
Package ‘spatstat.utils’
January 10, 2026

Version 3.2-1

Date 2026-01-08

Title Utility Functions for 'spatstat'

Maintainer Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Depends R (>= 3.5.0), stats, graphics, grDevices, utils, methods

Suggests spatstat.model

Description Contains utility functions for the 'spatstat' family of packages
which may also be useful for other purposes.

License GPL (>= 2)

URL http://spatstat.org/

NeedsCompilation yes

ByteCompile true

BugReports https://github.com/spatstat/spatstat.utils/issues

Author Adrian Baddeley [aut, cre] (ORCID:
<https://orcid.org/0000-0001-9499-8382>),

Rolf Turner [aut] (ORCID: <https://orcid.org/0000-0001-5521-5218>),
Ege Rubak [aut] (ORCID: <https://orcid.org/0000-0002-6675-533X>)

Repository CRAN

Date/Publication 2026-01-10 07:50:09 UTC

Contents
spatstat.utils-package . 2
articlebeforenumber . 4
cat.factor . 5
check.1.integer . 6
check.anyvector . 7
check.named.vector . 8
check.nmatrix . 10
check.nvector . 11

1

http://spatstat.org/
https://github.com/spatstat/spatstat.utils/issues
https://orcid.org/0000-0001-9499-8382
https://orcid.org/0000-0001-5521-5218
https://orcid.org/0000-0002-6675-533X

2 spatstat.utils-package

check.range . 12
commasep . 14
difflong . 14
do.call.matched . 15
do.call.without . 17
evenly.spaced . 18
exactCutBreaks . 18
expand.polynom . 19
fastFindInterval . 20
geomseq . 22
harmonicmean . 23
ifelseAB . 24
is.power . 25
methods.xypolygon . 26
optimizeWithTrace . 28
orderstats . 29
ordinal . 30
orifnull . 31
paren . 32
percentage . 33
primefactors . 34
queueSpatstatLocator . 35
RelevantNA . 36
resolve.defaults . 38
revcumsum . 39
simplenumber . 40
spatstat.utils-deprecated . 41
spatstatLocator . 41
splat . 42
taperoff . 43
tapplysum . 45
termsinformula . 46
verbalogic . 47
which.min.fair . 48

Index 50

spatstat.utils-package

The spatstat.utils Package

Description

The spatstat.utils package contains low-level utilities, written for the spatstat package, which may
be useful in other packages as well.

spatstat.utils-package 3

Details

The functions in spatstat.utils were originally written as internal, undocumented, utility functions
in the spatstat package.

Many of these functions could be useful to other programmers, so we have made them available in
a separate package spatstat.utils and provided documentation.

The functionality contained in spatstat.utils includes:

Factorisation of integers Find prime numbers (primesbelow), factorise a composite number into
its prime factors (primefactors), determine whether a number is prime (is.prime) or whether
two numbers are relatively prime (relatively.prime), and find the least common multiple or
greatest common divisor of two numbers (least.common.multiple, greatest.common.divisor).

Faster versions of basic R tools Faster versions of some basic R tools and idioms are provided.
These are only faster in particular cases, but if you know that your data have a particular form,
the acceleration can be substantial. See ifelseAB, fave.order, revcumsum, tapplysum.

Grammar Use the correct word in English to refer to an ordinal number (ordinal, ordinalsuffix)
and the correct indefinite article (articlebeforenumber).

Tools for generating printed output The function splat is a replacement for cat(paste(...))
which ensures that output stays inside the declared text margin (getOption("width")) and
can also perform automatic indentation. There are useful functions to add or remove paren-
theses (paren, unparen) and to make comma-separated lists (commasep).

Handling intervals (ranges) of real numbers Simple functions handle an interval (range) of nu-
merical values: check.range, intersect.ranges, inside.range, check.in.range, prange.

Handling a formula Tools for handling a formula in the R language include lhs.of.formula,
rhs.of.formula, variablesinformula, termsinformula, offsetsinformula, can.be.formula
and identical.formulae.

Polynomials There are tools for creating and manipulating symbolic expressions for polynomials,
as they might appear in a formula (sympoly, expand.polynom).

Validating arguments There are many tools for validating an argument and generating a compre-
hensible error or warning message if the argument is not valid: check.1.integer, check.nvector,
check.named.vector.

Passing arguments There are many tools for calling a function while passing only some of the ar-
guments in a supplied list of arguments: do.call.matched, do.call.without, resolve.defaults.

Traced optimization optimizeWithTrace is a simple wrapper for the one-dimensional optimiza-
tion routine optimize. It stores the values of the function argument each time it is called,
stores the resulting function values, and returns them along with the optimal value.

Workarounds There are workarounds for known bugs or undesirable features in other software.
spatstatLocator is a replacement for locator which works around a bug in the RStudio
graphics interface. cat.factor concatenates several factors, merging the levels, to produce a
new factor.

Licence

This library and its documentation are usable under the terms of the “GNU General Public License”,
a copy of which is distributed with R.

4 articlebeforenumber

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

articlebeforenumber Indefinite Article Preceding A Number

Description

Determines the indefinite article (an or a) which should precede a given number, if the number is
read out in English.

Usage

articlebeforenumber(k, teenhundreds=FALSE)

Arguments

k A single number.

teenhundreds Logical value specifying that (for example) 1800 should be read as “eighteen
hundred” instead of “one thousand eight hundred”. See Details.

Details

This function applies the rule that, if the English language word or phrase for the number k begins
with a vowel, then it should be preceded by an, and otherwise by a.

If teenhundreds=FALSE (the default), the numbers 1100 and 1800 will be read as ‘one thousand
one hundred’ and ‘one thousand eight hundred’, and the indefinite article will be a. However
if teenhundreds=TRUE, the numbers 1100 and 1800 be read as ‘eleven hundred’ and ‘eighteen
hundred’ and the indefinite article will be an.

Value

One of the character strings "an" or "a".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

ordinal

cat.factor 5

Examples

f <- function(k) cat(paste(articlebeforenumber(k),
paste0(k, "-fold"),
"increase\n"))

f(8)
f(18)
f(28)

cat.factor Combine Several Factors

Description

Combine (concatenate) several factor objects, to produce a factor.

Usage

cat.factor(...)

Arguments

... Any number of arguments. Each argument should be a factor, or will be con-
verted to a factor.

Details

The arguments ... are concatenated as they would be using c() or cat(), except that factor levels
are retained and merged correctly. See the Examples.

Value

A factor, whose length is the sum of the lengths of all arguments. The levels of the resulting factor
are the union of the levels of the arguments.

Author(s)

Rolf Turner <rolfturner@posteo.net>.

See Also

c.

6 check.1.integer

Examples

f <- factor(letters[1:3])
g <- factor(letters[3:5])
f
g
cat(f,g)
c(f,g)
cat.factor(f, g)

check.1.integer Check Argument Type and Length

Description

These utility functions check whether a given argument is a single value of the required type.

Usage

check.1.real(x, context = "", fatal = TRUE, warn=TRUE)
check.1.integer(x, context = "", fatal = TRUE, warn=TRUE)
check.1.string(x, context = "", fatal = TRUE, warn=TRUE)

Arguments

x The argument to be checked.

context Optional string describing the context in which the argument is checked.

fatal Logical value indicating whether a fatal error should occur when x is not of the
required type.

warn Logical value indicating whether to issue a warning message if x is not of the
required type.

Details

These functions check whether the argument x is a single atomic value of type numeric, integer
or character.

If x does have the required length and type, the result of the function is the logical value TRUE.

Otherwise, if fatal=TRUE (the default) an error occurs, while if fatal=FALSE a warning is issued
(if warn=TRUE) and the function returns the value FALSE.

Value

A logical value (or an error may occur).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

check.anyvector 7

See Also

check.named.vector

Examples

x <- pi
check.1.real(x)
check.1.integer(pi, fatal=FALSE, context="In your dreams,")
check.1.string(x, fatal=FALSE)
check.1.integer(x, fatal=FALSE, warn=FALSE)

check.anyvector Check For Vector or Factor With Correct Length

Description

This is a programmer’s utility function to check whether the argument is a vector or factor of the
correct length.

Usage

check.anyvector(v, npoints = NULL, fatal = TRUE, things = "data points",
naok = FALSE, warn = FALSE, vname, oneok = FALSE)

Arguments

v The argument to be checked.

npoints The required length of v.

fatal Logical value indicating whether to stop with an error message if v does not
satisfy all requirements.

things Character string describing what the entries of v should correspond to.

naok Logical value indicating whether NA values are permitted.

warn Logical value indicating whether to issue a warning if v does not satisfy all
requirements.

vname Character string giving the name of v to be used in messages.

oneok Logical value indicating whether v is permitted to have length 1.

Details

This function checks whether v is a vector or factor with length equal to npoints (or length equal
to 1 if oneok=TRUE), not containing any NA values (unless naok=TRUE).

If these requirements are all satisfied, the result is the logical value TRUE.

If not, then if fatal=TRUE (the default), an error occurs; if fatal=FALSE, the result is the logical
value FALSE with an attribute describing the requirement that was not satisfied.

8 check.named.vector

Value

A logical value indicating whether all the requirements were satisfied. If FALSE, then this value has
an attribute "whinge", a character string describing the requirements that were not satisfied.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

check.nvector, check.nmatrix, check.1.real, check.named.vector.

Examples

z <- factor(letters[1:10])
y <- z[1]
check.anyvector(z, 5, fatal=FALSE)
check.anyvector(y, 5, oneok=TRUE)
check.anyvector(42, 5, fatal=FALSE)

check.named.vector Check Whether Object Has Required Components

Description

These functions check whether the object x has components with the required names, and does not
have any unexpected components.

Usage

check.named.vector(x, nam, context = "", namopt = character(0),
onError = c("fatal", "null"), xtitle=NULL)

check.named.list(x, nam, context = "", namopt = character(0),
onError = c("fatal", "null"), xtitle=NULL)

check.named.thing(x, nam, namopt = character(0),
xtitle = NULL, valid = TRUE, type = "object",
context = "", fatal = TRUE)

Arguments

x The object to be checked.

nam Vector of character strings giving the names of all the components which must
be present.

namopt Vector of character strings giving the names of components which may option-
ally be present.

check.named.vector 9

context Character string describing the context in which x is being checked, for use in
error messages.

xtitle Optional character string to be used when referring to x in error messages.

valid Logical value indicating whether x belongs to the required class of objects.

type Character string describing the required class of objects.

onError Character string indicating what to do if x fails the checks.

fatal Logical value indicating what to do if x fails the checks. If fatal=TRUE (the
default), an error occurs.

Details

check.named.thing checks whether x has all the required components, in the sense that names(x)
includes all the names in nam, and that every entry in names(x) belongs to either nam or namopt.
If all these checks are true, the result is a zero-length character vector. Otherwise, if fatal=TRUE
(the default), an error occurs; otherwise the result is a character vector describing the checks which
failed.

check.named.vector checks whether x is a numeric vector and check.named.list checks whether
x is a list. They then call check.named.thing to check whether all the required components are
present. If all these checks are true, the result is a reordered version of x in which all the compul-
sory entries appear first. Otherwise, if onError="fatal" (the default) an error occurs; otherwise
the result is NULL.

Value

check.named.vector returns a numeric vector or NULL.

check.named.list returns a list or NULL.

check.named.thing returns a character vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

check.1.integer

Examples

z <- list(a=1, b=2, e=42)
check.named.list(z, c("a", "b"), namopt=c("c", "d", "e"))
check.named.thing(z, c("a", "b"), namopt=c("c", "d", "e"))
zz <- unlist(z)
check.named.vector(zz, c("a", "b"), namopt=c("c", "d", "e"))
check.named.thing(z, c("b", "c"), namopt=c("d", "e"), fatal=FALSE)

10 check.nmatrix

check.nmatrix Check for Numeric Matrix with Correct Dimensions

Description

This is a programmer’s utility function to check whether the argument is a numeric vector of the
correct length.

Usage

check.nmatrix(m, npoints = NULL, fatal = TRUE, things = "data points",
naok = FALSE, squarematrix = TRUE, matchto = "nrow",
warn = FALSE, mname)

Arguments

m The argument to be checked.

npoints The required number of rows and/or columns for the matrix m.

fatal Logical value indicating whether to stop with an error message if m does not
satisfy all requirements.

things Character string describing what the rows/columns of m should correspond to.

naok Logical value indicating whether NA values are permitted.

squarematrix Logical value indicating whether m must be a square matrix.

matchto Character string (either "nrow" or "ncol") indicating whether it is the rows or
the columns of m which must correspond to npoints.

warn Logical value indicating whether to issue a warning if v does not satisfy all
requirements.

mname Optional character string giving the name of m for use in error messages and
warnings.

Details

This programmer’s utility function checks whether m is a numeric matrix of the correct dimensions,
and checks for NA values. If matchto="nrow" (the default) then the number of rows of m must be
equal to npoints. If matchto="ncol" then the number of columns of m must be equal to npoints.
If squarematrix=TRUE (the default) then the numbers of rows and columns must be equal. If naok
= FALSE (the default) then the entries of m must not include NA.

If these requirements are all satisfied, the result is the logical value TRUE.

If not, then if fatal=TRUE (the default), an error occurs; if fatal=FALSE, the result is the logical
value FALSE with an attribute describing the requirement that was not satisfied.

Value

A logical value indicating whether all the requirements were satisfied.

check.nvector 11

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

check.nvector

Examples

z <- matrix(1:16, 4, 4)
check.nmatrix(z, 4)

check.nvector Check For Numeric Vector With Correct Length

Description

This is a programmer’s utility function to check whether the argument is a numeric vector of the
correct length.

Usage

check.nvector(v, npoints = NULL, fatal = TRUE, things = "data points",
naok = FALSE, warn = FALSE, vname, oneok = FALSE)

Arguments

v The argument to be checked.

npoints The required length of v.

fatal Logical value indicating whether to stop with an error message if v does not
satisfy all requirements.

things Character string describing what the entries of v should correspond to.

naok Logical value indicating whether NA values are permitted.

warn Logical value indicating whether to issue a warning if v does not satisfy all
requirements.

vname Character string giving the name of v to be used in messages.

oneok Logical value indicating whether v is permitted to have length 1.

Details

This function checks whether v is a numeric vector with length equal to npoints (or length equal
to 1 if oneok=TRUE), not containing any NA values (unless naok=TRUE).

If these requirements are all satisfied, the result is the logical value TRUE.

If not, then if fatal=TRUE (the default), an error occurs; if fatal=FALSE, the result is the logical
value FALSE with an attribute describing the requirement that was not satisfied.

12 check.range

Value

A logical value indicating whether all the requirements were satisfied. If FALSE, then this value has
an attribute "whinge", a character string describing the requirements that were not satisfied.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

check.anyvector, check.nmatrix, check.1.real, check.named.vector.

Examples

z <- 1:10
check.nvector(z, 5, fatal=FALSE)
y <- 42
check.nvector(y, 5, fatal=FALSE, oneok=TRUE)

check.range Utilities for Ranges of Values

Description

These simple functions handle an interval or range of numerical values. check.range(r) checks
whether r specifies a range of values, that is, whether r is a vector of length 2 with r[1] <= r[2].
intersect.ranges(r, s) finds the intersection of two ranges r and s. inside.range(x, r) re-
turns a logical vector containing TRUE if the corresponding entry of x falls inside the range r, and
FALSE if it does not. check.in.range(x, r) checks whether a single number x falls inside the
specified range r. Finally prange(r) produces a character string that represents the range r.

Usage

check.range(r, fatal = TRUE)

check.in.range(x, r, fatal = TRUE)

inside.range(x, r)

intersect.ranges(r, s, fatal = TRUE)

prange(r)

check.range 13

Arguments

r A numeric vector of length 2 specifying the endpoints of a range of values.

x Numeric vector of data.

s A numeric vector of length 2 specifying the endpoints of a range of values.

fatal Logical value indicating whether to stop with an error message if the data do not
pass the check.

Details

check.range checks whether r specifies a range of values, that is, whether r is a vector of length
2 with r[1] <= r[2]. If so, the result is TRUE. If not, then if fatal=TRUE, an error occurs, while if
fatal=FALSE the result is FALSE.

intersect.ranges(r, s) finds the intersection of two ranges r and s. If the intersection is non-
empty, the result is a numeric vector of length 2. If the intersection is empty, then if fatal=TRUE,
an error occurs, while if fatal=FALSE the result is NULL.

inside.range(x, r) returns a logical vector containing TRUE if the corresponding entry of x falls
inside the range r, and FALSE if it does not.

check.in.range(x, r) checks whether a single number x falls inside the specified range r. If so,
the result is TRUE. If not, then if fatal=TRUE, an error occurs, while if fatal=FALSE the result is
FALSE.

Finally prange(r) produces a character string that represents the range r.

Value

The result of check.range, check.in.range and inside.range, is a logical value or logical vec-
tor. The result of intersect.ranges is a numerical vector of length 2, or NULL. The result of
prange is a character string.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Examples

rr <- c(0, 2)
ss <- c(1, 3)
x <- seq(0.5, 3.5, by=1)
check.range(rr)
check.range(42, fatal=FALSE)
inside.range(x, rr)
intersect.ranges(rr, ss)
prange(rr)

14 difflong

commasep List of Items Separated By Commas

Description

Convert the elements of a vector into character strings and paste them together, separated by com-
mas.

Usage

commasep(x, join = " and ", flatten = TRUE)

Arguments

x Vector of items in the list.

join The string to be used to separate the last two items in the list.

flatten Logical value indicating whether to return a single character string (flatten=TRUE,
the default) or a list (flatten=FALSE).

Value

A character string (if flatten=TRUE, the default) or a list of character strings.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

Examples

commasep(letters[1:4])
y <- commasep(sQuote(letters[1:4]))
cat(y, fill=TRUE)

difflong Lagged Differences for a Long Vector

Description

Calculate the lagged difference of a long vector.

Usage

difflong(x, drop = TRUE)

do.call.matched 15

Arguments

x Numeric or integer vector.

drop Logical value. See Details.

Details

A ‘long vector’ is a vector with more than 231 − 1 elements (the largest possible 32-bit integer).
Long vectors are supported in R on 64-bit computer systems. This feature was introduced in R
version 3.0.0.

Although long vectors are permitted, not all functions in R have been extended to handle long
vectors.

The base R function diff currently does not handle a long vector, and may cause the entire R
session to be terminated.

The function difflong is a temporary replacement for diff in the simplest case: difflong(x) is
a replacement for diff(x).

If drop=TRUE (the default), the result of difflong(x) is equivalent to diff(x), a vector with length
equal to length(x) - 1. If drop=FALSE the result of difflong(x, FALSE) has the same length as
x; the first entry is zero, and the subsequent entries are equivalent to diff(x).

Value

A vector of the same type as x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

diff

Examples

x <- sample(1:5)
diff(x)
difflong(x)

do.call.matched Call a Function, Passing Only Recognised Arguments

Description

Call a specified function, using only those arguments which are known to be acceptable to the
function.

16 do.call.matched

Usage

do.call.matched(fun, arglist, funargs, extrargs = NULL,
matchfirst = FALSE, sieve = FALSE, skipargs = NULL,
envir=parent.frame())

Arguments

fun A function, or a character string giving the name of a function, to be called.

arglist A named list of arguments.

funargs Character vector giving the names of arguments that are recognised by fun.
Defaults to the names of the formal arguments of fun.

extrargs Optional. Character vector giving the names of additional arguments that can be
handled by fun.

skipargs Optional. Character vector giving the names of arguments which should not be
passed to fun.

matchfirst Logical value indicating whether the first entry of arglist is permitted to have
an empty name and should be matched to the first argument of fun.

sieve Logical value indicating whether to return the un-used arguments as well as the
result of the function call. See Details.

envir An environment within which to evaluate the call, if any entries of arglist are
quoted expressions.

Details

This function is a wrapper for do.call which avoids passing arguments that are unrecognised by
fun.

In the simplest case do.call.matched(fun, arglist) is like do.call(fun, arglist), except
that entries of arglist which do not match any formal argument of fun are removed. Extra
argument names can be permitted using extrargs, and argument names can be forbidden using
skipargs.

Value

If sieve=FALSE (the default), the result is the return value from fun.

If sieve=TRUE, the result is a list with entries result (the return value from fun) and otherargs
(a list of the arguments that were not passed to fun).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

resolve.defaults, do.call.without.

do.call

do.call.without 17

Examples

f <- function(x=0,y=0, ...) { paste(x, y, ..., sep=", ") }
f()
do.call.matched(f, list(y=2))
do.call.matched(f, list(y=2, z=5), extrargs="z")
do.call.matched(f, list(y=2, z=5), extrargs="z", skipargs="y")

do.call.without Call a Function, Omitting Certain Arguments

Description

Call a specified function, omitting some arguments which are inappropriate to the function.

Usage

do.call.without(fun, ..., avoid, envir=parent.frame())

Arguments

fun The function to be called. A function name, a character string giving the name
of the function, or an expression that yields a function.

... Any number of arguments.
avoid Vector of character strings, giving the names of arguments that should not be

passed to fun.
envir An environment within which to evaluate the call, if any entries of arglist are

quoted expressions.

Details

This is a simple mechanism for preventing some arguments from being passed in a function call.
The arguments ... are collected in a list. A argument is omitted if its name exactly matches one of
the strings in avoid.

Value

The return value of fun.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

do.call.matched for a more complicated and flexible call.

Examples

do.call.without(paste, 1, 2, z=3, w=4, avoid="z")

18 exactCutBreaks

evenly.spaced Determine Whether a Vector is Evenly Spaced and Increasing

Description

Determines whether the entries in a numeric vector are evenly spaced and increasing.

Usage

evenly.spaced(x, tol = 1e-07)

Arguments

x Numeric vector.

tol Relative tolerance.

Details

The result is TRUE if x is an increasing sequence in which the successive differences diff(x) are
all equal to one another (within the specified relative tolerance), and FALSE otherwise.

Value

A single logical value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

Examples

evenly.spaced(seq(0, 1, length=4))

exactCutBreaks Determine Breakpoints for Cut

Description

Computes the numerical breakpoints used by cut.default.

Usage

exactCutBreaks(x, breaks)

expand.polynom 19

Arguments

x Numeric vector which would be converted to a factor.

breaks Either a numeric vector of breakpoints, or a single integer giving the number of
intervals into which x will be cut.

Details

This function contains a copy of the code in cut.default which determines the numerical break-
points used to convert x to a factor. It returns the breakpoints only.

The arguments x and breaks have the same interpretation as in cut.default. Only the range of x
is used in the computation, so x could be replaced by range(x).

This function would normally be used when breaks is a single integer specifying the number of
intervals for the cut operation. It returns the exact numerical values of the breakpoints which are
determined, but not returned, by cut.default).

Value

Numeric vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

cut.default

Examples

exactCutBreaks(c(0,1), 4)

expand.polynom Expand Symbolic Polynomials in a Formula

Description

Create a formula representing a polynomial, or expand polynomials in an existing formula.

Usage

expand.polynom(f)
sympoly(x, y, n)

20 fastFindInterval

Arguments

f A formula.

x, y Variable names.

n Integer specifying the degree of the polynomial. (If n is missing, y will be
interpreted as the degree.)

Details

These functions expand a polynomial into its homogeneous terms and return a model formula.

sympoly(x, n) creates a formula whose right-hand side represents the polynomial of degree n in
the variable x. Each homogeneous term x^k is a separate term in the formula.

sympoly(x, y, n) creates a formula representing the polynomial of degree n in the two variables x
and y.

If f is a formula containing a term of the form polynom(...) then expand.polynom(f) replaces
this term by its expansion as a sum of homogeneous terms, as defined in the help for polynom.

Value

A formula.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

polynom

Examples

sympoly(A, 4)
sympoly(A, B, 3)
expand.polynom(U ~ A + polynom(B, 2))

fastFindInterval Find Intervals Containing Given Data

Description

A faster alternative to findInterval for intervals which are equally-spaced.

Usage

fastFindInterval(x, b, labels = FALSE, reltol = 0.001, dig.lab = 3L,
left.open=TRUE)

fastFindInterval 21

Arguments

x Data. Numeric vector of values that are to be classified.
b Breakpoints. Numeric vector of increasing values that are the endpoints of the

intervals.
labels Logical value specifying whether to return a factor, whose levels are the string

labels of the intervals.
reltol Relative tolerance. A positive number.
dig.lab Integer. Maximum number of digits to use in the labels for the intervals, when

labels=TRUE.
left.open Logical value specifying whether intervals are left-open and right-closed (left.open=TRUE,

the default) or left-closed and right-open (left.open=FALSE).

Details

This is an alternative to findInterval(x, b, rightmost.closed=TRUE) which seems to be faster
when b is equally spaced and the length of x is large.

If labels=FALSE (the default), the result is an integer vector giving, for each value x[i], the index
j of the interval that contains x[i]:

• If left.open=TRUE (the default), the intervals are left-open and right-closed, except for the
first interval. This means that x[i] belongs to the jth interval if b[j] < x[i] <= b[j+1] for j
> 1 and b[1] <= x[i] <= b[2] for j=1.

• If left.open=FALSE, the intervals are left-closed and right-open, except for the last interval.
This means that x[i] belongs to the jth interval if b[j] <= x[i] < b[j+1] for j < m and b[m]
<= x[i] <= b[m+1] for j=m where m = length(b)-1 is the number of intervals.

If labels=TRUE, the result is a factor, and the levels are synthetic labels for the intervals, similar to
those produced by findInterval.

Note that the default value of left.open is TRUE for fastFindInterval but FALSE for findInterval.

Value

Integer vector, or factor.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

findInterval

Examples

x <- runif(10)
b <- seq(0, 1, by=0.2)
fastFindInterval(x, b, labels=TRUE)

22 geomseq

geomseq Geometric Sequence

Description

Generate a geometric sequence between two endpoints. The sequence is equally spaced on a loga-
rithmic scale.

Usage

geomseq(from, to, length.out)

Arguments

from Starting value. A positive number.

to Ending value. A positive number.

length.out Number of elements in the sequence. A positive integer.

Details

This is a wrapper for seq.default which generates a geometric sequence between the two end-
points.

Value

Numeric vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

seq.default

Examples

geomseq(1, 32, length.out=6)

harmonicmean 23

harmonicmean Harmonic Mean

Description

Calculates the harmonic mean of a numeric vector, robustly handling special cases.

Usage

harmonicmean(x, na.rm = TRUE)
harmonicsum(x, na.rm = TRUE)

Arguments

x Numeric vector.

na.rm Logical value specifying whether to remove NA values before processing.

Details

The harmonic mean of a set of numbers is the reciprocal of the mean of the reciprocals of the
numbers.

The function harmonicmean calculates the harmonic mean of x. The algorithm robustly handles
special cases where some of the values in x are very small or are exactly equal to zero.

The function harmonicsum calculates the reciprocal of the sum of the reciprocals of the x values.

Value

A single numeric value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

Examples

harmonicmean(1:3)

24 ifelseAB

ifelseAB Conditional Selection

Description

These low-level functions provide faster alternatives to some uses of ifelse.

Usage

ifelseAB(test, a, b)
ifelseAX(test, a, x)
ifelseXB(test, x, b)
ifelseXY(test, x, y)
ifelseNegPos(test, x)
ifelse0NA(test)
ifelse1NA(test)

Arguments

test A logical vector.

a A single atomic value.

b A single atomic value.

x A vector of values, of the same length as test.

y A vector of values, of the same length as test.

Details

These low-level functions provide faster alternatives to some uses of ifelse. They were developed
by trial-and-error comparison of computation times of different expressions.

ifelse0NA(test) is equivalent to ifelse(test, 0, NA).

ifelse1NA(test) is equivalent to ifelse(test, 1, NA).

ifelseAB(test, a, b) is equivalent to ifelse(test, a, b) where a and b must be single values.

ifelseAX(test, a, x) is equivalent to ifelse(test, a, x) where a must be a single value, and
x a vector of the same length as test.

ifelseXB(test, x, b) is equivalent to ifelse(test, x, b) where b must be a single value, and
x a vector of the same length as test.

ifelseXY(test, x, y) is equivalent to ifelse(test, x, y) where x and y must be vectors of the
same length as test.

ifelseNegPos(test, x) is equivalent to ifelse(test, x, -x) where x must be a vector of the
same length as test.

Value

A vector of the same length as test containing values of the same type as a,b,x,y.

is.power 25

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

ifelse

Examples

x <- runif(4e5)
u <- (x < 0.5)
system.time(ifelse(u, 2, x))
system.time(ifelseAX(u, 2, x))

is.power Recognise a Square, Cube, or Power of an Integer

Description

Determine whether the given integer is a square number, a cube number, or a power of an integer.

Usage

is.square(n)
is.cube(n)
is.power(n)

Arguments

n A single integer.

Details

is.square(n) returns TRUE if n is a square number, that is, n = m^2 for some integer m, and returns
FALSE otherwise.

is.cube(n) returns TRUE if n is the cube of an integer, n = m^3 for some integer m, and returns
FALSE otherwise.

is.power(n) returns TRUE if n is an integer power of an integer, n = m^k for some integers m and k,
and returns FALSE otherwise.

These functions use the prime factorisation of n and may be more reliable than testing where
sqrt(n) is an integer, etc.

Negative values of n are permitted.

Value

A single logical value.

26 methods.xypolygon

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

primefactors

Examples

is.square(9)
is.cube(9)
is.cube(27)
is.cube(-27)
is.power(27)
is.power(3^5)

methods.xypolygon Calculations for Polygons in the Plane

Description

Compute the area or boundary length of a polygon, determine whether a point falls inside a polygon,
compute the area of overlap between two polygons, and related tasks.

Usage

verify.xypolygon(p, fatal = TRUE)
is.hole.xypolygon(polly)
Area.xypolygon(polly)
bdrylength.xypolygon(polly)
reverse.xypolygon(p, adjust=FALSE)
overlap.xypolygon(P, Q)
simplify.xypolygon(p, dmin)
inside.xypolygon(pts, polly, test01, method)

Arguments

p, polly, P, Q Data representing a polygon. See Details.

dmin Single numeric value giving the minimum permissible length of an edge in the
simplified polygon.

fatal Logical value indicating whether failure is a fatal error.

pts Coordinates of points to be tested. A named list with entries x,y which are
numeric vectors of coordinates.

adjust Logical value indicating whether internal data should be adjusted. See Details.

test01, method For developer use only.

methods.xypolygon 27

Details

In the spatstat family of packages, a polygon in the Euclidean plane is represented as a named list
with the following entries:

x,y Numeric vectors giving the coordinates of the vertices. The vertices should be traversed in
anti-clockwise order (unless the polygon is a hole, when they should be traversed in clockwise
order) and the last vertex should not repeat the first vertex.

hole Optional. A logical value indicating whether the polygon is a hole.

area Optional. Single numeric value giving the area of the polygon (negative if it is a hole).

The function verify.xypolygon checks whether its argument satisfies this format. If so, it returns
TRUE; if not, it returns FALSE or (if fatal=TRUE) generates a fatal error.

The other functions listed here perform basic calculations for polygons using elementary Cartesian
analytic geometry in R.

is.hole.xypolygon determines whether a polygon is a hole or not.

Area.xypolygon computes the area of the polygon using the discrete Green’s formula.

bdrylength.xypolygon calculates the total length of edges of the polygon.

reverse.xypolygon reverses the order of the coordinate vectors x and y. If adjust=TRUE, the
other entries hole and area will be adjusted as well.

overlap.xypolygon computes the area of overlap between two polygons using the discrete Green’s
formula. It is slow compared to the code in the polyclip package.

simplify.xypolygon removes vertices of the polygon until every edge is longer than dmin.

inside.xypolygon(pts, polly) determines whether each point in pts lies inside the polygon
polly and returns a logical vector.

Value

verify.xypolygon and is.hole.xypolygon return a single logical value.

inside.xypolygon returns a logical vector.

Area.xypolygon, bdrylength.xypolygon and overlap.xypolygon return a single numeric value.

reverse.xypolygon and simplify.xypolygon return another polygon object.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

Examples

p <- list(x=c(0,1,4,2), y=c(0,0,2,3))
is.hole.xypolygon(p)
Area.xypolygon(p)
bdrylength.xypolygon(p)
overlap.xypolygon(p, list(x=p$x+1, y=p$y+1))
reverse.xypolygon(p)

plot(c(0,5),c(0,3),type="n",xlab="x", ylab="y")

28 optimizeWithTrace

polygon(p)
polygon(simplify.xypolygon(p, 1.1), lty=3)

plot(c(0,5),c(0,3),type="n",xlab="x", ylab="y")
polygon(p)
xx <- runif(10, max=5)
yy <- runif(10, max=3)
points(xx, yy)
ok <- as.logical(inside.xypolygon(list(x=xx, y=yy), p))
points(xx[ok], yy[ok], pch=16)

optimizeWithTrace One Dimensional Optimization with Tracing

Description

Find the minimum or maximum of a function over an interval of real numbers, keeping track of the
function arguments and function values that were evaluated.

Usage

optimizeWithTrace(f, interval, ...,
lower = min(interval), upper = max(interval))

Arguments

f The function to be minimized or maximized.

interval Numeric vector of length 2 containing the end-points of the interval to be searched.

lower, upper The lower and upper endpoints of the interval to be searched.

... Other arguments passed to optimize, including arguments to the function f.

Details

This is a simple wrapper for the optimization routine optimize. The function f will be optimized
by computing its value at several locations in the interval, as described in the help for optimize.
This wrapper function stores the locations and resulting function values, and returns them along
with the result of the optimization.

Value

A list with components

• minimum (or maximum), the location in the search interval which yielded the optimum value;

• objective, the value of the function at this location;

• x, the sequence of locations in the interval that were considered (in the order considered);

• y, the function values corresponding to x.

orderstats 29

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

optimize

Examples

f <- function (x, a) (x - a)^2
result <- optimizeWithTrace(f, c(0, 1), tol = 0.0001, a = 1/3)
result
curve(f(x, 1/3))
with(result, points(x, y, pch=16))

orderstats Compute Order Statistics

Description

Compute the k-th smallest value in a dataset, or find which entry in a dataset is the k-th smallest.

Usage

orderstats(x, k, decreasing = FALSE)
orderwhich(x, k, decreasing = FALSE)

Arguments

x Data whose order statistics will be computed. A numeric vector.

k Rank. An integer, or vector of integers.

decreasing Logical value specifing whether a rank of 1 is assigned to the highest value
(decreasing=TRUE) or the lowest value (decreasing=FALSE, the default).

Details

These are low-level functions for efficiently computing order statistics: orderstats(x, k) returns
the k-th smallest value in x, and orderwhich(x, k) returns the position of the k-th smallest value
in x.

Given a dataset of values x1, . . . , xn, the order statistic of rank k is the k-th smallest value in the
dataset. The order statistic of rank 1 is the smallest value, and the order statistic of rank n is the
largest value. The order statistic of rank k is denoted x[k].

The full sequence of order statistics

x[1] ≤ x[2] ≤ · · · ≤ x[n]

30 ordinal

can simply be obtained by sorting the original values into increasing order.

The command orderstats(x, k) is equivalent to sort(x)[k]; it calculates the k-th smallest value
in x.

The command orderwhich(x, k) is equivalent to order(x)[k]. It identifies the position of the
k-th smallest value in x, that is, it returns the index j such that x[j] is the k-th smallest value in x.

The functions orderstats and orderwhich are more efficient than using sort and order when it
is only desired to calculate a few of the order statistics (for example, only the smallest and second-
smallest values in the dataset).

Value

orderstats returns a vector of the same kind as x, with the same length as k. orderwhich returns
an integer vector with the same length as k.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

sort, order.

Examples

x <- runif(10)
orderstats(x, 2)
sort(x)[2]
orderwhich(x, 2:3)
order(x)[2:3]

ordinal Ordinal Numbers

Description

Returns the appropriate abbreviation in English for an ordinal number (for example ordinal(5) is
"5th").

Usage

ordinal(k)
ordinalsuffix(k)

Arguments

k An integer or vector of integers.

orifnull 31

Details

ordinal(k) returns a character string representing the kth ordinal number. ordinalsuffix(k)
determines the appropriate suffix.

The suffix can be either "st" (abbreviating first), "nd" (abbreviating second), "rd" (abbreviating
third) or "th" (for all other ordinal numbers fourth, fifth, etc).

Value

A character string or character vector of the same length as k.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

articlebeforenumber

Examples

ordinal(1:7)
cat(paste("Happy", ordinal(21), "Birthday"), fill=TRUE)

orifnull Specify a Default Value

Description

Specify a value together with a default to be used when the first value is null.

Usage

a %orifnull% b

Arguments

a Any kind of object or expression to be evaluated.

b Default value to be used when a is NULL. Any kind of object or expression to be
evaluated.

32 paren

Details

The operator %orifnull% is designed to improve the readability of code.

a %orifnull% b is equivalent to if(is.null(a)) a else b.

That is, a %orifnull% b is equal to a provided a is not null, and otherwise the result is equal to b.

Expressions are evaluated only when necessary. If a is a language expression, it is first evaluated.
Then if is.null(a) is FALSE, the result is a. Otherwise, b is evaluated, and the result is b. Note
that b is not evaluated unless a is NULL.

The operator %orifnull% has higher precedence than the arithmetic operators +, -, *, / but lower
precedence than ^.

The operator is associative, and can be used repeatedly in an expression, so that a default value may
have its own default. See the Examples.

Value

The result is a if a is not NULL, and otherwise the result is b.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

Examples

x <- 7
y <- 42
z <- w <- NULL
x %orifnull% y
z %orifnull% y
z %orifnull% x %orifnull% y
z %orifnull% w %orifnull% y

paren Add or Remove Parentheses

Description

Add or remove enclosing parentheses around a string.

Usage

paren(x, type = "(")
unparen(x)

Arguments

x A character string, or vector of character strings.

type Type of parentheses: either "(", "[" or "{".

percentage 33

Details

paren(x) adds enclosing parentheses to the beginning and end of the string x.

unparen(x) removes enclosing parentheses if they are present.

Value

A character string, or vector of character strings of the same length as x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

commasep

Examples

paren("Hello world")
paren(42, "[")
paren(letters[1:10])
unparen(c("(yes)", "[no]", "{42}"))

percentage Convert Fraction to Percentage

Description

This is a programmer’s utility which converts a fraction to a percentage and encodes the percentage
as a character string.

Usage

percentage(x, digits = 3)

Arguments

x Either a single number, or a logical vector.

digits Number of digits accuracy.

Details

If x is a single number, it should be a fraction between 0 and 1. It will be converted to a percentage
and then converted to a character string followed by the percentage symbol.

If x is a logical vector, the fraction of values which are TRUE will be computed, and used to determine
the percentage.

34 primefactors

Value

A character string.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Examples

percentage(1/3)
percentage(runif(20) > 0.2)

primefactors Primes, Prime Factorization, Common Divisor

Description

These functions find prime numbers, factorise a composite number into its prime factors, determine
whether a number is prime, and find the least common multiple or greatest common divisor of two
numbers.

Usage

primefactors(n, method=c("C", "interpreted"))
divisors(n)
is.prime(n)
relatively.prime(n, m)
least.common.multiple(n,m)
greatest.common.divisor(n,m)
primesbelow(nmax)

Arguments

n, m Integers to be factorized.

nmax Integer. Upper limit on prime numbers to be found.

method Character string indicating the choice of algorithm. (Developer use only.)

Details

is.prime(n) returns TRUE if n is a prime number, and FALSE otherwise.

primefactors(n) factorises the integer n into its prime number factors, and returns an integer
vector containing these factors. Some factors may be repeated.

divisors(n) finds all the integers which divide the integer n, and returns them as a sorted vector
of integers (beginning with 1 and ending with n).

relatively.prime(n, m) returns TRUE if the integers n and m are relatively prime, that is, if they
have no common factors.

queueSpatstatLocator 35

least.common.multiple and greatest.common.divisor return the least common multiple or
greatest common divisor of two integers n and m.

primesbelow(nmax) returns an integer vector containing all the prime numbers less than or equal
to nmax.

Value

is.prime and relatively.prime return a logical value.

least.common.multiple and greatest.common.divisor return a single integer.

primefactors and primesbelow return an integer vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

Examples

is.prime(17)

is.prime(399137)

relatively.prime(2, 3)

primefactors(24) ## Note repeated factors

primefactors(713291035)

divisors(24)

greatest.common.divisor(60, 100)

least.common.multiple(10, 15)

primesbelow(20)

queueSpatstatLocator Add Coordinates to a Queue for Use by Locator Function

Description

Add the coordinates of a spatial location to a queue. The queue can be accessed by the spatstatLocator
function in a non-interactive session.

Usage

queueSpatstatLocator(x, y)

36 RelevantNA

Arguments

x, y Numeric values, or vectors of the same length, containing spatial coordinates.
Any data acceptable to xy.coords.

Details

The spatstatLocator function is a replacement for the locator function that can be used to test
software which depends on user input.

When queueSpatstatLocator(x,y) is called, the coordinate data x,y are saved in a queue. The
first-listed coordinate pair x[1], y[1] is at the front of the queue. Subsequently, when spatstatLocator
is called, the coordinates are taken from the front of the queue and returned as if they had been
clicked by the user.

This only works in a non-interactive session, that is, when interactive() returns FALSE.

Value

Integer (invisible). The length of the queue, after inclusion of the new points.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

spatstatLocator

Examples

queueSpatstatLocator(0.5, 0.7)
queueSpatstatLocator(c(0.3, 0.4), c(0.2, 0.9))
if(!interactive()) {

spatstatLocator(2)
spatstatLocator(1)

}

RelevantNA Missing Value, Zero-length Vector, or Zero Value of the Appropriate
Type

Description

Given any data x, these functions return the missing value NA, the empty vector, or the equivalent of
the number 0, with the same type as x.

RelevantNA 37

Usage

RelevantZero(x)
RelevantNA(x)
RelevantEmpty(x)

isRelevantZero(x)

Arguments

x Data of any type.

Details

In the R system, missing values may have different types. For example, if an entry is missing from
a numeric vector, it is a missing numeric value, not a missing logical value, and R distinguishes
between these two types of missing values.

The function RelevantNA returns a missing value of the same type as the input x (as defined by
typeof). Thus, RelevantNA(3.2) returns a missing numeric value and RelevantNA(TRUE) returns
a missing logical value.

RelevantEmpty(x) returns a vector of length zero which has the same type as x. Thus, RelevantEmpty(TRUE)
is equivalent to logical(0).

RelevantZero(x) returns a single value, of the same type as x, that is equivalent to the number
zero. For example, RelevantZero(TRUE) returns FALSE.

The function isRelevantZero tests whether x is a single zero value, by testing whether x is identi-
cal to RelevantZero(x).

Value

RelevantZero and RelevantNA return a single value of the same type as x.

RelevantEmpty returns a zero-length vector of the same type as x.

isRelevantZero returns a single logical value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

typeof

Examples

RelevantZero(42)
RelevantZero(TRUE)
RelevantZero("hello world")

RelevantNA(1:3)
typeof(RelevantNA(1:3))

38 resolve.defaults

typeof(RelevantNA("hello world"))

resolve.defaults Determine Values of Variables Using Several Default Rules

Description

Determine the values of variables by applying several different default rules in a given order.

Usage

resolve.defaults(..., .MatchNull = TRUE, .StripNull = FALSE)

resolve.1.default(.A, ...)

Arguments

... Several lists of name=value pairs.

.MatchNull Logical value. If TRUE (the default), an entry of the form name=NULL will be
treated as assigning the value NULL to the variable name. If FALSE, such entries
will be ignored.

.StripNull Logical value indicating whether entries of the form name=NULL should be re-
moved from the result.

.A Either a character string giving the name of the variable to be extracted, or a
list consisting of one name=value pair giving the variable name and its fallback
default value.

Details

These functions determine the values of variables by applying a series of default rules, in the order
specified.

Each of the arguments ... should be a list of name=value pairs giving a value for a variable name.
Each list could represent a set of arguments given by the user, or a rule assigning default values to
some variables. Lists that appear earlier in the sequence of arguments ... take precedence.

The arguments ... will be concatenated into a single list. The earliest occurrence of each name is
then used to determine the final value of the variable name.

The function resolve.defaults returns a list of name=value pairs for all variables encountered. It
is commonly used to decide the values of arguments to be passed to another function using do.call.

The function resolve.1.default returns the value of the specified variable as determined by
resolve.defaults. It is commonly used inside a function to determine the value of an argument.

Value

The result of resolve.defaults is a list of name=value pairs.

The result of resolve.1.default can be any kind of value.

revcumsum 39

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

do.call

Examples

user <- list(day="Friday")
ruleA <- list(month="Jan", gravity=NULL)
ruleB <- list(day="Tuesday", month="May", gravity=42)
resolve.defaults(user, ruleA, ruleB)
resolve.defaults(user, ruleA, ruleB, .StripNull=TRUE)
resolve.defaults(user, ruleA, ruleB, .MatchNull=FALSE)

resolve.1.default("month", user, ruleA, ruleB)

revcumsum Reverse Cumulative Sum

Description

Returns a vector of cumulative sums of the input values, running in reverse order. That is, the ith
entry in the output is the sum of entries i to n in the input, where n is the length of the input.

Usage

revcumsum(x)

Arguments

x A numeric, logical or complex vector.

Details

This low-level utility function is a faster alternative to rev(cumsum(rev(x))) under certain condi-
tions. It computes the reverse cumulative sum of the entries of x. If y <- revcumsum(x), then y[i]
= sum(x[i:n]) where n = length(x).

This function should not be used if x could contain NA values: this would lead to an error.

Value

A vector of the same length and type as x (except that if x is logical then the result is an integer
vector).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

40 simplenumber

See Also

cumsum.

Examples

revcumsum(1:5)
rev(cumsum(rev(1:5)))
x <- runif(1e6)
system.time(rev(cumsum(rev(x))))
system.time(revcumsum(x))

simplenumber Simple Rational Number

Description

Given a numeric value, try to express it as a simple rational number.

Usage

simplenumber(x, unit = "", multiply = "*", tol = .Machine$double.eps)

Arguments

x A single numeric value.
unit Optional. Character string giving the name of the unit in which x is expressed.

Typically an irrational number such as pi. See Examples.
multiply Optional. Character string representing multiplication.
tol Numerical tolerance.

Details

The code tries to express x as an integer x=n, or as the reciprocal of an integer x=1/n, or as a simple
rational number x = m/n, where m,n are small integers.

Value

A character string representing the simple number, or NULL if not successful.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

Examples

simplenumber(0.3)
simplenumber(0.333333333333333333333333)
x <- pi * 2/3
simplenumber(x/pi, "pi")

spatstat.utils-deprecated 41

spatstat.utils-deprecated

Deprecated Functions of spatstat.utils Package

Description

Deprecated functions of the spatstat.utils package.

Usage

equispaced(z, reltol=0.001)

Arguments

z Numeric vector.

reltol Numeric value for relative tolerance.

Details

equispaced has been replaced by evenly.spaced.

spatstatLocator Graphical Input

Description

This is an alternative to the locator function. It contains a workaround for a bug that occurs in
RStudio.

Usage

spatstatLocator(n, type = c("p", "l", "o", "n"), ...,
snap.step=NULL, snap.origin=c(0,0))

Arguments

n Optional. Maximum number of points to locate.

type Character specifying how to plot the locations. If "p" or "o" the points are
plotted; if "l" or "o" they are joined by lines.

... Additional graphics parameters used to plot the locations.

snap.step Optional. Spatial coordinates will be rounded to the nearest multiple of snap.step.
A positive number specifying the step length, or a vector of 2 positive numbers
specifying step lengths for the x and y coordinates.

snap.origin Optional. Numeric vector of length 2. Coordinates of the origin that will be
used when rounding coordinates.

42 splat

Details

This is a replacement/workaround for the locator function in some versions of RStudio which do
not seem to recognise the option type="p".

See locator for a description of the behaviour.

If snap.step is given, then the coordinates of the selected locations will be rounded to the nearest
multiple of snap.step.

Value

A list containing components x and y which are vectors giving the coordinates of the identified
points in the user coordinate system, i.e., the one specified by par("usr").

Software Testing

Programmers may like to know that code which depends on spatstatLocator can be tested in a
non-interactive session, if the coordinates are previously queued using queueSpatstatLocator.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

locator.

queueSpatstatLocator

Examples

if(interactive()) locator(1, type="p")

splat Print Text Within Margins

Description

Prints a given character string or strings inside the text margin specified by options("width").
Indents the text if required.

Usage

splat(..., indent = 0)

taperoff 43

Arguments

... Character strings, or other arguments acceptable to paste.

indent Optional. Indentation of the text. Either an integer specifying the number of
character positions by which the text should be indented, or a character string
whose length determines the indentation.

Details

splat stands for ‘split cat’.

The command splat(...) is like cat(paste(...)) except that the output will be split into lines
that can be printed within the current text margin specified by getOption("width").

The arguments ... are first combined into a character vector using paste. Then they are split into
words separated by white space. A newline will be inserted whenever the next word does not fit in
the available text area. (Words will not be broken, so the text margin could be exceeded if any word
is longer than getOption("width")).

If any argument is a vector, each element of the vector is treated as a separate line. Existing newline
characters in ... are also respected.

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

Examples

op <- options(width=20)
splat("There is more than one way to skin a cat.")
splat("There is more than one", "way to skin a cat.", indent=5)

options(width=10)
splat("The value of pi is", pi)
splat("The value of pi is", signif(pi))
options(op)

taperoff Taper Functions

Description

Computes a function that tapers smoothly from 0 to 1.

44 taperoff

Usage

taperoff(x, zeropoint = 0, onepoint = 1,
type = c("smooth", "cosine", "Gaussian"))

Arguments

x Function argument. A number or a numeric vector.

zeropoint Value of x that should return a function value of 0.

onepoint Value of x that should return a function value of 1.

type Character string (partially matched) specifying which taper function to use.

Details

A taper is a mathematical function that exhibits a gradual transition between the values 0 and 1.

By default, the function value f(x) is equal to 0 if x ≤ 0, is equal to 1 if x ≥ 1, and lies between 0
and 1 when 0 < x < 1.

If type="cosine", the function is the cosine taper f(x) = (1− cos(πx))/2.

If type="smooth" the function is the smooth partition of unity f(x) = θ(x)/(θ(x) + θ(1 − x))
where θ(x) = exp(−1/x).

If type="Gaussian" the function is the cumulative distribution function of the Gaussian (normal)
distribution with mean 1/2 and standard deviation 1/6.

If zeropoint and onepoint are specified, then the function value is equal to 0 when x=zeropoint,
equal to 1 when x=onepoint, and lies between 0 and 1 when x lies between zeropoint and
onepoint.

Value

A numeric vector of the same length as x.

Author(s)

Adrian Baddeley

Examples

curve(taperoff(x, type="smooth"))
curve(taperoff(x, type="cosine"), add=TRUE, col="green")
curve(taperoff(x, type="Gaussian"), add=TRUE, col="blue")

tapplysum 45

tapplysum Sum By Factor Level

Description

A faster equivalent of tapply(FUN=sum).

Usage

tapplysum(x, flist, do.names = FALSE, na.rm = TRUE)

Arguments

x Vector of numeric or complex values.

flist A list of factors of the same length as x.

do.names Logical value indicating whether to attach names to the result.

na.rm Logical value indicating whether to remove NA values before computing the
sums.

Details

This function is designed to be a faster alternative to the idiom y <- tapply(x, flist, sum);
y[is.na(y)] <- 0. The result y is a vector, matrix or array of dimension equal to the number of
factors in flist. Each position in y represents one of the possible combinations of the factor levels.
The resulting value in this position is the sum of all entries of x where the factors in flist take this
particular combination of values. The sum is zero if this combination does not occur.

Currently this is implemented for the cases where flist has length 1, 2 or 3 (resulting in a vector,
matrix or 3D array, respectively). For other cases we fall back on tapply.

Value

A numeric vector, matrix or array.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Tilman Davies.

See Also

tapply, table

46 termsinformula

Examples

x <- 1:12
a <- factor(rep(LETTERS[1:2], each=6))
b <- factor(rep(letters[1:4], times=3))
ff <- list(a, b)
tapply(x, ff, sum)
tapplysum(x, ff, do.names=TRUE)
tapplysum(x + 2i, ff, do.names=TRUE)

termsinformula Manipulate Formulae

Description

Operations for manipulating formulae.

Usage

termsinformula(x)
variablesinformula(x)
offsetsinformula(x)
lhs.of.formula(x)
rhs.of.formula(x, tilde=TRUE)
lhs.of.formula(x) <- value
rhs.of.formula(x) <- value
can.be.formula(x)
identical.formulae(x,y)

Arguments

x, y Formulae, or character strings representing formulae.

tilde Logical value indicating whether to retain the tilde.

value Symbol or expression in the R language. See Examples.

Details

variablesinformula(x) returns a character vector of the names of all variables which appear in
the formula x.

termsinformula(x) returns a character vector of all terms in the formula x (after expansion of
interaction terms).

offsetsinformula(x) returns a character vector of all offset terms in the formula.

rhs.of.formula(x) returns the right-hand side of the formula as another formula (that is, it re-
moves the left-hand side) provided tilde=TRUE (the default). If tilde=FALSE, then the right-hand
side is returned as a language object.

lhs.of.formula(x) returns the left-hand side of the formula as a symbol or language object, or
NULL if the formula has no left-hand side.

verbalogic 47

lhs.of.formula(x) <- value and rhs.of.formula(x) <- value change the formula x by replac-
ing the left or right hand side of the formula by value.

can.be.formula(x) returns TRUE if x is a formula or a character string that can be parsed as a
formula, and returns FALSE otherwise.

identical.formulae(x,y) returns TRUE if x and y are identical formulae (ignoring their environ-
ments).

Value

variablesinformula, termsinformula and offsetsinformula return a character vector.

rhs.of.formula returns a formula. lhs.of.formula returns a symbol or language object, or NULL.

can.be.formula and identical.formulae return a logical value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

Examples

f <- (y ~ x + z*w + offset(h))
lhs.of.formula(f)
rhs.of.formula(f)
variablesinformula(f)
termsinformula(f)
offsetsinformula(f)
g <- f
environment(g) <- new.env()
identical(f,g)
identical.formulae(f,g)
lhs.of.formula(f) <- quote(mork) # or as.name("mork")
f
rhs.of.formula(f) <- quote(x+y+z) # or parse(text="x+y+z")[[1]]
f

verbalogic Verbal Logic

Description

Perform the specified logical operation on the character vector x, recognising the special strings
"TRUE" and "FALSE" and treating other strings as logical variables.

Usage

verbalogic(x, op = "and")

48 which.min.fair

Arguments

x Character vector.

op Logical operation: one of the character strings "and", "or" or "not".

Details

This function performs simple logical operations on character strings that represent human-readable
statements.

The character vector x may contain any strings: the special strings "TRUE" and "FALSE" are treated
as the logical values TRUE and FALSE, while all other strings are treated as if they were logical
variables.

If op="and", the result is a single string, logically equivalent to x[1] && x[2] && ... && x[n]. First,
any entries of x equal to "TRUE" are removed. The result is "FALSE" if any of the entries of x is
"FALSE"; otherwise it is equivalent to paste(x, collapse=" and ").

If op="or", the result is a single string, logically equivalent to x[1] || x[2] || ... || x[n]. First,
any entries of x equal to "FALSE" are removed. The result is "TRUE" if any of the entries of x is
"TRUE"; otherwise it is equivalent to paste(x, collapse=" or ").

If op="not", the result is a character vector y such that y[i] is the logical negation of x[i].

The code does not understand English grammar and cannot expand logical expressions.

Value

A character string.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

Examples

x <- c("The sky is blue", "my name is not Einstein", "FALSE")
verbalogic(x, "and")
verbalogic(x, "or")
verbalogic(x, "not")

which.min.fair Where is the Minimum or Maximum

Description

Determines the index of the minimum or maximum of a vector. If there are multiple entries which
achieve the minimum or maximum, one of the indices is selected at random.

Usage

which.min.fair(x)
which.max.fair(x)

which.min.fair 49

Arguments

x numeric, logical, integer or double vector.

Details

These functions are alternatives to the standard R functions which.min and which.max.

The standard functions which.min and which.max find the index of the first entry in the vector
x which achieves the minimum or maximum value. This can cause a bias in some simulation
experiments.

The functions which.min.fair and which.max.fair identify all entries of the vector x which
achieve the minimum or maximum respectively, and select one of them at random.

Value

A single integer (or integer(0) if all entries of x are NA or NaN).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

which.min

Examples

z <- c(20, 40, 20, 10, 40, 20, 10, 20, 40)
replicate(5, which.max(z))
replicate(5, which.max.fair(z))
replicate(5, which.min.fair(z))

Index

∗ arith
harmonicmean, 23
revcumsum, 39
tapplysum, 45

∗ classes
check.1.integer, 6

∗ datagen
geomseq, 22

∗ deprecated
spatstat.utils-deprecated, 41

∗ error
check.1.integer, 6
check.anyvector, 7
check.named.vector, 8
check.nmatrix, 10
check.nvector, 11

∗ iplot
queueSpatstatLocator, 35
spatstatLocator, 41

∗ logic
verbalogic, 47

∗ manip
articlebeforenumber, 4
cat.factor, 5
commasep, 14
difflong, 14
evenly.spaced, 18
exactCutBreaks, 18
fastFindInterval, 20
ifelseAB, 24
ordinal, 30
orifnull, 31
paren, 32
percentage, 33
RelevantNA, 36
verbalogic, 47

∗ math
is.power, 25
methods.xypolygon, 26

orderstats, 29
primefactors, 34
taperoff, 43

∗ optimize
optimizeWithTrace, 28

∗ package
spatstat.utils-package, 2

∗ print
splat, 42

∗ programming
check.range, 12
do.call.matched, 15
do.call.without, 17
resolve.defaults, 38

∗ spatial
spatstat.utils-package, 2

∗ symbolmath
simplenumber, 40

∗ utilities
articlebeforenumber, 4
check.anyvector, 7
check.nmatrix, 10
check.nvector, 11
check.range, 12
commasep, 14
do.call.matched, 15
do.call.without, 17
expand.polynom, 19
ifelseAB, 24
ordinal, 30
paren, 32
percentage, 33
resolve.defaults, 38
revcumsum, 39
splat, 42
tapplysum, 45
termsinformula, 46
which.min.fair, 48

%orifnull% (orifnull), 31

50

INDEX 51

Area.xypolygon (methods.xypolygon), 26
articlebeforenumber, 3, 4, 31

bdrylength.xypolygon
(methods.xypolygon), 26

c, 5
can.be.formula, 3
can.be.formula (termsinformula), 46
cat, 5
cat.factor, 3, 5
check.1.integer, 3, 6, 9
check.1.real, 8, 12
check.1.real (check.1.integer), 6
check.1.string (check.1.integer), 6
check.anyvector, 7, 12
check.in.range, 3
check.in.range (check.range), 12
check.named.list (check.named.vector), 8
check.named.thing (check.named.vector),

8
check.named.vector, 3, 7, 8, 8, 12
check.nmatrix, 8, 10, 12
check.nvector, 3, 8, 11, 11
check.range, 3, 12
commasep, 3, 14, 33
cumsum, 39, 40
cut.default, 19

diff, 15
difflong, 14
divisors (primefactors), 34
do.call, 16, 38, 39
do.call.matched, 3, 15, 17
do.call.without, 3, 16, 17

equispaced (spatstat.utils-deprecated),
41

evenly.spaced, 18, 41
exactCutBreaks, 18
expand.polynom, 3, 19

fastFindInterval, 20
fave.order, 3
findInterval, 21

geomseq, 22
getOption, 3, 43
greatest.common.divisor, 3

greatest.common.divisor (primefactors),
34

harmonicmean, 23
harmonicsum (harmonicmean), 23

identical.formulae, 3
identical.formulae (termsinformula), 46
ifelse, 24, 25
ifelse0NA (ifelseAB), 24
ifelse1NA (ifelseAB), 24
ifelseAB, 3, 24
ifelseAX (ifelseAB), 24
ifelseNegPos (ifelseAB), 24
ifelseXB (ifelseAB), 24
ifelseXY (ifelseAB), 24
inside.range, 3
inside.range (check.range), 12
inside.xypolygon (methods.xypolygon), 26
interactive, 36
intersect.ranges, 3
intersect.ranges (check.range), 12
is.cube (is.power), 25
is.hole.xypolygon (methods.xypolygon),

26
is.power, 25
is.prime, 3
is.prime (primefactors), 34
is.square (is.power), 25
isRelevantZero (RelevantNA), 36

least.common.multiple, 3
least.common.multiple (primefactors), 34
lhs.of.formula, 3
lhs.of.formula (termsinformula), 46
lhs.of.formula<- (termsinformula), 46
locator, 3, 36, 41, 42

methods.xypolygon, 26

offsetsinformula, 3
offsetsinformula (termsinformula), 46
optimize, 3, 28, 29
optimizeWithTrace, 3, 28
order, 30
orderstats, 29
orderwhich (orderstats), 29
ordinal, 3, 4, 30
ordinalsuffix, 3

52 INDEX

ordinalsuffix (ordinal), 30
orifnull, 31
overlap.xypolygon (methods.xypolygon),

26

paren, 3, 32
paste, 43
percentage, 33
polynom, 20
prange, 3
prange (check.range), 12
primefactors, 3, 26, 34
primesbelow, 3
primesbelow (primefactors), 34

queueSpatstatLocator, 35, 42

relatively.prime, 3
relatively.prime (primefactors), 34
RelevantEmpty (RelevantNA), 36
RelevantNA, 36
RelevantZero (RelevantNA), 36
resolve.1.default (resolve.defaults), 38
resolve.defaults, 3, 16, 38
rev, 39
revcumsum, 3, 39
reverse.xypolygon (methods.xypolygon),

26
rhs.of.formula, 3
rhs.of.formula (termsinformula), 46
rhs.of.formula<- (termsinformula), 46

seq.default, 22
simplenumber, 40
simplify.xypolygon (methods.xypolygon),

26
sort, 30
spatstat.utils

(spatstat.utils-package), 2
spatstat.utils-deprecated, 41
spatstat.utils-package, 2
spatstatLocator, 3, 36, 41
splat, 3, 42
sympoly, 3
sympoly (expand.polynom), 19

table, 45
taperoff, 43
tapply, 45

tapplysum, 3, 45
termsinformula, 3, 46
typeof, 37

unparen, 3
unparen (paren), 32

variablesinformula, 3
variablesinformula (termsinformula), 46
verbalogic, 47
verify.xypolygon (methods.xypolygon), 26

which.max, 49
which.max.fair (which.min.fair), 48
which.min, 49
which.min.fair, 48

xy.coords, 36

	spatstat.utils-package
	articlebeforenumber
	cat.factor
	check.1.integer
	check.anyvector
	check.named.vector
	check.nmatrix
	check.nvector
	check.range
	commasep
	difflong
	do.call.matched
	do.call.without
	evenly.spaced
	exactCutBreaks
	expand.polynom
	fastFindInterval
	geomseq
	harmonicmean
	ifelseAB
	is.power
	methods.xypolygon
	optimizeWithTrace
	orderstats
	ordinal
	orifnull
	paren
	percentage
	primefactors
	queueSpatstatLocator
	RelevantNA
	resolve.defaults
	revcumsum
	simplenumber
	spatstat.utils-deprecated
	spatstatLocator
	splat
	taperoff
	tapplysum
	termsinformula
	verbalogic
	which.min.fair
	Index

