
Package ‘tidytlg’
December 19, 2025

Title Create TLGs using the 'tidyverse'

Version 0.11.0

Language en-US

Description Generate tables, listings, and graphs (TLG) using 'tidyverse'.
Tables can be created functionally, using a standard TLG process, or by
specifying table and column metadata to create generic analysis summaries.
The 'envsetup' package can also be leveraged to create environments for table
creation.

License Apache License 2.0

URL https://pharmaverse.github.io/tidytlg/main/,

https://github.com/pharmaverse/tidytlg

BugReports https://github.com/pharmaverse/tidytlg/issues

Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

Suggests testthat (>= 2.1.0), knitr (>= 1.23), rmarkdown (>= 2.10),
renv (>= 0.13.2), shiny (>= 1.3.2), kableExtra (>= 1.3.4),
haven (>= 2.4.1), usethis (>= 1.6.3), withr (>= 2.3.0)

Imports cli (>= 3.6.0), dplyr (>= 1.1.0), tibble (>= 2.1.3), magrittr
(>= 1.5), rlang (>= 0.4.10), tidyr (>= 1.0.0), stats (>=
3.6.0), stringr (>= 1.4.0), forcats (>= 0.5.1), purrr (>=
0.3.4), huxtable (>= 5.1.0), assertthat (>= 0.2.1), glue (>=
1.4.2), crayon (>= 1.4.1), methods, readxl (>= 1.3.1),
cellranger (>= 1.1.0), png (>= 0.1-7), ggplot2 (>= 3.3.2),
rstudioapi (>= 0.13)

Depends R (>= 4.1.0)

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

1

https://pharmaverse.github.io/tidytlg/main/
https://github.com/pharmaverse/tidytlg
https://github.com/pharmaverse/tidytlg/issues

2 Contents

Author Nicholas Masel [aut],
Steven Haesendonckx [aut],
Pelagia Alexandra Papadopoulou [aut],
Sheng-Wei Wang [aut],
Eli Miller [aut] (ORCID: <https://orcid.org/0000-0002-2127-9456>),
Nathan Kosiba [aut] (ORCID: <https://orcid.org/0000-0001-5359-4234>),
Aidan Ceney [aut] (ORCID: <https://orcid.org/0000-0001-8313-487X>),
Janssen R&D [cph, fnd],
David Hugh-Jones [cph] (Author of included 'huxtable' library),
Konrad Pagacz [aut, cre]

Maintainer Konrad Pagacz <kpagacz@its.jnj.com>

Repository CRAN

Date/Publication 2025-12-19 08:00:02 UTC

Contents
add_bottom_borders . 3
add_format . 6
add_indent . 7
add_newrows . 8
bind_table . 10
cdisc adae . 12
cdisc adlb . 14
cdisc adsl . 16
cdisc advs . 18
char2factor . 19
column_metadata . 20
col_borders . 21
freq . 21
generate_results . 25
gentlg . 26
nested_freq . 31
no_borders . 35
replace_na_with_blank . 36
rmdpstitle . 36
roundSAS . 37
row_border . 38
single_border . 39
spanning_borders . 39
spanning_headers . 40
statlist . 40
table_metadata . 42
tidytlg_titles . 43
tlgsetup . 44
univar . 45

Index 49

https://orcid.org/0000-0002-2127-9456
https://orcid.org/0000-0001-5359-4234
https://orcid.org/0000-0001-8313-487X

add_bottom_borders 3

add_bottom_borders Adds bottom borders to a huxtable

Description

Adds bottom borders to a huxtable

Usage

add_bottom_borders(ht, border_matrix = no_borders(ht), transform_fns = list())

Arguments

ht huxtable A huxtable object

border_matrix (optional) matrix A matrix indicating where to add the bottom borders. If NULL,
then no borders are added.

transform_fns (optional) list of function A list of functions applied to the border_matrix.
The functions have to accept two arguments:

1. The huxtable.
2. The border_matrix with dimensions matching huxtable.

The functions in the list are applied sequentially to border_matrix.

Details

Adds bottom borders to a huxtable based on a matrix indicating where the borders should be put.

This function is responsible for adding bottom borders to a huxtable object. It supports borders
spanning multiple columns and borders that are under neighbouring, single cells (or merged cells),
but separate (see examples).

This feature has limitations. Mainly, it does not support both versions of the borders (continuous
and separate) on the same line. In such a case, the borders in the resulting RTF look misaligned.

Value

A huxtable with added borders.

border_matrix details

You mark where the bottom borders should go in the table by passing a matrix. The matrix has to
have the same number of columns as the passed huxtable and the number of rows lower by one
than the passed huxtable. Each cell in border_matrix corresponds to a cell in huxtable (starting
from the first row).

Internally, the function adds the first row of 0s to border_matrix before the execution. At that
point, border_matrix’s dimensions match ht’s dimensions.

Table:

4 add_bottom_borders

foo bar
baz bim

A border matrix:

1 1
0 0

The above border matrix puts a bottom border across the entire first row and no borders in the
second row.

A border matrix:

1 2
0 0

The above border matrix puts one border under the first cell in the first row; and another border
(separate from the first one) under the second cell in the first row. The second row stays without
any borders.

Functions transforming the border matrix

The below functions can be passed to gentlg()’s border_fns argument to modify how gentlg
renders the borders under the cells.

Border functions:

• no_borders()

• spanning_borders()

• col_borders()

• single_border()

• row_border()

border_fns will accept your own, custom functions as long as they adhere to the format. All the
functions passed to border_fns need to accept two arguments:

• the first - the printed huxtable object,

• the second - a border matrix.

They also must return a matrix interpreted the same way as border_matrix passed to add_bottom_borders
or gentlg().

add_bottom_borders 5

Examples

border_matrix <- matrix(c(1, 1, 2, 0, 1, 1, 0, 0, 0), nrow = 3, ncol = 3)
ht <- huxtable::as_huxtable(

data.frame(a = c(1, 2, 3), b = c("a", "b", "c"), c = c(TRUE, FALSE, TRUE))
)
By default adds no borders
add_bottom_borders(ht, border_matrix)
Adds spanning borders under cells with text in the second row
add_bottom_borders(ht, transform_fns = list(spanning_borders(2)))
Adds spanning borders under cells with text in the second row and a border
under a cell in row 3 and column 3
add_bottom_borders(ht, transform_fns = list(spanning_borders(2), single_border(3, 3)))

final <- data.frame(
label = c(
"Overall", "Safety Analysis Set",
"Any Adverse event{\\super a}", "- Serious Adverse Event"

),
Drug_A = c("", "40", "10 (25%)", "0"),
Drug_B = c("", "40", "10 (25%)", "0"),
anbr = c(1, 2, 3, 4),
roworder = c(1, 1, 1, 1),
boldme = c(1, 0, 0, 0),
newrows = c(0, 0, 1, 0),
indentme = c(0, 0, 0, 1),
newpage = c(0, 0, 0, 0)

)
Add spanning bottom borders under the cells in the first row
gentlg(

huxme = final,
wcol = c(0.70, 0.15, 0.15),
file = "TSFAEX",
colheader = c("", "Drug A", "Drug B"),
title = "This is Amazing Demonstration 1",
footers = c(

"Note: For demonstrative purposes only",
"{\\super a} Subjects are counted once for any given event."

),
border_fns = list(no_borders, spanning_borders(1))

)

Tables with no bottom borders
gentlg(

huxme = final,
wcol = c(0.70, 0.15, 0.15),
file = "TSFAEX",
colheader = c("", "Drug A", "Drug B"),
title = "This is Amazing Demonstration 1",
footers = c(

"Note: For demonstrative purposes only",
"{\\super a} Subjects are counted once for any given event."

),

6 add_format

border_fns = list(no_borders)
)

Tables with a border under cell in the 3nd row and 3rd column,
and borders under cells in the first row
gentlg(

huxme = final,
wcol = c(0.70, 0.15, 0.15),
file = "TSFAEX",
colheader = c("", "Drug A", "Drug B"),
title = "This is Amazing Demonstration 1",
footers = c(

"Note: For demonstrative purposes only",
"{\\super a} Subjects are counted once for any given event."

),
border_fns = list(no_borders, spanning_borders(1), single_border(3, 3))

)

We discourage, but you can pass the border matrix directly
mat <- matrix(rep(0, 8 * 3), ncol = 3, nrow = 8)
mat[3, 3] <- 1
gentlg(

huxme = final,
wcol = c(0.70, 0.15, 0.15),
file = "TSFAEX",
colheader = c("", "Drug A", "Drug B"),
title = "This is Amazing Demonstration 1",
footers = c(

"Note: For demonstrative purposes only",
"{\\super a} Subjects are counted once for any given event."

),
bottom_borders = mat, # The same as a single border under 3nd row and 3rd column
border_fns = list()

)

clean up.
file.remove("tsfaex.rtf")

add_format Add the formatting variables of indentme, newrows, newpage, and
roworder to the results dataframe

Description

Add the formatting variables of indentme, newrows, newpage, and roworder to the results dataframe

Usage

add_format(df, tableby = NULL, groupby = NULL, .keep = FALSE)

add_indent 7

Arguments

df (required) dataframe of results and must contain the anbr variable.

tableby (optional) character vector containing table by variables.

groupby (optional) character vector containing group by variables.

.keep (optional) should tableby and groupby variables be kept in the final dataframe.
(default = FALSE).

Value

dataframe with the formatting variables indentme, newrows, newpage, and roworder added.

Examples

df <- tibble::tibble(
row_type =
c(

"TABLE_BY_HEADER", "HEADER", "BY_HEADER1", "N", "VALUE",
"COUNTS", "UNIVAR", "NESTED", "NESTED"

),
nested_level = c(NA, NA, NA, NA, NA, NA, NA, 1, 2),
group_level = c(0, 0, 0, 0, 0, 0, 0, 0, 0),
label = c(NA, NA, NA, NA, NA, "N", NA, NA, NA),
by = c(NA, NA, NA, NA, NA, NA, NA, NA, NA),
tableby = c(NA, NA, NA, NA, NA, NA, NA, NA, NA),
anbr = c(1:9)

)
add_format(df)

add_indent Add indentation variable to the results dataframe

Description

Add the indentme variable to your results data. This drives the number of indents for the row label
text (e.g. 0, 1, 2, etc.).

Usage

add_indent(df)

Arguments

df dataframe of results that contains row_type and label and the optional nested_level
and group_level variables.

8 add_newrows

Details

The group_level variable, which is added to the results dataframe by freq() and univar() calls,
is needed to define indentation when by variables are used for summary.

The nested_level variable, which is added to the results dataframe by nested_freq(), is needed
to define indentation for each level of nesting.

Both of these are added to the default indentation which is driven by row_type.

row_type default indentation
TABLE_BY_HEADER 0
BY_HEADER[1-9] 0
HEADER 0
N 1
VALUE 2
NESTED 0

Value

dataframe with the indentme variable added.

Examples

df <- tibble::tibble(
row_type = c(
"TABLE_BY_HEADER", "HEADER",
"BY_HEADER1", "N", "VALUE", "COUNTS", "UNIVAR", "NESTED", "NESTED"

),
nested_level = c(NA, NA, NA, NA, NA, NA, NA, 1, 2),
group_level = c(0, 0, 0, 0, 0, 0, 0, 0, 0),
label = c(NA, NA, NA, NA, NA, "N", NA, NA, NA),
by = c(NA, NA, NA, NA, NA, NA, NA, NA, NA),
tableby = c(NA, NA, NA, NA, NA, NA, NA, NA, NA)

)
add_indent(df)

add_newrows Add the newrows variable to the results dataframe.

Description

The newrows variable is used by gentlg() to define when to add a blank row to the output. Data will
be grouped by anbr and the variables passed into the tableby and groupby parameters. newrows
will be set to 1 for the first record in each group, except for the first row in the data. The first row
will always be set to 0.

Usage

add_newrows(df, tableby = NULL, groupby = NULL)

add_newrows 9

Arguments

df dataframe of results. must contain the anbr variable that is added by add_format().

tableby character vector containing table by variables used to generate the results.

groupby character vector containing group by variables used to generate the results.

Value

dataframe with the variable newrows and roworder added. newrows is used by gentlg to insert
line breaks.

Examples

Example showing how newrows is set to one for each new anbr except
the first
tbl <-

structure(
list(

rowvar = c("RANDFL", "AGE", "AGE", "AGE", "AGE", "AGE"),
anbr = c(1L, 2L, 2L, 2L, 2L, 2L),
label = c(

"Analysis set: Subjects Randomized", "Age (Years)", "N",
"Mean (SD)", "Range", "IQ Range"

),
row_type = c("COUNT", "UNIVAR", "UNIVAR", "UNIVAR", "UNIVAR", "UNIVAR")

),
row.names = c(NA, -6L),
class = c("tbl_df", "tbl", "data.frame")

)

add_newrows(tbl)

Example of use when you have results summarized by one or more variables
tbl2 <- tibble::tribble(

~anbr, ~SEX, ~label, ~row_type,
"01", "F", "Sex : F", "TABLE_BY_HEADER",
"01", "F", "<65", "VALUE",
"01", "F", "65-80", "VALUE",
"01", "F", ">80", "VALUE",
"01", "M", "Sex : M", "TABLE_BY_HEADER",
"01", "M", "<65", "VALUE",
"01", "M", "65-80", "VALUE",
"01", "M", ">80", "VALUE"

)

add_newrows(tbl2, tableby = "SEX")

tbl3 <- tibble::tribble(
~anbr, ~SEX, ~ETHNIC, ~label, ~row_type,
"01", "F", NA, "Sex : F", "TABLE_BY_HEADER",
"01", "F", "HISPANIC OR LATINO", "HISPANIC OR LATINO", "BY_HEADER1",
"01", "F", "HISPANIC OR LATINO", "<65", "VALUE",

10 bind_table

"01", "F", "HISPANIC OR LATINO", ">80", "VALUE",
"01", "F", "HISPANIC OR LATINO", "65-80", "VALUE",
"01", "F", "NOT HISPANIC OR LATINO", "NOT HISPANIC OR LATINO", "BY_HEADER1",
"01", "F", "NOT HISPANIC OR LATINO", "<65", "VALUE",
"01", "F", "NOT HISPANIC OR LATINO", "65-80", "VALUE",
"01", "F", "NOT HISPANIC OR LATINO", ">80", "VALUE",
"01", "M", NA, "Sex : M", "TABLE_BY_HEADER",
"01", "M", "HISPANIC OR LATINO", "HISPANIC OR LATINO", "BY_HEADER1",
"01", "M", "HISPANIC OR LATINO", "<65", "VALUE",
"01", "M", "HISPANIC OR LATINO", "65-80", "VALUE",
"01", "M", "HISPANIC OR LATINO", ">80", "VALUE",
"01", "M", "NOT HISPANIC OR LATINO", "NOT HISPANIC OR LATINO", "BY_HEADER1",
"01", "M", "NOT HISPANIC OR LATINO", "<65", "VALUE",
"01", "M", "NOT HISPANIC OR LATINO", "65-80", "VALUE",
"01", "M", "NOT HISPANIC OR LATINO", ">80", "VALUE"

)

add_newrows(tbl3, tableby = "SEX", groupby = "ETHNIC")

bind_table Bind a set of tidytlg tables together with formatting variables

Description

bind_table combines analysis results with formatting variables (indentme, newrows, newpage)
based on by variables (tablebyvar, rowbyvar), such that appropriate formatting (indentation, line
break, page break) can be applied while creating the output. It can also attach the column metadata
attribute, which will be automatically used in gentlg for creating output.

Usage

bind_table(
...,
colvar = NULL,
tablebyvar = NULL,
rowbyvar = NULL,
prefix = NULL,
add_count = FALSE,
add_format = TRUE,
column_metadata_file = NULL,
column_metadata = NULL,
tbltype = NULL

)

Arguments

... (required) a set of tidytlg tables to bind together

colvar (required) treatment variable within df to use to summarize. Required if add_count
is TRUE.

bind_table 11

tablebyvar (optional) repeat entire table by variable within df.

rowbyvar (optional) any rowbyvar values used to create the table.

prefix (optional) text to prefix the values of tablebyvar with.

add_count (optional) Should a count be included in the tablebyvar? (default = TRUE)

add_format (optional) Should format be added to the output table? This is done using the
add_format function. (default = TRUE)

column_metadata_file

(optional) An excel file for column_metadata. Does not change the behavior
of the function binds the column metadata for gentlg. If a column_metadata
dataframe is passed in too, this is ignored.

column_metadata

(optional) A dataframe containing the column metadata. This will be used in
place of column_metadata_file.

tbltype (optional) A value used to subset the column_metadata_file.

Value

The tidytlg tables bound together reflecting the tablebyvars used.

Examples

library(magrittr)

bind tables together
t1 <- cdisc_adsl %>%

freq(
colvar = "TRT01PN",
rowvar = "ITTFL",
statlist = statlist("n"),
subset = ITTFL == "Y",
rowtext = "Analysis set: ITT"

)

t2 <- cdisc_adsl %>%
univar(

colvar = "TRT01PN",
rowvar = "AGE",
decimal = 0,
row_header = "Age, years"

)

bind_table(t1, t2)

bind tables together w/by groups
t1 <- cdisc_adsl %>%

freq(
colvar = "TRT01PN",
rowvar = "ITTFL",
rowbyvar = "SEX",

12 cdisc adae

statlist = statlist("n"),
subset = ITTFL == "Y",
rowtext = "Analysis set: ITT"

)

t2 <- cdisc_adsl %>%
univar(

colvar = "TRT01PN",
rowvar = "AGE",
rowbyvar = "SEX",
decimal = 0,
row_header = "Age, years"

)

bind_table(t1, t2, rowbyvar = "SEX")

bind tables together w/table by groups
t1 <- cdisc_adsl %>%

freq(
colvar = "TRT01PN",
rowvar = "ITTFL",
tablebyvar = "SEX",
statlist = statlist("n"),
subset = ITTFL == "Y",
rowtext = "Analysis set: ITT"

)

t2 <- cdisc_adsl %>%
univar(

colvar = "TRT01PN",
rowvar = "AGE",
tablebyvar = "SEX",
decimal = 0,
row_header = "Age, years"

)

bind_table(t1, t2, tablebyvar = "SEX")

w/prefix
bind_table(t1, t2, tablebyvar = "SEX", prefix = "Gender: ")

w/counts
bind_table(t1, t2, tablebyvar = "SEX", add_count = TRUE, colvar = "TRT01PN")

cdisc adae ADAE data created from subsetting the CDISC ADAE dataset

Description

ADAE data created from subsetting the CDISC ADAE dataset

cdisc adae 13

Usage

cdisc_adae

Format

A data frame with 84 rows and 55 variables:

STUDYID Study Identifier

SITEID Study Site Identifier

USUBJID Unique Subject Identifier

SUBJID Subject Identifier for the Study

TRTA Actual Treatment

TRTAN Actual Treatment (N)

AGE Age

AGEGR1 Pooled Age Group 1

AGEGR1N Pooled Age Group 1 (N)

RACE Race

RACEN Race (N)

SEX Sex

SAFFL Safety Population Flag

TRTSDT Date of First Exposure to Treatment

TRTEDT Date of Last Exposure to Treatment

ASTDT Analysis Start Date

ASTDTF Analysis Start Date Imputation Flag

ASTDY Analysis Start Relative Day

AENDT Analysis End Date

AENDY Analysis End Relative Day

ADURN AE Duration (N)

ADURU AE Duration Units

AETERM Reported Term for the Adverse Event

AELLT Lowest Level Term

AELLTCD Lowest Level Term Code

AEDECOD Dictionary-Derived Term

AEPTCD Preferred Term Code

AEHLT High Level Term

AEHLTCD High Level Term Code

AEHLGT High Level Group Term

AEHLGTCD High Level Group Term Code

AEBODSYS Body System or Organ Class

14 cdisc adlb

AESOC Primary System Organ Class

AESOCCD Primary System Organ Class Code

AESEV Severity/Intensity

AESER Serious Event

AESCAN Involves Cancer

AESCONG Congenital Anomaly or Birth Defect

AESDISAB Persist or Signif Disability/Incapacity

AESDTH Results in Death

AESHOSP Requires or Prolongs Hospitalization

AESLIFE Is Life Threatening

AESOD Occurred with Overdose

AEREL Causality

AEACN Action Taken with Study Treatment

AEOUT Outcome of Adverse Event

AESEQ Sequence Number

TRTEMFL Treatment Emergent Analysis Flag

AOCCFL First Occurrence of Any AE Flag

AOCCSFL First Occurrence of SOC Flag

AOCCPFL First Occurrence of Preferred Term Flag

AOCC02FL First Occurrence 02 Flag for Serious

AOCC03FL First Occurrence 03 Flag for Serious SOC

AOCC04FL First Occurrence 04 Flag for Serious PT

CQ01NAM Customized Query 01 Name

AOCC01FL First Occurrence 01 Flag for CQ01

Source

CDISC SDTM/ADAM Pilot Project.

cdisc adlb ADLB data created from subsetting the CDISC ADLB dataset

Description

ADLB data created from subsetting the CDISC ADLB dataset

Usage

cdisc_adlb

cdisc adlb 15

Format

A data frame with 2154 rows and 46 variables:

STUDYID Study Identifier

SUBJID Subject Identifier for the Study

USUBJID Unique Subject Identifier

TRTA Actual Treatment

TRTAN Actual Treatment (N)

TRTSDT Date of First Exposure to Treatment

TRTEDT Date of Last Exposure to Treatment

AGE Age

AGEGR1 Pooled Age Group 1

AGEGR1N Pooled Age Group 1 (N)

RACE Race

RACEN Race (N)

SEX Sex

COMP24FL Finishers of Week 24 Population Flag

DSRAEFL Discontinued due to AE?

SAFFL Safety Population Flag

AVISIT Analysis Visit

AVISITN Analysis Visit (N)

ADY Analysis Relative Day

ADT Analysis Date

VISIT Visit Name

VISITNUM Visit Number

PARAM Parameter

PARAMCD Parameter Code

PARAMN Parameter (N)

PARCAT1 Parameter Category 1

AVAL Analysis Value

BASE Baseline Value

CHG Change from Baseline

A1LO Analysis Range 1 Lower Limit

A1HI Analysis Range 1 Upper Limit

R2A1LO Ratio to Analysis Range 1 Lower Limit

R2A1HI Ratio to Analysis Range 1 Upper Limit

BR2A1LO Base Ratio to Analysis Range 1 Lower Limit

BR2A1HI Base Ratio to Analysis Range 1 Upper Limit

16 cdisc adsl

ANL01FL Analysis 01 - Special Interest Flag

ALBTRVAL Amount Threshold Range

ANRIND Analysis Reference Range Indicator

BNRIND Baseline Reference Range Indicator

ABLFL Baseline Record Flag

AENTMTFL Last value in treatment visit

LBSEQ Sequence Number

LBNRIND Reference Range Indicator

LBSTRESN Numeric Result/Finding in Standard Units

Source

CDISC SDTM/ADAM Pilot Project.

cdisc adsl ADSL data created from subsetting the CDISC ADSL with 15 subjects (5
subjects in each arm)

Description

ADSL data created from subsetting the CDISC ADSL with 15 subjects (5 subjects in each arm)

Usage

cdisc_adsl

Format

A data frame with 15 rows and 49 variables:

STUDYID Study Identifier

USUBJID Unique Subject Identifier

SUBJID Subject Identifier for the Study

SITEID Study Site Identifier

SITEGR1 Pooled Site Group 1

ARM Description of Planned Arm

TRT01P Planned Treatment for Period 01

TRT01PN Planned Treatment for Period 01 (N)

TRT01A Actual Treatment for Period 01

TRT01AN Actual Treatment for Period 01 (N)

TRTSDT Date of First Exposure to Treatment

TRTEDT Date of Last Exposure to Treatment

cdisc adsl 17

TRTDUR Duration of Treatment (days)
AVGDD Avg Daily Dose (as planned)
CUMDOSE Cumulative Dose (as planned)
AGE Age
AGEGR1 Pooled Age Group 1
AGEGR1N Pooled Age Group 1 (N)
AGEU Age Units
RACE Race
RACEN Race (N)
SEX Sex
ETHNIC Ethnicity
SAFFL Safety Population Flag
ITTFL Intent-To-Treat Population Flag
EFFFL Efficacy Population Flag
COMP8FL Finishers of Week 8 Population Flag
COMP16FL Finishers of Week 16 Population Flag
COMP24FL Finishers of Week 24 Population Flag
DISCONFL Did the Subject Discontinue the Study?
DSRAEFL Discontinued due to AE?
DTHFL Subject Died?
BMIBL Baseline BMI (kg/m^2)
BMIBLGR1 Pooled Baseline BMI Group 1
HEIGHTBL Baseline Height (cm)
WEIGHTBL Baseline Weight (kg)
EDUCLVL Years of Education
DISONSDT Date of Onset of Disease
DURDIS Duration of Disease (Months)
DURDSGR1 Pooled Disease Duration Group 1
VISIT1DT Date of Visit 1
RFSTDTC Subject Reference Start Date/Time
RFENDTC Subject Reference End Date/Time
VISNUMEN End of Treatment Visit (Visit 12 or Early Term.)
RFENDT Date of Discontinuation/Completion
DCDECOD Standardized Disposition Term
EOSSTT End of Study Status
DCREASCD Reason for Discontinuation
MMSETOT MMSE Total

Source

CDISC SDTM/ADAM Pilot Project.

18 cdisc advs

cdisc advs ADVS data created from subsetting the CDISC ADVS dataset

Description

ADVS data created from subsetting the CDISC ADVS dataset

Usage

cdisc_advs

Format

A data frame with 1938 rows and 35 variables:

STUDYID Study Identifier

SITEID Study Site Identifier

USUBJID Unique Subject Identifier

AGE Age

AGEGR1 Pooled Age Group 1

AGEGR1N Pooled Age Group 1 (N)

RACE Race

RACEN Race (N)

SEX Sex

SAFFL Safety Population Flag

TRTSDT Date of First Exposure to Treatment

TRTEDT Date of Last Exposure to Treatment

TRTP Planned Treatment

TRTPN Planned Treatment (N)

TRTA Actual Treatment

TRTAN Actual Treatment (N)

PARAMCD Parameter Code

PARAM Parameter

PARAMN Parameter (N)

ADT Analysis Date

ADY Analysis Relative Day

ATPTN Analysis Timepoint (N)

ATPT Analysis Timepoint

AVISIT Analysis Visit

AVISITN Analysis Visit (N)

char2factor 19

AVAL Analysis Value

BASE Baseline Value

BASETYPE Baseline Value

CHG Change from Baseline

PCHG Percent Change from Baseline

VISITNUM Visit Number

VISIT Visit Name

VSSEQ Sequence Number

ANL01FL Analysis 01 - Special Interest Flag

ABLFL Baseline Record Flag

Source

CDISC SDTM/ADAM Pilot Project.

char2factor Convert character variable to a factor based off it’s numeric variable
counterpart.

Description

Convert character variable to a factor based off it’s numeric variable counterpart.

Usage

char2factor(df, c_var, n_var)

Arguments

df data frame.

c_var character variable within the data frame.

n_var numeric variable counter part within the data frame to control the levels.

Value

A factor.

20 column_metadata

Examples

df <- tibble::tribble(
~TRT01P, ~TRT01PN,
"Placebo", 1,
"Low Dose", 2,
"High Dose", 3

)

alphabetical order
dplyr::arrange(df, TRT01P)

change to factor with char2factor
df$TRT01P <- char2factor(df, "TRT01P", "TRT01PN")

factor order
dplyr::arrange(df, TRT01P)

column_metadata Metadata describing table column layouts

Description

This is used by tlgsetup to prepare you input data to support the desired column layout.

Usage

column_metadata

Format

A data frame with one row per column for each table type and six variables:

tbltype identifier used to group a table column layout

coldef distinct variable values used, typically numeric and typically a treatment or main effect
variable, think TRT01PN

decode decode of coldef that will display as a column header in the table

span1 spanning header to display across multiple columns

span2 spanning header to display across multiple columns, second level

span3 spanning header to display across multiple columns, third level

col_borders 21

col_borders Adds borders under cells in a column

Description

Adds borders under cells in a column

Usage

col_borders(col, rows)

Arguments

col numeric the column of the table

rows numeric the range of rows to include

See Also

Other border_functions: no_borders(), row_border(), single_border(), spanning_borders()

freq Frequency counts and percentages

Description

Frequency counts and percentages for a variable by treatment and/or group.

Usage

freq(
df,
denom_df = df,
colvar = NULL,
tablebyvar = NULL,
rowvar = NULL,
rowbyvar = NULL,
statlist = getOption("tidytlg.freq.statlist.default"),
decimal = 1,
nested = FALSE,
cutoff = NULL,
cutoff_stat = "pct",
subset = TRUE,
descending_by = NULL,
display_missing = FALSE,
rowtext = NULL,

22 freq

row_header = NULL,
.keep = TRUE,
.ord = FALSE,
pad = TRUE,
...

)

Arguments

df (required) dataframe containing records to summarize by treatment.
denom_df (optional) dataframe used for population based denominators (default = df).
colvar (required) treatment variable within df to use to summarize
tablebyvar (optional) repeat entire table by variable within df

rowvar (required) character vector of variables to summarize within the dataframe.
rowbyvar (optional) repeat rowvar by variable within df

statlist (optional) statlist object of stats to keep of length 1 or 2 specifying list of
statistics and format desired (e.g statlist(c("N", "n (x.x\%)"))) (default =
statlist(c("n (x.x)"))).

decimal (optional) decimal precision root level default (default = 1).
nested (optional) INTERNAL USE ONLY. The default should not be changed. Switch

on when this function is called by nested_freq() so we will not include the by
variables as part of the group denominators (default = FALSE).

cutoff (optional) percentage cutoff threshold. This can be passed as a numeric cutoff,
in that case any rows with greater than or equal to that cutoff will be preserved,
others will be dropped. To specify a single column to define the cutoff logic, pass
a character value of the form <colName> >= <value> and only that column will
be used.

cutoff_stat (optional) The value to cutoff by, n or pct. (default = 'pct'). Can be done with
multiple columns by adding & or | ex. col1 >= val1 & col2 >= val2.

subset (optional) An R expression that will be passed to a dplyr::filter() func-
tion to subset the data.frame. This is performed on the numerator before any
other derivations. Denominators must be preprocessed and passed through using
denom_df.

descending_by (optional) The column or columns to sort descending counts. Can also provide
a named list to do ascending order ex. c("VarName1" = "asc", "VarName2" =
"desc") would sort by VarName1 in ascending order and VarName2 in descend-
ing order. In case of a tie in count or descending_by not provided, the columns
will be sorted alphabetically.

display_missing

(optional) Should the "missing" values be displayed? If missing values are dis-
played, denominators will include missing values. (default = FALSE).

rowtext (optional) A character vector used to rename the label column. If named,
names will give the new level and values will be the replaced value. If un-
named, and the table has only one row, the rowtext will rename the label of the
row. If the rowtext is unnamed, the table has no rows, and there is a subset, the
table will be populated with zeros and the label will be the only row.

freq 23

row_header (optional) A character vector to be added to the table.

.keep (optional) Should the rowbyvar and tablebyvar be output in the table. If
FALSE, rowbyvar will still be output in the label column. (Default = TRUE).

.ord Should the ordering columns be output with the table? This is useful if a table
needs to be merged or reordered in any way after build.

pad (optional) A boolean that controls if levels with zero records should be included
in the final table. (default = TRUE).

... (optional) Named arguments to be included as columns on the table.

Value

A dataframe of results

Sorting a ’freq’ table

By default, a frequency table is sorted based on the factor level of the rowvar variable. If the rowvar
variable isn’t a factor, it will be sorted alphabetically. This behavior can be modified in two ways,
the first is the char2factor() function that offers a interface for discretization a variable based on
a numeric variable, like VISITN. The second is based on the descending_by argument which will
sort based on counts on a variable.

Examples

adsl <- data.frame(
USUBJID = c("DEMO-101", "DEMO-102", "DEMO-103"),
RACE = c("WHITE", "BLACK", "ASIAN"),
SEX = c("F", "M", "F"),
colnbr = factor(c("Placebo", "Low", "High"))

)

Unique subject count of a single variable
freq(adsl,

colvar = "colnbr",
rowvar = "RACE",
statlist = statlist("n")

)

Unique subject count and percent of a single variable
freq(adsl,

colvar = "colnbr",
rowvar = "RACE",
statlist = statlist(c("N", "n (x.x%)"))

)

Unique subject count of a variable by another variable
freq(adsl,

colvar = "colnbr",
rowvar = "RACE",
rowbyvar = "SEX",
statlist = statlist("n")

24 freq

)

Unique subject count of a variable by another variable using colvar and
group to define the denominator
freq(adsl,

colvar = "colnbr",
rowvar = "RACE",
rowbyvar = "SEX",
statlist = statlist("n (x.x%)", denoms_by = c("colnbr", "SEX"))

)

Cut records where count meets threshold for any column
freq(cdisc_adsl,

rowvar = "ETHNIC",
colvar = "TRT01P",
statlist = statlist("n (x.x%)"),
cutoff = "5",
cutoff_stat = "n"

)

Cut records where count meets threshold for a specific column
freq(cdisc_adsl,

rowvar = "ETHNIC",
colvar = "TRT01P",
statlist = statlist("n (x.x%)"),
cutoff = "Placebo >= 3",
cutoff_stat = "n"

)

Below illustrates how to make the same calls to freq() as above, using
table and column metadata.

Unique subject count of a single variable
table_metadata <- tibble::tribble(

~anbr, ~func, ~df, ~rowvar, ~statlist, ~colvar,
1, "freq", "cdisc_adsl", "ETHNIC", statlist("n"), "TRT01PN"

)

generate_results(table_metadata,
column_metadata = column_metadata,
tbltype = "type1"

)

Unique subject count and percent of a single variable
table_metadata <- tibble::tribble(

~anbr, ~func, ~df, ~rowvar, ~statlist, ~colvar,
"1", "freq", "cdisc_adsl", "ETHNIC", statlist(c("N", "n (x.x%)")), "TRT01PN"

)

generate_results(table_metadata,
column_metadata = column_metadata,
tbltype = "type1"

)

generate_results 25

Cut records where count meets threshold for any column
table_metadata <- tibble::tibble(

anbr = "1", func = "freq", df = "cdisc_adsl", rowvar = "ETHNIC",
statlist = statlist("n (x.x%)"), colvar = "TRT01PN", cutoff = 5,
cutoff_stat = "n"

)

generate_results(table_metadata,
column_metadata = column_metadata,
tbltype = "type1"

)

Cut records where count meets threshold for a specific column
table_metadata <- tibble::tibble(

anbr = 1, func = "freq", df = "cdisc_adsl", rowvar = "ETHNIC",
statlist = statlist("n (x.x%)"), colvar = "TRT01PN",
cutoff = "col1 >= 3", cutoff_stat = "n"

)

generate_results(table_metadata,
column_metadata = column_metadata,
tbltype = "type1"

)

generate_results Generate Results using Table and Column Metadata

Description

Generate Results using Table and Column Metadata

Usage

generate_results(
table_metadata,
column_metadata_file = NULL,
column_metadata = NULL,
env = parent.frame(),
tbltype = NULL,
add_count = FALSE

)

Arguments

table_metadata a data frame containing table metadata (see ?table_metadata for details)
column_metadata_file

An excel file with the data for column_metadata. The file is read in with
readxl::read_excel(). Should not be used with column_metadata argu-
ment. Results in a data frame containing the column metadata that is passed

26 gentlg

to tlgsetup (see tlgsetup() for details). If a column_metadata data frame is
passed in too, this is ignored.

column_metadata

A data frame containing the column metadata. This will be used in place of
column_metadata_file.

env environment to find data frame specified in the table metadata (defaults to parent
environment).

tbltype If used, this will be used to subset the column_metadata based on the tbltype
column.

add_count Passed to bind_table() should counts be added for tablebyvars?

Value

dataframe of results

gentlg Output a tidytlg table

Description

Generate and output a huxtable with desired properties During this function call, the huxtable
can be written to an RTF or displayed in HTML. gentlg is vectorized, see parameter descriptions
to learn for which arguments.

Usage

gentlg(
huxme = NULL,
tlf = "Table",
format = "rtf",
colspan = NULL,
idvars = NULL,
plotnames = NULL,
plotwidth = NULL,
plotheight = NULL,
wcol = 0.45,
orientation = "portrait",
opath = ".",
title_file = NULL,
file = NULL,
title = NULL,
footers = NULL,
print.hux = TRUE,
watermark = NULL,
colheader = NULL,
pagenum = FALSE,

gentlg 27

bottom_borders = "old_format",
border_fns = list(),
alignments = list()

)

Arguments

huxme (optional) For tables and listings, A list of input dataframes containing all columns
of interest. For graphs, either NULL or a list of ggplot objects. Vectorized.

tlf (optional) String, representing the output choice. Choices are "Table" "Listing"
"Figure". Abbreviations are allowed e.g. "T" for Table. Strings can be either
upper- or lowercase. Vectorized. (Default = "Table")

format (optional) String, representing the output format. Choices are "rtf" and "html".
Strings can be either upper- or lowercase.(Default = "rtf")

colspan (optional) A list of character vectors representing the spanning headers to be
used for the table or listing. The first vector represents the top spanning header,
etc. Each vector should have a length equal to the number of columns in the
output data frame. A spanning header is identified through the use of the same
column name in adjacent elements. Vectorized.

idvars (optional) Character vector defining the columns of a listing where repeated
values should be removed recursively. If NULL then all column names are used
in the algorithm. If NA, then the listing remains as is.

plotnames (optional) Character vector containing the names of the PNG files, with their
extension to be incorporated for figure outputs. The PNG files need to be located
in the path defined by the parameter opath.

plotwidth (optional) Numerical value that indicates the plot width in cm for figure outputs.
(Default = 6)

plotheight (optional) Numerical value that indicates the plot height in cm for figure outputs.
(Default = 5)

wcol (optional) Can be a single numerical value that represents the width of the first
column or a vector, specifying the lengths of all columns in the final table or
listing.
When a single numerical value is used, this will be taken as the column width for
the first column. The other columns will be equally spaced across the remain-
der of the available space. Alternatively, a vector can be used to represent the
widths of all columns in the final output. The order of the arguments needs to
correspond to the order of the columns in the huxme dataset, that are not part of
the formatting algorithms (e.g. anbr, roworder, newpage, newrow, indentme,
boldme, by_value, by_order). The sum of the widths in the vector needs to be
less or equal to one. When format="HTML" wcol can take only one value, the
width of the first column. (Default = 0.45).

orientation (optional) String: "portrait" or "landscape". (Default = "portrait")

opath (optional) File path pointing to the output files (including PNG files for graphs).
(Default = ".").

28 gentlg

title_file An Excel file that will be read in with readxl::read_excel() to be used as
the title and footers argument. The use of title or footers will override
the values passed by this argument. The file should be either an xls or xlsx file
with the columns TABLE ID, IDENTIFIER, and TEXT. The file will be read in,
subset to where the tblid matches the tlf argument, and identifiers with ’title’
or ’footnote’ will be used to populate the table.

file (required) String. Output identifier. File name will be adjusted to be lowercase
and have - and _ removed, this will not affect table title.

title (required) String. Title of the output. Vectorized.
footers (optional) Character vector, containing strings of footnotes to be included. Vec-

torized.
print.hux (optional) Logical, indicating whether the output should be printed to RTF ('format'

= "rtf") or displayed as HTML ('format' = "HTML"). (Default = TRUE). Note
that RTF is written using quick_rtf_jnj() function and that the HTML is dis-
played via the huxtable::print_html function.

watermark (optional) String containing the desired watermark for RTF outputs. Vectorized.
colheader (optional) Character vector that contains the column labels for a table or listing.

Default uses the column labels of huxme. Vectorized.
pagenum (optional) Logical. When true page numbers are added on the right side of the

footer section in the format page x/y. Vectorized. (Default = FALSE).
bottom_borders (optional) Matrix or "old_format". A matrix indicating where to add the bot-

tom borders. Vectorized. See add_bottom_borders() for more information.
If "old_format", then borders are added to the colspan and colheader rows.
(Default = "old_format").

border_fns (optional) List. A list of functions that transform the matrix passed to bottom_borders.
Vectorized. See add_bottom_borders() for more information.

alignments (optional) List of named lists. Vectorized. (Default = list()) Used to specify
individual column or cell alignments. Each named list contains row, col, and
value, which are passed to huxtable::set_align() to set the alignments.

Value

A list of formatted huxtables with desired properties for output to an RTF or HTML.

Huxme Details

For tables and listings, formatting of the output can be dictated through the formatting columns
(newrows, indentme, boldme, newpage), present in the input dataframe. The final huxtable will
display all columns of the input dataframe, except any recognized formatting or sorting columns.
For tables, the algorithm uses the column label as first column. The remaining columns are treated
as summary columns. For graphs, you can pass a ggplot object directly into huxme and gentlg
will save a PNG with with ggplot2::ggsave() and output an RTF.

Author(s)

Steven Haesendonckx shaesen2@its.jnj.com

Pelagia Alexandra Papadopoulou ppapadop@its.jnj.com

mailto:shaesen2@its.jnj.com
mailto:ppapadop@its.jnj.com

gentlg 29

References

https://github.com/hughjonesd/huxtable

Examples

final <- data.frame(
label = c(
"Overall", "Safety Analysis Set",
"Any Adverse event{\\super a}", "- Serious Adverse Event"

),
Drug_A = c("", "40", "10 (25%)", "0"),
Drug_B = c("", "40", "10 (25%)", "0"),
anbr = c(1, 2, 3, 4),
roworder = c(1, 1, 1, 1),
boldme = c(1, 0, 0, 0),
newrows = c(0, 0, 1, 0),
indentme = c(0, 0, 0, 1),
newpage = c(0, 0, 0, 0)

)

Produce output in rtf format
gentlg(

huxme = final,
wcol = c(0.70, 0.15, 0.15),
file = "TSFAEX",
title = "This is Amazing Demonstration 1",
footers = c(

"Note: For demonstrative purposes only",
"{\\super a} Subjects are counted once for any given event."

)
)

Pass in column headers instead of using variable name
gentlg(

huxme = final,
wcol = c(0.70, 0.15, 0.15),
file = "TSFAEX",
colheader = c("", "Drug A", "Drug B"),
title = "This is Amazing Demonstration 1",
footers = c(

"Note: For demonstrative purposes only",
"{\\super a} Subjects are counted once for any given event."

)
)

Add spanning bottom borders under the cells in the second row
gentlg(

huxme = final,
wcol = c(0.70, 0.15, 0.15),
file = "TSFAEX",
colheader = c("", "Drug A", "Drug B"),
title = "This is Amazing Demonstration 1",

https://github.com/hughjonesd/huxtable

30 gentlg

footers = c(
"Note: For demonstrative purposes only",
"{\\super a} Subjects are counted once for any given event."

),
border_fns = list(spanning_borders(2))

)

Use a watermark
gentlg(

huxme = final,
wcol = c(0.70, 0.15, 0.15),
file = "TSFAEX",
colheader = c("", "Drug A", "Drug B"),
title = "This is Amazing Demonstration 1",
footers = c(

"Note: For demonstrative purposes only",
"{\\super a} Subjects are counted once for any given event."

),
watermark = "Confidential"

)

Set alignments
gentlg(

huxme = final,
file = "TSFAEX",
alignments = list(

Align the second column to the left
list(row = 1:7, col = 2, value = "left"),

Align cell "Drug: B" to the right
list(row = 2, col = 3, value = "right")

)
)

Produce output in HTML format
hux <- gentlg(

huxme = final,
file = "TSFAEX",
colheader = c("", "Drug A", "Drug B"),
title = "This is Amazing Demonstration 1",
footers = c(

"Note: For demonstrative purposes only",
"{\\super a} Subjects are counted once for any given event."

),
watermark = "Confidential",
format = "HTML",
print.hux = FALSE

)

Export to HTML page
huxtable::quick_html(hux, file = "TSFAEX.html", open = FALSE)

clean up.

nested_freq 31

file.remove("TSFAEX.html", "tsfaex.rtf")

nested_freq Generate nested count/percent for two or three levels

Description

This will call freq() multiple times and combine the levels together. This is useful for adverse
event and concomitant medications.

Usage

nested_freq(
df,
denom_df = df,
colvar = NULL,
tablebyvar = NULL,
rowvar = NULL,
rowbyvar = NULL,
statlist = getOption("tidytlg.nested_freq.statlist.default"),
decimal = 1,
cutoff = NULL,
cutoff_stat = "pct",
subset = TRUE,
descending_by = NULL,
display_missing = FALSE,
rowtext = NULL,
row_header = NULL,
.keep = TRUE,
.ord = FALSE,
...

)

Arguments

df (required) dataframe containing the two levels to summarize

denom_df (optional) dataframe containing records to use as the denominator (default = df)

colvar (required) treatment variable within df to use to summarize

tablebyvar (optional) repeat entire table by variable within df.

rowvar (required) nested levels separated by a star, for example AEBODSYS*AEDECOD,
this can handle up to three levels.

rowbyvar (optional) repeat rowvar by variable within df

statlist (optional) count/percent type to return (default = "n (x.x)")

decimal (optional) decimal precision root level (default = 1)

32 nested_freq

cutoff (optional) numeric value used to cut the data to a percentage threshold, if any
column meets the threshold the entire record is kept.

cutoff_stat (optional) The value to cutoff by, n or pct. (default = ’pct’)

subset (optional) An R expression that will be passed to a dplyr::filter() function
to subset the data.frame

descending_by (optional) The column or columns to sort descending values by. Can also pro-
vide a named list to do ascending order. ex. c("VarName1" = "asc", "VarName2"
= "desc") would sort by VarName1 in ascending order and VarName2 in de-
scending order. If not provided, the columns will be sorted alphabetically.

display_missing

(optional) Should the "missing" values be displayed? (default = FALSE)

rowtext (optional) A character vector used to rename the label column. If named,
names will give the new level and values will be the replaced value. If un-
named, and the table has only one row, the rowtext will rename the label of
the row.

row_header (optional) A character vector to be added to the table.

.keep (optional) Should the rowbyvar and tablebyvar be output in the table. If
FALSE, rowbyvar will still be output in the label column. (default = TRUE).

.ord Should the ordering columns be output with the table? This is useful if a table
needs to be merged or reordered in any way after build.

... (optional) Named arguments to be included as columns on the table.

Value

A dataframe of nested results by colvar and optional tablebyvar. There are a few additional
variable sets added to support multiple requirements.

The level variables (level1_, level2_, level3_) will carry down the counts for each level to
every record. This allows for easy sorting of nested groups.

The header variables (header1, header2, header3) will flag the header for each level to ensure
each level header is sorted to the top of the level.

The n variables ("n_") provide a numeric variable containing frequency for each colvar. This
can be used to sort and filter records.

The pct variables ("pct_") provide a numeric variable containing percentages for each colvar.
This can be used to sort and filter records.

Examples

adae <- data.frame(
SITEID = c("100", "100", "100", "200", "200", "200"),
USUBJID = c(
"Demo1-101", "Demo1-102", "Demo1-103",

nested_freq 33

"Demo1-104", "Demo1-105", "Demo1-106"
),
AEBODSYS = c(

"Cardiac disorders", "Cardiac disorders",
"Respiratory, thoracic and mediastinal disorders",
"Infections and infestations",
"Skin and subcutaneous tissue disorders",
"Infections and infestations"

),
AEDECOD = c(

"Arrhythmia supraventricular", "Cardiac failure",
"Chronic obstructive pulmonary disease", "Pneumonia",
"Pustular psoriasis", "Upper respiratory tract infection"

),
colnbr = structure(

c(1L, 2L, 3L, 1L, 2L, 3L),
.Label = c("Active", "Placebo", "Comparator"),
class = "factor"

)
)

Frequency and percent for two levels of nesting
nested_freq(adae,

colvar = "colnbr",
rowvar = "AEBODSYS*AEDECOD",
statlist = statlist("n (x.x%)")

)

Frequency and percent for three levels of nesting (for illustrative
purpose)
nested_freq(adae,

colvar = "colnbr",
rowvar = "SITEID*AEBODSYS*AEDECOD",
statlist = statlist("n (x.x%)")

)

Cut records where pct meets threshold for a any column
nested_freq(cdisc_adae,

colvar = "TRTA",
rowvar = "AEBODSYS*AEDECOD",
statlist = statlist("n (x.x%)", distinct = TRUE),
cutoff = 2,
cutoff_stat = "n"

)

Cut records where pct meets threshold for a specific column
nested_freq(cdisc_adae,

rowvar = "AEBODSYS*AEDECOD",
colvar = "TRTAN",
statlist = statlist("n (x.x%)", distinct = TRUE),
cutoff = "54 >= 2",
cutoff_stat = "n"

)

34 nested_freq

Frequency and percent for two levels of nesting and sort by descending
active
nested_freq(adae,

colvar = "colnbr",
rowvar = "AEBODSYS*AEDECOD",
statlist = statlist("n (x.x%)"),
descending = "Active"

)

Below illustrates how make the same calls to nested_freq() as above, using
table and # column metadata along with generate_results().

column_metadata <- tibble::tribble(
~tbltype, ~coldef, ~decode,
"type1", "1", "Placebo",
"type1", "2", "Low",
"type1", "3", "High"

)

Frequency and percent for two levels of nesting
table_metadata <- tibble::tribble(

~anbr, ~func, ~df, ~rowvar, ~tbltype, ~colvar, ~statlist,
"1", "nested_freq", "cdisc_adae", "AEBODSYS*AEDECOD", "type1", "TRTP",
statlist("n (x.x%)")

)
generate_results(table_metadata,
column_metadata_file = tidytlg_metadata(path)

Frequency and percent for three levels of nesting (for illustrative purpose)
table_metadata <- tibble::tribble(

~anbr, ~func, ~df, ~rowvar, ~tbltype, ~colvar,
~statlist,
"1", "nested_freq", "cdisc_adae", "SITEID*AEBODSYS*AEDECOD", "type1",
"TRTP", statlist("n (x.x%)")

)
Commented out because it takes too long
generate_results(table_metadata, column_metadata)

Cut records where pct meets threshold for a any column
column_metadata <- tibble::tribble(

~tbltype, ~coldef, ~decode,
"type2", "1", "Placebo",
"type2", "2", "Active"

)
table_metadata <- tibble::tibble(

anbr = "1", func = "nested_freq", df = "cdisc_adae",
rowvar = "AEBODSYS*AEDECOD",
tbltype = "type2", colvar = "TRTP", statlist = statlist("n (x.x%)"),
dotdotdot = "cutoff = 5"

)
generate_results(table_metadata,

no_borders 35

column_metadata_file = tidytlg_metadata(path)

Cut records where pct meets threshold for a specific column
table_metadata <- tibble::tibble(

anbr = "1", func = "nested_freq", df = "cdisc_adae",
rowvar = "AEBODSYS*AEDECOD",
tbltype = "type2", colvar = "TRTP", statlist = statlist("n (x.x%)"),
dotdotdot = "cutoff = 'col1 >= 5'"

)
generate_results(table_metadata,
column_metadata_file = tidytlg_metadata(path)

Frequency and percent for two levels of nesting and sort by descending col1
table_metadata <- tibble::tibble(

anbr = "1", func = "nested_freq", df = "cdisc_adae",
rowvar = "AEBODSYS*AEDECOD",
tbltype = "type2", colvar = "TRTP", statlist = statlist("n (x.x%)"),
dotdotdot = "descending = 'col1'"

)
generate_results(table_metadata,
column_metadata_file = tidytlg_metadata(path)

no_borders Removes all borders from the table

Description

Removes all borders from the table

Usage

no_borders(ht, matrix = NULL)

Arguments

ht huxtable object.

matrix matrix of bottom borders. Ignored. Included for the sake of compatibility with
the interface of all border mutating functions.

See Also

Other border_functions: col_borders(), row_border(), single_border(), spanning_borders()

36 rmdpstitle

replace_na_with_blank Replace NA with ""

Description

Used to swap in "" for by variables so the headers sort correctly to the top

Usage

replace_na_with_blank(x)

Arguments

x variable to check for NA and replace with "".

Value

x with NAs replaced with "". Factors will add "" as the first level.

Examples

replace_na_with_blank(c("a", "b", NA))

replace_na_with_blank(factor(c("a", "b", NA), levels = c("a", "b")))

rmdpstitle Get Titles and Footnotes for all TLGs or one specific TLG

Description

Get Titles and Footnotes for all TLGs or one specific TLG

Usage

rmdpstitle(
df,
tblid,
idvar = "tblid",
identifier = "identifier",
text = "text"

)

roundSAS 37

Arguments

df dataframe with three variables; table name, row identifier (TITLE or FOOTNOTEn),
and title or footnote text to display.

tblid character vector containing the table id, optional, used to subset df to a specific
table (defaults to tblid).

idvar character vector containing the variable in df that contains your table id.

identifier character vector containing the variable name in df that contains your record
identifier (defaults to "identifier").

text character vector containing the variable name in df that contains your title and
footnote text (defaults to "text").

Value

list of length two, the first element contains the titles as a tibble and the second contains the
footnotes as a list.

Examples

tblid <- "TSIDEM01"

titles <- tibble::tribble(
~tblid, ~identifier, ~text,
"TSIDEM01", "TITLE", "Demographics Example",
"TSIDEM01", "FOOTNOTE1", "Example footnote."

)

title_foot <- rmdpstitle(titles, tblid)

title_foot[[1]]
title_foot[[2]]

roundSAS SAS rounding in R

Description

roundSAS is an alternative rounding function, ensuring that decimals equal or bigger than 5 are
rounded upwards to the nearest number and returned as character vector.

Usage

roundSAS(x, digits = 0, as_char = FALSE, na_char = NULL)

38 row_border

Arguments

x Numeric vector.

digits An integer specifying the number of decimal places to be displayed after round-
ing. Default is 0.

as_char logical value indicating conversion of rounded numerical vector to character
vector; default is FALSE.

na_char A character string indicating missing value; if not specified, "NA" is created.

Details

At the midpoint of a decimal place (e.g. 0.5, 1.5), the round function in R rounds to the nearest even
number (i.e. 0.5 is rounded to 0; 1.5 is rounded to 2), whereas SAS rounds to the nearest number
(i.e. 0.5 is rounded to 1; 1.5 is rounded to 2). The roundSAS function is an alternative rounding
function for R that ensures rounding to the nearest number, as done in SAS. roundSAS comes from
this Stack Overflow post.

Value

character vector of rounded values

Examples

input data vector with midpoint decimals
x <- c(-2.5, -1.5, -0.5, 0.5, 1.5, 2.5)

rounds to integer
roundSAS(x, digits = 0)

input data vector with a missing value
y <- c(8.65, 8.75, NA, 9.85, 9.95)

rounds to tenths and label the missing value with "NE"
roundSAS(y, digits = 1, as_char = TRUE, na_char = "NE")

row_border Adds a continuous bottom border under a row

Description

Adds a continuous bottom border under a row

Usage

row_border(row)

https://stackoverflow.com/questions/12688717/round-up-from-5

single_border 39

Arguments

row numeric the row of the table

See Also

Other border_functions: col_borders(), no_borders(), single_border(), spanning_borders()

single_border Adds a border under a cell

Description

Adds a border under a cell

Usage

single_border(row, col)

Arguments

row numeric the row of the cell
col numeric the column of the cell

See Also

Other border_functions: col_borders(), no_borders(), row_border(), spanning_borders()

spanning_borders Adds borders under cells in a row, excluding the first column.

Description

Adds borders under cells that are not empty in a given row, omitting the first column of the row.
The borders do not touch each other - they are separate.

Usage

spanning_borders(row, cols = c(-1))

Arguments

row numeric the row of the table
cols numeric the columns of the row to consider

See Also

Other border_functions: col_borders(), no_borders(), row_border(), single_border()

40 statlist

spanning_headers Spanning headers for outputs

Description

This will create the list object to be passed to gentlg() You can create as many spanning headers
as you like, just add variables prefixed with span to the column metadata.

Usage

spanning_headers(column_metadata)

Arguments

column_metadata

dataframe containing the column metadata that is passed to tlgsetup() (see
tlgsetup() for details)

Value

List of character vectors containing column headers for an output.

Examples

column_metadata <-
tibble::tribble(
~tbltype, ~coldef, ~decode, ~span1,
"type1", "0", "Placebo", "",
"type1", "54", "Low Dose", "Xanomeline",
"type1", "81", "High Dose", "Xanomeline",
"type1", "54+81", "Total Xanomeline", ""

)

spanning_headers(column_metadata)

statlist Create a statlist interface for a table

Description

The statlist is the interface for the presentation of data in a tidytlg table.

Usage

statlist(stats, ...)

statlist 41

Arguments

stats (required) A character vector of statistics to display in the table.

... (optional) Additional configuration for stats. See sections below for allowable
arguments.

Value

A statlist object that can be passed in the statlist argument of freq, nested_freq, or univar.

Statlists for freq() and nested_freq()

freq() statlists can be composed of n (count), N (denominator), and x.x (percentage, formatted
with or without a percent sign). Denominators will include missing values if the ’display_missing’
argument is TRUE, otherwise they will be excluded. They can be arranged in the following ways:

• n

• n/N

• n (x.x)

• n (x.x%)

• n/N (x.x)

• n/N (x.x%)

The following other configurations are supported:

• denoms_by - Controls what groupings of variables should define the denominator. Variables
should be passed as a quoted vector

• distinct - A boolean value. Should the numerator reflect distinct USUBJIDs or event counts.
Defaults to TRUE which captures distinct subjects.

• distinct_by - A character value used to select the variable that should be used to "distinct"
the frequency tables. Defaults to USUBJID.

• zero_denom - The string to display when there are no records found in an entire denominator
group. Defaults to -

• zero_n - The string to display when there are no records found for a numerator. Defaults to 0.

Statlists for univar statlists

• N

• SUM

• MEAN

• GeoMEAN

• SD

• SE

• CV

• GSD

42 table_metadata

• GSE

• MEANSD

• MEANSE

• MEDIAN

• MIN

• MAX

• RANGE

• Q1

• Q3

• IQRANGE

• MEDRANGE

• MEDIQRANGE

• MEAN_CI

• GeoMEAN_CI

where GeoMEAN: Geometric Mean, CV: Coefficient of Variation, GSD: Geometric standard deviation,
GSE: Geometric standard error, MEAN_CI: Mean (95% C.I.), GeoMEAN_CI: Geometric Mean (95%
C.I.). In calculating geometric statistics, if there are zero values in the inputs, zero values will be
excluded before calculating geometric statistics.

Examples

freq(
mtcars,
colvar = "gear",
rowvar = "cyl",
rowbyvar = "am",
statlist = statlist("n/N (x.x)",
distinct = FALSE,
denoms_by = c("gear", "am"),
zero_denom = "_0_"

)
)

table_metadata Metadata describing the data, functions and arguments needed to pro-
duce your results.

Description

Metadata describing the data, functions and arguments needed to produce your results.

Usage

table_metadata

tidytlg_titles 43

Format

A data frame with one row per function call and 16 variables:

func name of the function you wish to call

df data frame to pass to the function call

subset filter df records, this is passed directly to filter, ex. "AESER == 'Y'"

rowvar variable being summarized that will pass to the function call

rowtext row label text to display in the table

row_header header text to display above row summary

statlist list of statistics in the analysis, see individual functions for what is available per function
(e.g. "N, n (x.x)")

colvar variable used to determine the columns of the table

decimal decimal precision

rowbyvar repeat rowvar summary by this variable/s, comma separated for multiple (e.g. "ETHNIC,
AGEGR1")

tablebyvar repeat the entire table summary by this variable/s, comma separated for multiple (e.g.
"ETHNIC, AGEGR1")

denom_df used to set denominators if df does not contain all required records

tidytlg_titles Helper functions for returning files used in gentlg

Description

Helper functions for returning files used in gentlg

Usage

tidytlg_titles(path)

tidytlg_metadata(path)

Arguments

path Working directory of the project

Value

A character vector to the requested file.

44 tlgsetup

tlgsetup Setup data to support the specified column type

Description

tlgsetup is useful for preprocessing total columns and columns composed of other columns.
tlgsetup is called internally by generate_results() and can be run manually for custom ta-
bles.

Usage

tlgsetup(
df,
var,
column_metadata_file = NULL,
column_metadata = NULL,
tbltype = NULL

)

Arguments

df dataframe of records for analysis.

var character vector that identifies the numeric column/treatment variable.
column_metadata_file

A file containing the column metadata. Read in with readxl::read_excel().
If a column_metadata dataframe is passed in too, this is ignored.

column_metadata

A dataframe containing the column metadata. This will be used in place of
column_metadata_file.

tbltype A value used to subset the column_metadata, both this and the file requirements
are needed to bind the data to the table.

Value

dataframe with observations added to support the column type as well as the factor variable colnbr
which is used as our new column summary variable. Regardless of if a coldef exists in data, the
column will exist in the table.

Examples

df <-
tibble::tribble(
~TRT01AN, ~USUBJID,
0, "A",
54, "B",
81, "C"

)

univar 45

tlgsetup(df, "TRT01AN", column_metadata = column_metadata)

Using a dataframe of column metadata
column_metadata <-

tibble::tribble(
~tbltype, ~coldef, ~decode, ~span1,
"type1", "0", "Placebo", "",
"type1", "54", "Low Dose", "Xanomeline",
"type1", "81", "High Dose", "Xanomeline",
"type1", "54+81", "Total Xanomeline", ""

)

tlgsetup(df, "TRT01AN", column_metadata = column_metadata)

univar Descriptive statistics

Description

Univariate statistics for a variables by treatment and/or group.

Usage

univar(
df,
colvar = NULL,
tablebyvar = NULL,
rowvar = NULL,
rowbyvar = NULL,
statlist = getOption("tidytlg.univar.statlist.default"),
decimal = 1,
precisionby = NULL,
precisionon = NULL,
wide = FALSE,
alpha = 0.05,
rowtext = NULL,
row_header = NULL,
.keep = TRUE,
.ord = FALSE,
...

)

Arguments

df (required) dataframe containing records to summarize by treatment.

colvar (required) character vector of the treatment variable within the dataframe.

tablebyvar (optional) repeat entire table by variable within df.

46 univar

rowvar (required) character vector of variable to summarize within the dataframe.

rowbyvar (optional) repeat rowvar by variable within df.

statlist (optional) statlist object of stats to keep (default = statlist(c("N", "MEANSD",
"MEDIAN", "RANGE", "IQRANGE"))).

decimal (optional) decimal precision root level, when using presisionby this will be
used as the base decimal cap (default = 1).

precisionby (optional) vector of by variable(s) to use when calculating parameter based pre-
cision.

precisionon (optional) variable to use when calculating parameter based precision. If precisionby
is specified but not precisionon this will default to rowvar.

wide (optional) logical indicating to convert labels to column and columns to labels
(default = FALSE).

alpha (optional) alpha level for 2-sided confidence interval (default = 0.05).

rowtext (optional) A text string to replace the label value on the table. Useful for tables
with a single row.

row_header (optional) A row to add as a header for the table.

.keep (optional) Should the rowbyvar and tablebyvar be output in the table. If
FALSE, rowbyvar will still be output in the label column. (default = TRUE).

.ord Should the ordering columns be output with the table? This is useful if a table
needs to be merged or reordered in any way after build.

... (optional) Named arguments to be included as columns on the table.

Value

dataframe of results

Examples

adsl <-
structure(

list(
USUBJID = c(

"DEMO-101", "DEMO-102", "DEMO-103", "DEMO-104",
"DEMO-105", "DEMO-106"

),
AGE = c(59, 51, 57, 65, 21, 80),
SEX = c("F", "M", "F", "M", "F", "M"),
WEIGHTBL = c(83.6, 75, 84, 90, 65, 70),
colnbr = structure(

c(1L, 3L, 2L, 2L, 3L, 1L),
.Label = c("Placebo", "Low", "High"),
class = "factor"

)
),
row.names = c(NA, 6L),
class = "data.frame"

)

univar 47

N, Mean(SD), Median, Range, IQ Range for a rowvar by colvar
univar(adsl,

colvar = "colnbr",
rowvar = "AGE"

)

N and Mean for a rowvar by colvar
univar(adsl,

colvar = "colnbr",
rowvar = "AGE",
statlist = statlist(c("N", "MEAN"))

)

N and Mean for a rowvar by colvar and a by variable
univar(adsl,

colvar = "colnbr",
rowvar = "AGE",
rowbyvar = "SEX",
statlist = statlist(c("N", "MEAN"))

)

Below illustrates how make the same calls to univar() as above, using table
and column metadata # along with generate_results().

column_metadata <- tibble::tribble(
~tbltype, ~coldef, ~decode,
"type1", "0", "Placebo",
"type1", "54", "Low",
"type1", "81", "High"

)

N, Mean(SD), Median, Range, IQ Range for a rowvar by colvar
table_metadata <- tibble::tribble(

~anbr, ~func, ~df, ~rowvar, ~tbltype, ~colvar,
"1", "univar", "cdisc_adae", "AGE", "type1", "TRTA"

)

generate_results(table_metadata,
column_metadata = column_metadata,
tbltype = "type1"

)

N and Mean for a rowvar by colvar
table_metadata <- tibble::tribble(

~anbr, ~func, ~df, ~rowvar, ~tbltype, ~colvar, ~statlist,
"1", "univar", "cdisc_adae", "AGE", "type1", "TRTA",
statlist(c("N", "MEAN"))

)

generate_results(table_metadata,
column_metadata = column_metadata,

48 univar

tbltype = "type1"
)

N and Mean for a rowvar by colvar and a by variable
table_metadata <- tibble::tribble(

~anbr, ~func, ~df, ~rowvar, ~tbltype, ~colvar, ~statlist, ~by,
"1", "univar", "cdisc_adae", "AGE", "type1", "TRTA",
statlist(c("N", "MEAN")), "SEX"

)

generate_results(table_metadata,
column_metadata = column_metadata,
tbltype = "type1"

)

Index

∗ CDISC
cdisc adae, 12
cdisc adlb, 14
cdisc adsl, 16
cdisc advs, 18

∗ adae
cdisc adae, 12

∗ adlb
cdisc adlb, 14

∗ adsl
cdisc adsl, 16

∗ advs
cdisc advs, 18

∗ border_functions
col_borders, 21
no_borders, 35
row_border, 38
single_border, 39
spanning_borders, 39

∗ datasets
cdisc adae, 12
cdisc adlb, 14
cdisc adsl, 16
cdisc advs, 18
column_metadata, 20
table_metadata, 42

add_bottom_borders, 3
add_bottom_borders(), 28
add_format, 6
add_format(), 9
add_indent, 7
add_newrows, 8

bind_table, 10

cdisc adae, 12
cdisc adlb, 14
cdisc adsl, 16
cdisc advs, 18

cdisc_adae (cdisc adae), 12
cdisc_adlb (cdisc adlb), 14
cdisc_adsl (cdisc adsl), 16
cdisc_advs (cdisc advs), 18
char2factor, 19
col_borders, 21, 35, 39
col_borders(), 4
column_metadata, 20

dplyr::filter(), 22

freq, 21

generate_results, 25
gentlg, 26
gentlg(), 4

huxtable::set_align(), 28

nested_freq, 31
no_borders, 21, 35, 39
no_borders(), 4

replace_na_with_blank, 36
rmdpstitle, 36
roundSAS, 37
row_border, 21, 35, 38, 39
row_border(), 4

single_border, 21, 35, 39, 39
single_border(), 4
spanning_borders, 21, 35, 39, 39
spanning_borders(), 4
spanning_headers, 40
statlist, 40

table_metadata, 42
tidytlg_metadata (tidytlg_titles), 43
tidytlg_titles, 43
tlgsetup, 44

univar, 45

49

	add_bottom_borders
	add_format
	add_indent
	add_newrows
	bind_table
	cdisc adae
	cdisc adlb
	cdisc adsl
	cdisc advs
	char2factor
	column_metadata
	col_borders
	freq
	generate_results
	gentlg
	nested_freq
	no_borders
	replace_na_with_blank
	rmdpstitle
	roundSAS
	row_border
	single_border
	spanning_borders
	spanning_headers
	statlist
	table_metadata
	tidytlg_titles
	tlgsetup
	univar
	Index

