
Package ‘transforEmotion’
January 8, 2026

Title Sentiment Analysis for Text, Image and Video using Transformer
Models

Version 0.1.7

Date 2026-01-05

Author Alexander Christensen [aut] (ORCID:
<https://orcid.org/0000-0002-9798-7037>),

Hudson Golino [aut] (ORCID: <https://orcid.org/0000-0002-1601-1447>),
Aleksandar Tomašević [aut, cre] (ORCID:

<https://orcid.org/0000-0003-4863-6051>)

Maintainer Aleksandar Tomašević <atomashevic@gmail.com>

Description Implements sentiment analysis using huggingface <https:
//huggingface.co> transformer zero-
shot classification model pipelines for text and image data. The default text pipeline is Cross-
Encoder's DistilRoBERTa <https://huggingface.co/cross-encoder/
nli-distilroberta-base> and default image/video pipeline is Open AI's CLIP <https:
//huggingface.co/openai/clip-vit-base-patch32>. All other zero-
shot classification model pipelines can be implemented using their model name from <https:
//huggingface.co/models?pipeline_tag=zero-shot-classification>.

Depends R (>= 3.5.0)

License GPL (>= 3.0)

Encoding UTF-8

Imports dplyr, googledrive, LSAfun, Matrix, methods, pbapply, remotes,
reticulate, textdata, jsonlite, ggplot2, reshape2, httr

Suggests knitr, markdown, rmarkdown, rstudioapi, testthat (>= 3.0.0)

VignetteBuilder knitr

RoxygenNote 7.3.3

Config/testthat/edition 3

NeedsCompilation no

Repository CRAN

Date/Publication 2026-01-08 14:10:02 UTC

1

https://orcid.org/0000-0002-9798-7037
https://orcid.org/0000-0002-1601-1447
https://orcid.org/0000-0003-4863-6051
https://huggingface.co
https://huggingface.co
https://huggingface.co/cross-encoder/nli-distilroberta-base
https://huggingface.co/cross-encoder/nli-distilroberta-base
https://huggingface.co/openai/clip-vit-base-patch32
https://huggingface.co/openai/clip-vit-base-patch32
https://huggingface.co/models?pipeline_tag=zero-shot-classification
https://huggingface.co/models?pipeline_tag=zero-shot-classification

2 Contents

Contents
transforEmotion-package . 3
.init_builtin_models . 3
.vision_model_registry . 4
add_vision_model . 4
as_rag_table . 6
calculate_moving_average . 7
check_findingemo_quality . 7
check_nvidia_gpu . 8
delete_transformer . 9
dlo_dynamics . 10
download_findingemo_data . 10
emotions . 12
emoxicon_scores . 13
emphasize . 14
evaluate_emotions . 15
generate_observables . 17
generate_q . 18
get_vision_model_config . 19
image_scores . 19
image_scores_dir . 21
is_vision_model_registered . 22
list_vision_models . 22
load_findingemo_annotations . 23
map_discrete_to_vad . 25
map_to_emo8 . 27
MASS_mvrnorm . 28
neo_ipip_extraversion . 29
nlp_scores . 29
parse_rag_json . 32
plot.emotion_evaluation . 33
plot_sim_emotions . 33
prepare_findingemo_evaluation . 34
print.emotion_evaluation . 36
punctuate . 36
rag . 37
rag_json_utils . 40
rag_sentemo . 41
register_retriever . 42
register_vision_model . 43
remove_vision_model . 44
sentence_similarity . 45
setup_gpu_modules . 46
setup_miniconda . 47
setup_modules . 47
setup_popular_models . 48
show_vision_models . 49

transforEmotion-package 3

simulate_video . 49
stop_words . 51
summary.emotion_evaluation . 51
te_cleanup_default_venv . 52
tinytrolls . 52
transformer_scores . 53
vad_scores . 56
validate_rag_json . 59
validate_rag_predictions . 59
video_scores . 61

Index 63

transforEmotion-package

transforEmotion–package

Description

Implements sentiment and emotion analysis using huggingface transformer zero-shot classifica-
tion model pipelines on text and image data. The default text pipeline is Cross-Encoder’s Distil-
RoBERTa and default image/video pipeline is Open AI’s CLIP. All other zero-shot classification
model pipelines can be implemented using their model name from https://huggingface.co/models?pipeline_tag=zero-
shot-classification.

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>, Hudson Golino <hfg9s@virginia.edu>
and Aleksandar Tomasevic <atomashevic@ff.uns.ac.rs>

References

Yin, W., Hay, J., & Roth, D. (2019). Benchmarking zero-shot text classification: Datasets, evalua-
tion and entailment approach. arXiv preprint arXiv:1909.00161.

.init_builtin_models Initialize Built-in Vision Models

Description

Register the default/built-in vision models that come with transforEmotion. This function is auto-
matically called when the package is loaded.

Usage

.init_builtin_models()

https://huggingface.co
https://huggingface.co/cross-encoder/nli-distilroberta-base
https://huggingface.co/cross-encoder/nli-distilroberta-base
https://huggingface.co/openai/clip-vit-base-patch32
https://huggingface.co/models?pipeline_tag=zero-shot-classification
https://huggingface.co/models?pipeline_tag=zero-shot-classification

4 add_vision_model

Value

Invisibly returns TRUE

.vision_model_registry

Vision Model Registry for transforEmotion Package

Description

Central registry system for managing vision models in transforEmotion. Provides extensible archi-
tecture allowing users to register custom vision models beyond the default CLIP-based models.

Usage

.vision_model_registry

Format

An object of class environment of length 4.

Details

The registry maintains a list of available vision models with their configurations. Each model entry
includes the HuggingFace model ID, architecture type, and metadata needed for proper initialization
and processing.

Author(s)

Aleksandar Tomasevic <atomashevic@gmail.com>

add_vision_model User-Friendly Vision Model Management Functions

Description

High-level functions for managing vision models in transforEmotion, providing an easy interface
for extending the package with custom models.

User-friendly wrapper for registering custom vision models with automatic validation and helpful
error messages.

add_vision_model 5

Usage

add_vision_model(
name,
model_id,
description = NULL,
architecture = "clip",
test_labels = NULL,
force = FALSE

)

Arguments

name A short, memorable name for your model (e.g., "my-emotion-model")

model_id HuggingFace model identifier or path to local model directory

description Optional description of the model and its purpose

architecture Model architecture type. Currently supported:

• "clip": Standard CLIP models (most compatible)
• "clip-custom": CLIP variants needing special handling
• "blip": BLIP models (caption-likelihood scoring)
• "align": ALIGN dual-encoder models (direct similarity)

test_labels Optional character vector to test the model immediately

force Logical indicating whether to overwrite existing model with same name

Value

Invisibly returns TRUE if successful

Author(s)

Aleksandar Tomasevic <atomashevic@gmail.com> Add a Custom Vision Model

Examples

Not run:
Add a fine-tuned CLIP model for emotion recognition
add_vision_model(

name = "emotion-clip",
model_id = "openai/clip-vit-large-patch14",
description = "Large CLIP model for better emotion recognition",
test_labels = c("happy", "sad", "angry"),
force = TRUE

)

Add a local model
add_vision_model(

name = "my-local-model",
model_id = "/path/to/my/model",
description = "My custom fine-tuned model"

6 as_rag_table

)

Add experimental BLIP model
add_vision_model(

name = "blip-base",
model_id = "Salesforce/blip-image-captioning-base",
architecture = "blip",
description = "BLIP model for image captioning"

)

Now use any of them in analysis
result <- image_scores("photo.jpg", c("happy", "sad"), model = "emotion-clip")
batch_results <- image_scores_dir("photos/", c("positive", "negative"),

model = "my-local-model")

End(Not run)

as_rag_table Convert RAG JSON to a table

Description

Produces a long-form data.frame with columns: ‘label‘, ‘confidence‘, ‘intensity‘, ‘doc_id‘, ‘span‘,
‘score‘.

Usage

as_rag_table(x, validate = TRUE)

Arguments

x JSON string or parsed list.

validate Logical; validate structure first.

Value

A data.frame suitable for statistical analysis.

Examples

j <- '{"labels":["joy","surprise"],"confidences":[0.8,0.5],
"intensity":0.7,"evidence_chunks":[]}'

as_rag_table(j)

calculate_moving_average 7

calculate_moving_average

Calculate the moving average for a time series

Description

This function calculates the moving average for a time series.

Usage

calculate_moving_average(data, window_size)

Arguments

data Matrix or Data frame. The time series data

window_size Numeric integer. The size of the moving average window.

Value

Matrix or Data frame containing the moving average values.

check_findingemo_quality

Check FindingEmo Dataset Quality

Description

Checks the quality and completeness of a downloaded FindingEmo dataset, reporting on file avail-
ability, image accessibility, and potential issues.

Usage

check_findingemo_quality(data_dir, check_images = FALSE, sample_size = 10)

Arguments

data_dir Character. Directory containing the FindingEmo dataset.

check_images Logical. Whether to verify image file accessibility (default: FALSE, as this can
be slow).

sample_size Integer. If check_images is TRUE, number of images to sample for verification
(default: 10).

8 check_nvidia_gpu

Value

A list containing:

• structure: Dataset structure type ("standard" or "flat")
• files_found: List of available files
• annotations_count: Number of annotations
• urls_count: Number of image URLs
• images_count: Number of downloaded images
• completeness: Percentage of images successfully downloaded
• image_check: Results of image accessibility check (if performed)

Examples

Not run:
Check dataset quality
quality_report <- check_findingemo_quality("./findingemo_data")
print(quality_report)

Check with image verification
quality_report <- check_findingemo_quality(

data_dir = "./findingemo_data",
check_images = TRUE,
sample_size = 5

)

End(Not run)

check_nvidia_gpu Install Necessary Python Modules

Description

Installs required Python modules for the {transforEmotion} package, using uv for fast, reproducible
environments. Optionally detects GPU and can add GPU-oriented packages.

Usage

check_nvidia_gpu()

Details

This function performs the following steps:

• Detects NVIDIA GPU availability automatically
• Installs core modules including transformers, torch, tensorflow, and other dependencies
• For GPU systems, adds GPU-specific packages (and optional extras via setup_gpu_modules())

The function declares Python requirements via py_require, which uses uv to resolve and cache an
ephemeral environment on first use. No conda/Miniconda is required.

delete_transformer 9

Note

For GPU support, NVIDIA drivers must be properly installed on your system. If you need vendor-
specific wheels (e.g., for CUDA), configure package indexes prior to calling this function (see Notes
in documentation).

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>

delete_transformer Delete a Transformer Model

Description

Large language models can be quite large and, when stored locally, can take up a lot of space on your
computer. The direct paths to where the models are on your computer is not necessarily intuitive.

This function quickly identifies the models on your computer and informs you which ones can be
deleted from it to open up storage space

Usage

delete_transformer(model_name, delete = FALSE)

Arguments

model_name Character vector. If no model is provided, then a list of models that are locally
stored on the computer are printed

delete Boolean (length = 1). Should model skip delete question? Defaults to FALSE.
Set to TRUE for less interactive deletion

Value

Returns list of models or confirmed deletion

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>

Examples

if(interactive()){
delete_transformer()

}

10 download_findingemo_data

dlo_dynamics Dynamics function of the DLO model

Description

This function calculates the dynamics of a system using the DLO (Damped Linear Oscillator) model
based on Equation 1 (Ollero et al., 2023). The DLO model is a second-order differential equation
that describes the behavior of a damped harmonic oscillator. The function takes in the current state
of the system, the derivative of the state, the damping coefficient, the time step, and the values of
the eta and zeta parameters. It returns the updated derivative of the state.

Usage

dlo_dynamics(x, dxdt, q, dt, eta, zeta)

Arguments

x Numeric. The current state of the system (value of the latent score).

dxdt Numeric. The derivative of the state (rate of change of the latent score).

q Numeric. The damping coefficient.

dt Numeric. The time step.

eta Numeric. The eta parameter of the DLO model.

zeta Numeric. The zeta parameter of the DLO model.

Value

A numeric vector containing the updated derivative of the state.

References

Ollero, M. J. F., Estrada, E., Hunter, M. D., & Cancer, P. F. (2023). Characterizing affect dynam-
ics with a damped linear oscillator model: Theoretical considerations and recommendations for
individual-level applications. Psychological Methods. doi:10.1037/met0000615

download_findingemo_data

Download FindingEmo-Light Dataset

Description

Downloads the FindingEmo-Light dataset using the official PyPI package. This dataset contains 25k
images with emotion annotations including valence, arousal, and discrete emotion labels, focusing
on complex naturalistic scenes with multiple people in social settings.

https://doi.org/10.1037/met0000615

download_findingemo_data 11

Usage

download_findingemo_data(
target_dir,
max_images = NULL,
randomize = FALSE,
skip_existing = TRUE,
force = FALSE

)

Arguments

target_dir Character. Directory to download the dataset to.

max_images Integer. Maximum number of images to download (optional).

randomize Logical. If TRUE and max_images is specified, randomly select images for
download. Useful for creating test/benchmark subsets (default: FALSE).

skip_existing Logical. Whether to skip download if dataset already exists (default: TRUE).

force Logical. Force download even if dataset exists (default: FALSE).

Details

This function requires the findingemo-light Python package to be installed. Use setup_modules()
to install required dependencies before calling this function.

The FindingEmo dataset is described in: Mertens, L. et al. (2024). "FindingEmo: An Image Dataset
for Emotion Recognition in the Wild". NeurIPS 2024 Datasets and Benchmarks Track.

The dataset uses a flat directory structure with all images stored directly in the images/ subdirectory,
annotations.csv and urls.json at the root level.

Note: For copyright reasons, the dataset provides URLs and annotations only. Images are
downloaded on-demand from their original sources.

Value

A list containing:

• success: Logical indicating if download was successful

• message: Character string with status message

• target_dir: Path to downloaded data

• annotation_file: Path to annotation file (if successful)

• urls_file: Path to URLs file (if successful)

• image_count: Number of images downloaded (if any)

• annotations: Full annotations data.frame (raw)

• evaluation_data: Data.frame filtered to downloaded images with columns suitable for eval-
uation workflows (id, truth, image_file, image_path, valence, arousal, emo8_label, emotion)

• evaluation_csv: Path to saved CSV of evaluation_data

• matched_count: Number of annotations matched to downloaded images

12 emotions

See Also

load_findingemo_annotations, setup_modules

Examples

Not run:
First install required modules
setup_modules()

Download dataset to local directory
result <- download_findingemo_data("./findingemo_data")

if (result$success) {
cat("Dataset downloaded to:", result$target_dir)
cat("Images downloaded:", result$image_count)

}

Download random subset for testing/benchmarking
result <- download_findingemo_data(

target_dir = "./findingemo_test",
max_images = 100,
randomize = TRUE

)

Download subset with flat directory structure (always used)
result <- download_findingemo_data(

target_dir = "./findingemo_subset",
max_images = 50

)

Force re-download
result <- download_findingemo_data(

target_dir = "./findingemo_data",
force = TRUE

)

End(Not run)

emotions Emotions Data

Description

A matrix containing words (n = 175,592) and the emotion category most frequently associated
with each word. This dataset is a modified version of the ’DepecheMood++’ lexicon developed by
Araque, Gatti, Staiano, and Guerini (2018). For proper scoring, text should not be stemmed prior
to using this lexicon. This version of the lexicon does not rely on part of speech tagging.

emoxicon_scores 13

Usage

data(emotions)

Format

A data frame with 175,592 rows and 9 columns.

word An entry in the lexicon, in English

AFRAID, AMUSED, ANGRY, ANNOYED, DONT_CARE, HAPPY, INSPIRED, SAD The emo-
tional category. All emotions contain either a 0 or 1. If the category is most likely to be
associated with the word, it recieves a 1, otherwise, 0. Words are only associated with one
category.

References

Araque, O., Gatti, L., Staiano, J., and Guerini, M. (2018). DepecheMood++: A bilingual emotion
lexicon built through simple yet powerful techniques. ArXiv

Examples

data("emotions")

emoxicon_scores Emoxicon Scores

Description

A bag-of-words approach for computing emotions in text data using the lexicon compiled by
Araque, Gatti, Staiano, and Guerini (2018).

Usage

emoxicon_scores(text, lexicon, exclude)

Arguments

text Matrix or data frame. A data frame containing texts to be scored (one text per
row)

lexicon The lexicon used to score the words. The default is the emotions dataset, a
modification of the lexicon developed by Araque, Gatti, Staiano, and Guerini
(2018). To use the raw lexicon from Araque et. al (2018) containing the orig-
inal probability weights, use the weights dataset. If another custom lexicon is
used, the first column of the lexicon should contain the terms and the subsequent
columns contain the scoring categories.

14 emphasize

exclude A vector listing terms that should be excluded from the lexicon. Words spec-
ified in exclude will not influence document scoring. Users should consider
excluding ’red herring’ words that are more closely related to the topics of the
documents, rather than the documents’ emotional content. For example, the
words "clinton" and "trump" are present in the lexicon and are both associated
with the emotion ’AMUSED’. Excluding these words when analyzing political
opinions may produce more accurate results.

Author(s)

Tara Valladares <tls8vx at virginia.edu> and Hudson F. Golino <hfg9s at virginia.edu>

References

Araque, O., Gatti, L., Staiano, J., and Guerini, M. (2018). DepecheMood++: A bilingual emotion
lexicon built through simple yet powerful techniques. ArXiv

See Also

emotions, where we describe how we modified the original DepecheMood++ lexicon.

Examples

Obtain "emotions" data
data("emotions")

Obtain "tinytrolls" data
data("tinytrolls")

Not run:
Obtain emoxicon scores for first 10 tweets
emotions_tinytrolls <- emoxicon_scores(text = tinytrolls$content, lexicon = emotions)

End(Not run)

emphasize Generate and emphasize sudden jumps in emotion scores

Description

This function generates and emphasizes the effect of strong emotions expressions during the period
where the derivative of the latent variable is high. The observable value of the strongest emotion
from the positive or negative group will spike in the next k time steps. The probability of this
happening is p at each time step in which the derivative of the latent variable is greater than 0.2.
The jump is proportionate to the derivative of the latent variable and the sum of the observable
values of the other emotions.

evaluate_emotions 15

Usage

emphasize(data, num_observables, num_steps, k = 10, p = 0.5)

Arguments

data Data frame. The data frame containing the latent and observable variables cre-
ated by the simulate_video function.

num_observables

Numeric integer. The number of observable variables per latent factor.

num_steps Numeric integer. The number of time steps used in the simulation.

k Numeric integer. The mumber of time steps to emphasize the effect of strong
emotions on future emotions (default is 10). Alternatively: the length of a strong
emotional episode.

p Numeric. The probability of the strongest emotion being emphasized in the next
k time steps (default is 0.5).

Value

A data frame containing the updated observable variables.

evaluate_emotions Evaluate Emotion Classification Performance

Description

Comprehensive evaluation function for discrete emotion classification tasks. Computes standard
classification metrics including accuracy, F1-scores, AUROC, calibration metrics, and inter-rater
reliability measures.

Usage

evaluate_emotions(
data,
id_col = "id",
truth_col = "truth",
pred_col = "pred",
probs_cols = NULL,
classes = NULL,
metrics = c("accuracy", "precision", "recall", "f1_macro", "f1_micro", "auroc", "ece",

"krippendorff", "confusion_matrix"),
return_plot = FALSE,
na_rm = TRUE

)

16 evaluate_emotions

Arguments

data A data frame or file path to CSV containing evaluation data. Must include
columns for identifiers, ground truth, predictions, and optionally class proba-
bilities.

id_col Character. Name of column containing unique identifiers (default: "id").

truth_col Character. Name of column containing ground truth labels (default: "truth").

pred_col Character. Name of column containing predicted labels (default: "pred").

probs_cols Character vector. Names of columns containing class probabilities. If NULL,
probabilistic metrics will be skipped.

classes Character vector. Emotion classes to evaluate. If NULL, will be inferred from
the data.

metrics Character vector. Metrics to compute. Options include: "accuracy", "preci-
sion", "recall", "f1_macro", "f1_micro", "auroc", "ece", "krippendorff", "confu-
sion_matrix" (default: all metrics).

return_plot Logical. Whether to return plotting helpers (default: FALSE).

na_rm Logical. Whether to remove missing values (default: TRUE).

Details

This function implements a comprehensive evaluation pipeline for discrete emotion classification
following best practices from the literature.

Metrics computed:

• **Accuracy**: Overall classification accuracy

• **Precision/Recall/F1**: Per-class and macro/micro averages

• **AUROC**: Area under ROC curve (requires probability scores)

• **ECE**: Expected Calibration Error for probability calibration

• **Krippendorff’s alpha**: Inter-rater reliability between human and model

Input format: The input data should contain at minimum:

• ID column: Unique identifier for each instance

• Truth column: Ground truth emotion labels

• Prediction column: Model predicted emotion labels

• Probability columns (optional): Class probabilities for each emotion

Value

A list containing:

• metrics: Data frame with computed evaluation metrics

• confusion_matrix: Confusion matrix (if requested)

• per_class: Per-class metrics breakdown

• summary: Overall performance summary

• plot_data: Data prepared for plotting (if return_plot = TRUE)

generate_observables 17

References

Grandini, M., Bagli, E., & Visani, G. (2020). Metrics for multi-class classification: an overview.
arXiv preprint arXiv:2008.05756.

Krippendorff, K. (2011). Computing Krippendorff’s alpha-reliability. Scholarly commons, 25.

Naeini, M. P., Cooper, G., & Hauskrecht, M. (2015). Obtaining well calibrated probabilities using
bayesian binning. In AAAI (pp. 2901-2907).

See Also

transformer_scores, nlp_scores, emoxicon_scores for emotion prediction functions.

Examples

Not run:
Basic evaluation with predicted labels only
results <- evaluate_emotions(

data = evaluation_data,
truth_col = "human_label",
pred_col = "model_prediction"

)

Full evaluation with probabilities
results <- evaluate_emotions(

data = evaluation_data,
truth_col = "ground_truth",
pred_col = "predicted_class",
probs_cols = c("prob_anger", "prob_joy", "prob_sadness"),
return_plot = TRUE

)

Custom metrics selection
results <- evaluate_emotions(

data = evaluation_data,
metrics = c("accuracy", "f1_macro", "confusion_matrix")

)

End(Not run)

generate_observables Generate observable emotion scores data from latent variables

Description

Function to generate observable data from 2 latent variables (negative and positive affect). The
function takes in the latent variable scores, the number of time steps, the number of observable
variables per latent factor, and the measurement error variance. It returns a matrix of observable
data. The factor loadings are not the same for all observable variables. They have uniform random

18 generate_q

noise added to them (between -0.15 and 0.15). The loadings are scaled so that the sum of the
loadings for each latent factor is 2, to introduce a ceiling effect and to differentiate the dynamics
of specific emotions. This is further empahsized by adding small noise to the measurement error
variance for each observed variable (between -0.01 and 0.01).

Usage

generate_observables(X, num_steps, num_obs, error, loadings = 0.8)

Arguments

X Matrix or Data frame. The (num_steps X 2) matrix of latent variable scores.

num_steps Numeric integer. Number of time steps.

num_obs Numeric integer. The number of observable variables per latent factor.

error Numeric. Measurement error variance.

loadings Numeric (default = 0.8). The default initial loading of the latent variable on the
observable variable.

Value

A (num_steps X num_obs) Matrix or Data frame containing the observable variables.

generate_q Generate a matrix of Dynamic Error values for the DLO simulation

Description

This function generates a matrix of Dynamic Error values (q) for the DLO simulation.

Usage

generate_q(num_steps, sigma_q)

Arguments

num_steps Numeric integer. The number of time steps used in the simulation.

sigma_q Numeric. Standard deviation of the Dynamic Error/

Value

A (num_steps X 3) matrix of Dynamic Error values for neutral, negative and positive emotion latent
score.

get_vision_model_config 19

get_vision_model_config

Get Vision Model Configuration

Description

Retrieve the configuration for a specific vision model from the registry.

Usage

get_vision_model_config(name)

Arguments

name The name/alias of the registered model

Value

A list with model configuration, or NULL if model not found

image_scores Calculate image scores using a Hugging Face CLIP model

Description

This function takes an image file and a vector of classes as input and calculates the scores for each
class using a specified Hugging Face CLIP model. Primary use of the function is to calculate FER
scores - Facial Expression Detection of emotions based on detected facial expression in images.
In case there are more than one face in the image, the function will return the scores of the face
selected using the face_selection parameter. If there is no face in the image, the function will return
NA for all classes. Function uses reticulate to call the Python functions in the image.py file. If
you run this package/function for the first time it will take some time for the package to setup a
functioning Python virtual environment in the background. This includes installing Python libraries
for facial recognition and emotion detection in text, images and video. Please be patient.

Usage

image_scores(
image,
classes,
face_selection = "largest",
model = "oai-base",
local_model_path = NULL

)

20 image_scores

Arguments

image The path to the image file or URL of the image.

classes A character vector of classes to classify the image into.

face_selection The method to select the face in the image. Can be "largest", "left", "right", or
"none". Default is "largest" and will select the largest face in the image. "left"
and "right" will select the face on the far left or the far right side of the image.
"none" will use the whole image without cropping. Face_selection method is
irrelevant if there is only one face in the image.

model A string specifying the vision model to use. Options include:

• Built-in models: "oai-base" (default), "oai-large", "eva-8B", "jina-v2"

• Any valid HuggingFace model ID

• Custom registered models (see register_vision_model)

Use list_vision_models to see all available models. Note: Using large or
untested models may cause memory issues or crashes.

local_model_path

Optional. Path to a local directory containing a pre-downloaded HuggingFace
model. If provided, the model will be loaded from this directory instead of
being downloaded from HuggingFace. This is useful for offline usage or for
using custom fine-tuned models.

On Linux/Mac, look in ~/.cache/huggingface/hub/ folder for downloaded mod-
els. Navigate to the snapshots folder for the relevant model and point to the di-
rectory which contains the config.json file. For example: "/home/username/.cache/huggingface/hub/models–
cross-encoder–nli-distilroberta-base/snapshots/b5b020e8117e1ddc6a0c7ed0fd22c0e679edf0fa/"

On Windows, the base path is C:\Users\USERNAME\.cache\huggingface\transformers\

Warning: Using very large models from local paths may cause memory issues
or crashes depending on your system’s resources.

Details

Data Privacy: All processing is done locally with the downloaded model, and your images are never
sent to any remote server or third-party.

Value

A data frame containing the scores for each class.

Author(s)

Aleksandar Tomasevic <atomashevic@gmail.com>

image_scores_dir 21

image_scores_dir Calculate image scores for all images in a directory (fast batch)

Description

This function scans a directory for image files and computes scores for each image using a Hugging
Face CLIP model. It loads the model once and reuses text embeddings for speed, returning one row
per image with the filename as image_id and probability columns for each class.

Usage

image_scores_dir(
dir,
classes,
face_selection = "largest",
pattern = "\\.(jpg|jpeg|png|bmp)$",
recursive = FALSE,
model = "oai-base",
local_model_path = NULL

)

Arguments

dir Path to a directory containing images.

classes Character vector of labels/classes (length >= 2).

face_selection Face selection strategy: "largest", "left", "right", or "none".

pattern Optional regex to filter images (default supports common formats).

recursive Whether to search subdirectories (default FALSE).

model CLIP model alias or HuggingFace model id (see image_scores()).

local_model_path

Optional local path to a pre-downloaded model.

Value

A data.frame with columns: image_id and one column per class.

22 list_vision_models

is_vision_model_registered

Check if Vision Model is Registered

Description

Check if a vision model is available in the registry.

Usage

is_vision_model_registered(name)

Arguments

name The name/alias of the model to check

Value

Logical indicating if the model is registered

list_vision_models List Available Vision Models

Description

List all vision models currently available in the transforEmotion registry.

Usage

list_vision_models(
include_builtin = TRUE,
architecture_filter = NULL,
verbose = FALSE

)

Arguments

include_builtin

Logical indicating whether to include built-in models (default: TRUE)
architecture_filter

Optional character vector to filter by architecture type

verbose Logical indicating whether to show detailed information (default: FALSE)

Value

A data.frame with model information, or detailed list if verbose=TRUE

load_findingemo_annotations 23

Examples

List all available models
list_vision_models()

List only CLIP models
list_vision_models(architecture_filter = "clip")

Get detailed information
list_vision_models(verbose = TRUE)

See what models are available for image analysis
models <- list_vision_models()
print(paste("Available models:", paste(models$name, collapse = ", ")))

load_findingemo_annotations

Load FindingEmo-Light Annotations

Description

Loads and preprocesses annotations from a downloaded FindingEmo-Light dataset. Returns a clean
R data.frame with emotion annotations, valence/arousal scores, and associated metadata.

Usage

load_findingemo_annotations(
data_dir,
output_format = c("dataframe", "list"),
python_path = NULL

)

Arguments

data_dir Character. Directory containing the downloaded FindingEmo data.

output_format Character. Format for processed data: "dataframe" returns R data.frame, "list"
returns full processed data (default: "dataframe").

python_path Character. Path to Python executable (optional).

Details

This function loads the CSV annotation file and JSON URLs file from a downloaded FindingEmo
dataset, performs basic validation and preprocessing, and returns the data in a format suitable for
emotion analysis.

The function handles missing values, validates valence/arousal ranges, and provides summary statis-
tics for the loaded data.

24 load_findingemo_annotations

Value

If output_format = "dataframe": A data.frame with columns:

• image_id: Unique image identifier

• valence: Valence score (emotion positivity)

• arousal: Arousal score (emotion intensity)

• Additional columns as present in the dataset

If output_format = "list": A list containing:

• annotations: Data.frame with annotation data

• urls: List with image URL information

• metadata: List with dataset metadata

See Also

download_findingemo_data, prepare_findingemo_evaluation

Examples

Not run:
Download dataset first
download_result <- download_findingemo_data("./findingemo_data")

if (download_result$success) {
Load annotations as data.frame
annotations <- load_findingemo_annotations("./findingemo_data")

Examine the data
head(annotations)
summary(annotations)

Get full processed data including metadata
full_data <- load_findingemo_annotations(
data_dir = "./findingemo_data",
output_format = "list"

)

print(full_data$metadata)
}

End(Not run)

map_discrete_to_vad 25

map_discrete_to_vad Map Discrete Emotions to VAD (Valence-Arousal-Dominance) Frame-
work

Description

Maps discrete emotion classifications from image_scores(), transformer_scores(), or video_scores()
functions to the Valence-Arousal-Dominance (VAD) framework using published lexicons. Auto-
matically downloads the NRC VAD lexicon via textdata package on first use.

Usage

map_discrete_to_vad(
results,
mapping = "nrc_vad",
weighted = TRUE,
cache_lexicon = TRUE,
vad_lexicon = NULL

)

Arguments

results Output from image_scores(), transformer_scores(), or video_scores(). Can be a
data.frame (from image/video functions) or a list (from transformer functions).

mapping Character. Which VAD mapping to use. Currently supports:

• "nrc_vad": Uses NRC VAD lexicon (Mohammad, 2018)

weighted Logical. Whether to compute weighted averages based on confidence scores
(default: TRUE). If FALSE, performs simple lookup of the highest-scoring emo-
tion.

cache_lexicon Logical. Whether to cache the VAD lexicon for repeated use (default: TRUE).

vad_lexicon Optional data.frame. Pre-loaded VAD lexicon data to use instead of loading
from textdata. Must have columns for word, valence, arousal, dominance (ac-
cepts both lowercase and capitalized versions, e.g., Word/word, Valence/valence).
If provided, the function will use this data directly.

Details

This function bridges discrete emotion classification outputs with the continuous VAD emotion
framework. The VAD model represents emotions in a three-dimensional space where:

• **Valence**: Pleasantness (positive/negative)

• **Arousal**: Activation level (excited/calm)

• **Dominance**: Control (dominant/submissive)

Input Type Detection: The function automatically detects the input type:

26 map_discrete_to_vad

• **data.frame**: Assumes output from image_scores() or video_scores()

• **list**: Assumes output from transformer_scores()

Weighting Methods:

• **weighted = TRUE**: Computes weighted average VAD scores based on classification con-
fidence scores

• **weighted = FALSE**: Uses VAD values for the highest-scoring emotion only

VAD Mappings: Currently supports the NRC VAD lexicon which provides VAD ratings for
emotion words based on crowdsourced annotations. The lexicon must be downloaded first using
‘textdata::lexicon_nrc_vad()‘ in an interactive session.

Setup Required: Before using this function, download the NRC VAD lexicon by running:
‘textdata::lexicon_nrc_vad()‘ in an interactive R session and accepting the license.

Value

A data.frame with columns:

• valence: Valence score (positive vs negative emotion)

• arousal: Arousal score (excitement vs calmness)

• dominance: Dominance score (control vs submissiveness)

For transformer_scores() input, includes additional identifier columns. For image/video_scores()
input, returns one row per input row.

Data Privacy

VAD lexicon is downloaded once and cached locally. No data is sent to external servers.

Author(s)

Aleksandar Tomasevic <atomashevic@gmail.com>

References

Mohammad, S. M. (2018). Obtaining reliable human ratings of valence, arousal, and dominance
for 20,000 English words. Proceedings of the 56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), 174-184.

Examples

Not run:
Method 1: Auto-load from textdata (requires prior download)
textdata::lexicon_nrc_vad() # Run once to download

With image scores
image_path <- system.file("extdata", "boris-1.png", package = "transforEmotion")
emotions <- c("joy", "sadness", "anger", "fear", "surprise", "disgust")
img_results <- image_scores(image_path, emotions)
vad_results <- map_discrete_to_vad(img_results)

map_to_emo8 27

Method 2: Download once and pass as argument (recommended)
nrc_vad <- textdata::lexicon_nrc_vad() # Download once

Use with different emotion results
vad_results1 <- map_discrete_to_vad(img_results, vad_lexicon = nrc_vad)

text <- "I am so happy today!"
trans_results <- transformer_scores(text, emotions)
vad_results2 <- map_discrete_to_vad(trans_results, vad_lexicon = nrc_vad)

Simple lookup (no weighting)
vad_simple <- map_discrete_to_vad(img_results, weighted = FALSE, vad_lexicon = nrc_vad)

End(Not run)

map_to_emo8 Map FindingEmo Emotions to Emo8 Labels

Description

Maps FindingEmo dataset emotion labels to the standard 8 basic emotions (Emo8) from Plutchik’s
emotion wheel. This function converts complex emotion labels to the 8 fundamental emotions using
intensity-based mappings from the circumplex model.

Usage

map_to_emo8(findingemo_emotions)

Arguments

findingemo_emotions

Character vector of FindingEmo emotion labels to map.

Details

The mapping is based on Plutchik’s circumplex model of emotions, where complex emotions are
mapped to their corresponding basic emotions:

Basic Emotions (direct mapping): - Joy, Trust, Fear, Surprise, Sadness, Disgust, Anger, Antic-
ipation

Intensity Variations: - High intensity: Ecstasy→Joy, Admiration→Trust, Terror→Fear, etc. -
Low intensity: Serenity→Joy, Acceptance→Trust, Apprehension→Fear, etc.

The 8 basic emotions (Emo8) are: joy, trust, fear, surprise, sadness, disgust, anger, anticipation.

Value

Character vector of mapped Emo8 emotion labels. Unmapped emotions return NA.

28 MASS_mvrnorm

Examples

Not run:
Map single emotions
map_to_emo8("Joy") # "joy"
map_to_emo8("Ecstasy") # "joy"
map_to_emo8("Serenity") # "joy"

Map multiple emotions
findingemo_labels <- c("Joy", "Rage", "Terror", "Interest")
emo8_labels <- map_to_emo8(findingemo_labels)
Returns: c("joy", "anger", "fear", "anticipation")

Use in evaluation pipeline
annotations <- load_findingemo_annotations("./data")
annotations$emo8_label <- map_to_emo8(annotations$emotion)

End(Not run)

MASS_mvrnorm Multivariate Normal (Gaussian) Distribution

Description

This function generates a random sample from the multivariate normal distribution with mean mu
and covariance matrix Sigma.

Usage

MASS_mvrnorm(n = 1, mu, Sigma, tol = 1e-06, empirical = FALSE, EISPACK = FALSE)

Arguments

n Numeric integer. The number of observations to generate.

mu Numeric vector. The mean vector of the multivariate normal distribution.

Sigma Numeric matrix. The covariance matrix of the multivariate normal distribution.

tol Numeric. Tolerance for checking the positive definiteness of the covariance
matrix.

empirical Logical. Whether to return the empirical covariance matrix.

EISPACK Logical. Whether to use the EISPACK routine instead of the LINPACK routine.

Value

A (n X p) matrix of random observations from the multivariate normal distribution. Updated:
26.10.2023.

neo_ipip_extraversion 29

neo_ipip_extraversion NEO-PI-R IPIP Extraversion Item Descriptions

Description

A list (length = 6) of the NEO-PI-R IPIP item descriptions (https://ipip.ori.org/newNEOFacetsKey.htm).
Each vector within the 6 list elements contains the item descriptions for the respective Extraversion
facets – friendliness, gregariousness, assertiveness, activity_level, excitement_seeking, and cheer-
fulness

Usage

data(neo_ipip_extraversion)

Format

A list (length = 6)

Examples

data("neo_ipip_extraversion")

nlp_scores Natural Language Processing Scores

Description

Natural Language Processing using word embeddings to compute semantic similarities (cosine; see
costring) of text and specified classes

Usage

nlp_scores(
text,
classes,
semantic_space = c("baroni", "cbow", "cbow_ukwac", "en100", "glove", "tasa"),
preprocess = TRUE,
remove_stop = TRUE,
keep_in_env = TRUE,
envir = 1

)

30 nlp_scores

Arguments

text Character vector or list. Text in a vector or list data format

classes Character vector. Classes to score the text

semantic_space Character vector. The semantic space used to compute the distances between
words (more than one allowed). Here’s a list of the semantic spaces:

"baroni" Combination of British National Corpus, ukWaC corpus, and a 2009
Wikipedia dump. Space created using continuous bag of words algorithm
using a context window size of 11 words (5 left and right) and 400 di-
mensions. Best word2vec model according to Baroni, Dinu, & Kruszewski
(2014)

"cbow" Combination of British National Corpus, ukWaC corpus, and a 2009
Wikipedia dump. Space created using continuous bag of words algorithm
with a context window size of 5 (2 left and right) and 300 dimensions

"cbow_ukwac" ukWaC corpus with the continuous bag of words algorithm with
a context window size of 5 (2 left and right) and 400 dimensions

"en100" Combination of British National Corpus, ukWaC corpus, and a 2009
Wikipedia dump. 100,000 most frequent words. Uses moving window
model with a size of 5 (2 to the left and right). Positive pointwise mutual
information and singular value decomposition was used to reduce the space
to 300 dimensions

"glove" Wikipedia 2014 dump and Gigaword 5 with 400,000 words (300 di-
mensions). Uses co-occurrence of words in text documents (uses cosine
similarity)

"tasa" Latent Semantic Analysis space from TASA corpus all (300 dimen-
sions).Uses co-occurrence of words in text documents (uses cosine similar-
ity)

preprocess Boolean. Should basic preprocessing be applied? Includes making lowercase,
keeping only alphanumeric characters, removing escape characters, removing
repeated characters, and removing white space. Defaults to TRUE

remove_stop Boolean. Should stop_words be removed? Defaults to TRUE

keep_in_env Boolean. Whether the classifier should be kept in your global environment.
Defaults to TRUE. By keeping the classifier in your environment, you can skip
re-loading the classifier every time you run this function. TRUE is recommended

envir Numeric. Environment for the classifier to be saved for repeated use. Defaults
to the global environment

Value

Returns semantic distances for the text classes

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>

https://dumps.wikimedia.org/
https://catalog.ldc.upenn.edu/LDC2011T07

nlp_scores 31

References

Baroni, M., Dinu, G., & Kruszewski, G. (2014). Don’t count, predict! a systematic comparison
of context-counting vs. context-predicting semantic vectors. In Proceedings of the 52nd annual
meting of the association for computational linguistics (pp. 238-247).

Landauer, T.K., & Dumais, S.T. (1997). A solution to Plato’s problem: The Latent Semantic Anal-
ysis theory of acquisition, induction and representation of knowledge. Psychological Review, 104,
211-240.

Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global vectors for word representa-
tion. In Proceedings of the 2014 conference on empirical methods in natural language processing
(pp. 1532-1543).

Examples

Load data
data(neo_ipip_extraversion)

Example text
text <- neo_ipip_extraversion$friendliness[1:5]

Not run:
GloVe
nlp_scores(
text = text,
classes = c(

"friendly", "gregarious", "assertive",
"active", "excitement", "cheerful"

)
)

Baroni
nlp_scores(
text = text,
classes = c(

"friendly", "gregarious", "assertive",
"active", "excitement", "cheerful"

),
semantic_space = "baroni"

)

CBOW
nlp_scores(
text = text,
classes = c(

"friendly", "gregarious", "assertive",
"active", "excitement", "cheerful"

),
semantic_space = "cbow"

)

CBOW + ukWaC
nlp_scores(

32 parse_rag_json

text = text,
classes = c(

"friendly", "gregarious", "assertive",
"active", "excitement", "cheerful"

),
semantic_space = "cbow_ukwac"

)

en100
nlp_scores(
text = text,
classes = c(

"friendly", "gregarious", "assertive",
"active", "excitement", "cheerful"

),
semantic_space = "en100"

)

tasa
nlp_scores(
text = text,
classes = c(

"friendly", "gregarious", "assertive",
"active", "excitement", "cheerful"

),
semantic_space = "tasa"

)

End(Not run)

parse_rag_json Parse RAG JSON

Description

Parses a JSON string (or list) matching the enforced RAG schema and returns a normalized list:
‘list(labels=chr, confidences=num, intensity=num, evidence=data.frame(doc_id, span, score))‘.

Usage

parse_rag_json(x, validate = TRUE)

Arguments

x JSON string or list.

validate Logical; validate structure after parse.

plot.emotion_evaluation 33

Value

A normalized list with atomic vectors and an ‘evidence‘ data.frame.

Examples

j <- '{"labels":["joy"],"confidences":[0.9],
"intensity":0.8,"evidence_chunks":[]}'

parse_rag_json(j)

plot.emotion_evaluation

Plot Evaluation Results

Description

Creates visualizations for emotion evaluation results including confusion matrix heatmaps and per-
class metrics bar plots.

Usage

S3 method for class 'emotion_evaluation'
plot(x, type = "both", ...)

Arguments

x An emotion_evaluation object from evaluate_emotions()

type Character. Type of plot: "confusion_matrix", "metrics", or "both"

... Additional arguments passed to plotting functions

Value

A ggplot object or list of ggplot objects

plot_sim_emotions Plot the latent or the observable emotion scores.

Description

Function to plot the latent or the observable emotion scores.

Usage

plot_sim_emotions(df, mode = "latent", title = " ")

34 prepare_findingemo_evaluation

Arguments

df Data frame. The data frame containing the latent and observable variables cre-
ated by the simulate_video function.

mode Character. The mode of the plot. Can be either ’latent’, ’positive’ or ’negative’.

title Character. The title of the plot. Default is an empty title, ’ ’.

Value

A plot of the latent or the observable emotion scores.

prepare_findingemo_evaluation

Prepare FindingEmo Data for Evaluation

Description

Prepares FindingEmo dataset annotations for use with evaluate_emotions(). Converts the dataset
format to match the expected input structure for evaluation functions.

Usage

prepare_findingemo_evaluation(
annotations,
predictions,
id_col = "image_id",
truth_col = "emotion_label",
pred_col = "predicted_emotion",
include_va = TRUE

)

Arguments

annotations Data.frame. Annotations from load_findingemo_annotations().

predictions Data.frame. Model predictions with same image IDs as annotations.

id_col Character. Column name for image IDs (default: "image_id").

truth_col Character. Column name for ground truth emotions (default: "emotion_label").

pred_col Character. Column name for predicted emotions (default: "predicted_emotion").

include_va Logical. Whether to include valence/arousal columns (default: TRUE).

Details

This function merges FindingEmo annotations with model predictions and formats the result for
evaluation. It handles missing values, validates data consistency, and ensures the output matches
the expected format for evaluate_emotions().

prepare_findingemo_evaluation 35

Value

A data.frame formatted for use with evaluate_emotions(), containing:

• id: Image identifiers

• truth: Ground truth emotion labels

• pred: Predicted emotion labels

• valence: Valence scores (if available and include_va = TRUE)

• arousal: Arousal scores (if available and include_va = TRUE)

• Additional probability columns if present in predictions

See Also

load_findingemo_annotations, evaluate_emotions

Examples

Not run:
Load annotations
annotations <- load_findingemo_annotations("./findingemo_data")

Create mock predictions (replace with actual model predictions)
predictions <- data.frame(

image_id = annotations$image_id[1:100],
predicted_emotion = sample(c("happy", "sad", "angry"), 100, replace = TRUE),
prob_happy = runif(100),
prob_sad = runif(100),
prob_angry = runif(100)

)

Prepare for evaluation
eval_data <- prepare_findingemo_evaluation(

annotations = annotations,
predictions = predictions

)

Evaluate model performance
results <- evaluate_emotions(

data = eval_data,
probs_cols = c("prob_happy", "prob_sad", "prob_angry")

)

print(results)

End(Not run)

36 punctuate

print.emotion_evaluation

Print method for emotion evaluation results

Description

Print method for emotion evaluation results

Usage

S3 method for class 'emotion_evaluation'
print(x, ...)

Arguments

x An emotion_evaluation object

... Additional arguments (unused)

punctuate Punctuation Removal for Text

Description

Keeps the punctuations you want and removes the punctuations you don’t

Usage

punctuate(
text,
allowPunctuations = c("-", "?", "'", "\"", ";", ",", ".", "!")

)

Arguments

text Character vector or list. Text in a vector or list data format
allowPunctuations

Character vector. Punctuations that should be allowed in the text. Defaults to
common punctuations in English text

Details

Coarsely removes punctuations from text. Keeps general punctuations that are used in most En-
glish language text. Apostrophes are much trickier. For example, not allowing "’" will remove
apostrophes from contractions like "can’t" becoming "cant"

rag 37

Value

Returns text with only the allowed punctuations

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>

Examples

Load data
data(neo_ipip_extraversion)

Example text
text <- neo_ipip_extraversion$friendliness

Keep only periods
punctuate(text, allowPunctuations = c("."))

rag Retrieval-augmented Generation (RAG)

Description

Performs retrieval-augmented generation {llama-index}

Supports multiple local LLM backends via HuggingFace and llama-index.

Usage

rag(
text = NULL,
path = NULL,
transformer = c("TinyLLAMA", "Gemma3-1B", "Gemma3-4B", "Qwen3-1.7B", "Ministral-3B"),
prompt = "You are an expert at extracting themes across many texts",
query,
response_mode = c("accumulate", "compact", "no_text", "refine", "simple_summarize",

"tree_summarize"),
similarity_top_k = 5,
retriever = c("vector", "bm25"),
retriever_params = list(),
output = c("text", "json", "table", "csv"),
task = c("general", "emotion", "sentiment"),
labels_set = NULL,
max_labels = 5,
global_analysis = FALSE,
device = c("auto", "cpu", "cuda"),
temperature = NULL,

38 rag

do_sample = NULL,
max_new_tokens = NULL,
top_p = NULL,
keep_in_env = TRUE,
envir = 1,
progress = TRUE

)

Arguments

text Character vector or list. Text in a vector or list data format. path will override
input into text Defaults to NULL

path Character. Path to .pdfs stored locally on your computer. Defaults to NULL

transformer Character. Large language model to use for RAG. Available models include:

"TinyLLAMA" Default. TinyLlama 1.1B Chat via HuggingFace. Fast and
light local inference.

"Gemma3-1B / Gemma3-4B" Google’s Gemma 3 Instruct via HuggingFace:
google/gemma-3-1b-it, google/gemma-3-4b-it.

"Qwen3-0.6B / Qwen3-1.7B" Qwen 3 small Instruct models via HuggingFace:
Qwen/Qwen3-0.6B-Instruct, Qwen/Qwen3-1.7B-Instruct.

"Ministral-3B" Mistral’s compact 3B Instruct via HuggingFace: ministral/Ministral-3b-instruct.

prompt Character (length = 1). Prompt to feed into TinyLLAMA. Defaults to "You are
an expert at extracting emotional themes across many texts"

query Character. The query you’d like to know from the documents. Defaults to
prompt if not provided

response_mode Character (length = 1). Different responses generated from the model. See
documentation here
Defaults to "tree_summarize"

similarity_top_k

Numeric (length = 1). Retrieves most representative texts given the query.
Larger values will provide a more comprehensive response but at the cost of
computational efficiency; small values will provide a more focused response at
the cost of comprehensiveness. Defaults to 5.
Values will vary based on number of texts but some suggested values might be:

40-60 Comprehensive search across all texts
20-40 Exploratory with good trade-off between comprehensive and speed
5-15 Focused search that should give generally good results

These values depend on the number and quality of texts. Adjust as necessary

retriever Character (length = 1). Retrieval backend: one of "vector" (default, seman-
tic search using embeddings) or "bm25" (lexical BM25 search). BM25 uses
llama-index’s retriever when available and falls back to the Python rank_bm25
implementation otherwise. Scores are normalized to [0,1] for consistency.

retriever_params

List. Optional parameters passed to the selected retriever handler. Reserved
keys include show_progress.

https://developers.llamaindex.ai/python/framework/module_guides/

rag 39

output Character (length = 1). Output format: one of "text", "json", "table", or
"csv".

• "text" (default): returns a free-text response with retrieved content.
• Structured outputs ("json"/"table"/"csv") are supported ONLY for Gemma3-

1B and Gemma3-4B. For other models, requests for structured outputs fall
back to "text".

• For Gemma3-1B/4B and task = "sentiment" or "emotion", returns per-
document dominant label and confidence.

• For Gemma3-1B/4B and task = "general", returns the prior schema with
labels, confidences, intensity, and evidence_chunks.

task Character (length = 1). Task hint for structured extraction: one of "general",
"emotion", or "sentiment". When "emotion" or "sentiment", the prompt
constrains labels to a set (see labels_set).

labels_set Character vector. Allowed labels for classification when task != "general". If
NULL, defaults to Emo8 labels for task = "emotion" (c("joy","trust","fear","surprise","sadness",
"disgust","anger","anticipation")) for task = "emotion" and c("positive","neutral","negative")
for task = "sentiment".

max_labels Integer (length = 1). Maximum number of labels to return in structured outputs;
used to guide the model instruction when output != "text".

global_analysis

Boolean (length = 1). Whether to perform analysis across all documents glob-
ally (legacy behavior) or per-document (default). When FALSE (default), each
document is analyzed individually then results are aggregated. When TRUE,
all documents are processed together for a single global analysis. Defaults to
FALSE.

device Character. Whether to use CPU or GPU for inference. Defaults to "auto"
which will use GPU over CPU (if CUDA-capable GPU is setup). Set to "cpu"
to perform over CPU

temperature Numeric or NULL. Overrides the LLM sampling temperature when using local
HF models. Recommended: 0.0–0.2 for structured/classification; 0.3–0.7 for
summaries.

do_sample Logical or NULL. If FALSE, forces greedy decoding for maximum determinism.
Defaults are conservative; set explicitly for reproducibility.

max_new_tokens Integer or NULL. Maximum new tokens to generate. Suggested: 64–128 for
label decisions; 256–512 for summaries.

top_p Numeric or NULL. Nucleus sampling parameter. Typical: 0.7–0.95. Use with
do_sample=TRUE.

keep_in_env Boolean (length = 1). Whether the classifier should be kept in your global en-
vironment. Defaults to TRUE. By keeping the classifier in your environment,
you can skip re-loading the classifier every time you run this function. TRUE is
recommended

envir Numeric (length = 1). Environment for the classifier to be saved for repeated
use. Defaults to the global environment

progress Boolean (length = 1). Whether progress should be displayed. Defaults to TRUE

40 rag_json_utils

Value

For output = "text", returns an object of class "rag" with fields: $response (character), $content
(data.frame), and $document_embeddings (matrix). For output = "json", returns a JSON character(1)
string matching the enforced schema. For output = "table", returns a data.frame suitable for
statistical analysis.

Data Privacy

All processing is done locally with the downloaded model, and your text is never sent to any remote
server or third-party.

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>

Examples

Load data
data(neo_ipip_extraversion)

Example text
text <- neo_ipip_extraversion$friendliness[1:5]

Not run:
rag(
text = text,
query = "What themes are prevalent across the text?",
response_mode = "tree_summarize",
similarity_top_k = 5
)

Structured outputs
rag(text = text, query = "Extract emotions", output = "json")
rag(text = text, query = "Extract emotions", output = "table")

End(Not run)

rag_json_utils RAG JSON utilities

Description

Helpers for validating, parsing, and flattening structured output from ‘rag(output = "json"|"table")‘.

rag_sentemo 41

rag_sentemo Structured Emotion/Sentiment via RAG (Small LLMs)

Description

Convenience wrapper around rag() that keeps vector retrieval but simplifies getting structured
outputs for emotion or sentiment analysis using small local LLMs (1–4B) with sensible defaults.

Usage

rag_sentemo(
text = NULL,
path = NULL,
task = c("emotion", "sentiment"),
labels_set = NULL,
max_labels = 5,
transformer = c("TinyLLAMA", "Gemma3-1B", "Gemma3-4B", "Qwen3-1.7B", "Ministral-3B"),
similarity_top_k = 5,
response_mode = c("compact", "refine", "simple_summarize"),
output = c("table", "json", "csv"),
global_analysis = FALSE,
...

)

Arguments

text Character vector or list. Text to analyze. One entry per document.

path Character. Optional directory with files to index (e.g., PDFs). If provided, over-
rides text.

task Character. One of "emotion" or "sentiment".

labels_set Character vector of allowed labels. If NULL, defaults to Emo8 for task = "emotion"
and c("positive","neutral","negative") for task = "sentiment".

max_labels Integer. Max number of labels to return.

transformer Character. Small local LLM to use. One of:

• "TinyLLAMA" (default)
• "Gemma3-1B"

• "Gemma3-4B"

• "Qwen3-0.6B"

• "Qwen3-1.7B"

• "Ministral-3B"
similarity_top_k

Integer. Retrieval depth per query. Default 5.

response_mode Character. LlamaIndex response mode. Default "compact".

output Character. "table" (default) or "json".

42 register_retriever

global_analysis

Logical. If TRUE, analyze all documents jointly. Default FALSE.

... Additional arguments passed to rag() (e.g., device, keep_in_env).

Value

For Gemma3-1B/4B and output = "table"/"csv", a data.frame with columns
doc_id, text, label, confidence.
For Gemma3-1B/4B and output = "json", a JSON array of per-doc objects with those fields.
For other models, structured outputs are not supported; the function falls back to output = "text"
and returns a free-text "rag" object.

Examples

Not run:
texts <- c(

"I feel so happy and grateful today!",
"This is frustrating and makes me angry."

)
rag_sentemo(texts, task = "emotion", output = "table")
rag_sentemo(texts, task = "sentiment", output = "json")

End(Not run)

register_retriever Register a custom retriever

Description

Registers a retriever under a name. The handler should construct and return a query engine compat-
ible with llama-index or a fallback with a ‘query_fn‘.

Usage

register_retriever(name, handler)

Arguments

name Character scalar; retriever name (e.g., "my_retriever").

handler Function with signature: function(llama_index, documents, similarity_top_k,
response_mode, params) -> engine_or_list where the return value is either a
Python query engine with ‘$query()‘ or a list with element ‘query_fn‘ taking a
single ‘query‘ argument and returning a list with ‘response‘ and ‘source_nodes‘.
Note: Settings are configured globally via llama_index.core.Settings.

register_vision_model 43

register_vision_model Register a Vision Model

Description

Register a new vision model in the transforEmotion registry, making it available for use with im-
age_scores(), video_scores(), and related functions.

Usage

register_vision_model(
name,
model_id,
architecture = "clip",
description = NULL,
preprocessing_config = NULL,
requires_special_handling = FALSE

)

Arguments

name A short name/alias for the model (e.g., "my-custom-clip")

model_id The HuggingFace model identifier or path to local model

architecture The model architecture type. Currently supported:

• "clip": Standard CLIP dual-encoder models (default)
• "clip-custom": CLIP variants requiring special handling
• "blip": BLIP captioning/VQA models (supported via BLIP adapter)
• "align": ALIGN dual-encoder models (supported via ALIGN adapter)

description Optional description of the model
preprocessing_config

Optional list of preprocessing parameters
requires_special_handling

Logical indicating if the model needs custom processing beyond standard CLIP
pipeline

Value

Invisibly returns TRUE if registration successful

Examples

Not run:
Register a custom CLIP model
register_vision_model(

name = "my-emotion-clip",
model_id = "j-hartmann/emotion-english-distilroberta-base",

44 remove_vision_model

architecture = "clip",
description = "Custom CLIP fine-tuned on emotion datasets"

)

Register a local model
register_vision_model(

name = "local-clip",
model_id = "/path/to/local/model",
architecture = "clip",
description = "Locally stored fine-tuned model"

)

Register experimental BLIP model
register_vision_model(

name = "blip-caption",
model_id = "Salesforce/blip-image-captioning-base",
architecture = "blip",
description = "BLIP model for image captioning"

)

End(Not run)

remove_vision_model Remove a Vision Model

Description

Remove a custom vision model from the registry. Built-in models cannot be removed.

Remove a vision model from the transforEmotion registry.

Usage

remove_vision_model(name, confirm = TRUE)

remove_vision_model(name, confirm = TRUE)

Arguments

name The name/alias of the model to remove

confirm Logical indicating whether to show confirmation prompt (default: TRUE)

Value

Invisibly returns TRUE if successful

Invisibly returns TRUE if removal successful

sentence_similarity 45

Examples

Not run:
Remove a custom model
remove_vision_model("my-custom-model")

Remove without confirmation prompt
remove_vision_model("my-custom-model", confirm = FALSE)

End(Not run)

sentence_similarity Sentiment Analysis Scores

Description

Uses sentiment analysis pipelines from huggingface to compute probabilities that the text corre-
sponds to the specified classes

Usage

sentence_similarity(
text,
comparison_text,
transformer = c("all_minilm_l6"),
device = c("auto", "cpu", "cuda"),
preprocess = FALSE,
keep_in_env = TRUE,
envir = 1

)

Arguments

text Character vector or list. Text in a vector or list data format
comparison_text

Character vector or list. Text in a vector or list data format
transformer Character. Specific sentence similarity transformer to be used. Defaults to

"all_minilm_l6" (see huggingface)
Also allows any sentence similarity models with a pipeline from huggingface to
be used by using the specified name (e.g., "typeform/distilbert-base-uncased-mnli";
see Examples)

device Character. Whether to use CPU or GPU for inference. Defaults to "auto"
which will use GPU over CPU (if CUDA-capable GPU is setup). Set to "cpu"
to perform over CPU

preprocess Boolean. Should basic preprocessing be applied? Includes making lowercase,
keeping only alphanumeric characters, removing escape characters, removing
repeated characters, and removing white space. Defaults to FALSE. Transformers
generally are OK without preprocessing and handle many of these functions
internally, so setting to TRUE will not change performance much

https://huggingface.co
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/models?pipeline_tag=sentence-similarity

46 setup_gpu_modules

keep_in_env Boolean. Whether the classifier should be kept in your global environment.
Defaults to TRUE. By keeping the classifier in your environment, you can skip
re-loading the classifier every time you run this function. TRUE is recommended

envir Numeric. Environment for the classifier to be saved for repeated use. Defaults
to the global environment

Value

Returns a n x m similarity matrix where n is length of text and m is the length of comparison_text

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>

Examples

Load data
data(neo_ipip_extraversion)

Example text
text <- neo_ipip_extraversion$friendliness[1:5]

Not run:
Example with defaults
sentence_similarity(
text = text, comparison_text = text

)

Example with model from 'sentence-transformers'
sentence_similarity(
text = text, comparison_text = text,
transformer = "sentence-transformers/all-mpnet-base-v2"

)

End(Not run)

setup_gpu_modules Install GPU Python Modules

Description

Installs GPU-specific Python modules using uv-managed environments.

Usage

setup_gpu_modules()

setup_miniconda 47

Details

This function installs additional GPU-specific modules including:

• AutoAWQ for weight quantization

• Auto-GPTQ for GPU quantization

• Optimum for transformer optimization

• llama-cpp-python (Linux only) for CPU/GPU inference

The function is typically called by setup_modules() when GPU installation is selected, but can
also be run independently to add GPU-related packages.

Note

This function requires NVIDIA GPU and drivers to be properly installed.

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>

setup_miniconda Deprecated: Miniconda setup (use uv instead)

Description

setup_miniconda() is deprecated. The transforEmotion package now uses reticulate’s uv-based
ephemeral environments managed via ‘py_require()‘. No conda or Miniconda installation is re-
quired.

Usage

setup_miniconda()

setup_modules Setup Required Python Modules

Description

Installs and configures required Python modules for transforEmotion, optionally enabling GPU-
accelerated variants when a compatible NVIDIA GPU is detected. Uses reticulate’s uv-backed
ephemeral environment.

Usage

setup_modules()

48 setup_popular_models

Details

This function ensures required modules are available and can add additional GPU-specific packages
when requested. See also setup_gpu_modules() for GPU add-ons.

Value

Invisibly returns NULL.

setup_popular_models Quick Setup for Popular Models

Description

Convenience function to quickly add popular vision models with pre-configured settings.

Usage

setup_popular_models(models)

Arguments

models Character vector of model shortcuts to add. Available options:

• "blip-base": BLIP base model for image captioning and VQA
• "blip-large": BLIP large model for better performance
• "align-base": ALIGN base model for image-text alignment

Value

Invisibly returns TRUE if all models added successfully

Examples

Not run:
Add BLIP models for image captioning
setup_popular_models("blip-base")

Add multiple experimental models at once
setup_popular_models(c("blip-base", "blip-large", "align-base"))

Then use them in your analysis
list_vision_models() # See all available models
result <- image_scores("image.jpg", c("happy", "sad"), model = "blip-base")

End(Not run)

show_vision_models 49

show_vision_models Show Available Vision Models

Description

Display all available vision models in a user-friendly format with additional details and usage hints.

Usage

show_vision_models(show_details = FALSE, filter_by = NULL)

Arguments

show_details Logical indicating whether to show detailed information
filter_by Optional character vector to filter by architecture type

Value

Invisibly returns the models data.frame

Examples

Show all models
show_vision_models()

Show only CLIP models
show_vision_models(filter_by = "clip")

Show detailed information
show_vision_models(show_details = TRUE)

simulate_video Simulate latent and observed emotion scores for a single "video"

Description

This function simulates emotions in a video using the DLO model implemented as continuous time
state space model. The function takes in several parameters, including the time step, number of
steps, number of observables, and various model parameters. It returns a data frame containing
the simulated emotions and their derivatives, as well as smoothed versions of the observables. The
initial state of the video is always the same. Neutral score is 0.5 and both positive and negative
emotion score is 0.25. To simulate more realistic time series, there is an option of including a
sudden jump in the emotion scores. This is done by emphasizing the effect of the dominant emotion
during the period where the derivative of the latent variable is high. The observable value of the
strongest emotion from the positive or negative group will spike in the next k time step (emph.dur).
The probability of this happening is p at each time step in which the derivative of the latent variable
is greater than 0.2. The jump is proportionate to the derivative of the latent variable and the sum of
the observable values of the other emotions.

50 simulate_video

Usage

simulate_video(
dt,
num_steps,
num_observables,
eta_n,
zeta_n,
eta,
zeta,
sigma_q,
sd_observable,
loadings,
window_size,
emph = FALSE,
emph.dur = 10,
emph.prob = 0.5

)

Arguments

dt Numeric real. The time step for the simulation (in minutes).

num_steps Numeric real. Total length of the video (in minutes).
num_observables

Numeric integer. The number of observables to generate per factor. Total num-
ber of observables generated is 2 x num_observables.

eta_n Numeric. The eta parameter for the neutral state.

zeta_n Numeric. The zeta parameter for the neutral state.

eta Numeric. The eta parameter for the positive and negative emotions.

zeta Numeric. The zeta parameter for the positive and negative emotions.

sigma_q Numeric. The standard deviation of Dynamic Error of the q(t) function.

sd_observable Numeric. The standard deviation of the measurement error.

loadings Numeric (default = 0.8). The default initial loading of the latent variable on the
observable variable.

window_size Numeric integer. The window size for smoothing the observables.

emph Logical. Whether to emphasize the effect of dominant emotion (default is FALSE).

emph.dur Numeric integer. The duration of the emphasis (default is 10).

emph.prob Numeric. The probability of the dominant emotion being emphasized (default
is 0.5).

Value

A data frame (num_steps X (6 + num_observables)) containing the latent scores for neutral score,
positive emotions, negative emotions and their derivatives, as well as smoothed versions of the
observables.

stop_words 51

Examples

simulate_video(dt = 0.01, num_steps = 50, num_observables = 4,
eta_n = 0.5, zeta_n = 0.5,
eta = 0.5, zeta = 0.5,
sigma_q = 0.1, sd_observable = 0.1,
loadings = 0.8, window_size = 10)

stop_words Stop Words from the tm Package

Description

174 English stop words in the tm package

Usage

data(stop_words)

Format

A vector (length = 174)

Examples

data("stop_words")

summary.emotion_evaluation

Summary method for emotion evaluation results

Description

Summary method for emotion evaluation results

Usage

S3 method for class 'emotion_evaluation'
summary(object, ...)

Arguments

object An emotion_evaluation object

... Additional arguments (unused)

52 tinytrolls

te_cleanup_default_venv

Remove reticulate’s default virtualenv (r-reticulate)

Description

Removes the default ‘reticulate‘ virtual environment at ‘~/.virtualenvs/r-reticulate‘ to avoid conflicts
with uv-managed environments used by transforEmotion. This is optional and only needed if you
want to ensure uv’s environment is preferred.

Usage

te_cleanup_default_venv(confirm = TRUE)

Arguments

confirm Logical. Ask for confirmation before removal. Default TRUE.

Value

Invisibly returns TRUE on success, FALSE otherwise.

Examples

Not run:
te_cleanup_default_venv()
te_cleanup_default_venv(confirm = FALSE)

End(Not run)

tinytrolls Russian Trolls Data - Small Version

Description

A matrix containing a smaller subset of tweets from the trolls dataset, useful for test purposes.
There are approximately 20,000 tweets from 50 authors. This dataset includes only authored tweets
by each account; retweets, reposts, and repeated tweets have been removed. The original data
was provided by FiveThirtyEight and Clemson University researchers Darren Linvill and Patrick
Warren. For more information, visit https://github.com/fivethirtyeight/russian-troll-tweets

Usage

data(tinytrolls)

transformer_scores 53

Format

A data frame with 22,143 rows and 6 columns.

content A tweet.

author The name of the handle that authored the tweet.

publish_date The date the tweet was published on.

followers How many followers the handle had at the time of posting.

updates How many interactions (including likes, tweets, retweets) the post garnered.

account_type Left or Right

Examples

data(tinytrolls)

transformer_scores Sentiment Analysis Scores

Description

Uses sentiment analysis pipelines from huggingface to compute probabilities that the text corre-
sponds to the specified classes

Usage

transformer_scores(
text,
classes,
multiple_classes = FALSE,
transformer = c("cross-encoder-roberta", "cross-encoder-distilroberta",
"facebook-bart"),

device = c("auto", "cpu", "cuda"),
preprocess = FALSE,
keep_in_env = TRUE,
envir = 1,
local_model_path = NULL

)

Arguments

text Character vector or list. Text in a vector or list data format

classes Character vector. Classes to score the text
multiple_classes

Boolean. Whether the text can belong to multiple true classes. Defaults to
FALSE. Set to TRUE to get scores with multiple classes

https://huggingface.co

54 transformer_scores

transformer Character. Specific zero-shot sentiment analysis transformer to be used. Default
options:

"cross-encoder-roberta" Uses Cross-Encoder’s Natural Language Interface
RoBERTa Base zero-shot classification model trained on the Stanford Nat-
ural Language Inference (SNLI) corpus and MultiNLI datasets

"cross-encoder-distilroberta" Uses Cross-Encoder’s Natural Language
Interface DistilRoBERTa Base zero-shot classification model trained on the
Stanford Natural Language Inference (SNLI) corpus and MultiNLI datasets.
The DistilRoBERTa is intended to be a smaller, more lightweight version of
"cross-encoder-roberta", that sacrifices some accuracy for much faster
speed (see https://www.sbert.net/docs/cross_encoder/pretrained_models.html#nli)

"facebook-bart" Uses Facebook’s BART Large zero-shot classification model
trained on the Multi-Genre Natural Language Inference (MultiNLI) dataset

Defaults to "cross-encoder-distilroberta"

Also allows any zero-shot classification models with a pipeline from hugging-
face to be used by using the specified name (e.g., "typeform/distilbert-base-uncased-mnli";
see Examples)
Note: Using custom HuggingFace model IDs beyond the recommended models
is done at your own risk. Large models may cause memory issues or crashes,
especially on systems with limited resources. The package has been optimized
and tested with the recommended models listed above.

device Character. Whether to use CPU or GPU for inference. Defaults to "auto"
which will use GPU over CPU (if CUDA-capable GPU is setup). Set to "cpu"
to perform over CPU

preprocess Boolean. Should basic preprocessing be applied? Includes making lowercase,
keeping only alphanumeric characters, removing escape characters, removing
repeated characters, and removing white space. Defaults to FALSE. Transformers
generally are OK without preprocessing and handle many of these functions
internally, so setting to TRUE will not change performance much

keep_in_env Boolean. Whether the classifier should be kept in your global environment.
Defaults to TRUE. By keeping the classifier in your environment, you can skip
re-loading the classifier every time you run this function. TRUE is recommended

envir Numeric. Environment for the classifier to be saved for repeated use. Defaults
to the global environment

local_model_path

Optional. Path to a local directory containing a pre-downloaded HuggingFace
model. If provided, the model will be loaded from this directory instead of
being downloaded from HuggingFace. This is useful for offline usage or for
using custom fine-tuned models.
On Linux/Mac, look in ~/.cache/huggingface/hub/ folder for downloaded mod-
els. Navigate to the snapshots folder for the relevant model and point to the di-
rectory which contains the config.json file. For example: "/home/username/.cache/huggingface/hub/models–
cross-encoder–nli-distilroberta-base/snapshots/b5b020e8117e1ddc6a0c7ed0fd22c0e679edf0fa/"
On Windows, the base path is C:\Users\USERNAME\.cache\huggingface\transformers\
Warning: Using very large models from local paths may cause memory issues
or crashes depending on your system’s resources.

https://huggingface.co/cross-encoder/nli-roberta-base
https://huggingface.co/cross-encoder/nli-roberta-base
https://nlp.stanford.edu/projects/snli/
https://nlp.stanford.edu/projects/snli/
https://huggingface.co/datasets/nyu-mll/multi_nli
https://huggingface.co/cross-encoder/nli-distilroberta-base
https://huggingface.co/cross-encoder/nli-distilroberta-base
https://nlp.stanford.edu/projects/snli/
https://huggingface.co/datasets/nyu-mll/multi_nli
https://www.sbert.net/docs/cross_encoder/pretrained_models.html#nli
https://huggingface.co/facebook/bart-large-mnli
https://huggingface.co/datasets/nyu-mll/multi_nli
https://huggingface.co/models?pipeline_tag=zero-shot-classification
https://huggingface.co/models?pipeline_tag=zero-shot-classification

transformer_scores 55

Value

Returns probabilities for the text classes

Data Privacy

All processing is done locally with the downloaded model, and your text is never sent to any remote
server or third-party.

Author(s)

Alexander P. Christensen <alexpaulchristensen@gmail.com>

References

BART
Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., ... & Zettlemoyer,
L. (2019). Bart: Denoising sequence-to-sequence pre-training for natural language generation,
translation, and comprehension. arXiv preprint arXiv:1910.13461.

RoBERTa
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

Zero-shot classification
Yin, W., Hay, J., & Roth, D. (2019). Benchmarking zero-shot text classification: Datasets, evalua-
tion and entailment approach. arXiv preprint arXiv:1909.00161.

MultiNLI dataset
Williams, A., Nangia, N., & Bowman, S. R. (2017). A broad-coverage challenge corpus for sen-
tence understanding through inference. arXiv preprint arXiv:1704.05426.

Examples

Load data
data(neo_ipip_extraversion)

Example text
text <- neo_ipip_extraversion$friendliness[1:5]

Not run:
Cross-Encoder DistilRoBERTa
transformer_scores(
text = text,
classes = c(

"friendly", "gregarious", "assertive",
"active", "excitement", "cheerful"

)
)

Facebook BART Large
transformer_scores(
text = text,

56 vad_scores

classes = c(
"friendly", "gregarious", "assertive",
"active", "excitement", "cheerful"

),
transformer = "facebook-bart"

)

Directly from huggingface: typeform/distilbert-base-uncased-mnli
transformer_scores(
text = text,
classes = c(

"friendly", "gregarious", "assertive",
"active", "excitement", "cheerful"

),
transformer = "typeform/distilbert-base-uncased-mnli"

)

End(Not run)

vad_scores Direct VAD (Valence-Arousal-Dominance) Prediction

Description

Directly predicts VAD dimensions using classification with definitional labels, bypassing the inter-
mediate step of discrete emotion classification. This approach uses rich, educational descriptions of
each VAD pole to help transformer models understand the psychological concepts and make more
accurate predictions.

Usage

vad_scores(
input,
input_type = "auto",
dimensions = c("valence", "arousal", "dominance"),
label_type = "definitional",
custom_labels = NULL,
model = "auto",
...

)

Arguments

input Input data. Can be:

• Character: Text string, image file path, or video URL
• Character vector: Multiple texts or image paths
• List: Multiple text strings

vad_scores 57

input_type Character. Type of input data:
• "auto": Automatically detect based on input (default)
• "text": Text input for transformer classification
• "image": Image file path(s) for visual classification
• "video": Video URL(s) for video analysis

dimensions Character vector. Which VAD dimensions to predict:
• "valence": Positive vs negative emotional experience
• "arousal": High vs low activation/energy
• "dominance": Control vs powerlessness

Default: all three dimensions
label_type Character. Type of labels to use:

• "definitional": Rich descriptive labels with definitions (default)
• "simple": Basic polar labels (positive/negative, etc.)
• "custom": User-provided custom labels

custom_labels Optional list. Custom labels when label_type = "custom". Must follow structure:
list(valence = list(positive = "...", negative = "..."), ...)

model Character. Model to use for classification. Depends on input_type:
• Text: transformer model (see transformer_scores documentation)
• Image: CLIP model (see image_scores documentation)
• Video: CLIP model (see video_scores documentation)

... Additional arguments passed to underlying classification functions (transformer_scores,
image_scores, or video_scores)

Details

This function implements direct VAD prediction using the approach: Input → VAD Classification
→ VAD Scores

Instead of mapping from discrete emotions, each VAD dimension is treated as a separate binary
classification task using definitional labels that explain the psychological concepts.

Definitional Labels (default): The function uses rich descriptions that educate the model about
each dimension:

• **Valence**: "Positive valence, which refers to pleasant, enjoyable..."
• **Arousal**: "High arousal, which refers to intense, energetic..."
• **Dominance**: "High dominance, which refers to feeling in control..."

Input Type Detection: When input_type = "auto", the function detects input type based on:

• URLs starting with "http": Video
• File paths with image extensions: Image
• Everything else: Text

Score Interpretation: Scores represent the probability that the input exhibits the "high" pole:

• **Valence**: 1.0 = very positive, 0.0 = very negative
• **Arousal**: 1.0 = high energy, 0.0 = very calm
• **Dominance**: 1.0 = very controlling, 0.0 = very powerless

58 vad_scores

Value

A data.frame with columns:

• input_id: Identifier for each input (text content, filename, or index)

• valence: Valence score (0-1, where 1 = positive)

• arousal: Arousal score (0-1, where 1 = high arousal)

• dominance: Dominance score (0-1, where 1 = high dominance)

Only requested dimensions are included in output.

Data Privacy

All processing is done locally with downloaded models. Data is never sent to external servers.

Author(s)

Aleksandar Tomasevic <atomashevic@gmail.com>

References

Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology,
39(6), 1161-1178.

Bradley, M. M., & Lang, P. J. (1994). Measuring emotion: the self-assessment manikin and the
semantic differential. Journal of Behavior Therapy and Experimental Psychiatry, 25(1), 49-59.

Examples

Not run:
Text VAD analysis
texts <- c("I'm absolutely thrilled!", "I feel so helpless and sad", "This is boring")
text_vad <- vad_scores(texts, input_type = "text")
print(text_vad)

Image VAD analysis
image_path <- system.file("extdata", "boris-1.png", package = "transforEmotion")
image_vad <- vad_scores(image_path, input_type = "image")
print(image_vad)

Single dimension prediction
valence_only <- vad_scores(texts, dimensions = "valence")

Using simple labels for speed
simple_vad <- vad_scores(texts, label_type = "simple")

Custom labels for domain-specific applications
custom_labels <- list(

valence = list(
positive = "Customer satisfaction and positive brand sentiment",
negative = "Customer complaints and negative brand sentiment"

)

validate_rag_json 59

)
brand_vad <- vad_scores(texts, dimensions = "valence",

label_type = "custom", custom_labels = custom_labels)

End(Not run)

validate_rag_json Validate a RAG JSON structure

Description

Ensures the object has the expected fields and types: ‘labels‘, ‘confidences‘, ‘intensity‘, and ‘evi-
dence_chunks‘.

Usage

validate_rag_json(x, error = TRUE)

Arguments

x A list (parsed JSON) to validate.
error Logical; if TRUE, throws an error on invalid input.

Value

Invisibly returns TRUE when valid; otherwise FALSE or error.

validate_rag_predictions

Validate RAG Emotion/Sentiment Predictions

Description

Evaluates emotion/sentiment predictions from rag() or rag_sentemo() against ground truth labels
using the same metrics pipeline as evaluate_emotions(). Supports table or JSON structured outputs.

Usage

validate_rag_predictions(
rag_output,
ground_truth,
id_col = NULL,
task = c("emotion", "sentiment"),
labels_set = NULL,
metrics = c("accuracy", "f1_macro", "confusion_matrix"),
return_plot = FALSE

)

60 validate_rag_predictions

Arguments

rag_output Output from rag() or rag_sentemo() with structured outputs (data.frame with
columns like ‘doc_id‘, ‘label‘, ‘confidence‘; or JSON string with these fields).
Global schema outputs with ‘labels‘/‘confidences‘ are also handled by reducing
to the top label.

ground_truth Character vector of ground truth labels matching the number of predictions (or
length of provided ids).

id_col Optional identifier. If ‘rag_output‘ is a data.frame and ‘id_col‘ is a character
scalar naming a column present in it, that column is used as the prediction id.
Alternatively, ‘id_col‘ can be a vector of ids (same length as ‘ground_truth‘)
used to align ground truth to the predictions by merge.

task Task type: one of ‘"emotion"‘ or ‘"sentiment"‘ (used for metadata and optional
label set enforcement).

labels_set Optional character vector of allowed labels for validation. If provided, predic-
tions will be lowercased and filtered to this set where possible.

metrics Metrics to compute, forwarded to evaluate_emotions() (e.g., ‘c("accuracy","f1_macro","confusion_matrix")‘).

return_plot Logical; whether to include plotting helpers.

Value

A list of evaluation results in the same format as evaluate_emotions(), augmented with ‘$rag_metadata‘
summarizing RAG-specific context (documents, transformer, task).

Examples

Not run:
texts <- c(

"I feel so happy and grateful today!",
"This is frustrating and makes me angry.",
"I'm not sure how I feel about this."

)

Get predictions (structured per-document output)
rag_results <- rag_sentemo(

texts,
task = "emotion",
output = "table",
transformer = "Gemma3-1B"

)

Ground truth labels
ground_truth <- c("joy", "anger", "neutral")

Validate predictions
validation_results <- validate_rag_predictions(

rag_output = rag_results,
ground_truth = ground_truth,
task = "emotion",
metrics = c("accuracy", "f1_macro", "confusion_matrix"),

video_scores 61

return_plot = TRUE
)

End(Not run)

video_scores Run FER on a YouTube video using a Hugging Face CLIP model

Description

This function retrieves facial expression recognition (FER) scores from a specific number of frames
extracted from a YouTube video using a specified Hugging Face CLIP model. It utilizes Python
libraries for facial recognition and emotion detection in text, images, and video.

Usage

video_scores(
video,
classes,
nframes = 100,
face_selection = "largest",
start = 0,
end = -1,
uniform = FALSE,
ffreq = 15,
save_video = FALSE,
save_frames = FALSE,
save_dir = "temp/",
video_name = "temp",
model = "oai-base",
local_model_path = NULL

)

Arguments

video The URL of the YouTube video to analyze.

classes A character vector specifying the classes to analyze.

nframes The number of frames to analyze in the video. Default is 100.

face_selection The method for selecting faces in the video. Options are "largest", "left", "right",
or "none". Default is "largest". Use "none" to classify the whole frame without
face cropping.

start The start time of the video range to analyze. Default is 0.

end The end time of the video range to analyze. Default is -1 and this means that
video won’t be cut. If end is a positive number greater than start, the video will
be cut from start to end.

62 video_scores

uniform Logical indicating whether to uniformly sample frames from the video. Default
is FALSE.

ffreq The frame frequency for sampling frames from the video. Default is 15.

save_video Logical indicating whether to save the analyzed video. Default is FALSE.

save_frames Logical indicating whether to save the analyzed frames. Default is FALSE.

save_dir The directory to save the analyzed frames. Default is "temp/".

video_name The name of the analyzed video. Default is "temp".

model A string specifying the vision model to use. Options include:

• Built-in models: "oai-base" (default), "oai-large", "eva-8B", "jina-v2"
• Any valid HuggingFace model ID
• Custom registered models (see register_vision_model)

Use list_vision_models to see all available models. Note: Video processing
is memory-intensive, so use caution with large models.

local_model_path

Optional. Path to a local directory containing a pre-downloaded HuggingFace
model. If provided, the model will be loaded from this directory instead of
being downloaded from HuggingFace. This is useful for offline usage or for
using custom fine-tuned models.
On Linux/Mac, look in ~/.cache/huggingface/hub/ folder for downloaded mod-
els. Navigate to the snapshots folder for the relevant model and point to the di-
rectory which contains the config.json file. For example: "/home/username/.cache/huggingface/hub/models–
cross-encoder–nli-distilroberta-base/snapshots/b5b020e8117e1ddc6a0c7ed0fd22c0e679edf0fa/"
On Windows, the base path is C:\Users\USERNAME\.cache\huggingface\transformers\
Warning: Using very large models from local paths may cause memory issues
or crashes depending on your system’s resources, especially when processing
videos with many frames.

Value

A result object containing the analyzed video scores.

Data Privacy

All processing is done locally with the downloaded model, and your video frames are never sent to
any remote server or third-party.

Author(s)

Aleksandar Tomasevic <atomashevic@gmail.com>

Index

∗ datasets
.vision_model_registry, 4
emotions, 12
neo_ipip_extraversion, 29
stop_words, 51
tinytrolls, 52

.init_builtin_models, 3

.vision_model_registry, 4

add_vision_model, 4
as_rag_table, 6

calculate_moving_average, 7
check_findingemo_quality, 7
check_nvidia_gpu, 8
costring, 29

delete_transformer, 9
dlo_dynamics, 10
download_findingemo_data, 10, 24

emotions, 12, 13, 14
emoxicon_scores, 13, 17
emphasize, 14
evaluate_emotions, 15, 35

generate_observables, 17
generate_q, 18
get_vision_model_config, 19

image_scores, 19
image_scores_dir, 21
is_vision_model_registered, 22

list_vision_models, 20, 22, 62
load_findingemo_annotations, 12, 23, 35

map_discrete_to_vad, 25
map_to_emo8, 27
MASS_mvrnorm, 28

neo_ipip_extraversion, 29

nlp_scores, 17, 29

parse_rag_json, 32
plot.emotion_evaluation, 33
plot_sim_emotions, 33
prepare_findingemo_evaluation, 24, 34
print.emotion_evaluation, 36
punctuate, 36
py_require, 8

rag, 37
rag_json_utils, 40
rag_sentemo, 41
register_retriever, 42
register_vision_model, 20, 43, 62
remove_vision_model, 44

sentence_similarity, 45
setup_gpu_modules, 46
setup_miniconda, 47
setup_modules, 12, 47
setup_popular_models, 48
show_vision_models, 49
simulate_video, 49
stop_words, 30, 51
summary.emotion_evaluation, 51

te_cleanup_default_venv, 52
tinytrolls, 52
transforEmotion

(transforEmotion-package), 3
transforEmotion-package, 3
transformer_scores, 17, 53

vad_scores, 56
validate_rag_json, 59
validate_rag_predictions, 59
video_scores, 61

weights, 13

63

	transforEmotion-package
	.init_builtin_models
	.vision_model_registry
	add_vision_model
	as_rag_table
	calculate_moving_average
	check_findingemo_quality
	check_nvidia_gpu
	delete_transformer
	dlo_dynamics
	download_findingemo_data
	emotions
	emoxicon_scores
	emphasize
	evaluate_emotions
	generate_observables
	generate_q
	get_vision_model_config
	image_scores
	image_scores_dir
	is_vision_model_registered
	list_vision_models
	load_findingemo_annotations
	map_discrete_to_vad
	map_to_emo8
	MASS_mvrnorm
	neo_ipip_extraversion
	nlp_scores
	parse_rag_json
	plot.emotion_evaluation
	plot_sim_emotions
	prepare_findingemo_evaluation
	print.emotion_evaluation
	punctuate
	rag
	rag_json_utils
	rag_sentemo
	register_retriever
	register_vision_model
	remove_vision_model
	sentence_similarity
	setup_gpu_modules
	setup_miniconda
	setup_modules
	setup_popular_models
	show_vision_models
	simulate_video
	stop_words
	summary.emotion_evaluation
	te_cleanup_default_venv
	tinytrolls
	transformer_scores
	vad_scores
	validate_rag_json
	validate_rag_predictions
	video_scores
	Index

