Package ‘tidyfst’

December 16, 2025
Title Tidy Verbs for Fast Data Manipulation
Version 1.8.3
Depends R (>=4.1.0)

Description A toolkit of tidy data manipulation verbs with 'data.table' as the backend.
Combining the merits of syntax elegance from 'dplyr' and computing perfor-
mance from 'data.table’,
'tidyfst' intends to provide users with state-of-the-art data manipulation tools with least pain.
This package is an extension of 'data.table’. While enjoying a tidy syntax,
it also wraps combinations of efficient functions to facilitate frequently-used data operations.
URL https://github.com/hope-data-science/tidyfst,

https://hope-data-science.github.io/tidyfst/

BugReports https://github.com/hope-data-science/tidyfst/issues
License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

Imports data.table (>= 1.15.0), fst (>= 0.9.0), stringr (>= 1.5.0)

Suggests knitr, rmarkdown, nycflights13, pryr, tidyr, ggplot2, dplyr,
bench, testthat, tidytext

VignetteBuilder knitr
NeedsCompilation no

Author Tian-Yuan Huang [aut, cre] (ORCID:
<https://orcid.org/0000-0002-4151-3764>)

Maintainer Tian-Yuan Huang <huang.tian-yuan@qq.com>
Repository CRAN
Date/Publication 2025-12-16 18:10:02 UTC

https://github.com/hope-data-science/tidyfst
https://hope-data-science.github.io/tidyfst/
https://github.com/hope-data-science/tidyfst/issues
https://orcid.org/0000-0002-4151-3764

2 Contents

Contents
arrange_dt L. L e e e e e 3
aS_ TSt . . s 4
bind_rows_dt 4
bind_tf_idf_dt 5
col_maxo e e 6
complete_dt L e e e e 7
count_dt e e e e e e e e e e e 8
CUMMEAN . .+ v v v v v o e 9
distinct_dt Lo L s, 10
drop_na_dt 11
dummy_dt 13
eXPOTt_fSt e e e e 14
filter_dt e e 15
1] 16
group_by_dt e 18
group_dt . . .o 19
import_fst_chunked 21
impute_dt 22
intersect_dt L e e 23
IN_dt . . e 24
JOIN L o o e e 25
lead_dt. e e 26
longer_dt e 27
mat_df e 29
mutate_dt L e e e 30
mutate_ When e e e e 30
nest_dt L e 31
Nth . . e e e e 34
object_Size e 35
pairwise_count_dt L e 35
PEICENt o o i e e e e e e e 36
pkg_load 37
Print_options e e e e 38
pull_dt . . . e e e e 39
TEC v v v o e e e e e e e e e e e e 40
relocate_dt. e 41
rename_dt L L L e e 42
replace_dt L e 43
IN_COl . . o 44
roundO e 44
sample_dt e e e 45
select_dt e e e e 46
separate_dt L L e e e e 48
slice_dt e 49
sQljoin 50

summarise_dt L e e 51

arrange_dt 3

SYS_HME_PIINt. v v v i e e e e e e e e e e e e e e e e e 53
At . s 54
uncount_dt L L L e e e 54
unite_dt . .. L e e e e 55
utf8_encoding e 56
wider_dto e 56

Index 59

arrange_dt Arrange entries in data.frame
Description

Order the rows of a data frame rows by the values of selected columns.

Usage

arrange_dt(.data, ...)

Arguments

.data data.frame

Value

Arrange by what group? Minus symbol means arrange by descending order.

data.table

See Also

arrange

Examples

iris %>% arrange_dt(Sepal.Length)

minus for decreasing order
iris %>% arrange_dt(-Sepal.Length)

arrange by multiple variables
iris %>% arrange_dt(Sepal.Length,Petal.Length)

4 bind rows_dt

as_fst Save a data.frame as a fst table

Description

This function first export the data.frame to a temporal file, and then parse it back as a fst table (class
name is "fst_table").

Usage
as_fst(.data)

Arguments

.data A data.frame

Value

An object of class fst_table

Examples
Not run:
iris %>%
as_fst() -> iris_fst
iris_fst

End(Not run)

bind_rows_dt Bind multiple data frames by row

Description

Bind any number of data frames by row, making a longer result. Similar to ‘dplyr::bind_rows®,
however, columns with same names but different data types would be coerced to a single proper
data type.

Usage
bind_rows_dt(...)

Arguments

Data frames to combine. Each argument can either be a data frame, a list that
could be a data frame, or a list of data frames. Columns are matched by name,
and any missing columns will be filled with ‘NA*.

bind_tf idf dt 5

Value

data.table

See Also

bind_rows,rbindlist

Examples

bind_rows_dt(iris[1:3,],iris[6:8,1)

data frames with same name but different type

numeric data would be coerced to character data in this case
df1 <- data.frame(x = 1:2, y = letters[1:2])

df2 <- data.frame(x = 4:5, y = 1:2)

bind_rows_dt(df1, df2)

bind_tf_idf_dt Compute TF-IDF Using data.table with Optional Counting and
Grouping

Description

This function computes term frequency—inverse document frequency (tf—idf) on a dataset with one
row per term occurrence (or pre-counted). It preserves original column names and returns new
columns: - ‘n‘: raw count (computed or user-supplied) - ‘tf*: term frequency per document - “idf*:
inverse document frequency per group (or corpus) - ‘tf_idf*: tf x idf If ‘group_col* is ‘NULL", all
documents are treated as a single group.

Usage

bind_tf_idf_dt(.data, group_col = NULL, doc_col, term_col, n_col = NULL)

Arguments
.data A data.frame or data.table of text data.
group_col Character name of grouping column, or ‘NULL* for no grouping.
doc_col Character name of document identifier column.
term_col Character name of term/word column.
n_col (Optional) Character name of pre-counted term-frequency column. If ‘NULL'
(default), counts are computed via *.N*.
Value

A data.table containing: - Original grouping, document, and term columns - ‘n‘, ‘tf*, ‘idf*, and
‘tf_idf*

6 col _max
See Also
bind_tf_idf
Examples
With groups
df <- data.frame(
category = rep(c("A","B"), each = 6),
doc_id = rep(c(”d1”,"d2","d3"), times = 4),
word = c("apple”, "banana”, "apple"”, "banana”, "cherry"”, "apple”,
"dog” , "cat”, "dog”, "mouse” , "cat”, "dog"),
stringsAsFactors = FALSE
)
result <- bind_tf_idf_dt(df, "category"”, "doc_id", "word")
result
Without groups
df %>%
filter_dt(category == "A") %>%
bind_tf_idf_dt(doc_col = "doc_id",term_col = "word")
With counts provided
df %>%
filter_dt(category == "A") %>%
count_dt() %>%
bind_tf_idf_dt(doc_col = "doc_id",term_col = "word”,n_col = "n")
df %>%
count_dt() %>%
bind_tf_idf_dt(group_col = "category”,
doc_col = "doc_id",
term_col = "word”,n_col = "n")
col_max Get the column name of the max/min number each row
Description
For a data.frame with numeric values, add a new column specifying the column name of the first
max/min value each row.
Usage

col_max(.data, ..., .name = "max_col")

col_min(.data, ..., .name = "min_col")

complete_dt

Arguments

.data

.hame

Value

A data.table

References

A data.frame with numeric column(s)

Variables for screening, could receive what ‘select_dt‘ receives. When starts
with ’-’(minus symbol) or ’!”, return the negative columns.

The column name of the new added column

https://stackoverflow.com/questions/17735859/for-each-row-return-the-column-name-of-the-largest-

value

Examples

set.seed(199057)

DT <- data.table(matrix(sample(10, 100, TRUE), ncol=10))

DT

col_max(DT)
col_max(DT,V1:V3)
col_max (DT, .name
col_min(DT)
col_min(DT,2:4)

col_max(iris)

= "max_col_name")

complete_dt

Complete a data frame with missing combinations of data

Description

Turns implicit missing values into explicit missing values. All the combinations of column values
(should be unique) will be constructed. Other columns will be filled with NAs or constant value.

Usage

complete_dt(.data, ..., fill = NA)

Arguments

.data

data.frame

8 count_dt
Specification of columns to expand.The selection of columns is supported by the
flexible select_dt. To find all unique combinations of provided columns, in-
cluding those not found in the data, supply each variable as a separate argument.
But the two modes (select the needed columns and fill outside values) could not
be mixed, find more details in examples.

fill Atomic value to fill into the missing cell, default uses NA.

Details
When the provided columns with addtion data are of different length, all the unique combinations
would be returned. This operation should be used only on unique entries, and it will always returned
the unique entries.
If you supply fill parameter, these values will also replace existing explicit missing values in the
data set.

Value

data.table
See Also
complete
Examples
df <- data.table(
group = c(1:2, 1),
item_id = c(1:2, 2),
item_name = C(“a”, llblr’ lrbn) ,
valuel = 1:3,
value2 = 4:6
)
df %>% complete_dt(item_id,item_name)
df %>% complete_dt(item_id,item_name,fill = @)
df %>% complete_dt("item")
df %>% complete_dt(item_id=1:3)
df %>% complete_dt(item_id=1:3,group=1:2)
df %>% complete_dt(item_id=1:3,group=1:3,item_name=c("a","b","c"))
count_dt Count observations by group
Description

Count the unique values of one or more variables.

cummean

Usage
count_dt(.data, ..., sort = TRUE, .name = "n")
add_count_dt(.data, ..., .name = "n")
Arguments
.data data.table/data.frame data.frame will be automatically converted to data.table.
Variables to group by, could receive what ‘select_dt* receives.
sort logical. If TRUE result will be sorted in desending order by resulting variable.
.name character. Name of resulting variable. Default uses "n".
Value
data.table
See Also
count
Examples
iris %>% count_dt(Species)
iris %>% count_dt(Species,.name = "count")
iris %>% add_count_dt(Species)
iris %>% add_count_dt(Species, .name = "N")

mtcars %>% count_dt(cyl,vs)

mtcars %>% count_dt("cyl|vs")

mtcars %>% count_dt(cyl,vs,.name = "N" sort = FALSE)
mtcars %>% add_count_dt(cyl,vs)

mtcars %>% add_count_dt("cyl|vs")

cummean Cumulative mean

Description

Returns a vector whose elements are the cumulative mean of the elements of the argument.

Usage

cummean(x)

Arguments

X a numeric or complex object, or an object that can be coerced to one of these.

10

Examples

cummean(1:10)

distinct_dt

distinct_dt

Select distinct/unique rows in data.frame

Description

Select only unique/distinct rows from a data frame.

Usage
distinct_dt(.data, ..., .keep_all = FALSE, fromLast = FALSE)
Arguments
.data data.frame
Optional variables to use when determining uniqueness. If there are multiple
rows for a given combination of inputs, only the first row will be preserved. If
omitted, will use all variables.
.keep_all If TRUE, keep all variables in data.frame. If a combination of ... is not distinct,
this keeps the first row of values.
fromLast Logical indicating if duplication should be considered from the reverse side.
Defaults to FALSE.
Value
data.table
See Also
distinct
Examples

iris %>% distinct_dt()

iris %>% distinct_dt(Species)

iris %>% distinct_dt(Species, .keep_all = TRUE)
mtcars %>% distinct_dt(cyl,vs)

mtcars %>% distinct_dt(cyl,vs, .keep_all

TRUE)

mtcars %>% distinct_dt(cyl,vs, .keep_all = TRUE,fromLast = TRUE)

drop_na_dt 11

drop_na_dt Dump, replace and fill missing values in data.frame

Description

A set of tools to deal with missing values in data.frames. It can dump, replace, fill (with next or
previous observation) or delete entries according to their missing values.

Usage
drop_na_dt(.data, ...)
replace_na_dt(.data, ..., to)
delete_na_cols(.data, prop = NULL, n = NULL)
delete_na_rows(.data, prop = NULL, n = NULL)
fill_na_dt(.data, ..., direction = "down")

shift_fill(x, direction = "down")

Arguments
.data data.frame
Colunms to be replaced or filled. If not specified, use all columns.
to What value should NA replace by?
prop If proportion of NAs is larger than or equal to "prop", would be deleted.
n If number of NAs is larger than or equal to "n", would be deleted.
direction Direction in which to fill missing values. Currently either "down" (the default)
or "up".
X A vector with missing values to be filled.
Details

drop_na_dt drops the entries with NAs in specific columns. fill_na_dt fill NAs with observations
ahead ("down") or below ("up"), which is also known as last observation carried forward (LOCF)
and next observation carried backward(NOCB).

delete_na_cols could drop the columns with NA proportion larger than or equal to "prop" or NA

non

number larger than or equal to "n", delete_na_rows works alike but deals with rows.

shift_fill could fill a vector with missing values.

Value

data.table

12

References

drop_na_dt

https://stackoverflow.com/questions/23597140/how-to-find-the-percentage-of-nas-in-a-data-frame

https://stackoverflow.com/questions/2643939/remove-columns-from-dataframe-where-all-values-are-
na

https://stackoverflow.com/questions/7235657/fastest-way-to-replace-nas-in-a-large-data-table

See Also

drop_na,replace_na, fill

Examples

df <- data.table(x = c(1, 2, NA), y = c("a", NA, "b"))

X X X X X X X

X %>%
X %>%

#
y

df
df
df
df

df
df
df
df

df
df
df

%>%
%>%
%>%
%>%
%>%

%>%
%>%
%>%
%>%

%>%
%>%
%>%
%>%

%>%
%>%
%>%

drop_na_dt()
drop_na_dt(x)
drop_na_dt(y)
drop_na_dt(x,y)

replace_na_dt(to = 0)
replace_na_dt(x,to = @)
replace_na_dt(y,to = @)
replace_na_dt(x,y,to = 0)

fill_na_dt(x)
fill_na_dt() # not specified, fill all columns
fill_na_dt(y,direction = "up")

data.frame(x = c(1, 2, NA, 3), y = c(NA, NA, 4, 5),z = rep(NA,4))

delete_na_cols()
delete_na_cols(prop
delete_na_cols(prop = 0.5)
delete_na_cols(prop = 0.24)
delete_na_cols(n = 2)

0.75)

delete_na_rows(prop = 0.6)
delete_na_rows(n = 2)

shift_fill

c("a

" NA,"b",NA,"c")

shift_fill(y) # equals to
shift_fill(y, "down")

shift_fill(y, "up”)

dummy_dt 13

dummy_dt Fast creation of dummy variables

Description

Quickly create dummy (binary) columns from character and factor type columns in the inputted
data (and numeric columns if specified.) This function is useful for statistical analysis when you
want binary columns rather than character columns.

Usage
dummy_dt(.data, ..., longname = TRUE)
Arguments
.data data.frame
Columns you want to create dummy variables from. Very flexible, find in the
examples.
longname logical. Should the output column labeled with the original column name? De-
fault uses TRUE.
Details

If no columns provided, will return the original data frame. When NA exist in the input column,
they would also be considered. If the input character column contains both NA and string "NA",
they would be merged.

This function is inspired by fastDummies package, but provides simple and precise usage, whereas
fastDummies: :dummy_cols provides more features for statistical usage.

Value

data.table

References

https://stackoverflow.com/questions/18881073/creating-dummy-variables-in-r-data-table

See Also

dummy_cols

14 export_fst

Examples

iris %>% dummy_dt(Species)
iris %>% dummy_dt(Species,longname = FALSE)

mtcars %>% head() %>% dummy_dt(vs,am)
mtcars %>% head() %>% dummy_dt("cyl|gear")

when there are NAs in the column
df <- data.table(x = c("a", "b", NA, NA),y = 1:4)
df %>%

dummy_dt (x)

when NA and "NA" both exist, they would be merged
df <- data.table(x = c("a", "b", NA, "NA"),y = 1:4)
df %>%

dummy_dt(x)

export_fst Read and write fst files

Description

Wrapper for read_fst and write_fst from fst, but use a different default. For data import, always
return a data.table. For data export, always compress the data to the smallest size.

Usage

export_fst(x, path, compress = 100, uniform_encoding = TRUE)

import_fst(
path,
columns = NULL,
from = 1,
to = NULL,
as.data.table = TRUE,
old_format = FALSE

)
Arguments
X a data frame to write to disk
path path to fst file
compress value in the range 0 to 100, indicating the amount of compression to use. Lower

values mean larger file sizes. The default compression is set to 50.

filter_dt 15

uniform_encoding

If “TRUE®, all character vectors will be assumed to have elements with equal
encoding. The encoding (latinl, UTF8 or native) of the first non-NA element
will used as encoding for the whole column. This will be a correct assumption
for most use cases. If ‘uniform.encoding’ is set to ‘FALSE*, no such assumption
will be made and all elements will be converted to the same encoding. The
latter is a relatively expensive operation and will reduce write performance for
character columns.

columns Column names to read. The default is to read all columns.
from Read data starting from this row number.
to Read data up until this row number. The default is to read to the last row of the

stored dataset.

as.data.table If TRUE, the result will be returned as a data.table object. Any keys set
on dataset x before writing will be retained. This allows for storage of sorted
datasets. This option requires data. table package to be installed.

old_format must be FALSE, the old fst file format is deprecated and can only be read and
converted with fst package versions 0.8.0 to 0.8.10.

Value
‘import_fst* returns a data.table with the selected columns and rows. ‘export_fst* writes ‘X‘ to a
‘fst* file and invisibly returns ‘x‘ (so you can use this function in a pipeline).

See Also

read_fst

Examples

Not run:
export_fst(iris,"iris_fst_test.fst")
iris_dt = import_fst("iris_fst_test.fst")
iris_dt

unlink("iris_fst_test.fst")

End(Not run)

filter_dt Filter entries in data.frame

Description

Choose rows where conditions are true.

Usage

filter_dt(.data, ...)

16 fst

Arguments

.data data.frame

List of variables or name-value pairs of summary/modifications functions.

Value

data.table

See Also

filter

Examples

iris %>% filter_dt(Sepal.Length > 7)
iris %>% filter_dt(Sepal.Length == max(Sepal.Length))

comma is not supported in tidyfst after v0.9.8

which means you can't use:

Not run:

iris %>% filter_dt(Sepal.Length > 7, Sepal.Width > 3)

End(Not run)
use following code instead
iris %>% filter_dt(Sepal.Length > 7 & Sepal.Width > 3)

fst Parse,inspect and extract data.table from fst file

Description

A tookit of APIs for reading fst file as data.table, could select by column, row and conditional
filtering.

Usage
parse_fst(path)
slice_fst(ft, row_no)
select_fst(ft, ...)
filter_fst(ft, ...)

summary_fst(ft)

fst

Arguments
path path to fst file
ft An object of class fst_table, returned by parse_fst
row_no An integer vector (Positive)
The filter conditions
Details

summary_fst could provide some basic information about the fst table.

Value

parse_fst returns a fst_table class.

select_fst and filter_fst returns a data.table.

See Also

fst, metadata_fst

Examples

Not run:
fst::write_fst(iris,”iris_test.fst")
parse the file but not reading it
parse_fst("iris_test.fst") -> ft
ft

class(ft)
lapply(ft,class)
names(ft)
dim(ft)
summary_fst(ft)

get the data by query
ft %>% slice_fst(1:3)
ft %>% slice_fst(c(1,3))

ft %>% select_fst(Sepal.Length)

ft %>% select_fst(Sepal.Length,Sepal.Width)
ft %>% select_fst("Sepal.Length")

ft %>% select_fst(1:3)

ft %>% select_fst(1,3)

ft %>% select_fst("Se")

ft %>% select_fst("nothing")

ft %>% select_fst("Se|Sp")

ft %>% select_fst(cols = names(iris)[2:3])

ft %>% filter_fst(Sepal.Width > 3)
ft %>% filter_fst(Sepal.Length > 6 , Species == "virginica")
ft %>% filter_fst(Sepal.Length > 6 & Species == "virginica” & Sepal.Width < 3)

17

18 group_by_dt

unlink("iris_test.fst")

End(Not run)

group_by_dt Group by variable(s) and implement operations

Description

Carry out data manipulation within specified groups. Different from group_dt, the implementation
is split into two operations, namely grouping and implementation.

Using setkey and setkeyv in data.table to carry out group_by-like functionalities in dplyr. This
is not only convenient but also efficient in computation.

Usage
group_by_dt(.data, ..., cols = NULL)
group_exe_dt(.data, ...)
Arguments
.data A data frame
Variables to group by for group_by_dt, namely the columns to sort by. Do
not quote the column names. Any data manipulation arguments that could be
implemented on a data.frame for group_exe_dt. It can receive what select_dt
receives.
cols A character vector of column names to group by.
Details

group_by_dt and group_exe_dt are a pair of functions to be used in combination. It utilizes
the feature of key setting in data.table, which provides high performance for group operations,
especially when you have to operate by specific groups frequently.

Value

A data.table with keys

Examples

aggregation after grouping using group_exe_dt
as.data.table(iris) -> a
a %%

group_by_dt(Species) %>%

group_exe_dt (head(1))

group_dt 19

a %»>%
group_by_dt(Species) %>%
group_exe_dt(
head(3) %>%
summarise_dt(sum = sum(Sepal.Length))

)

mtcars %>%
group_by_dt("cyl|am") %>%
group_exe_dt(
summarise_dt(mpg_sum = sum(mpg))
)
equals to
mtcars %>%
group_by_dt(cols = c("cyl”,"am")) %>%
group_exe_dt(
summarise_dt(mpg_sum = sum(mpg))

)

group_dt Data manipulation within groups

Description

Carry out data manipulation within specified groups.

Usage
group_dt(.data, by = NULL, ...)
rowwise_dt(.data, ...)
Arguments
.data A data.frame
by Variables to group by,unquoted name of grouping variable of list of unquoted
names of grouping variables.
Any data manipulation arguments that could be implemented on a data.frame.
Details

If you want to use summarise_dt and mutate_dt in group_dt, it is better to use the "by" parameter
in those functions, that would be much faster because you don’t have to use . SD (which takes extra
time to copy).

Value

data.table

20 group_dt

References

https://stackoverflow.com/questions/36802385/use-by-each-row-for-data-table

Examples

iris %>% group_dt(by = Species,slice_dt(1:2))
iris %>% group_dt(Species,filter_dt(Sepal.Length == max(Sepal.Length)))
iris %>% group_dt(Species,summarise_dt(new = max(Sepal.Length)))

you can pipe in the “group_dt-
iris %>% group_dt(Species,
mutate_dt(max= max(Sepal.Length)) %>%
summarise_dt (sum=sum(Sepal.Length)))

for users familiar with data.table, you can work on .SD directly
following codes get the first and last row from each group
iris %>%
group_dt(
by = Species,
rbind(.SD[1],.SDL.NI)
)

#' # for summarise_dt, you can use "by"” to calculate within the group
mtcars %>%

summarise_dt(

disp = mean(disp),

hp = mean(hp),

by = cyl

but you could also, of course, use group_dt
mtcars %>%
group_dt(by =.(vs,am),
summarise_dt(avg = mean(mpg)))

and list of variables could also be used
mtcars %>%
group_dt(by =list(vs,am),
summarise_dt(avg = mean(mpg)))

examples for “rowwise_dt”
df <- data.table(x = 1:2, y = 3:4, z = 4:5)

df %>% mutate_dt(m = mean(c(x, y, z)))
df %>% rowwise_dt(

mutate_dt(m = mean(c(x, y, z)))
)

import_fst_chunked 21

import_fst_chunked Read a fst file by chunks

Description

For ‘import_fst_chunked®, if a large fst file which could not be imported into the memory all at
once, this function could read the fst file by chunks and preprocessed the chunk to ensure the results
yielded by the chunks are small enough to be summarised in the end. For ‘get_fst_chunk_size®, this
function can measure the memory used by a specified row number.

Usage

import_fst_chunked(
path,
chunk_size = 10000L,
chunk_f = identity,
combine_f = rbindlist

get_fst_chunk_size(path, nrows)

Arguments
path Path to fst file
chunk_size Integer. The number of rows to include in each chunk
chunk_f A function implemented on every chunk.
combine_f A function to aggregate all the elements from the list of results from chunks.
nrows Number of rows to test.
Value

For ‘import_fst_chunked®, default to the whole data.frame in data.table. Could be adjusted to any
type. For ‘get_fst_chunk_size*, return the file size.

See Also

read_csv_chunked

Examples

Not run:
Generate some random data frame with 10 million rows and various column types
nr_of_rows <- 1e7
df <- data.frame(
Logical = sample(c(TRUE, FALSE, NA), prob =c(0.85, 0.1, 0.05), nr_of_rows, replace = TRUE),
Integer = sample(1L:100L, nr_of_rows, replace = TRUE),
Real = sample(sample(1:10000, 20) / 100, nr_of_rows, replace = TRUE),

22 impute_dt
Factor = as.factor(sample(labels(UScitiesD), nr_of_rows, replace = TRUE))
)
Write the file to disk
fst_file <- tempfile(fileext = ".fst")

write_fst(df, fst_file)

Get the size of 10000 rows
get_fst_chunk_size(fst_file,1e4)

File all rows that Integer == 7 by chunks
import_fst_chunked(fst_file,chunk_f = \(x) x[Integer==71)

End(Not run)

impute_dt Impute missing values with mean, median or mode

Description

Impute the columns of data.frame with its mean, median or mode.

Usage
impute_dt(.data, ..., .func = "mode")
Arguments
.data A data.frame
Columns to select
.func Character, "mode" (default), "mean" or "median". Could also define it by one-
self.
Value
A data.table
Examples

Pclass <- c(3, 1, 3, 1, 3, 2, 2, 3, NA, NA)

Sex <- c('male', 'male', 'female', 'female', 'female',
'female', NA, 'male', 'female', NA)

Age <- c(22, 38, 26, 35, NA,
45, 25, 39, 28, 40)

SibSp <- c(@, 1, 3, 1, 2, 3, 2, 2, NA, 0)

Fare <- c(7.25, 71.3, 7.92, NA, 8.05, 8.46, 51.9, 60, 32, 15)

Embarked <- c('S', NA, 'S', 'Q', 'Q', 's', 'Cc', 'S', 'C', 'S")

intersect_dt 23

data <- data.frame('Pclass' = Pclass,
'Sex' = Sex, 'Age' = Age, 'SibSp' = SibSp,
'Fare' = Fare, 'Embarked' = Embarked)

data

data %>% impute_dt() # defalut uses "mode” as ~.func’
data %>% impute_dt(is.numeric,.func = "mean")

data %>% impute_dt(is.numeric,.func = "median”)

my_fun = function(x){
x[is.na(x)] = (max(x,na.rm = TRUE) - min(x,na.rm = TRUE))/2
X

}

data %>% impute_dt(is.numeric,.func = my_fun)

intersect_dt Set operations for data frames

Description

Wrappers of set operations in data.table. Only difference is it could be applied to non-data.table
data frames by recognizing and coercing them to data.table automatically.

Usage
intersect_dt(x, y, all = FALSE)
union_dt(x, y, all = FALSE)
setdiff_dt(x, y, all = FALSE)
setequal_dt(x, y, all = TRUE)

Arguments

X A data.frame
y A data.frame
all Logical. When FALSE (default), removes duplicate rows on the result.

Value

A data.table

See Also

setops

24 in_dt

Examples
x = iris[c(2,3,3,4),]

x2 = iris[2:4,]
y = iris[c(3:5),]

intersect_dt(x, y) # intersect
intersect_dt(x, y, all=TRUE) # intersect all
setdiff_dt(x, y) # except
setdiff_dt(x, y, all=TRUE) # except all
union_dt(x, y) # union
union_dt(x, y, all=TRUE) # union all
setequal_dt(x, x2, all=FALSE) # setequal
setequal_dt(x, x2) # setequal all
in_dt Short cut to data.table

Description

To use facilities provided by data.table, but do not have to load data.table package.

Usage
in_dt(.data, ...)

as_dt(.data)

Arguments
.data A data.frame
Recieve B in data.table’s A[B] syntax.
Details

The as_dt could turn any data frame to data.table class. If the data is not a data frame, return error.

The in_dt function creates a virtual environment in data.table, it could be piped well because it
still follows the principals of tidyfst, which are: (1) Never use in place replacement and (2) Always
recieves a data frame (data.frame/tibble/data.table) and returns a data.table. Therefore, the in place
functions like : = will still return the results.

See Also
data.table

Examples

iris %>% as_dt()
iris %>% in_dt(order(-Sepal.Length),.SD[.N],by=Species)

join 25

join Join tables

Description

The mutating joins add columns from ‘y‘ to ‘x‘, matching rows based on the keys:

* ‘inner_join_dt()‘: includes all rows in ‘x‘ and ‘y‘. * ‘left_join_dt()*: includes all rows in ‘x‘. *
‘right_join_dt()‘: includes all rows in ‘y*. * ‘full_join_dt()‘: includes all rows in ‘x* or ‘y*.

Filtering joins filter rows from ‘x‘ based on the presence or absence of matches in ‘y‘:

* ‘semi_join_dt()‘ return all rows from ‘x‘ with a match in ‘y‘. * ‘anti_join_dt()‘ return all rows
from ‘x‘ without a match in ‘y*.

Usage
inner_join_dt(x, y, by = NULL, on = NULL, suffix = c(".x", ".y"))

left_join_dt(x, y, by = NULL, on = NULL, suffix = c(".x", ".y"))

right_join_dt(x, y, by = NULL, on = NULL, suffix = c(".x", ".y"))

full_join_dt(x, y, by = NULL, on = NULL, suffix = c(".x", ".y"))

anti_join_dt(x, y, by = NULL, on = NULL)

semi_join_dt(x, y, by = NULL, on = NULL)
Arguments
X A data.table
y A data.table
by (Optional) A character vector of variables to join by.

If ‘'NULL", the default, “*_join_dt()‘ will perform a natural join, using all vari-
ables in common across ‘x‘ and ‘y‘. A message lists the variables so that you
can check they’re correct; suppress the message by supplying ‘by* explicitly.
To join by different variables on ‘x‘ and ‘y‘, use a named vector. For example,
‘by =c("a" ="b")* will match ‘x$a‘ to ‘y$b°.
To join by multiple variables, use a vector with length > 1. For example, ‘by =
c("a", "b")* will match ‘x$a‘ to ‘y$a‘ and ‘x$b* to ‘y$b‘. Use a named vector to
match different variables in ‘x‘ and ‘y‘. For example, ‘by = c("a" ="b", "c¢" =
"d")* will match ‘x$a‘ to ‘y$b* and ‘x$c* to ‘y$d*.
on (Optional) Indicate which columns in x should be joined with which columns in
y. Examples included: 1..by = c("a","b") (this is amust for set_full_join_dt);
2..by =c(x1="y1", x2="y2");3..by = c("x1==y1", "x2==y2");4..by =c("a",
V2="b");5..by=.(a, b);6..by =c("x>=a", "y<=b") or .by = . (x>=a, y<=b).
suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

26 lead dt

Value

A data.table

Examples

workers = fread(”
name company
Nick Acme
John Ajax
Daniela Ajax

")

positions = fread(”
name position
John designer
Daniela engineer
Cathie manager

")

workers %>% inner_join_dt(positions)
workers %>% left_join_dt(positions)
workers %>% right_join_dt(positions)
workers %>% full_join_dt(positions)

filtering joins
workers %>% anti_join_dt(positions)
workers %>% semi_join_dt(positions)

To suppress the message, supply 'by' argument
workers %>% left_join_dt(positions, by = "name")

Use a named 'by' if the join variables have different names
positions2 = setNames(positions, c("worker”, "position”)) # rename first column in 'positions'

workers %>% inner_join_dt(positions2, by = c("name”" = "worker"))

the syntax of 'on' could be a bit different

workers %>% inner_join_dt(positions2,on = "name==worker")
lead_dt Fast lead/lag for vectors
Description

Find the "next" or "previous" values in a vector. It has wrapped data.table’s shift function.

longer_dt 27

Usage
lead_dt(x, n = 1L, fill = NA)

lag_dt(x, n = 1L, fill = NA)

Arguments
X A vector
n a positive integer of length 1, giving the number of positions to lead or lag by.
Default uses 1
fill Value to use for padding when the window goes beyond the input length. Default
uses NA
Value
A vector
See Also
lead,shift
Examples

lead_dt(1:5)

lag_dt(1:5)

lead_dt(1:5,2)
lead_dt(1:5,n = 2,fill = @)

longer_dt Pivot data from wide to long

Description

Turning a wide table to its longer form. It takes multiple columns and collapses into key-value pairs.

Usage
longer_dt(.data, ..., name = "name”, value = "value”, na.rm = FALSE)
Arguments
.data A data.frame
Pattern for unchanged group or unquoted names. Pattern can accept regular
expression to match column names. It can recieve what select_dt recieves.
name Name for the measured variable names column. The default name is *name’.
value Name for the molten data values column(s). The default name is "value’.

na.rm If TRUE, NA values will be removed from the molten data.

28 longer_dt

Value

A data.table

See Also

wider_dt, melt, pivot_longer

Examples

Example 1:
stocks = data.frame(
time = as.Date('2009-01-01') + @:9,
X = rnorm(10, 0, 1),
Y = rnorm(10, 0, 2),
Z = rnorm(10, 0, 4)
)

stocks

stocks %>%
longer_dt(time)

stocks %>%
longer_dt("ti")

Example 2:

library(tidyr)

billboard %>%

longer_dt(
="wk",
name = "week",
value = "rank”,
na.rm = TRUE
)
or use:
billboard %>%
longer_dt(
artist,track,date.entered,
name = "week”,
value = "rank”,
na.rm = TRUE
)
or use:
billboard %>%
longer_dt(
1:3,

name = "week”,

mat_df 29

value = "rank",
na.rm = TRUE
)
mat_df Conversion between tidy table and named matrix
Description

Convenient fucntions to implement conversion between tidy table and named matrix.

Usage
mat_df (m)

df_mat(df, row, col, value)

Arguments
m A matrix
df A data.frame with at least 3 columns, one for row name, one for column name,
and one for values. The names for column and row should be unique.
row Unquoted expression of column name for row
col Unquoted expression of column name for column
value Unquoted expression of column name for values
Value

For mat_df, a data.frame. For df _mat, a named matrix.

Examples

mm = matrix(c(1:8,NA),ncol = 3,dimnames = list(letters[1:3],LETTERS[1:3]))

mm

tdf = mat_df (mm)

tdf

mat = df_mat(tdf,row,col,value)

setequal (mm,mat)

tdf %>%
setNames(c("A","B","C")) %>%
df_mat(A,B,C)

30 mutate_when

mutate_dt Mutate columns in data.frame

Description

Adds or updates columns in data.frame.

Usage

mutate_dt(.data, ..., by)

transmute_dt(.data, ..., by)

Arguments

.data data.frame
List of variables or name-value pairs of summary/modifications functions.

by (Optional) Mutate by what group?

Value

data.table

See Also

mutate

Examples

iris %>% mutate_dt(one = 1,Sepal.Length = Sepal.Length + 1)
iris %>% transmute_dt(one = 1,Sepal.Length = Sepal.Length + 1)
add group number with symbol ~.GRP"

iris %>% mutate_dt(id = 1:.N,grp = .GRP,by = Species)

mutate_when Conditional update of columns in data.table

Description

Update or add columns when the given condition is met.

mutate_when integrates mutate and case_when in dplyr and make a new tidy verb for data.table.
mutate_vars is a super function to do updates in specific columns according to conditions.

nest_dt 31

Usage
mutate_when(.data, when, ..., by)
mutate_vars(.data, .cols = NULL, .func, ..., by)
Arguments
.data data.frame
when An object which can be coerced to logical mode
Name-value pairs of expressions for mutate_when. Additional parameters to be
passed to parameter ’.func’ in mutate_vars.
by (Optional) Mutate by what group?
.cols Any types that can be accepted by select_dt.
.func Function to be run within each column, should return a value or vectors with
same length.
Value
data.table
See Also

select_dt, case_when

Examples

iris[3:8,]
iris[3:8,] %>%
mutate_when(Petal .Width == .2,
one = 1,Sepal.Length=2)

iris %>% mutate_vars("Pe",scale)

iris %>% mutate_vars(is.numeric,scale)
iris %>% mutate_vars(-is.factor,scale)
iris %>% mutate_vars(1:2,scale)

iris %>% mutate_vars(.func = as.character)

nest_dt Nest and unnest

Description

Create or melt list columns in data.frame.

Analogous function for nest and unnest in tidyr. unnest_dt will automatically remove other
list-columns except for the target list-columns (which would be unnested later). Also, squeeze_dt
is designed to merge multiple columns into list column.

32 nest_dt

Usage
nest_dt(.data, ..., mcols = NULL, .name = "ndt")
unnest_dt(.data, ...)
squeeze_dt(.data, ..., .name = "ndt")
chop_dt(.data, ...)
unchop_dt(.data, ...)
Arguments
.data data.table, nested or unnested
The variables for nest group(for nest_dt), columns to be nested(for squeeze_dt
and chop_dt), or column(s) to be unnested(for unnest_dt). Could recieve any-
thing that select_dt could receive.
mcols Name-variable pairs in the list, form like
.name Character. The nested column name. Defaults to "ndt". 1ist(petal="*Pe", sepal=""Se"),
see example.
Details

In the nest_dt, the data would be nested to a column named ‘ndt‘, which is short for nested
data.table.

The squeeze_dt would not remove the originial columns.
The unchop_dt is the reverse operation of chop_dt.

These functions are experiencing the experimental stage, especially the unnest_dt. If they don’t
work on some circumtances, try tidyr package.

Value

data.table, nested or unnested

References

https://www.r-bloggers.com/much-faster-unnesting-with-data-table/

https://stackoverflow.com/questions/25430986/create-nested-data-tables-by-collapsing-rows-into-new-
data-tables

See Also

nest, chop

nest_dt

Examples

examples for nest_dt

nest by which columns?

mtcars %>% nest_dt(cyl)

mtcars %>% nest_dt("cyl”)

mtcars %>% nest_dt(cyl,vs)

mtcars %>% nest_dt(vs:am)

mtcars %>% nest_dt("cyl|vs")
mtcars %>% nest_dt(c("cyl”,"vs"))

change the nested column name
mtcars %>% nest_dt(cyl, .name = "data")

nest two columns directly
iris %>% nest_dt(mcols = list(petal=""Pe",sepal=""Se"))

nest more flexibly

iris %>% nest_dt(mcols = list(ndtl = 1:3,
ndt2 = "Pe",
ndt3 = Sepal.Length:Sepal.Width))

examples for unnest_dt

unnest which column?

mtcars %>% nest_dt("cyl|vs") %>%
unnest_dt(ndt)

mtcars %>% nest_dt("cyl|vs") %>%
unnest_dt("ndt")

df <- data.table(

a = list(c("a", "b"), "c"),
b = list(c(TRUE,TRUE),FALSE),
c = list(3,c(1,2)),
d=c(1, 22)
)
df

df %>% unnest_dt(a)

df %>% unnest_dt(2)

df %>% unnest_dt("c")

df %>% unnest_dt(cols = names(df)[3])

You can unnest multiple columns simultaneously
df %>% unnest_dt(1:3)

df %>% unnest_dt(a,b,c)

df %>% unnest_dt("alb|c")

examples for squeeze_dt

nest which columns?

iris %>% squeeze_dt(1:2)

iris %>% squeeze_dt("Se")

iris %>% squeeze_dt(Sepal.Length:Petal.Width)
iris %>% squeeze_dt(1:2,.name = "data")

34 nth

examples for chop_dt

df <- data.table(x = c(1, 1, 1, 2, 2, 3), y =1:6, z =6:1)
df %>% chop_dt(y,z)

df %>% chop_dt(y,z) %>% unchop_dt(y,z)

nth Extract the nth value from a vector

Description
nth get the value from a vector with its position, while maxth and minth get the nth highest or
lowest value from the vector.

Usage
nth(v, n =1)

maxth(v, n = 1)
minth(v, n = 1)
Arguments
v A vector
n Fornth, a single integer specifying the position. Default uses 1. Negative inte-
gers index from the end (i.e. -1L will return the last value in the vector). If a
double is supplied, it will be silently truncated. For maxth and minth, a single
integer indicating the nth highest or lowest value.
Value

A single value.

References

https://stackoverflow.com/questions/2453326/fastest-way-to-find-second-third-highest-lowest-value-
in-vector-or-column/66367996#66367996

Examples

x =1:10

nth(x, 1)
nth(x, 5)
nth(x, -2)

y = C(10!3!475!2!176’9)7!8)
maxth(y, 3)
minth(y,3)

object_size 35

object_size Nice printing of report the Space Allocated for an Object

Description
Provides an estimate of the memory that is being used to store an R object. A wrapper of ‘ob-
ject.size‘, but use a nicer printing unit.

Usage

object_size(object)

Arguments

object an R object.

Value

An object of class "object_size"

Examples

iris %>% object_size()

pairwise_count_dt Count pairs of items within a group

Description

Count the number of times each pair of items appear together within a group. For example, this
could count the number of times two words appear within documents. This function has referred to
pairwise_count in widyr package, but with very different defaults on several parameters.

Usage
pairwise_count_dt(

.data,

.group,

.value,

upper = FALSE,
diag = FALSE,
sort = TRUE

36 percent

Arguments
.data A data.frame.
.group Column name of counting group.
.value Item to count pairs, will end up in V1 and V2 columns.
upper When FALSE(Default), duplicated combinations would be removed.
diag Whether to include diagonal (V1==V2) in output. Default uses FALSE.
sort Whether to sort rows by counts. Default uses TRUE.

Value

A data.table with 3 columns (named as "iteml","item2" and "n"), containing combinations in

n_n

"item1" and "item2", and counts in "n".

See Also

pairwise_count

Examples

dat <- data.table(group = rep(1:5, each
letter = c("a", "b",

nan n_n

2)’

a ’ C ’
"a", "c",
Ilblly IIeIV’
b7, "))

pairwise_count_dt(dat,group,letter)
pairwise_count_dt(dat,group,letter,sort = FALSE)
pairwise_count_dt(dat,group,letter,upper = TRUE)
pairwise_count_dt(dat,group,letter,diag = TRUE)
pairwise_count_dt(dat,group,letter,diag = TRUE,upper = TRUE)

The column name could be specified using character.
pairwise_count_dt(dat, "group”,"letter")

percent Add percentage to counts in data.frame

Description

Add percentage for counts in the data.frame, both numeric and character with *

Usage

percent(x, digits = 1)

add_prop(.data, count_name = last(names(.data)), digits = 1)

pkg_load 37

Arguments

X A number (numeric).

digits How many digits to keep in the percentage. Default uses 1.

.data A data frame.

count_name Column name of counts (Character). Default uses the last column of data.frame.
References

https://stackoverflow.com/questions/7145826/how-to-format-a-number-as-percentage-in-r

Examples

percent(0.9057)
percent(0.9057,3)

iris %>%
count_dt(Species) %>%
add_prop()

iris %>%
count_dt(Species) %>%
add_prop(count_name = "n",digits = 2)

pkg_load Load or unload R package(s)

Description

This function is a wrapper for require and detach. pkg_load checks to see if a package is in-
stalled, if not it attempts to install the package from CRAN. pkg_unload can detach one or more
loaded packages.

Usage
pkg_load(..., pkg_names = NULL)
pkg_unload(..., pkg_names = NULL)
Arguments
Name(s) of package(s).
pkg_names (Optional)Character vector containing packages to load or unload. Default uses
NULL.
See Also

require, detach, p_load, p_unload

38

Examples

Not run:

print_options

pkg_load(data. table)
pkg_unload(data.table)

pkg_load(stringr,fst)
pkg_unload(stringr,fst)

pkg_load(pkg_names
p_unload(pkg_names =

c("data.table”,"fst"))
c("data.table”,"fst"))

pkg_load(data.table,stringr,fst)
pkg_unload("all") # shortcut to unload all loaded packages

End(Not run)

print_options

Set global printing method for data.table

Description

This function allow user to define how data.table is printed.

Usage

print_options(
topn = 5,
nrows = 100,
class =
row.names =
col.names =
print.keys
trunc.cols

Arguments

topn

nrows

class

row.names

col.names

TRUE,

TRUE,
"auto”,
TRUE,
FALSE

The number of rows to be printed from the beginning and end of tables with
more than nrow rows.

The number of rows which will be printed before truncation is enforced.

If TRUE, the resulting output will include above each column its storage class (or
a self-evident abbreviation thereof).

If TRUE, row indices will be printed.

One of three flavours for controlling the display of column names in output.
"auto” includes column names above the data, as well as below the table if
nrow(x) > 20. "top" excludes this lower register when applicable, and "none”
suppresses column names altogether (as well as column classes if class = TRUE.

pull_dt 39

print.keys If TRUE, any key currently assigned to x will be printed prior to the preview of
the data.
trunc.cols If TRUE, only the columns that can be printed in the console without wrapping

the columns to new lines will be printed (similar to tibbles).

Details
Notice that tidyfst has a slightly different printing default for data.table, which is it always prints
the keys and variable class (not like data.table).

Value

None. This function is used for its side effect of changing options.

See Also

print.data.table

Examples

iris %>% as.data.table()
print_options(topn = 3,trunc.cols = TRUE)
iris %>% as.data.table()

set all settings to default in tidyfst
print_options()
iris %>% as.data.table()

pull_dt Pull out a single variable

Description

Extract vector from data.frame, works likt ‘[[*. Analogous function for pull in dplyr

Usage
pull_dt(.data, col)

Arguments

.data data.frame

col A name of column or index (should be positive).
Value

vector

40 rec

See Also
pull

Examples

mtcars %>% pull_dt(2)
mtcars %>% pull_dt(cyl)
mtcars %>% pull_dt("cyl")

rec Recode number or strings

Description

Recode discrete variables, including numerice and character variable.

Usage

rec_num(x, rec, keep = TRUE)

rec_char(x, rec, keep = TRUE)

Arguments
X A numeric or character vector.
rec String with recode pairs of old and new values. Find the usage in examples.
keep Logical. Decide whether to keep the original values if not recoded. Defaults to
TRUE.
Value
A vector.
See Also
rec
Examples
x =1:10
X
rec_num(x, rec = "1=10; 4=2")
rec_num(x, rec = "1:3=1; 4:6=2")

rec_num(x, rec = "1:3=1; 4:6=2",keep = FALSE)

y = letters[1:5]

y
rec_char(y,rec = "a=A;b=B")

relocate_dt 41

rec_char(y,rec = "a,b=A;c,d=B")
rec_char(y,rec = "a,b=A;c,d=B" ,keep = FALSE)

relocate_dt Change column order

Description

Change the position of columns, using the same syntax as ‘select_dt()‘. Check similar function as
‘relocate‘ in dplyr.

Usage
relocate_dt(.data, ..., how = "first"”, where = NULL)
Arguments
.data A data.frame
Columns to move
how The mode of movement, including "first","last","after","before". Default uses
"first".
where Destination of columns selected by Applicable for "after" and "before"
mode.
Value

A data.table with rearranged columns.

See Also

relocate

Examples

df <- data.table(a =1, b=1, c=1,d="a", e="a", f="a")
df

df %>% relocate_dt(f)

df %>% relocate_dt(a,how = "last")

df %>% relocate_dt(is.character)
df %>% relocate_dt(is.numeric, how = "last”)
df %>% relocate_dt("[aeioul")

df %>% relocate_dt(a, how = "after”,where = f)
df %>% relocate_dt(f, how = "before”,where = a)
df %>% relocate_dt(f, how = "before”,where = c)
df %>% relocate_dt(f, how = "after”,where = ¢)

42

rename_dt

df2 <- data.table(a =1, b ="a", c=1, d ="a")
df2 %>% relocate_dt(is.numeric,

how = "after”,
where = is.character)

df2 %>% relocate_dt(is.numeric,

how="before",
where = is.character)

rename_dt

Rename column in data.frame

Description

Rename one or more columns in the data.frame.

Usage
rename_dt(.data, ...)
rename_with_dt(.data, .fn, ...)
Arguments
.data data.frame
statements of rename, e.g. ‘sl = Sepal.Length‘ means the column named as
"Sepal.Length" would be renamed to "sl"
.fn A function used to transform the selected columns. Should return a character
vector the same length as the input.
Value
data.table
See Also
rename
Examples

iris %>%

rename_dt(sl = Sepal.Length,sw = Sepal.Width) %>%

head()

iris %>% rename_with_dt(toupper)
iris %>% rename_with_dt(toupper,"*Pe")

replace_dt 43

replace_dt Fast value replacement in data frame

Description

While replace_na_dt could replace all NAs to another value, replace_dt could replace any
value(s) to another specific value.

Usage
replace_dt(.data, ..., from = is.nan, to = NA)
Arguments
.data A data.frame
Colunms to be replaced. If not specified, use all columns.
from A value, a vector of values or a function returns a logical value. Defaults to
is.nan.
to A value. Defaults to NA.
Value
A data.table.
See Also

replace_na_dt

Examples

iris %>% mutate_vars(is.factor,as.character) -> new_iris

new_iris %>%

replace_dt(Species, from = "setosa”,to = "SS")
new_iris %>%
replace_dt(Species,from = c("setosa”,"virginica”),to = "sv")

new_iris %>%
replace_dt(Petal.Width, from = .2,to = 2)
new_iris %>%
replace_dt(from = .2,to = NA)
new_iris %>%
replace_dt(is.numeric, from = function(x) x > 3, to = 9999)

44 round(

rn_col Tools for working with row names

Description

The enhanced data.frame, including tibble and data.table, do not support row names. To link to
some base r facilities, there should be functions to save information in row names. These functions
are analogous to rownames_to_column and column_to_rownames in tibble.

Usage

rn_col(.data, var = "rowname")

col_rn(.data, var = "rowname")
Arguments

.data A data.frame.

var Name of column to use for rownames.
Value

rn_col returns a data.table, col_rn returns a data frame.

Examples
mtcars %>% rn_col()
mtcars %>% rn_col("rn")

mtcars %>% rn_col() -> new_mtcars

new_mtcars %>% col_rn() -> old_mtcars
old_mtcars
setequal(mtcars,old_mtcars)

roundo@ Round a number and make it show zeros

Description
Rounds values in its first argument to the specified number of decimal places, returning character,
ensuring first decimal digits are showed even when they are zeros.

Usage

roundd(x, digits = @)

sample_dt
Arguments

X A numeric vector.

digits Integer indicating the number of decimal places. Defaults to 0.
Value

A character vector.

References

https://stackoverflow.com/questions/42105336/how-to-round-a-number-and-make-it-show-zeros

See Also

round

Examples

a = 14.0034
round@(a,2)

b =10
round@(b, 1)

45

sample_dt Sample rows randomly from a table

Description

Select a number or proportion of rows randomly from the data frame

sample_dt is a merged version of sample_n_dt and sample_frac_dt, this could be convenient.

Usage

sample_dt(.data, n = NULL, prop = NULL, replace = FALSE, by = NULL)
sample_n_dt(.data, size, replace = FALSE, by = NULL)

sample_frac_dt(.data, size, replace = FALSE, by = NULL)

46 select_dt

Arguments
.data A data.frame
n Number of rows to select
prop Fraction of rows to select
replace Sample with or without replacement? Default uses FALSE.
by (Optional) Character. Specify if you want to sample by group.
size For sample_n_dt, the number of rows to select. For sample_frac_dt, the frac-
tion of rows to select.
Value
data.table
See Also

sample_n,sample_frac

Examples

sample_n_dt(mtcars, 10)
sample_n_dt(mtcars, 50, replace = TRUE)
sample_frac_dt(mtcars, 0.1)
sample_frac_dt(mtcars, 1.5, replace = TRUE)

sample_dt(mtcars,n=10)
sample_dt(mtcars,prop = 0.1)

sample by group(s)
iris %>% sample_n_dt(2,by = "Species”)
iris %>% sample_frac_dt(.1,by = "Species”)

mtcars %>% sample_n_dt(1,by = c("cyl”,"vs"))

select_dt Select column from data.frame

Description

Select specific column(s) via various ways. One can select columns by their column names, indexes
or regular expression recognizing the column name(s).

Usage
select_dt(.data, ..., cols = NULL, negate = FALSE)

select_mix(.data, ..., rm.dup = TRUE)

select_dt

Arguments

.data

cols

negate

rm.dup

Value

data.table

See Also

47

data.frame

List of variables or name-value pairs of summary/modifications functions. It can
also recieve conditional function to select columns. When starts with ‘-‘(minus
symbol) or ‘i, return the negative columns.

(Optional)A numeric or character vector.

Applicable when regular expression and "cols" is used. If TRUE, return the non-
matched pattern. Default uses FALSE.

Should duplicated columns be removed? Defaults to TRUE.

select, select_if

Examples

iris
iris
iris
iris
iris
iris
iris
iris
iris
iris
iris
iris
iris
iris
iris
iris
iris
iris
iris
iris
iris
iris
iris
iris
iris

%>%
%>%
%>%
%>%
%>%
%>%
%>%
%>%
%>%
%>%
%>%
%>%
%>%
%>%
%>%
%>%
%>%
%>%
%>%
%>%
%>%
%>%

%>%
%>%
%>%

select_dt(Species)
select_dt(Sepal.Length,Sepal.Width)
select_dt(Sepal.Length:Petal.Length)
select_dt(-Sepal.Length)
select_dt(-Sepal.Length,-Petal.Length)
select_dt(-(Sepal.Length:Petal.Length))
select_dt(c("Sepal.Length”,"Sepal.Width"))
select_dt(-c("Sepal.Length”,"Sepal.Width"))
select_dt(1)

select_dt(-1)

select_dt(1:3)

select_dt(-(1:3))

select_dt(1,3)

select_dt("Pe")

select_dt(-"Se")

select_dt(!"Se")

select_dt("Pe”,negate = TRUE)
select_dt("Pe|Sp")

select_dt(cols = 2:3)

select_dt(cols = 2:3,negate = TRUE)
select_dt(cols = c("Sepal.Length”,"Sepal.Width"))
select_dt(cols = names(iris)[2:3])

select_dt(is.factor)
select_dt(-is.factor)
select_dt(!is.factor)

select_mix could provide flexible mix selection
select_mix(iris, Species, "Sepal.Length")
select_mix(iris,1:2,is.factor)

48 separate_dt

select_mix(iris,Sepal.Length,is.numeric)
set rm.dup to FALSE could save the duplicated column names
select_mix(iris,Sepal.Length,is.numeric,rm.dup = FALSE)

separate_dt Separate a character column into two columns using a regular expres-
sion separator

Description

Given either regular expression, separate_dt () turns a single character column into two columns.

Usage

separate_dt(
.data,
separated_colname,
into,
sep = "[*[:alnum:]]+",
remove = TRUE

Arguments

.data A data frame.
separated_colname
Column to be separated, can be a character or alias.

into Character vector of length 2.

sep Separator between columns.

remove If TRUE, remove input column from output data frame.
See Also

separate, unite_dt

Examples

df <- data.frame(x = c(NA, "a.b", "a.d”, "b.c"))
df %>% separate_dt(x, c("A", "B"))

equals to

df %>% separate_dt("x", c("A", "B"))

If you just want the second variable:
df %>% separate_dt(x,into = c(NA,"B"))

slice_dt

49

slice_dt

Subset rows using their positions

Description

‘slice_dt()‘ lets you index rows by their (integer) locations. It allows you to select, remove, and
duplicate rows. It is accompanied by a number of helpers for common use cases:

* ‘slice_head_dt()‘ and ‘slice_tail_dt()‘ select the first or last rows. * ‘slice_sample_dt()‘ randomly
selects rows. * ‘slice_min_dt() and ‘slice_max_dt() select rows with highest or lowest values of a

variable.

Usage

slice_dt(.data,
slice_head_dt(.data, n, by
slice_tail_dt(.data, n, by

slice_max_dt(.data, order_by, n, by

., by = NULL)

NULL)

NULL)

NULL, with_ties = TRUE)

slice_min_dt(.data, order_by, n, by = NULL, with_ties = TRUE)

slice_sample_dt(.data, n, replace = FALSE, by = NULL)

Arguments

.data

by

order_by

with_ties

replace

Value

A data.table

See Also

slice

A data.table

Provide either positive values to keep, or negative values to drop. The values
provided must be either all positive or all negative.

Slice by which group(s)?

When larger than or equal to 1, the number of rows. When between 0 and 1, the
proportion of rows to select.

Variable or function of variables to order by.

Should ties be kept together? The default, ‘TRUE*, may return more rows than
you request. Use ‘FALSE® to ignore ties, and return the first ‘n‘ rows.

Should sampling be performed with (“TRUE*) or without (‘FALSE", the default)
replacement.

50 sql_join

Examples

a = iris

slice_dt(a,1,2)

slice_dt(a,2:3)

slice_dt(a,141:.N)

slice_dt(a,1,.N)

slice_head_dt(a,5)

slice_head_dt(a,0.1)

slice_tail_dt(a,5)

slice_tail_dt(a,0.1)
slice_max_dt(a,Sepal.Length,10)
slice_max_dt(a,Sepal.Length,10,with_ties = FALSE)
slice_min_dt(a,Sepal.Length,10)
slice_min_dt(a,Sepal.Length,10,with_ties = FALSE)
slice_sample_dt(a,10)

slice_sample_dt(a,0.1)

use by to slice by group

following codes get the same results
slice_dt(a,1:3,by = "Species")
slice_dt(a,1:3,by = Species)
slice_dt(a,1:3,by . (Species))

slice_head_dt(a,2,by = Species)
slice_tail_dt(a,2,by = Species)

slice_max_dt(a,Sepal.Length,3,by = Species)
slice_max_dt(a,Sepal.Length,3,by = Species,with_ties = FALSE)
slice_min_dt(a,Sepal.Length,3,by = Species)
slice_min_dt(a,Sepal.Length,3,by = Species,with_ties = FALSE)

in “slice_sample_dt™, "by" could only take character class
slice_sample_dt(a,.1,by = "Species"”)

slice_sample_dt(a,3,by = "Species”)
slice_sample_dt(a,51,replace = TRUE,by = "Species”)

sql_join Case insensitive table joining like SQL

Description
Work like the “*_join_dt* series functions, joining tables with common or customized keys in vari-
ous ways. The only difference is the joining is case insensitive like SQL.

Usage

sql_join_dt(x, y, by = NULL, type = "inner", suffix = c(".x", ".y"))

summarise_dt

Arguments
X

y
by

type

suffix

Value

A data.table

See Also

join

Examples

51

A data.table
A data.table

(Optional) A character vector of variables to join by.

If ‘NULL", the default, “*_join_dt()‘ will perform a natural join, using all vari-
ables in common across ‘x‘ and ‘y‘. A message lists the variables so that you
can check they’re correct; suppress the message by supplying ‘by* explicitly.

To join by different variables on ‘x‘ and ‘y‘, use a named vector. For example,
‘by = c("a" = "b")* will match ‘x$a‘to ‘y$b*.

To join by multiple variables, use a vector with length > 1. For example, ‘by =
c("a", "b")* will match ‘x$a‘to ‘y$a‘ and ‘x$b‘ to ‘y$b‘. Use a named vector to
match different variables in ‘x‘ and ‘y‘. For example, ‘by = c("a" = "b", "c¢" =
"d")* will match ‘x$a‘ to ‘y$b‘ and ‘x$c* to ‘y$d-.

Notice that in ‘sql_join‘, the joining variables would turn to upper case in the
output table.

Which type of join would you like to use? Default uses "inner", other options
include "left", "right", "full", "anti", "semi".

If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

dt1 = data.table(x = c("A","b"),y = 1:2)

dt2 = data.table(x = c("a”,"B"),z

4:5)

sql_join_dt(dt1,dt2)

summarise_dt

Summarise columns to single values

Description

Summarise group of values into one value for each group. If there is only one group, then only one
value would be returned. The summarise function should always return a single value.

52 summarise_dt

Usage
summarise_dt(.data, ..., by = NULL)
summarize_dt(.data, ..., by = NULL)
summarise_when(.data, when, ..., by = NULL)
summarize_when(.data, when, ..., by = NULL)
summarise_vars(.data, .cols = NULL, .func, ..., by)
summarize_vars(.data, .cols = NULL, .func, ..., by)
Arguments
.data data.frame
List of variables or name-value pairs of summary/modifications functions for
summarise_dt.Additional parameters to be passed to parameter ’.func’ in summarise_vars.
by unquoted name of grouping variable of list of unquoted names of grouping vari-
ables. For details see data.table
when An object which can be coerced to logical mode
.cols Columns to be summarised.
.func Function to be run within each column, should return a value or vectors with
same length.
Details

summarise_vars could complete summarise on specific columns.

Value

data.table

See Also

summarise

Examples

iris %>% summarise_dt(avg = mean(Sepal.lLength))
iris %>% summarise_dt(avg = mean(Sepal.lLength),by = Species)
mtcars %>% summarise_dt(avg = mean(hp),by = .(cyl,vs))

the data.table way
mtcars %>% summarise_dt(cyl_n = .N, by = .(cyl, vs)) # ~.° is short for list

iris %>% summarise_vars(is.numeric,min)
iris %>% summarise_vars(-is.factor,min)

sys_time_print 53

iris %>% summarise_vars(1:4,min)

iris %>% summarise_vars(is.numeric,min,by ="Species")
mtcars %>% summarise_vars(is.numeric,mean,by = c("vs"”, "am"))

use multiple functions on multiple columns
iris %>%
summarise_vars(is.numeric, .func = list(mean,sd,median))
iris %>%
summarise_vars(is.numeric,.func = list(mean,sd,median),by = Species)

sys_time_print Convenient print of time taken

Description
Convenient printing of time elapsed. A wrapper of data.table: :timetaken, but showing the
results more directly.

Usage

sys_time_print(expr)
pst(expr)

Arguments

expr Valid R expression to be timed.

Value

A character vector of the form HH:MM:SS, or SS.MMMsec if under 60 seconds (invisibly for
show_time). See examples.

See Also

timetaken, system.time

Examples

sys_time_print(Sys.sleep(1))

a = iris
sys_time_print({
res = iris %>%
mutate_dt(one = 1)
»

res

54 uncount_dt

t_dt Efficient transpose of data.frame

Description

An efficient way to transpose data frames(data.frame/data.table/tibble).

Usage

t_dt(.data)

Arguments

.data A data.frame/data.table/tibble

Details
This function would return the original data.frame structure, keeping all the row names and column
names. If the row names are not available or, "V1,V2..." will be provided.

Value

A transposed data.frame

Examples

t_dt(iris)
t_dt(mtcars)

uncount_dt "Uncount” a data frame

Description
Duplicating rows according to a weighting variable. This is the opposite operation of ‘count_dt".
Analogous to ‘tidyr::uncount®.

Usage

uncount_dt(.data, wt, .remove = TRUE)

Arguments
.data A data.frame
wt A vector of weights.

.remove Should the column for weights be removed? Default uses TRUE.

unite_dt 55

See Also

count, uncount

Examples

df <- data.table(x = c("a", "b"), n = c(1, 2))
uncount_dt(df, n)
uncount_dt(df,n,FALSE)

unite_dt Unite multiple columns into one by pasting strings together

Description

Convenience function to paste together multiple columns into one.

Usage

unite_dt(
.data,
united_colname,
sep = "_,
remove = FALSE,
na2char = FALSE

n o n

Arguments

.data A data frame.

united_colname The name of the new column, string only.

"

A selection of columns. If want to select all columns, pass
See example.

to the parameter.

sep Separator to use between values.
remove If TRUE, remove input columns from output data frame.
na2char If FALSE, missing values would be merged into NA, otherwise NA is treated as

character "NA". This is different from tidyr.

See Also

unite,separate_dt

56 wider_dt

Examples

df <- expand.grid(x = c("a", NA), y = c("b", NA))
df

Treat missing value as NA, default
df %>% unite_dt("z", x:y, remove = FALSE)
Treat missing value as character "NA"
df %>% unite_dt("z", x:y, na2char = TRUE, remove = FALSE)
df %>%
unite_dt("xy", x:y)

Select all columns

iris %>% unite_dt("merged_name”,".")
utf8_encoding Use UTF-8 for character encoding in a data frame
Description

fread from data.table could not recognize the encoding and return the correct form, this could
be unconvenient for text mining tasks. The utf8-encoding could use "UTF-8" as the encoding to
override the current encoding of characters in a data frame.

Usage
utf8_encoding(.data)

Arguments

.data A data.frame.

Value

A data.table with characters in UTF-8 encoding

wider_dt Pivot data from long to wide

Description

Transform a data frame from long format to wide by increasing the number of columns and de-
creasing the number of rows.

Usage
wider_dt(.data, ..., name, value = NULL, fun = NULL, fill = NA)

wider_dt 57

Arguments
.data A data.frame
Optional. The unchanged group in the transformation. Could use integer vector,
could receive what select_dt receives.
name Chracter.One column name of class to spread
value Chracter.One column name of value to spread. If NULL, use all other variables.
fun Should the data be aggregated before casting? Defaults to NULL, which uses
length for aggregation. If a function is provided, with aggregated by this func-
tion.
fill Value with which to fill missing cells. Default uses NA.
Details

The parameter of ‘name‘ and ‘value‘ should always be provided and should be explicit called (with
the parameter names attached).

Value

data.table

See Also

longer_dt, dcast, pivot_wider

Examples

stocks = data.frame(
time = as.Date('2009-01-01') + 0:9,
X = rnorm(10, 0, 1),
Y = rnorm(10, @, 2),
Z = rnorm(10, 0, 4)
) %>%
longer_dt(time) -> longer_stocks

longer_stocks

longer_stocks %>%
wider_dt("time",
name = "name”,
value = "value")

longer_stocks %>%
mutate_dt(one = 1) %>%
wider_dt("time",
name = "name”,
value = "one")

using "fun" parameter for aggregation
DT <- data.table(vl = rep(1:2, each = 6),

58

v2 = rep(rep(1:3, 2), each = 2),
v3 rep(1:2, 6),
v4 = rnorm(6))
for each combination of (v1, v2), add up all values of v4
DT %>%
wider_dt(v1,v2,
value = "v4",
name = "."
fun = sum)

wider_dt

Index

add_count_dt (count_dt), 8
add_prop (percent), 36
anti_join_dt (join), 25
arrange, 3

arrange_dt, 3

as_dt (in_dt), 24
as_fst, 4

bind_rows, 5
bind_rows_dt, 4
bind_tf_idf, 6
bind_tf_idf_dt, 5

case_when, 31

chop, 32

chop_dt (nest_dt), 31
col_max, 6

col_min (col_max), 6
col_rn(rn_col), 44
complete, 8
complete_dt, 7
count, 9, 55
count_dt, 8
cummean, 9

data.table, 24, 52

dcast, 57

delete_na_cols (drop_na_dt), 11
delete_na_rows (drop_na_dt), 11
detach, 37

df_mat (mat_df), 29
distinct, 10

distinct_dt, 10

drop_na, 12

drop_na_dt, 11

dummy_cols, 13

dummy_dt, 13

export_fst, 14

fill, 12

59

fill_na_dt (drop_na_dt), 11
filter, 16

filter_dt, 15

filter_fst (fst), 16

fst, 16, 17

full_join_dt (join), 25

get_fst_chunk_size
(import_fst_chunked), 21

group_by_dt, 18

group_dt, 19

group_exe_dt (group_by_dt), 18

import_fst (export_fst), 14
import_fst_chunked, 21
impute_dt, 22

in_dt, 24

inner_join_dt (join), 25
intersect_dt, 23

join, 25,51
key, 39

lag_dt (lead_dt), 26
lead, 27

lead_dt, 26
left_join_dt (join), 25
longer_dt, 27, 57

mat_df, 29

maxth (nth), 34

melt, 28

metadata_fst, /17

minth (nth), 34

mutate, 30

mutate_dt, 30

mutate_vars (mutate_when), 30
mutate_when, 30

nest, 32

60

nest_dt, 31
nth, 34

object_size, 35

p_load, 37

p_unload, 37
pairwise_count, 36
pairwise_count_dt, 35
parse_fst (fst), 16
percent, 36
pivot_longer, 28
pivot_wider, 57
pkg_load, 37

pkg_unload (pkg_load), 37
print.data.table, 39
print_options, 38

pst (sys_time_print), 53
pull, 40

pull_dt, 39

rbindlist, 5
read_csv_chunked, 2/
read_fst, 14, 15

rec, 40, 40

rec_char (rec), 40
rec_num (rec), 40
relocate, 41
relocate_dt, 41
rename, 42

rename_dt, 42
rename_with_dt (rename_dt), 42
replace_dt, 43
replace_na, 12
replace_na_dt, 43
replace_na_dt (drop_na_dt), 11
require, 37
right_join_dt (join), 25
rn_col, 44

round, 45

roundo, 44

rowwise_dt (group_dt), 19

sample_dt, 45

sample_frac, 46
sample_frac_dt (sample_dt), 45
sample_n, 46

sample_n_dt (sample_dt), 45
select, 47

select_dt, 8, 31, 32, 46
select_fst (fst), 16
select_if, 47

select_mix (select_dt), 46
semi_join_dt (join), 25
separate, 48
separate_dt, 48, 55
setdiff_dt (intersect_dt), 23
setequal_dt (intersect_dt), 23
setops, 23

shift, 27

shift_fill (drop_na_dt), 11
slice, 49

slice_dt, 49

slice_fst (fst), 16
slice_head_dt (slice_dt), 49
slice_max_dt (slice_dt), 49
slice_min_dt (slice_dt), 49
slice_sample_dt (slice_dt), 49
slice_tail_dt (slice_dt), 49
sql_join, 50

sql_join_dt (sql_join), 50
squeeze_dt (nest_dt), 31
summarise, 52
summarise_dt, 51

summarise_vars (summarise_dt), 51
summarise_when (summarise_dt), 51

summarize_dt (summarise_dt), 51

summarize_vars (summarise_dt), 51
summarize_when (summarise_dt), 51

summary_fst (fst), 16
sys_time_print, 53
system.time, 53

t_dt, 54
timetaken, 53
transmute_dt (mutate_dt), 30

unchop_dt (nest_dt), 31
uncount, 55

uncount_dt, 54

union_dt (intersect_dt), 23
unite, 55

unite_dt, 48, 55

unnest_dt (nest_dt), 31
utf8_encoding, 56

wider_dt, 28, 56
write_fst, /14

INDEX

	arrange_dt
	as_fst
	bind_rows_dt
	bind_tf_idf_dt
	col_max
	complete_dt
	count_dt
	cummean
	distinct_dt
	drop_na_dt
	dummy_dt
	export_fst
	filter_dt
	fst
	group_by_dt
	group_dt
	import_fst_chunked
	impute_dt
	intersect_dt
	in_dt
	join
	lead_dt
	longer_dt
	mat_df
	mutate_dt
	mutate_when
	nest_dt
	nth
	object_size
	pairwise_count_dt
	percent
	pkg_load
	print_options
	pull_dt
	rec
	relocate_dt
	rename_dt
	replace_dt
	rn_col
	round0
	sample_dt
	select_dt
	separate_dt
	slice_dt
	sql_join
	summarise_dt
	sys_time_print
	t_dt
	uncount_dt
	unite_dt
	utf8_encoding
	wider_dt
	Index

