Package ‘tidyfinance’

January 8, 2026

Type Package
Title Tidy Finance Helper Functions
Version 0.4.5

Description Helper functions for empirical research in financial
economics, addressing a variety of topics covered in Scheuch, Voigt,
and Weiss (2023) <doi:10.1201/b23237>. The package is designed to
provide shortcuts for issues extensively discussed in the book,
facilitating easier application of its concepts. For more information
and resources related to the book, visit
<https://www.tidy-finance.org/r/index.html>,

License MIT + file LICENSE

URL https://www.tidy-finance.org/r/,
https://github.com/tidy-finance/r-tidyfinance

BugReports https://github.com/tidy-finance/r-tidyfinance/issues
Depends R (>=4.1)

Imports cli, dplyr (>= 1.1.4), lifecycle, lubridate (>= 1.9.3), purrr
(>=1.0.2), rlang (>= 1.1.3), slider (>= 0.3.1), stats, tibble,
tidyr >=1.3.1)

Suggests DBI (>= 1.2.2), dbplyr (>= 2.5.0), frenchdata (>= 0.2.0),
furrr (>= 0.3.1), httr2 (>= 1.0.0), knitr, rmarkdown, RPostgres
(>=1.4.5), sandwich (>= 3.1-0), testthat (>= 3.2.0)

VignetteBuilder knitr
Config/testthat/edition 3
Encoding UTF-8
RoxygenNote 7.3.3
NeedsCompilation no

Author Christoph Scheuch [aut, cre, cph] (ORCID:
<https://orcid.org/0009-0004-0423-6819>),
Stefan Voigt [aut, cph] (ORCID:
<https://orcid.org/0000-0001-5619-3161>),

1

https://doi.org/10.1201/b23237
https://www.tidy-finance.org/r/index.html
https://www.tidy-finance.org/r/
https://github.com/tidy-finance/r-tidyfinance
https://github.com/tidy-finance/r-tidyfinance/issues
https://orcid.org/0009-0004-0423-6819
https://orcid.org/0000-0001-5619-3161

Patrick Weiss [aut, cph] (ORCID:
<https://orcid.org/0000-0002-9282-5872>),
Maximilian Miicke [ctb] (ORCID: <https://orcid.org/0009-0000-9432-9795>)

Maintainer Christoph Scheuch <christoph@tidy-intelligence.com>
Repository CRAN
Date/Publication 2026-01-08 16:50:02 UTC

Contents

add_lag_columns
assign_portfolio L
breakpoint_optionsl
check_supported_type
compute_breakpoints L.
compute_long_short_returns
compute_portfolio_returns L.
create_summary_statiStics e e
create_wrds_dummy_database Lo
data_options e e e
disconnection_connection v vttt e e e e e
download data e
download_data_constituents
download_data_factors
download_data_factors ff.
download_data_factors_q
download data fred.
download_data_macro_predictorso
download_data_osap L
download_data_stock_prices
download _data wrds
download_data_wrds_ccm_links
download_data_wrds_compustat
download_data_wrds_crspo
download_data_wrds_fisd
download_data_wrds_trace_enhanced
estimate_betas
estimate_fama_macbeth
estimate_model
get_random_user_agento i e e e
get_wrds_connection e
lag_column
list_supported_indexes
list_supported_types
list_supported_types_ff
list_supported_types_ff legacy L.
list_supported_types_macro_predictors
list_supported_types_other

Contents

https://orcid.org/0000-0002-9282-5872
https://orcid.org/0009-0000-9432-9795

add_lag_columns 3
list_supported_types_g . . -« « v v e e e e e e e e e e e e e e e e e 39
list_supported_types_wrds 39
list_tidy_finance_chapters 40
open_tidy_finance_website L. 40
set_wrds_credentials L. e e 41
101515 0 41
WINSOTIZE . . o v v v o e 42

Index 43

add_lag_columns Add Lagged Versions of Columns to a Data Frame

Description

[Experimental]

This function adds lagged versions of specified columns to a data frame. Optionally, the operation
can be grouped by another column and allows for flexible handling of missing values. The lag is
applied based on the date column in the data frame.

Usage

add_lag_colu
data,
cols,
by = NULL,
lag,
max_lag =
drop_na =
data_optio

Arguments
data
cols

by

lag
max_lag

drop_na

data_options

mns (

lag,
TRUE,
ns = NULL

A data frame containing the columns to be lagged.
A character vector specifying the names of the columns to lag.

An optional column by which to group the data when applying the lag. Default
is NULL, meaning no grouping.

The number of periods to lag the columns by. Must be non-negative.
An optional maximum lag period. The default is equal to lag.

A logical value indicating whether to drop rows with missing values in the
lagged columns. Default is TRUE.

A list of additional options for data processing, such as the date column. If
NULL, defaults are used.

4 assign_portfolio

Value

A data frame with lagged versions of the specified columns appended, optionally grouped by an-
other column.

Examples

Create a sample data frame
data <- tibble::tibble(
permno = rep(1:2, each = 10),
date = rep(seq.Date(as.Date('2023-01-01'), by = "month”, length.out = 10), 2),
bm = runif(20, 0.5, 1.5),
size = runif(20, 100, 200)
)

Add lagged columns for 'bm' and 'size' with a 3-month lag, grouped by 'permno'
data |>

add_lag_columns(c("bm"”, "size"), lag = months(3), by = "permno”)
Introduce missing values in the data
datag$bm[c(3, 5, 7, 15, 18)] <- NA
datag$size[c(2, 4, 8, 13)] <- NA
Add lagged columns with NA values removed
data |>
add_lag_columns(c("bm"”, "size"), lag = months(3), by = permno)
assign_portfolio Assign Portfolios Based on Sorting Variable

Description

[Experimental]

This function assigns data points to portfolios based on a specified sorting variable and the selected
function to compute breakpoints. Users can specify a function to compute breakpoints. The func-
tion must take data and sorting_variable as the first two arguments. Additional arguments are
passed with a named list breakpoint_options. The function needs to return an ascending vector of
breakpoints. By default, breakpoints are computed with compute_breakpoints. The default column
names can be modified using data_options.

Usage

assign_portfolio(
data,
sorting_variable,
breakpoint_options = NULL,
breakpoint_function = compute_breakpoints,
data_options = NULL

breakpoint_options 5

Arguments

data A data frame containing the dataset for portfolio assignment.

sorting_variable
A string specifying the column name in data to be used for sorting and deter-
mining portfolio assignments based on the breakpoints.

breakpoint_options
An optional named list of arguments passed to breakpoint_function.

breakpoint_function
A function to compute breakpoints. The default is set to compute_breakpoints.

data_options A named list of data_options with characters, indicating the column names re-
quired to run this function. The required column names identify dates. Defaults
to date = date and id = permno.

Value

A vector of portfolio assignments for each row in the input data.

Examples

data <- data.frame(
id = 1:100,
exchange = sample(c("NYSE"”, "NASDAQ"), 100, replace = TRUE),
market_cap = 1:100

)

assign_portfolio(data, "market_cap”, breakpoint_options(n_portfolios = 5))

assign_portfolio(

data, "market_cap”,

breakpoint_options(percentiles = c(0.2, 0.4, 0.6, 0.8), breakpoint_exchanges = c("NYSE"))
)

breakpoint_options Create Breakpoint Options for Portfolio Sorting

Description

This function generates a structured list of options for defining breakpoints in portfolio sorting. It
includes parameters for the number of portfolios, percentile thresholds, exchange-specific break-
points, and smooth bunching, along with additional optional parameters.

6 check_supported_type

Usage

breakpoint_options(
n_portfolios = NULL,
percentiles = NULL,
breakpoint_exchanges = NULL,
smooth_bunching = FALSE,

Arguments

n_portfolios Integer, optional. The number of portfolios to create. Must be a positive integer.
If not provided, defaults to NULL.

percentiles Numeric vector, optional. A vector of percentile thresholds for defining break-
points. Each value should be between 0 and 1. If not provided, defaults to NULL.

breakpoint_exchanges
Character, optional. A non-empty string specifying the exchange for which the
breakpoints apply. If not provided, defaults to NULL.

smooth_bunching
Logical, optional. Indicates whether smooth bunching should be applied. De-
faults to FALSE.

Additional optional arguments. These will be captured in the resulting structure
as a list.

Value

A list of class "tidyfinance_breakpoint_options” containing the provided breakpoint options,
including any additional arguments passed via

Examples

breakpoint_options(
n_portfolios = 5,
percentiles = c(0.2, 0.4, 0.6, 0.8),
breakpoint_exchanges = "NYSE",
smooth_bunching = TRUE,
custom_threshold = 0.5,
another_option = "example”

check_supported_type Check if a Dataset Type is Supported

compute_breakpoints 7

Description

This function checks if a given dataset type is supported by verifying against a list of all supported
dataset types from different domains. If the specified type is not supported, it stops execution and
returns an error message listing all supported types.

Usage
check_supported_type(type)

Arguments

type The dataset type to check for support.

Value

Does not return a value; instead, it either passes silently if the type is supported or stops execution
with an error message if the type is unsupported.

compute_breakpoints Compute Breakpoints Based on Sorting Variable

Description

[Experimental]

This function computes breakpoints based on a specified sorting. It can optionally filter the data by
exchanges before computing the breakpoints. The function requires either the number of portfolios
to be created or specific percentiles for the breakpoints, but not both. The function also optionally
handles cases where the sorting variable clusters on the edges, by assigning all extreme values to
the edges and attempting to compute equally populated breakpoints with the remaining values.

Usage

compute_breakpoints(
data,
sorting_variable,
breakpoint_options,
data_options = NULL

Arguments

data A data frame containing the dataset for breakpoint computation.
sorting_variable
A string specifying the column name in data to be used for determining break-
points.
breakpoint_options
A named list of breakpoint_options for the breakpoints. The arguments include

compute_long_short_returns

n_portfolios An optional integer specifying the number of equally sized
portfolios to create. This parameter is mutually exclusive with percentiles.

percentiles An optional numeric vector specifying the percentiles for de-
termining the breakpoints of the portfolios. This parameter is mutually
exclusive with n_portfolios.

breakpoint_exchanges An optional character vector specifying exchange
names to filter the data before computing breakpoints. Exchanges must be
stored in a column named exchange in data. If NULL, no filtering is applied.

smooth_bunching An optional logical parameter specifying if to attempt
smoothing non-extreme portfolios if the sorting variable bunches on the
extremes (TRUE, the default), or not (FALSE). In some cases, smoothing
will not result in equal-sized portfolios off the edges due to multiple clus-
ters. If sufficiently large bunching is detected, percentiles is ignored and
equally-spaced portfolios are returned for these cases with a warning.

data_options A named list of data_options with characters, indicating the column names re-
quired to run this function. The required column names identify dates. Defaults
to exchange = exchange.

Value

A vector of breakpoints of the desired length.

Note

This function will stop and throw an error if both n_portfolios and percentiles are provided or
if neither is provided. Ensure that you only use one of these parameters.

Examples

data <- data.frame(
id = 1:100,

exchange = sample(c("NYSE"”, "NASDAQ"), 100, replace = TRUE),

market_cap = 1:100
)

compute_breakpoints(data, "market_cap”, breakpoint_options(n_portfolios = 5))

compute_breakpoints(
data, "market_cap”,

breakpoint_options(percentiles = c(0.2, 0.4, 0.6, 0.8), breakpoint_exchanges = c("NYSE"))

)

compute_long_short_returns

Compute Long-Short Returns

compute_long_short_returns 9

Description

This function calculates long-short returns based on the returns of portfolios. The long-short return
is computed as the difference between the returns of the "top" and "bottom" portfolios. The direc-
tion of the calculation can be adjusted based on whether the return from the "bottom" portfolio is
subtracted from or added to the return from the "top" portfolio.

Usage
compute_long_short_returns(
data,
direction = "top_minus_bottom"”,
data_options = NULL
)
Arguments
data A data frame containing portfolio returns. The data frame must include columns
for the portfolio identifier, date, and return measurements. The portfolio column
should indicate different portfolios, and there should be columns for return mea-
surements prefixed with "ret_excess".
direction A character string specifying the direction of the long-short return calculation. It

can be either "top_minus_bottom" or "bottom_minus_top". Default is "top_minus_bottom".
If set to "bottom_minus_top", the return will be computed as (bottom - top).

data_options A named list of data_options with characters, indicating the column names re-
quired to run this function. The required column names identify dates. Defaults
to date = date, portfolio = portfolio and ret_excess = ret_excess.

Value

A data frame with columns for date, return measurement types (from the "ret_measure" column),
and the computed long-short returns. The data frame is arranged by date and pivoted to have return
measurement types as columns with their corresponding long-short returns.

Examples

data <- data.frame(
permno = 1:100,
date = rep(seq.Date(from = as.Date("2020-01-01"), by = "month"”, length.out = 100), each = 10),
mktcap_lag = runif(100, 100, 1000),
ret_excess = rnorm(100),
size = runif (100, 50, 150)

)
portfolio_returns <- compute_portfolio_returns(
data, "size", "univariate”,
breakpoint_options_main = breakpoint_options(n_portfolios = 5)

)

compute_long_short_returns(portfolio_returns)

10 compute_portfolio_returns

compute_portfolio_returns
Compute Portfolio Returns

Description

This function computes individual portfolio returns based on specified sorting variables and sorting
methods. The portfolios can be rebalanced every period or on an annual frequency by specifying a
rebalancing month, which is only applicable at a monthly return frequency. The function supports
univariate and bivariate sorts, with the latter supporting dependent and independent sorting methods.

Usage

compute_portfolio_returns(
sorting_data,
sorting_variables,
sorting_method,
rebalancing_month = NULL,
breakpoint_options_main,
breakpoint_options_secondary = NULL,
breakpoint_function_main = compute_breakpoints,
breakpoint_function_secondary = compute_breakpoints,
min_portfolio_size = 0,
data_options = NULL

Arguments

sorting_data A data frame containing the dataset for portfolio assignment and return com-
putation. Following CRSP naming conventions, the panel data must identify
individual stocks with permno and the time point with date. It must contain
columns for the sorting variables and ret_excess. Additionally, mktcap_lag
is needed for value-weighted returns.

sorting_variables
A character vector specifying the column names in sorting_data to be used
for sorting and determining portfolio assignments. For univariate sorts, provide
a single variable. For bivariate sorts, provide two variables, where the first string
refers to the main variable and the second string refers to the secondary ("con-
trol") variable.

sorting_method A string specifying the sorting method to be used. Possible values are:

* "univariate”: For a single sorting variable.

* "bivariate-dependent”: For two sorting variables, where the main sort
depends on the secondary variable.

* "bivariate-independent”: For two independent sorting variables.

compute_portfolio_returns 11

For bivariate sorts, the portfolio returns are averaged over the controlling sorting
variable (i.e., the second sorting variable) and only portfolio returns for the main
sorting variable (given as the first element of sorting_variable) are returned.

rebalancing_month
An integer between 1 and 12 specifying the month in which to form portfolios
that are held constant for one year. For example, setting it to 7 creates portfolios
in July that are held constant until June of the following year. The default NULL
corresponds to periodic rebalancing.

breakpoint_options_main
A named list of breakpoint_options passed to breakpoint_function for the
main sorting variable.

breakpoint_options_secondary
An optional named list of breakpoint_options passed to breakpoint_function
for the secondary sorting variable.

breakpoint_function_main
A function to compute the main sorting variable. The default is set to com-
pute_breakpoints.

breakpoint_function_secondary
A function to compute the secondary sorting variable. The default is set to
compute_breakpoints.

min_portfolio_size
An integer specifying the minimum number of portfolio constituents (default is
set to @, effectively deactivating the check). Small portfolios’ returns are set to
ZEero.

data_options A named list of data_options with characters, indicating the column names re-
quired to run this function. The required column names identify dates, the
stocks, and returns. Defaults to date=date, id=permno, and ret_excess =
ret_excess.

Details

The function checks for consistency in the provided arguments. For univariate sorts, a single sorting
variable and a corresponding number of portfolios must be provided. For bivariate sorts, two sorting
variables and two corresponding numbers of portfolios (or percentiles) are required. The sorting
method determines how portfolios are assigned and returns are computed. The function handles
missing and extreme values appropriately based on the specified sorting method and rebalancing
frequency.

Value
A data frame with computed portfolio returns, containing the following columns:

* portfolio: The portfolio identifier.
* date: The date of the portfolio return.

* ret_excess_vw: The value-weighted excess return of the portfolio (only computed if the
sorting_data contains mktcap_lag)

* ret_excess_ew: The equal-weighted excess return of the portfolio.

12 create_summary_statistics

Note

Ensure that the sorting_data contains all the required columns: The specified sorting variables
and ret_excess. The function will stop and throw an error if any required columns are missing.

Examples

Univariate sorting with periodic rebalancing
data <- data.frame(
permno = 1:500,
date = rep(seq.Date(from = as.Date("2020-01-01"), by = "month”, length.out = 100), each = 10),
mktcap_lag = runif (500, 100, 1000),
ret_excess = rnorm(500),
size = runif (500, 50, 150)
)

compute_portfolio_returns(
data, "size", "univariate”,
breakpoint_options_main = breakpoint_options(n_portfolios = 5)

)

Bivariate dependent sorting with annual rebalancing
compute_portfolio_returns(
data, c("size", "mktcap_lag"), "bivariate-independent”, 7,
breakpoint_options_main = breakpoint_options(n_portfolios = 5),
breakpoint_options_secondary = breakpoint_options(n_portfolios = 3),

)

create_summary_statistics
Create Summary Statistics for Specified Variables

Description

Computes a set of summary statistics for numeric and integer variables in a data frame. This func-
tion allows users to select specific variables for summarization and can calculate statistics for the
whole dataset or within groups specified by the by argument. Additional detail levels for quantiles
can be included.

Usage

create_summary_statistics(
data,

by = NULL,
detail = FALSE,
drop_na = FALSE

create_wrds_dummy_database 13

Arguments

data

by

detail

drop_na

Details

A data frame containing the variables to be summarized.

Comma-separated list of unquoted variable names in the data frame to summa-
rize. These variables must be either numeric, integer, or logical.

An optional unquoted variable name to group the data before summarizing. If
NULL (the default), summary statistics are computed across all observations.

A logical flag indicating whether to compute detailed summary statistics includ-
ing additional quantiles. Defaults to FALSE, which computes basic statistics (n,
mean, sd, min, median, max). When TRUE, additional quantiles (1%, 5%, 10%,
25%, 715%, 90%, 95%, 99%) are computed.

A logical flag indicating whether to drop missing values for each variabl (default
is FALSE).

The function first checks that all specified variables are of type numeric, integer, or logical. If any
variables do not meet this criterion, the function stops and returns an error message indicating the
non-conforming variables.

The basic set of summary statistics includes the count of non-NA values (n), mean, standard devi-
ation (sd), minimum (min), median (q50), and maximum (max). If detail is TRUE, the function
also computes the 1st, 5th, 10th, 25th, 75th, 90th, 95th, and 99th percentiles.

Summary statistics are computed for each variable specified in If a by variable is provided,
statistics are computed within each level of the by variable.

Value

A tibble with summary statistics for each selected variable. If by is specified, the output includes the
grouping variable as well. Each row represents a variable (and a group if by is used), and columns
include the computed statistics.

create_wrds_dummy_database

Create WRDS Dummy Database

Description

Downloads the WRDS dummy database from the respective Tidy Finance GitHub repository and
saves it to the specified path. If the file already exists, the user is prompted before it is replaced.

Usage

create_wrds_dummy_database(

path,

url = paste@("https://github.com/tidy-finance/website/tree/main/blog/",
"tidy-finance-dummy-data/data/tidy_finance.sqlite”)

14 data_options

Arguments
path The file path where the SQLite database should be saved.
url The URL where the SQLite database is stored.

Value

Invisible NULL. Side effect: downloads a file to the specified path.

Examples

path <- paste@(tempdir(), "/tidy_finance_r.sqlite")
create_wrds_dummy_database(path)

data_options Create Data Options

Description

This function creates a list of data options used in financial data analysis, specifically for TidyFinance-
related functions. It allows users to specify key parameters such as id, date, exchange, mktcap_lag,
and ret_excess along with other additional options passed through

Usage
data_options(
id = "permno”,
date = "date”,
exchange = "exchange"”,
mktcap_lag = "mktcap_lag",
ret_excess = "ret_excess”,

portfolio = "portfolio”,

)
Arguments
id A character string representing the identifier variable (e.g., "permno").
date A character string representing the date variable (e.g., "date").
exchange A character string representing the exchange variable (e.g., "exchange").
mktcap_lag A character string representing the market capitalization lag variable (e.g., "mk-
tcap_lag").
ret_excess A character string representing the excess return variable (e.g., "ret_excess").
portfolio A character string representing the portfolio variable (e.g., "portfolio").

Additional arguments to be included in the data options list.

disconnection_connection 15

Value

A list of class tidyfinance_data_options containing the specified data options.

Examples

data_options(

id = "permno”,
date = "date”,
exchange = "exchange"

)

disconnection_connection
Disconnect Database Connection

Description

This function safely disconnects an established database connection using the DBI package.

Usage

disconnection_connection(con)

Arguments
con A database connection object created by DBI::dbConnect or any similar function
that establishes a connection to a database.
Value

A logical value: TRUE if disconnection was successful, FALSE otherwise.

download_data Download and Process Data Based on Type

Description

Downloads and processes data based on the specified type (e.g., Fama-French factors, Global Q
factors, or macro predictors), and date range. This function checks if the specified type is supported
and then delegates to the appropriate function for downloading and processing the data.

Usage

download_data(type, start_date = NULL, end_date = NULL, ...)

16 download_data_constituents

Arguments
type The type of dataset to download, indicating either factor data or macroeconomic
predictors.
start_date Optional. A character string or Date object in "YYYY-MM-DD" format spec-
ifying the start date for the data. If not provided, the full dataset or a subset is
returned, dependening on the dataset type.
end_date Optional. A character string or Date object in "YYYY-MM-DD" format spec-
ifying the end date for the data. If not provided, the full dataset or a subset is
returned, depending on the dataset type.
Additional arguments passed to specific download functions depending on the
type. For instance, if type is "constituents", this might include parameters
specific to download_data_constituents.
Value

A tibble with processed data, including dates and the relevant financial metrics, filtered by the
specified date range.

Examples

download_data("factors_ff_3_monthly”, "2000-01-01", "2020-12-31")
download_data("macro_predictors_monthly", "2000-01-01", "2020-12-31")
download_data("”constituents”, index = "DAX")

download_data("fred”, series = c("GDP", "CPIAUCNS"))
download_data("stock_prices”, symbols = c("AAPL", "MSFT"))

download_data_constituents
Download Constituent Data

Description

This function downloads and processes the constituent data for a specified financial index. The
data is fetched from a remote CSV file, filtered, and cleaned to provide relevant information about
constituents.

Usage

download_data_constituents(index)

Arguments

index A character string specifying the name of the financial index for which to down-
load constituent data. The index must be one of the supported indexes listed by
list_supported_indexes.

download_data_factors 17

Details

The function retrieves the URL of the CSV file for the specified index from ETF sites, then sends
an HTTP GET request to download the CSV file, and processes the CSV file to extract equity
constituents.

The approach is inspired by tidyquant::tqg_index(), which uses a different wrapper around o
ther ETFs.

Value
A tibble with two columns:
symbol The ticker symbol of the equity constituent.
name The name of the equity constituent.

location The location where the company is based.

exchange The exchange where the equity is traded.

The tibble is filtered to exclude non-equity entries, blacklisted symbols, empty names, and any
entries containing the index name or "CASH".

Examples

download_data_constituents("DAX")

download_data_factors Download and Process Factor Data

Description

Downloads and processes factor data based on the specified type (Fama-French or Global Q), and
date range. This function delegates to specific functions based on the type of factors requested:
Fama-French or Global Q. It checks if the specified type is supported before proceeding with the
download and processing.

Usage

download_data_factors(type, start_date = NULL, end_date = NULL)

Arguments
type The type of dataset to download, indicating the factor model and frequency.
start_date The start date for filtering the data, in "YYYY-MM-DD" format.

end_date The end date for filtering the data, in "YYYY-MM-DD" format.

18 download_data_factors_ff

Value

A tibble with processed factor data, including dates, risk-free rates, market excess returns, and other
factors, filtered by the specified date range.

Examples

download_data_factors("factors_ff_3_monthly”, "2000-01-01", "2020-12-31")
download_data_factors("factors_ff_3_daily")
download_data_factors("factors_q5_daily”, "2020-01-01", "2020-12-31")

download_data_factors_ff
Download and Process Fama-French Factor Data

Description

Downloads and processes Fama-French factor data based on the specified type (e.g., "factors_ff_3_monthly"),
and date range. The function first checks if the specified type is supported and requires the *french-
data’ package to download the data. It processes the raw data into a structured format, including

date conversion, scaling factor values, and filtering by the specified date range.

Usage

download_data_factors_ff(type, start_date = NULL, end_date = NULL)

Arguments
type The type of dataset to download, corresponding to the specific Fama-French
model and frequency.
start_date Optional. A character string or Date object in "YYYY-MM-DD" format speci-
fying the start date for the data. If not provided, the full dataset is returned.
end_date Optional. A character string or Date object in "YYYY-MM-DD" format speci-
fying the end date for the data. If not provided, the full dataset is returned.
Details

If there are multiple tables in the raw Fama-French data (e.g., value-weighted and equal-weighted
returns), then the function only returns the first table because these are the most popular. Please use
the frenchdata package directly if you need less commonly used tables.

Value

A tibble with processed factor data, including the date, risk-free rate, market excess return, and
other factors, filtered by the specified date range.

download_data_factors_q 19

Examples

download_data_factors_ff("factors_ff_3_monthly”, "2000-01-01", "2020-12-31")
download_data_factors_ff("factors_ff_10_industry_portfolios_monthly"”, "2000-01-01", "2020-12-31")

download_data_factors_q
Download and Process Global Q Factor Data

Description

Downloads and processes Global Q factor data based on the specified type (daily, monthly, etc.),
date range, and source URL. The function first checks if the specified type is supported, identifies
the dataset name from the supported types, then downloads and processes the data from the provided
URL. The processing includes date conversion, renaming variables to a standardized format, scaling
factor values, and filtering by the specified date range.

Usage

download_data_factors_q(
type,
start_date = NULL,
end_date = NULL,
url = "https://global-q.org/uploads/1/2/2/6/122679606/"

)
Arguments
type The type of dataset to download (e.g., "factors_q5_daily", "factors_q5_monthly").
start_date Optional. A character string or Date object in "YYYY-MM-DD" format speci-
fying the start date for the data. If not provided, the full dataset is returned.
end_date Optional. A character string or Date object in "YYYY-MM-DD" format speci-
fying the end date for the data. If not provided, the full dataset is returned.
url The base URL from which to download the dataset files, with a specific path for
Global Q datasets.
Value

A tibble with processed factor data, including the date, risk-free rate, market excess return, and
other factors, filtered by the specified date range.

Examples

download_data_factors_q("factors_g5_daily”, "2020-01-01", "2020-12-31")
download_data_factors_q("factors_g5_annual”)

20 download_data_fred

download_data_fred Download and Process Data from FRED

Description

This function downloads a specified data series from the Federal Reserve Economic Data (FRED)
website, processes the data, and returns it as a tibble.

Usage

download_data_fred(series, start_date = NULL, end_date = NULL)

Arguments
series A character vector specifying the FRED series ID to download.
start_date The start date for filtering the data, in "YYYY-MM-DD" format.
end_date The end date for filtering the data, in "YYYY-MM-DD" format.
Details

This function constructs the URL based on the provided FRED series ID, performs an HTTP GET
request to download the data in CSV format, and processes it to a tidy tibble format. The resulting
tibble includes the date, value, and the series ID.

This approach is inspired by quantmod: : getSymbolsFRED () which uses a different wrapper around
the same FRED download data site. If you want to systematically download FRED data via API,
please consider using fredr package.

Value
A tibble containing the processed data with three columns:
date The date corresponding to the data point.

value The value of the data series at that date.

series The FRED series ID corresponding to the data.

Examples

download_data_fred("CPIAUCNS")
download_data_fred(c("GDP", "CPIAUCNS"), "2010-01-01", "2010-12-31")

download_data_macro_predictors 21

download_data_macro_predictors
Download and Process Macro Predictor Data

Description

Downloads and processes macroeconomic predictor data based on the specified type (monthly, quar-
terly, or annual), date range, and source URL. The function first checks if the specified type is
supported, then downloads the data from the provided URL (defaulting to a Google Sheets export
link). It processes the raw data into a structured format, calculating additional financial metrics and
filtering by the specified date range.

Usage

download_data_macro_predictors(
type,
start_date = NULL,
end_date = NULL,
sheet_id = "1bM7vCWd3WOt95S5f9qjLPZjoiafgF_8EG"

)
Arguments
type The type of dataset to download ("macro_predictors_monthly", "macro_predictors_quarterly",
"macro_predictors_annual").
start_date Optional. A character string or Date object in "YYYY-MM-DD" format speci-
fying the start date for the data. If not provided, the full dataset is returned.
end_date Optional. A character string or Date object in "YYYY-MM-DD" format speci-
fying the end date for the data. If not provided, the full dataset is returned.
sheet_id The Google Sheets ID from which to download the dataset, with the default
"1bM7vCWd3WOt95Sf9qjLPZjoiafgF_S8EG".
Value

A tibble with processed data, filtered by the specified date range and including financial metrics.

Examples

download_data_macro_predictors("macro_predictors_monthly")

22 download_data_stock_prices

download_data_osap Download and Process Open Source Asset Pricing Data

Description

This function downloads the data from Open Source Asset Pricing from Google Sheets using a
specified sheet ID, processes the data by converting column names to snake_case, and optionally
filters the data based on a provided date range.

Usage

download_data_osap(
start_date = NULL,
end_date = NULL,

sheet_id = "1JyhcF5PRKHcputlioxlu5j5GyLo4JYyY"

)
Arguments
start_date Optional. A character string or Date object in "YYYY-MM-DD" format speci-
fying the start date for the data. If not provided, the full dataset is returned.
end_date Optional. A character string or Date object in "YYYY-MM-DD" format speci-
fying the start date for the data. If not provided, the full dataset is returned.
sheet_id A character string representing the Google Sheet ID from which to download
the data. Default is "1JyhcF5PRKHcputliox1u5j5GyLo4JYyY".
Value

A tibble containing the processed data. The column names are converted to snake_case, and the
data is filtered by the specified date range if start_date and end_date are provided.

Examples

osap_monthly <- download_data_osap(start_date = "2020-01-01", end_date = "2020-06-30")

download_data_stock_prices
Download Stock Data

Description

Downloads historical stock data from Yahoo Finance for given symbols and date range.

https://www.openassetpricing.com/data/

download_data_wrds 23

Usage

download_data_stock_prices(symbols, start_date = NULL, end_date = NULL)

Arguments
symbols A character vector of stock symbols to download data for. At least one symbol
must be provided.
start_date Optional. A character string or Date object in "YYYY-MM-DD" format spec-
ifying the start date for the data. If not provided, a subset of the dataset is
returned.
end_date Optional. A character string or Date object in "YYYY-MM-DD" format speci-
fying the end date for the data. If not provided, a subset of the dataset is returned.
Value

A tibble containing the downloaded stock data with columns: symbol, date, volume, open, low,
high, close, and adjusted_close.

Examples

download_data_stock_prices(c("AAPL", "MSFT"))
download_data_stock_prices("GOOGL", "2021-01-01", "2022-01-01")

download_data_wrds Download Data from WRDS

Description

This function acts as a wrapper to download data from various WRDS datasets including CRSP,
Compustat, and CCM links based on the specified type. It is designed to handle different data types
by redirecting to the appropriate specific data download function.

Usage
download_data_wrds(type, start_date = NULL, end_date = NULL, ...)
Arguments
type A string specifying the type of data to download. It should match one of the pre-
defined patterns to indicate the dataset: "wrds_crsp" for CRSP data, "wrds_compustat"
for Compustat data, or "wrds_ccm_links" for CCM links data.
start_date Optional. A character string or Date object in "YYYY-MM-DD" format spec-
ifying the start date for the data. If not provided, a subset of the dataset is
returned.
end_date Optional. A character string or Date object in "YYY Y-MM-DD" format speci-

fying the end date for the data. If not provided, a subste of the dataset is returned.

24 download_data_wrds_ccm_links

Additional arguments passed to specific download functions depending on the
type.

Value

A data frame containing the requested data, with the structure and contents depending on the spec-
ified type.

Examples

Not run:
crsp_monthly <- download_data_wrds("wrds_crsp_monthly”, "2020-01-01", "2020-12-31")
compustat_annual <- download_data_wrds("wrds_compustat_annual”, "2020-01-01", "2020-12-31")
ccm_links <- download_data_wrds("wrds_ccm_links"”, "2020-01-01", "2020-12-31")
fisd <- download_data_wrds("wrds_fisd")
trace_enhanced <- download_data_wrds("wrds_trace_enhanced”, cusips = "00101JAH9")

End(Not run)

download_data_wrds_ccm_links
Download CCM Links from WRDS

Description

This function downloads data from the WRDS CRSP/Compustat Merged (CCM) links database. It
allows users to specify the type of links (Linktype) and the primacy of the link (1inkprim).

Usage

download_data_wrds_ccm_links(linktype = c("LU", "LC"), linkprim = c("P", "C"))

Arguments
linktype A character vector indicating the type of link to download. The default is
c("LU", "LC"), where "LU" stands for "Link Up" and "LC" for "Link CRSP".
linkprim A character vector indicating the primacy of the link. Default is c("P", "C"),
where "P" indicates primary and "C" indicates conditional links.
Value

A data frame with the columns permno, gvkey, linkdt, and 1inkenddt, where 1inkenddt is the
end date of the link, and missing end dates are replaced with today’s date.

download_data_wrds_compustat 25

Examples

Not run:
ccm_links <- download_data_wrds_ccm_links(linktype = "LU", linkprim = "P")

End(Not run)

download_data_wrds_compustat
Download Data from WRDS Compustat

Description

This function downloads financial data from the WRDS Compustat database for a given type of
financial data, start date, and end date. It filters the data according to industry format, data format,
and consolidation level, and returns the most current data for each reporting period. Additionally,
the annual data also includes the calculated calculates book equity (be), operating profitability (op),
and investment (inv) for each company.

Usage

download_data_wrds_compustat
type,
start_date = NULL,
end_date = NULL,
additional_columns = NULL

)
Arguments
type The type of financial data to download.
start_date Optional. A character string or Date object in "YYYY-MM-DD" format spec-
ifying the start date for the data. If not provided, a subset of the dataset is
returned.
end_date Optional. A character string or Date object in "YYYY-MM-DD" format speci-

fying the end date for the data. If not provided, a subset of the dataset is returned.

additional_columns
Additional columns from the Compustat table as a character vector.

Value

A data frame with financial data for the specified period, including variables for book equity (be),
operating profitability (op), investment (inv), and others.

26 download_data_wrds_crsp

Examples

Not run:
download_data_wrds_compustat(”wrds_compustat_annual”, "2020-01-01", "2020-12-31")
download_data_wrds_compustat ("wrds_compustat_quarterly”, "2020-01-01", "2020-12-31")

Add additional columns
download_data_wrds_compustat("wrds_compustat_annual”, additional_columns = c("aodo"”, "aldo"))

End(Not run)

download_data_wrds_crsp
Download Data from WRDS CRSP

Description

This function downloads and processes stock return data from the CRSP database for a specified
period. Users can choose between monthly and daily data types. The function also adjusts returns
for delisting and calculates market capitalization and excess returns over the risk-free rate.

Usage

download_data_wrds_crsp(
type,
start_date = NULL,
end_date = NULL,
batch_size = 500,

version = "v2",
additional_columns = NULL
)
Arguments
type A string specifying the type of CRSP data to download: "crsp_monthly" or
"crsp_daily".
start_date Optional. A character string or Date object in "YYYY-MM-DD" format spec-
ifying the start date for the data. If not provided, a subset of the dataset is
returned.
end_date Optional. A character string or Date object in "YYYY-MM-DD" format speci-
fying the end date for the data. If not provided, a subset of the dataset is returned.
batch_size An optional integer specifying the batch size for processing daily data, with a
default of 500.
version An optional character specifying which CRSP version to use. "v2" (the default)
uses the updated second version of CRSP, and "v1" downloads the legacy ver-
sion of CRSP.

additional_columns
Additional columns from the CRSP monthly or daily data as a character vector.

download_data_wrds_fisd 27

Value

A data frame containing CRSP stock returns, adjusted for delistings, along with calculated market
capitalization and excess returns over the risk-free rate. The structure of the returned data frame
depends on the selected data type.

Examples

Not run:
crsp_monthly <- download_data_wrds_crsp("wrds_crsp_monthly”, "2020-11-01", "2020-12-31")
crsp_daily <- download_data_wrds_crsp("wrds_crsp_daily"”, "2020-12-01", "2020-12-31")

Add additional columns
download_data_wrds_crsp("wrds_crsp_monthly”, "2020-11-01", "2020-12-31",
additional_columns = c("mthvol”, "mthvolflg"))

End(Not run)

download_data_wrds_fisd
Download Filtered FISD Data from WRDS

Description

Establishes a connection to the WRDS database to download a filtered subset of the FISD (Fixed
Income Securities Database). The function filters the fisd_mergedissue and fisd_mergedissuer
tables based on several criteria related to the securities, such as security level, bond type, coupon
type, and others, focusing on specific attributes that denote the nature of the securities. It finally
returns a data frame with selected fields from the fisd_mergedissue table after joining it with
issuer information from the fisd_mergedissuer table for issuers domiciled in the USA.

Usage

download_data_wrds_fisd(additional_columns = NULL)

Arguments

additional_columns
Additional columns from the FISD table as a character vector.

Value

A data frame containing a subset of FISD data with fields related to the bond’s characteristics and
issuer information. This includes complete CUSIP, maturity date, offering amount, offering date,
dated date, interest frequency, coupon, last interest date, issue ID, issuer ID, SIC code of the issuer.

28 download_data_wrds_trace_enhanced

Examples

Not run:
fisd <- download_data_wrds_fisd()
fisd_extended <- download_data_wrds_fisd(additional_columns = c("asset_backed”, "defeased"))

End(Not run)

download_data_wrds_trace_enhanced
Download Enhanced TRACE Data from WRDS

Description

Establishes a connection to the WRDS database to download the specified CUSIPs trade messages
from the Trade Reporting and Compliance Engine (TRACE). The trade data is cleaned as suggested
by Dick-Nielsen (2009, 2014).

Usage

download_data_wrds_trace_enhanced(cusips, start_date = NULL, end_date = NULL)

Arguments
cusips A character vector specifying the 9-digit CUSIPs to download.
start_date Optional. A character string or Date object in "YYYY-MM-DD" format spec-
ifying the start date for the data. If not provided, a subset of the dataset is
returned.
end_date Optional. A character string or Date object in "YYYY-MM-DD" format speci-
fying the end date for the data. If not provided, a subset of the dataset is returned.
Value

A data frame containing the cleaned trade messages from TRACE for the selected CUSIPs over
the time window specified. Output variables include identifying information (i.e., CUSIP, trade
date/time) and trade-specific information (i.e., price/yield, volume, counterparty, and reporting
side).

Examples

Not run:
trace_enhanced <- download_data_wrds_trace_enhanced("@0101JAH9", "2019-01-01", "2021-12-31")

End(Not run)

estimate_betas 29

estimate_betas Estimate Rolling Betas

Description

This function estimates rolling betas for a given model using the provided data. It supports parallel
processing for faster computation using the furrr package.

Usage

estimate_betas(
data,
model,
lookback,
min_obs = NULL,
use_furrr = FALSE,
data_options = NULL

)
Arguments

data A tibble containing the data with a date identifier (defaults to date), a stock
identifier (defaults to permno), and other variables used in the model.

model A formula representing the model to be estimated (e.g., ret_excess ~ mkt_excess
+ smb + hml).

lookback A Period object specifying the number of months, days, hours, minutes, or sec-
onds to look back when estimating the rolling model.

min_obs An integer specifying the minimum number of observations required to estimate
the model. Defaults to 80% of lookback.

use_furrr A logical indicating whether to use the furrr package and its paralellization

capabilities. Defaults to FALSE.

data_options A named list of data_options with characters, indicating the column names re-
quired to run this function. The required column names identify dates and the
stocks. Defaults to date = date and id = permno.

Value

A tibble with the estimated betas for each time period.

Examples

Estimate monthly betas using monthly return data
set.seed(1234)
data_monthly <- tibble::tibble(
date = rep(seq.Date(from = as.Date("2020-01-01"),
to = as.Date("”2020-12-01"), by = "month"), each = 50),

30 estimate_fama_macbeth

permno = rep(1:50, times = 12),
ret_excess = rnorm(600, 0, 0.1),
mkt_excess = rnorm(600, @, 0.1),
smb = rnorm(600, @, 0.1),
hml = rnorm(600, 0, 0.1),

)
estimate_betas(data_monthly, "ret_excess ~ mkt_excess”, months(3))
estimate_betas(data_monthly, "ret_excess ~ mkt_excess + smb + hml”, months(6))

data_monthly |>
dplyr::rename(id = permno) |>
estimate_betas("ret_excess ~ mkt_excess”, months(3),
data_options = data_options(id = "id"))

Estimate monthly betas using daily return data and parallelization
data_daily <- tibble::tibble(

date = rep(seq.Date(from = as.Date("2020-01-01"),

to = as.Date("2020-12-31"), by = "day"), each = 50),

permno = rep(1:50, times = 366),

ret_excess = rnorm(18300, @, 0.02),

mkt_excess = rnorm(18300, @, 0.02),

smb = rnorm(18300, @, 0.02),

hml = rnorm(18300, @, 0.02),

data_daily <- data_daily |>
dplyr::mutate(date = lubridate::floor_date(date, "month"))

Change settings via future::plan(strategy = "multisession”, workers = 4)
estimate_betas(data_daily, "ret_excess ~ mkt_excess"”, lubridate::days(90), use_furrr = TRUE)

estimate_fama_macbeth Estimate Fama-MacBeth Regressions

Description

This function estimates Fama-MacBeth regressions by first running cross-sectional regressions for
each time period and then aggregating the results over time to obtain average risk premia and cor-
responding t-statistics.

Usage
estimate_fama_macbeth(
data,
model,
vcov = "newey-west"”,

vcov_options = NULL,
data_options = NULL

estimate_fama_macbeth 31

Arguments

data

model

vCov

vcov_options

data_options

Value

A data frame containing the data for the regression. It must include a column
representing the time periods (defaults to date) and the variables specified in
the model.

A formula representing the regression model to be estimated in each cross-
section.

A character string indicating the type of standard errors to compute. Options are
"iid"” for independent and identically distributed errors or "newey-west"” for
Newey-West standard errors. Default is "newey-west".

A list of additional arguments to be passed to the NeweyWest () function when
vcov = "newey-west”. These can include options such as lag, which speci-
fies the number of lags to use in the Newey-West covariance matrix estimation,
and prewhite, which indicates whether to apply a prewhitening transformation.
Default is an empty list.

A named list of data_options with characters, indicating the column names re-
quired to run this function. The required column names identify dates. Defaults
to date = date.

A data frame with the estimated risk premiums, the number of observations, standard errors, and
t-statistics for each factor in the model.

Examples

set.seed(1234)

data <- tibble::tibble(
date = rep(seq.Date(from = as.Date("2020-01-01"),

permno = rep(1:

to = as.Date("”2020-12-01"), by = "month"), each = 50),
50, times = 12),

ret_excess = rnorm(600, 0, 0.1),
beta = rnorm(600, 1, 0.2),

bm = rnorm(600,

0.5, 0.1),

log_mktcap = rnorm(600, 10, 1)

)

estimate_fama_macbeth(data, "ret_excess ~ beta + bm + log_mktcap”)
estimate_fama_macbeth(data, "ret_excess ~ beta + bm + log_mktcap”, vcov = "iid")
estimate_fama_macbeth(data, "ret_excess ~ beta + bm + log_mktcap”,

vcov = "newey-west”, vcov_options = list(lag = 6, prewhite = FALSE))

Use different column name for date

data |>

dplyr::rename(month = date) |>
estimate_fama_macbeth(
"ret_excess ~ beta + bm + log_mktcap”,

data_options

= data_options(date = "month")

32 estimate_model

estimate_model Estimate Model Coefficients

Description

[Experimental]

This function estimates the coefficients of a linear model specified by one or more independent vari-
ables. It checks for the presence of the specified independent variables in the dataset and whether
the dataset has a sufficient number of observations. It returns the model’s coefficients as either a nu-
meric value (for a single independent variable) or a data frame (for multiple independent variables).

Usage

estimate_model(data, model, min_obs = 1)

Arguments
data A data frame containing the dependent variable and one or more independent
variables.
model A character that describes the model to estimate (e.g. "ret_excess ~ mkt_excess
+ hmb + sml").
min_obs The minimum number of observations required to estimate the model. Defaults
to 1.
Value

A data frame with a row for each coefficient and column names corresponding to the independent
variables.

See Also

stats::1m() for details on the underlying linear model fitting used.

Examples

data <- data.frame(
ret_excess = rnorm(100),
mkt_excess = rnorm(100),
smb = rnorm(100),
hml = rnorm(100)

)

Estimate model with a single independent variable
estimate_model(data, "ret_excess ~ mkt_excess")

Estimate model with multiple independent variables
estimate_model(data, "ret_excess ~ mkt_excess + smb + hml")

get_random_user_agent 33

Estimate model without intercept
estimate_model(data, "ret_excess ~ mkt_excess - 1")

get_random_user_agent Get a Random User Agent

Description

This internal function selects and returns a random user agent string from a predefined list. The
list contains user agents for various operating systems and browsers, including Windows, macOS,
Linux, Android, iPhone, Chrome, Safari, Firefox, and Edge.

Usage

get_random_user_agent ()

Value

A character string representing a randomly selected user agent.

get_wrds_connection Establish a Connection to the WRDS Database

Description

This function establishes a connection to the Wharton Research Data Services (WRDS) database
using the RPostgres package. It requires that the RPostgres package is installed and that valid
WRDS credentials are set as environment variables.

Usage

get_wrds_connection()

Details

The function checks if the RPostgres package is installed before attempting to establish a connec-
tion. It uses the host, dbname, port, and sslmode as fixed parameters for the connection. Users must
set their WRDS username and password as environment variables WRDS_USER and WRDS_PASSWORD,
respectively, before using this function.

Value

An object of class DBIConnection representing the connection to the WRDS database. This object
can be used with other DBI-compliant functions to interact with the database.

34 lag_column

See Also

Postgres, dbDisconnect for more information on managing database connections.

Examples

Not run:
Before using this function, set your WRDS credentials:
Sys.setenv(WRDS_USER = "your_username"”, WRDS_PASSWORD = "your_password")

con <- get_wrds_connection()

Use ~“con™ with DBI-compliant functions to interact with the WRDS database
Remember to disconnect after use:

disconnect_connection(con)

End(Not run)

lag_column Lag a Column Based on Date and Time Range

Description

[Experimental]

This function generates a lagged version of a given column based on a date variable, with the ability
to specify a range of lags. It also allows for the optional removal of NA values.

Usage

lag_column(column, date, lag, max_lag = lag, drop_na = TRUE)

Arguments
column A numeric vector or column to be lagged.
date A vector representing dates corresponding to the column. This should be in a
date or datetime format.
lag An integer specifying the minimum lag (in days, hours, etc.) to apply to column.
max_lag An integer specifying the maximum lag (in days, hours, etc.) to apply to column.
Defaults to lag.
drop_na A logical value indicating whether to drop NA values from the resulting lagged
column. Defaults to TRUE.
Value

A vector of the same length as column, containing the lagged values. If no matching dates are found
within the lag window, NA is returned for that position.

list_supported_indexes 35

Examples

Basic example with a vector

dates <- as.Date("2023-01-01") + 0:9

values <- rnorm(10)

lagged_values <- lag_column(values, dates, lag = 1, max_lag = 3)

Example using a tibble and dplyr::group_by
data <- tibble::tibble(
permno = rep(1:2, each = 10),
date = rep(seq.Date(as.Date('2023-01-01"'), by = "month”, length.out = 10), 2),
size = runif(20, 100, 200),
bm = runif(20, 0.5, 1.5)
)

data |>
dplyr: :group_by(permno) |>
dplyr: :mutate(
across(c(size, bm),
\(x) lag_column(x, date, months(3), months(6), drop_na = TRUE))
) 1>
dplyr: :ungroup()

list_supported_indexes
List Supported Indexes

Description

This function returns a tibble containing information about supported financial indexes. Each index
is associated with a URL that points to a CSV file containing the holdings of the index. Additionally,
each index has a corresponding skip value, which indicates the number of lines to skip when
reading the CSV file.

Usage

list_supported_indexes()

Value
A tibble with three columns:
index The name of the financial index (e.g., "DAX", "S&P 500").

url The URL to the CSV file containing the holdings data for the index.
skip The number of lines to skip when reading the CSV file.

36 list_supported_types

Examples

supported_indexes <- list_supported_indexes()
print(supported_indexes)

list_supported_types List All Supported Dataset Types

Description

This function aggregates and returns a comprehensive tibble of all supported dataset types from
different domains. It includes various datasets across different frequencies (daily, weekly, monthly,
quarterly, annual) and models (e.g., g5 factors, Fama-French 3 and 5 factors, macro predictors).

Usage

list_supported_types(domain = NULL, as_vector = FALSE)

Arguments
domain A character vector to filter for domain specific types (e.g. c("WRDS", "Fama-
French"))
as_vector Logical indicating whether types should be returned as a character vector instead
of data frame.
Value

A tibble aggregating all supported dataset types with columns: type (the type of dataset), dataset_name
(a descriptive name or file name of the dataset), and domain (the domain to which the dataset be-
longs, e.g., "Global Q", "Fama-French", "Goyal-Welch").

Examples

List all supported types as a data frame
list_supported_types()

Filter by domain
list_supported_types(domain = "WRDS")

List supported types as a vector
list_supported_types(as_vector = TRUE)

list_supported_types_ff 37

list_supported_types_ff
List Supported Fama-French Dataset Types

Description

This function returns a tibble with the supported Fama-French dataset types, including their names
and frequencies (daily, weekly, monthly). Each dataset type is associated with a specific Fama-
French model (e.g., 3 factors, 5 factors). Additionally, it annotates each dataset with the domain
"Fama-French".

Usage

list_supported_types_ff()

Value

A tibble with columns: type (the type of dataset), dataset_name (a descriptive name of the
dataset), and domain (the domain to which the dataset belongs, always "Fama-French").

list_supported_types_ff_legacy
List Supported Legacy Fama-French Dataset Types

Description

This function returns a tibble with the legacy names of initially supported Fama-French dataset
types, including their names and frequencies (daily, weekly, monthly). Each dataset type is associ-
ated with a specific Fama-French model (e.g., 3 factors, 5 factors). Additionally, it annotates each
dataset with the domain "Fama-French". Not included in the exported 1ist_supported_types()
function.

Usage

list_supported_types_ff_legacy()

Value

A tibble with columns: type (the type of dataset), dataset_name (a descriptive name of the
dataset), and domain (the domain to which the dataset belongs, always "Fama-French").

38 list_supported_types_other

list_supported_types_macro_predictors
List Supported Macro Predictor Dataset Types

Description

This function returns a tibble with the supported macro predictor dataset types provided by Goyal-
Welch, including their frequencies (monthly, quarterly, annual). All dataset types reference the
same source file "PredictorData2022.x1sx" for the year 2022. Additionally, it annotates each dataset
with the domain "Goyal-Welch".

Usage

list_supported_types_macro_predictors()

Value

A tibble with columns: type (the type of dataset), dataset_name (the file name of the dataset,
which is the same for all types), and domain (the domain to which the dataset belongs, always
"Goyal-Welch").

list_supported_types_other
List Supported Other Data Types

Description

Returns a tibble listing the supported other data types and their corresponding dataset names.

Usage

list_supported_types_other()

Value

A tibble with columns type and dataset_name, where type indicates the code used to specify the
data source and dataset_name provides the name of the data source.

list_supported_types_q 39

list_supported_types_q
List Supported Global Q Dataset Types

Description

This function returns a tibble with the supported Global Q dataset types, including their names
and frequencies (daily, weekly, weekly week-to-week, monthly, quarterly, annual). Each dataset
type is associated with the Global Q model, specifically the q5 factors model for the year 2023.
Additionally, it annotates each dataset with the domain "Global Q".

Usage

list_supported_types_q()

Value

A tibble with columns: type (the type of dataset), dataset_name (the file name of the dataset), and
domain (the domain to which the dataset belongs, always "Global Q").

list_supported_types_wrds
List Supported WRDS Dataset Types

Description

This function returns a tibble with the supported dataset types provided via WRDS. Additionally, it
annotates each dataset with the domain "WRDS".

Usage

list_supported_types_wrds()

Value

A tibble with columns: type (the type of dataset), dataset_name (the file name of the dataset), and
domain (the domain to which the dataset belongs, always "WRDS").

40 open_tidy_finance_website

list_tidy_finance_chapters
List Chapters of Tidy Finance

Description
Returns a character vector containing the names of the chapters available in the Tidy Finance re-
source. This function provides a quick reference to the various topics covered.

Usage

list_tidy_finance_chapters()

Value
A character vector where each element is the name of a chapter available in the Tidy Finance
resource. These names correspond to specific chapters in Tidy Finance with R.

Examples

list_tidy_finance_chapters()

open_tidy_finance_website
Open Tidy Finance Website or Specific Chapter in Browser

Description
Opens the main Tidy Finance website or a specific chapter within the site in the user’s default web
browser. If a chapter is specified, the function constructs the URL to access the chapter directly.
Usage

open_tidy_finance_website(chapter = NULL)

Arguments
chapter An optional character string specifying the chapter to open. If NULL (the de-
fault), the function opens the main page of Tidy Finance with R. If a chapter
name is provided (e.g., "beta-estimation"), the function opens the corresponding
chapter’s page (e.g., "beta-estimation.html"). If the chapter name does not exist,
then the function opens the main page.
Value

Invisible NULL. The function is called for its side effect of opening a web page.

set_wrds_credentials 41

Examples

open_tidy_finance_website()
open_tidy_finance_website("beta-estimation”)

set_wrds_credentials Set WRDS Credentials

Description

This function prompts the user to input their WRDS (Wharton Research Data Services) username
and password, and stores these credentials in a .Renviron file. The user can choose to store the
.Renviron file in either the project directory or the home directory. If the .Renviron file already
contains WRDS credentials, the user will be asked if they want to overwrite the existing credentials.
Additionally, the user has the option to add the .Renviron file to the .gitignore file to prevent it from
being tracked by version control.

Usage

set_wrds_credentials()

Value

Invisibly returns TRUE. Displays messages to the user based on their input and actions taken.

Examples

Not run:
set_wrds_credentials()

End(Not run)

trim Trim a Numeric Vector

Description

Removes the values in a numeric vector that are beyond the specified quantiles, effectively trimming
the distribution based on the cut parameter. This process reduces the length of the vector, excluding
extreme values from both tails of the distribution.

Usage

trim(x, cut)

42 winsorize

Arguments
X A numeric vector to be trimmed.
cut The proportion of data to be trimmed from both ends of the distribution. For
example, a cut of 0.05 will remove the lowest and highest 5% of the data. Must
be between [0, 0.5].
Value

A numeric vector with the extreme values removed.

Examples

set.seed(123)
data <- rnorm(100)
trimmed_data <- trim(x = data, cut = 0.05)

winsorize Winsorize a Numeric Vector

Description
Replaces the values in a numeric vector that are beyond the specified quantiles with the boundary
values of those quantiles. This is done for both tails of the distribution based on the cut parameter.
Usage

winsorize(x, cut)

Arguments
X A numeric vector to be winsorized.
cut The proportion of data to be winsorized from both ends of the distribution. For
example, a cut of 0.05 will winsorize the lowest and highest 5% of the data.
Must be inside [0, 0.5].
Value

A numeric vector with the extreme values replaced by the corresponding quantile values.

Examples

set.seed(123)
data <- rnorm(100)
winsorized_data <- winsorize(data, 0.05)

Index

add_lag_columns, 3
assign_portfolio, 4

breakpoint_options, 4,5,7, 11

check_supported_type, 6
compute_breakpoints, 4, 5,7, 11
compute_long_short_returns, 8
compute_portfolio_returns, 10
create_summary_statistics, 12
create_wrds_dummy_database, 13

data_options, 4, 5,8, 9, 11, 14, 29, 31
dbDisconnect, 34
disconnection_connection, 15
download_data, 15
download_data_constituents, 16
download_data_factors, 17
download_data_factors_ff, 18
download_data_factors_q, 19
download_data_fred, 20
download_data_macro_predictors, 21
download_data_osap, 22
download_data_stock_prices, 22
download_data_wrds, 23
download_data_wrds_ccm_links, 24
download_data_wrds_compustat, 25
download_data_wrds_crsp, 26
download_data_wrds_fisd, 27
download_data_wrds_trace_enhanced, 28

estimate_betas, 29
estimate_fama_macbeth, 30
estimate_model, 32

get_random_user_agent, 33
get_wrds_connection, 33

lag_column, 34
list_supported_indexes, 16, 35
list_supported_types, 36

list_supported_types_ff, 37
list_supported_types_ff_legacy, 37
list_supported_types_macro_predictors,
38
list_supported_types_other, 38
list_supported_types_q, 39
list_supported_types_wrds, 39
list_tidy_finance_chapters, 40

open_tidy_finance_website, 40
Postgres, 34

set_wrds_credentials, 41
stats::1m(), 32

trim, 41

winsorize, 42

	add_lag_columns
	assign_portfolio
	breakpoint_options
	check_supported_type
	compute_breakpoints
	compute_long_short_returns
	compute_portfolio_returns
	create_summary_statistics
	create_wrds_dummy_database
	data_options
	disconnection_connection
	download_data
	download_data_constituents
	download_data_factors
	download_data_factors_ff
	download_data_factors_q
	download_data_fred
	download_data_macro_predictors
	download_data_osap
	download_data_stock_prices
	download_data_wrds
	download_data_wrds_ccm_links
	download_data_wrds_compustat
	download_data_wrds_crsp
	download_data_wrds_fisd
	download_data_wrds_trace_enhanced
	estimate_betas
	estimate_fama_macbeth
	estimate_model
	get_random_user_agent
	get_wrds_connection
	lag_column
	list_supported_indexes
	list_supported_types
	list_supported_types_ff
	list_supported_types_ff_legacy
	list_supported_types_macro_predictors
	list_supported_types_other
	list_supported_types_q
	list_supported_types_wrds
	list_tidy_finance_chapters
	open_tidy_finance_website
	set_wrds_credentials
	trim
	winsorize
	Index

