Tool for Immunoglobulin Genotype Elucidation via Rep-Seq
(TIgGER)

Daniel Gadala-Maria

Last modified 2026-01-09

Contents
Introduction L L 1
Input . . . e 2
Novel allele detection e 2
Inferring genotypes e 4
Correcting allele calls e 7
Evidence e 8
References 8

Introduction

Adaptive immune receptor repertoire sequencing (AIRR-Seq, Rep-Seq) data is currently the subject of
much study. A key step in analyzing these data involves assigning the closest known V(D)J germline
alleles to the (often somatically mutated) sample sequences using a tool such as IMGT/HighV-
QUEST ([1]). However, if the sample utilizes alleles not in the germline database used for alignment,
this step will fail. Additionally, this alignment has an associated error rate of ~5% ([2]), notably
among sequences carrying a large number of somatic mutations.

Here we provide a Tool for Immunoglobulin Genotype Elucidation via Rep-Seq (TIgGER). TIgGER
addresses these issues by inferring the set of Immunoglobulin (Ig) alleles carried by an individual
(including any novel alleles) and then using this set of alleles to correct the initial assignments given
to sample sequences by existing tools.

This vignette covers the following tasks:

1. Inferring the presence of novel IGHV alleles not in the germline database.
2. Inferring the personalized IGHV genotype of a sample.
3. Correcting the IGHV allele calls of a sample based on the IGHV genotype.

Additional information about the methods used by TIgGER is available in:

Gadala-Maria D, Yaari G, Uduman M, Kleinstein SH (2015) Automated analysis of high-throughput
B cell sequencing data reveals a high frequency of novel immunoglobulin V gene segment alleles.
PNAS 112(8):E862-70.

https://www.imgt.org/HighV-QUEST/
https://pubmed.ncbi.nlm.nih.gov/20147303/
http://www.pnas.org/content/early/2015/02/05/1417683112
http://www.pnas.org/content/early/2015/02/05/1417683112
http://www.pnas.org/content/early/2015/02/05/1417683112

Input
TIgGER requires two main inputs:

1. Pre-processed Ig sequence data
2. Database germline sequences

AIRR-seq data is input as a data frame following the AIRR or Change-O standard where each
row represents a unique observation and and columns represent data about that observation. The
required names of the required columns are provided below along with a description of each.

Column Name Description

SEQUENCE_IMGT or sequence_alignment V(D)J sequence gapped in the IMGT gapped format

([3)

V_CALL or v_call (Comma separated) name(s) of the nearest V allele(s)
J_CALL or j_call (Comma separated) name(s) of the nearest J allele(s)
JUNCTION or junction Junction nucleotide sequence

JUNCTION_LENGTH or junction_length Length of the junction region of the V(D)J sample

An example dataset is provided with the tigger package as SampleDb (Change-O format) and
AIRRDb (AIRR format). It contains unique functional sequences assigned to IGHV1 family genes
isolated from individual PGP1 (referenced in Gadala-Maria et al. 2015).

The database of germline sequences should be provided in FASTA format with sequences gapped
according to the IMGT numbering scheme ([3]). IGHV alleles in the IMGT database (build 2014-
08-4) are provided with this package as SampleGermlineIGHV. You may read in your own fasta file
using readIgFasta.

Load packages required for this example
library(tigger)
library(dplyr)

Novel allele detection

Potential novel alleles can be detected by TIgGER. Some of these may be included in the genotype
later (see below). findNovelAlleles will return a data.frame with a row for each allele tested
for the presence of polymorphisms. If polymorphisms are found and the novel sequence passes all
quality tests (see below), then the novel allele is named and the germline sequence is included in the
data.frame. Additionally, the result will contain metadata on the parameters used when searching
for novel alleles (which can be optionally changed in findNovelAlleles).

Detect novel alleles
novel <- findNovelAlleles(AIRRDb, SampleGermlineIGHV, nproc=1)

Extract and view the rows that contain successful novel allele calls
novel rows <- selectNovel(novel)

The TIgGER procedure for identifying novel alleles (see citation above) involves taking all sequences
which align to a particular germline allele and, for each position along the aligned sequences,
plotting the mutation frequency at that position as a function of the sequence-wide mutation
count. While mutational hot-spots and cold-spots are both expected to have a y-intercept around

https://pubmed.ncbi.nlm.nih.gov/12477501
https://pubmed.ncbi.nlm.nih.gov/12477501

zero, polymorphic positions will have a y-intercept larger than zero. The required minimum y-
intercept may be specified in findNovelAlleles by y_intercept, but defaults to 1/8. Passing
this y-intercept threshold is the first of three pieces of evidence that support the novel allele.

The second piece of evidence supporting novel allele calls is the nucleotide usage at the polymorphic
positions as a function of sequence-wide mutation count. We expect the polymorphic allele to
be prevalent at all mutation counts, and we expect the mutation count equal to the number of
polymorphisms in the novel sequence to be the most prevalent.

Finally, to avoid cases where a clonal expansion might lead to a false positive, combinations of
J gene and junction length are examined among sequences which perfectly match the proposed
germline allele. A true novel allele is expected to utilize a wide range of J genes, and sequences with
different junction length can be ruled out as not being clonally related. The maximum portion of
sequences which can consist of a specific combination of J gene and junction length may be specified
in findNovelAlleles by j_max.

The three pieces of evidence described above can be viewed for any allele call made by
findNovelAlleles using the function plotNovel.

Plot evidence of the first (and only) novel allele from the example data
novel_row <- which(!is.na(novel$polymorphism_call)) [1]
plotNovel (AIRRDb, novel[novel_row,])

= 1.00 -
R
.§ Polymorphic \/¥
Q 0.754 — True — False
Py ®
& <
8 050 n
3 &
LL N
§ 0257
g
>
= 0.00+
Mutation Count (Sequence)
600 Nucleotide
o Al cllc@r
S 3
S =
O 4001 S
[} N
2 3
2 7
9 2001 v
wn —
04 N e—

2.5 5.0 75 10.0
Mutation Count (Sequence)

80 1

IGHJ4

IGHJ5

T eH2

60 -

. IGHJ3 IGHJ6
40
) III IIII

30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 105
Junction Length

Unmutated Sequence Count

Inferring genotypes

An individual’s genotype can be inferred using the functions inferGenotype or inferGenotypeBayesian.
Using one of this functions allows to remove from the genotype rare/erroneous allele calls which may
result from mutations in allele-differentiating regions. inferGenotype uses a frequency method to

decide which alleles belong to the subjects genotype whereas inferGenotypeBayesian infers an
subject’s genotype applying a Bayesian framework and provides a confidence estimate associated
with the genotype calls.

Frequency genotyping approach

inferGenotype identifies the fewest alleles that account for nearly all (default is 7/8) of the allele
calls made. The user may opt to only use sequences which perfectly match germline alleles, and
may opt to include potential novel alleles. (The genotype output is designed to be human readable,
though plotGenotype can be used to make a colorful visualization.) For each allele, the number of
sequences which match the germline are listed in the same order as the alleles are listed. The total
number of sequences that match any allele of that gene is also given. To output these alleles as a
names vector of nucleotide sequences, the user may use the function genotypeFasta. To save this
vector to a fasta file, writeFasta may be used.

Infer the individual's genotype, using only unmutated sequences and checking

for the use of the novel alleles inferred in the earlier step.

geno <- inferGenotype(AIRRDb, germline_db=SampleGermlineIGHV, novel=novel,
find_unmutated=TRUE)

Save the genotype sequences to a vector

genotype_db <- genotypeFasta(geno, SampleGermlineIGHV, novel)

Visualize the genotype and sequence counts

print (geno)

#H# gene alleles counts total
1 IGHV1-2 02,04 664,302 966
2 IGHV1-3 01 226 226
3 IGHV1-8 01,02_G234T 467,370 837
4 IGHV1-18 01 1005 1005
5 IGHV1-24 01 105 105
6 IGHV1-46 01 624 624
7 IGHV1-58 01,02 23,18 41
8 IGHV1-69 01,04,06 515,469,280 1279
9 IGHV1-69-2 01 31 31
#Hi#t note
1

2

3

4

5

6

T

8 Cannot distinguish IGHV1-69*01 and IGHV1-69D*01
9

Make a colorful visualization. Bars indicate presence, mot proportion.
plotGenotype(geno, text_size = 10)

e
IGHV1-18

[} 02
o 02_G234T

Bayesian genotyping approach

The method inferGenotypeBayesian analyzes the posterior probabilities of possible allele distri-
butions, considering up to four distinct alleles per V gene, corresponding to a gene duplication
with both loci being heterozygous (i.e., homozygous, heterozygous with one copy of each allele,
etc.). The posterior probabilities for these four possible models are compared and a Bayes fac-
tor is calculated for the two most probable models. This Bayes factor reflects the confidence in
the genotyping call of the method. The bayesian method doesn’t use the strict cutoff criterion
fraction_to_explain that inferGenotype uses wherein only the minimum set of alleles explaining
88% (7/8) of apparently-unmutated sequences are included in the genotype.

Infer the individual's genotype, using the bayesian method

geno_bayesian <- inferGenotypeBayesian(AIRRDb, germline db=SampleGermlineIGHV,
novel=novel, find_unmutated=TRUE)

Visualize the genotype and sequence counts

print(geno_bayesian)

gene alleles counts total
##t 1 IGHV1-2 02,04 664,302 966
##t 2 IGHV1-3 01 226 226
3 IGHV1-8 01,02_G234T 467,370 837
4 IGHV1-18 01 1005 1005
5 IGHV1-24 01 105 105
6 IGHV1-46 01 624 624
7 IGHV1-58 01,02 23,18 41
8 IGHV1-69 01,04,06,02 515,469,280,15 1279
9 IGHV1-69-2 01 31 31
note kh
1 -1000
2 4.20089197988625
3 -1000
4 -3.76643736033536
5 4.75335701924247

6 0.457455409315221

##t 7 -20.3932114156223

8 Cannot distinguish IGHV1-69%01 and IGHV1-69D*01 -1000

9 4.16107190423977

kd kt kq k_diff
1 -7.92846809405969 -139.556367176944 -313.583949130729 131.627899082884
2 -45.2911957825576 -84 .2865868763307 -128.991761853586 49.4920877624439
3 -1.04759115960507 -102.524664723923 -247.193958844361 101.477073564318
4 -223.85293382607 -1000 -1000 220.086496465735
5 -18.2407545518045 -36.3580822723628 -57.1281856909991 22.9941115710469
6 -136.193264784335 -243.861955237939 -1000 136.65072019365
7 3.60009261357983 -1.38512929425796 -8.47869574581951 4.9852219078378
8 -277.291087469703 3.55051520054669 -143.380669247128 146.931184447674
9 -2.62766579768837 -7.97659112471034 -14.1087168959268 6.78873770192814

Make a colorful visualization. Bars indicate presence, mot proportion.
plotGenotype(geno_bayesian, text_size=10)

IGHV1-2

IGHV1-3
Allele

'L

02

IGHV1-8

IGHV1-18

IGHV1-24

Gene

02_G234T
IGHV1-46

o
B

IGHV1-58

o
[e]

IGHV1-69

IGHV1-69-2

Correcting allele calls

Finally, the original V allele calls may be limited to only those within the inferred genotype. This
can be done by using the function reassignAlleles. By correcting the calls in this manner, the
user can greatly reduce the numer of ambiguous allele calls (where a single sample sequences
is assigned to multiple V alleles, thus preventing the mutations analysis of allele-differentiating
positions). Additionally, assignments to erroneous not-in-genotype alleles (expected to be ~5% ([2]),
as mentioned above, are corrected in this manner.

Use the personlized genotype to determine corrected allele assignments
Updated genotype will be placed in the v_call_genotyped column
sample_db <- reassignAlleles(AIRRDb, genotype_db)

From here, one may proceed with further downstream analyses, but with the advantage of having
much-improved allele calls. Besides having discovered alleles not in the IMGT database, the calls
made by IMGT have been tailored to the subject’s genotype, greatly reducing the number of

https://pubmed.ncbi.nlm.nih.gov/20147303/

problematic calls, as can be seen below.

Find the set of alleles in the original calls that were not in the genotype
not_in_genotype <- sample_db$v_call %>

strsplit(",") %>

unlist() %>%

unique() %>%

setdiff (names(genotype_db))

Determine the fraction of calls that were ambigious before/after correction

and the fraction that contained original calls to mon-genotype alleles. Note

that by design, only genotype alleles are allowed in "after” calls.

data.frame (Ambiguous=c(mean(grepl(",", sample_db$v_call)),

mean(grepl(",", sample_db$v_call_genotyped))),
NotInGenotype=c(mean(sample_db$v_call %in’, not_in_genotype),
mean(sample_db$v_call_genotyped %in) not_in_genotype)),
row.names=c("Before", "After")) %>%
t() %>% round(3)

Before After
Ambiguous 0.112 0.15
NotInGenotype 0.057 0.00

Evidence

generateEvidence uses the final corrected calls, the novel alleles and genotype information, the
final genotype sequences and the starting reference germlines to build a table of evidence metrics
supporting the final novel V allele detection.

evidence <- generateEvidence(sample_db, novel, geno, genotype_db, SampleGermlineIGHV, fields =
evidence %>%
select(gene, allele, polymorphism_call, sequences, unmutated_frequency)

A tibble: 1 x 5
Rowwise:

gene allele polymorphism_call sequences unmutated_frequency
<chr> <chr> <chr> <int> <dbl>
1 IGHV1-8 02_G234T IGHV1-8%02_G234T 864 0.428

In this example, 864 sequences were unambiguously assigned to allele IGHV1-8*02_ G234T, 42.82%
of them unmutated.

References

1. Alamyar et al. (2010)
2. Munshaw and Kepler (2010)
3. Lefranc et al. (2003)

https://www.imgt.org/HighV-QUEST/
https://pubmed.ncbi.nlm.nih.gov/20147303
https://pubmed.ncbi.nlm.nih.gov/12477501

	Introduction
	Input
	Novel allele detection
	Inferring genotypes
	Correcting allele calls
	Evidence
	References

