 13, 31, 33, 35,
37, 42, 44, 74, 76, 77, 101, 104

geom_abline, 76
geom_freqpoly, 76
geom_point, 60
geom_qq_line, 76

geom_smooth, 62
get_evaluation, 15, 16–21, 23, 24, 67–71
get_evaluation(), 52, 68
get_importance, 15, 16, 17–21, 23, 24, 67–71
get_importance(), 17, 23, 24, 54, 69
get_importance_local, 15, 16, 17, 18–21,

23, 24, 67–71
get_moran, 15–17, 18, 19–21, 23, 24, 67–71
get_moran(), 21, 35, 37, 70
get_performance, 15–18, 19, 20, 21, 23, 24,

67–71
get_performance(), 71
get_predictions, 15–19, 20, 21, 23, 24,

67–71
get_predictions(), 21
get_residuals, 15–20, 21, 23, 24, 67–71
get_residuals(), 20
get_response_curves, 15–21, 22, 24, 67–71
get_spatial_predictors, 15–21, 23, 24,

67–71
ggplot, 76
ggtheme, 76

huxtable, 70

I, 35
is_binary, 6, 7, 10–12, 25, 27, 30, 110, 114
is_binary(), 27

labs, 76

make_spatial_fold, 6, 7, 10–12, 25, 26, 30,
110, 114

make_spatial_fold(), 28–30
make_spatial_folds, 6, 7, 10–12, 25, 27, 28,

110, 114
make_spatial_folds(), 26, 27, 81, 82, 84,

85, 87
mem, 14, 30, 33, 35, 37, 42, 44, 74, 76, 77, 101,

104
mem(), 12, 24, 32, 33, 42
mem_multithreshold, 14, 31, 32, 35, 37, 42,

44, 74, 76, 77, 101, 104
mem_multithreshold(), 12, 13, 24, 31, 37,

44, 72
moran, 14, 31, 33, 34, 37, 42, 44, 74, 76, 77,

101, 104
moran(), 18, 36, 37, 40, 55, 58, 70
moran_multithreshold, 14, 31, 33, 35, 36,

42, 44, 74, 76, 77, 101, 104

INDEX 117

moran_multithreshold(), 18, 35, 55, 70, 79,
90, 95

na.omit(), 5, 7

objects_size, 4, 9, 38, 40, 66, 75, 99, 106,
107, 111, 113

optimization_function, 4, 9, 39, 39, 66, 75,
99, 106, 107, 111, 113

parallel::makeCluster(), 9, 29
parallel::stopCluster(), 9, 29
pca, 14, 31, 33, 35, 37, 41, 44, 74, 76, 77, 101,

104
pca(), 44, 107
pca_multithreshold, 14, 31, 33, 35, 37, 42,

43, 74, 76, 77, 101, 104
pca_multithreshold(), 42, 44, 72
plants_df, 45, 46–50
plants_distance, 46, 46, 47–50
plants_predictors, 46, 47, 47, 48–50
plants_response, 46, 47, 47, 48–50
plants_rf, 46, 47, 48, 49, 50
plants_rf_spatial, 46–48, 49, 50
plants_xy, 46–49, 50
plot_annotation, 76
plot_evaluation, 50, 54, 55, 57–59, 61, 62,

64, 65
plot_evaluation(), 15, 68
plot_importance, 52, 52, 55, 57–59, 61, 62,

64, 65
plot_importance(), 16, 17, 69
plot_moran, 52, 54, 54, 57–59, 61, 62, 64, 65
plot_moran(), 18, 58, 70
plot_optimization, 52, 54, 55, 56, 58, 59,

61, 62, 64, 65
plot_residuals_diagnostics, 52, 54, 55,

57, 57, 59, 61, 62, 64, 65
plot_residuals_diagnostics(), 21
plot_response_curves, 52, 54, 55, 57, 58,

58, 61, 62, 64, 65
plot_response_curves(), 23, 61
plot_response_surface, 52, 54, 55, 57–59,

60, 62, 64, 65
plot_response_surface(), 59
plot_training_df, 52, 54, 55, 57–59, 61, 61,

64, 65
plot_training_df_moran, 52, 54, 55, 57–59,

61, 62, 63, 65

plot_tuning, 52, 54, 55, 57–59, 61, 62, 64, 64
prepare_importance_spatial, 4, 9, 39, 40,

66, 75, 99, 106, 107, 111, 113
print.rf, 15–21, 23, 24, 67, 68–71
print_evaluation, 15–21, 23, 24, 67, 68,

69–71
print_evaluation(), 15, 52, 67
print_importance, 15–21, 23, 24, 67, 68, 69,

70, 71
print_importance(), 16, 17, 54, 67
print_moran, 15–21, 23, 24, 67–69, 70, 71
print_moran(), 18, 67
print_performance, 15–21, 23, 24, 67–70,

71
print_performance(), 19, 67, 71

quantile, 59, 60

ranger, 73, 77–79, 89, 92, 100, 103, 109
rank_spatial_predictors, 14, 31, 33, 35,

37, 42, 44, 71, 76, 77, 101, 104
rank_spatial_predictors(), 94, 99–101,

103
rescale_vector, 4, 9, 39, 40, 66, 75, 99, 106,

107, 111, 113
residuals_diagnostics, 14, 31, 33, 35, 37,

42, 44, 74, 76, 77, 101, 104
residuals_diagnostics(), 79
residuals_test, 14, 31, 33, 35, 37, 42, 44,

74, 76, 77, 101, 104
residuals_test(), 90, 95
rf, 69, 73, 77, 95
rf(), 10, 16–23, 48, 49, 52, 53, 55, 57–60, 66,

67, 70, 71, 81, 83, 86, 88, 89, 92, 97
rf_compare, 80, 85, 88, 90, 97
rf_evaluate, 82, 83, 88, 90, 97
rf_evaluate(), 15, 26–30, 50–52, 68, 78,

80–82, 88, 89, 92, 96, 97, 107, 108
rf_importance, 82, 85, 86, 90, 97
rf_importance(), 54
rf_repeat, 69, 73, 82, 85, 88, 88, 97
rf_repeat(), 16–23, 52, 53, 55, 57–60, 66,

67, 70, 71, 83, 86
rf_spatial, 69, 79, 91
rf_spatial(), 16–24, 31, 33, 42–44, 49,

52–60, 66, 67, 70–72, 81, 83, 86, 88
rf_tuning, 82, 85, 88, 90, 96
rf_tuning(), 64, 65, 78, 81, 88, 89, 92

118 INDEX

root_mean_squared_error, 4, 9, 39, 40, 66,
75, 98, 106, 107, 111, 113

root_mean_squared_error(), 77

scale, 77, 78, 89, 92
select_spatial_predictors_recursive,

14, 31, 33, 35, 37, 42, 44, 74, 76, 77,
99, 104

select_spatial_predictors_recursive(),
39, 40, 56, 94, 101

select_spatial_predictors_sequential,
14, 31, 33, 35, 37, 42, 44, 74, 76, 77,
101, 102, 104

select_spatial_predictors_sequential(),
39, 40, 56, 94, 100

seq(), 11
setup_parallel_execution, 4, 9, 39, 40, 66,

75, 99, 105, 106, 107, 111, 113
shapiro.test(), 76, 77
standard_error, 4, 9, 39, 40, 66, 75, 99, 106,

106, 107, 111, 113
statistical_mode, 4, 9, 39, 40, 66, 75, 99,

106, 107, 111, 113
stats::prcomp(), 41, 42
stats::predict(), 20

the_feature_engineer, 6, 7, 10–12, 25, 27,
30, 107, 114

the_feature_engineer(), 79
thinning, 4, 9, 39, 40, 66, 75, 99, 106, 107,

111, 113
thinning(), 29, 30, 85, 113
thinning_til_n, 4, 9, 39, 40, 66, 75, 99, 106,

107, 111, 112
thinning_til_n(), 29, 30, 81, 84, 85, 87, 111

utils::object.size(), 38, 39

weights_from_distance_matrix, 6, 7,
10–12, 25, 27, 30, 110, 113

weights_from_distance_matrix(), 12, 44,
94

wrap_plots, 55, 59, 62

	.vif_to_df
	auc
	auto_cor
	auto_vif
	beowulf_cluster
	case_weights
	default_distance_thresholds
	double_center_distance_matrix
	filter_spatial_predictors
	get_evaluation
	get_importance
	get_importance_local
	get_moran
	get_performance
	get_predictions
	get_residuals
	get_response_curves
	get_spatial_predictors
	is_binary
	make_spatial_fold
	make_spatial_folds
	mem
	mem_multithreshold
	moran
	moran_multithreshold
	objects_size
	optimization_function
	pca
	pca_multithreshold
	plants_df
	plants_distance
	plants_predictors
	plants_response
	plants_rf
	plants_rf_spatial
	plants_xy
	plot_evaluation
	plot_importance
	plot_moran
	plot_optimization
	plot_residuals_diagnostics
	plot_response_curves
	plot_response_surface
	plot_training_df
	plot_training_df_moran
	plot_tuning
	prepare_importance_spatial
	print.rf
	print_evaluation
	print_importance
	print_moran
	print_performance
	rank_spatial_predictors
	rescale_vector
	residuals_diagnostics
	residuals_test
	rf
	rf_compare
	rf_evaluate
	rf_importance
	rf_repeat
	rf_spatial
	rf_tuning
	root_mean_squared_error
	select_spatial_predictors_recursive
	select_spatial_predictors_sequential
	setup_parallel_execution
	standard_error
	statistical_mode
	the_feature_engineer
	thinning
	thinning_til_n
	weights_from_distance_matrix
	Index

