Package ‘vapour’

December 21, 2025

Title Access to the 'Geospatial Data Abstraction Library' (GDAL')
Version 0.15.0

Description Provides low-level access to 'GDAL' functionality.
'GDAL' is the 'Geospatial Data Abstraction Library' a translator for raster and vector geospa-
tial data formats
that presents a single raster abstract data model and single vector abstract data model to the call-
ing application
for all supported formats <https://gdal.
org/>. This package is focussed on providing exactly and only what GDAL does, to enable
developing further tools.

Depends R (>=4.2.0)

License GPL-3

Encoding UTF-8

LazyData true

LinkingTo Rcpp

Imports jsonlite, nanoarrow, Rcpp, stringr, utils, wk

RoxygenNote 7.3.2

Suggests testthat, knitr, markdown, rmarkdown, spelling
SystemRequirements libgdal-dev, GDAL (>=2.2.3), PROJ (>=4.8.0)
VignetteBuilder knitr

URL https://github.com/hypertidy/vapour,
https://hypertidy.github.io/vapour/

BugReports https://github.com/hypertidy/vapour/issues
Language en-US
NeedsCompilation yes

Author Michael Sumner [aut, cre] (ORCID:
<https://orcid.org/0000-0002-2471-7511>),
Simon Wotherspoon [ctb] (RasterIO configuration for resampling options),
Mark Padgham [ctb] (helped get started :)),
Edzer Pebesma [ctb] (wrote the field-read handling, adapted here from

1

https://gdal.org/
https://gdal.org/
https://github.com/hypertidy/vapour
https://hypertidy.github.io/vapour/
https://github.com/hypertidy/vapour/issues
https://orcid.org/0000-0002-2471-7511

sf),

Roger Bivand [ctb] (wrote configure.ac, adapted here from rgdal),

Jim Hester [ctb, cph] (wrote CollectorList.h, copied here from fs
package),

Timothy Keitt [ctb] (wrote GetPointsInternal copied here from rgdal2
package),

Jeroen Ooms [ctb] (tweaked build process, provided Windows build tools),

Dale Maschette [ctb] (created the hex logo),

Joseph Stachelek [ctb],

Even Rouault [ctb] (primary author of the COG format and its use of the
GDALwarp app-library, example code used by the warper function
here),

Robert Hijmans [ctb] (code in terra package used as
example/inspiration),

Dewey Dunnington [ctb] (wrote the columnar-access mode streaming Arrow
support),

Tomas Kalibera [ctb]

Maintainer Michael Sumner <mdsumner@gmail . com>
Repository CRAN
Date/Publication 2025-12-21 06:10:02 UTC

Contents

vapour-package e e e e e
buildvrt
gdal_raster_data
SSLLC v v e e e e
tasS_ WKt . . . e
Vapour_Create e e e e e e
vapour_crs_is_lonlat
vapour_gdal_version
vapour_geolocation
VAPOUr_EOM_NAME . . . « « & . v v v e e e e e et e e e e e e
VapOUr_gEeOM_SUMMATLY o v v v e e e et e e e e e e e e e e
Vapour_layer_extent
vapour_layer_info Lo o
vapour_layer_names e
VAPOUT_TASEI_ZCP + « « v v e v v e e e e e e e e e e e e e e
vapour_raster_info Lo
vapour_read_fids
vapour_read_fields
vapour_read_geometryo a e e e e e
vapour_read_rastero
vapour_read_raster_block oL oL
vapour_read_raster_rawo i e e e e
vapour_report_fields o
vapour_sds_Nameso e e

Contents

vapour-package 3

vapour_set_config e e e e e e 33
VApOUT_STS_WKL o o e e e e e e 34
VAPOUI_VIT . . . o v v it i e i e e e e e e e e e e e e e e e e 35
vapour_vsi_list 37
VAPOUI_WAIP_TASIET o . v v v vt e it e e e e e e e e e e e e e e 38
VAPOUT_WAIP_TASIET_TAW . . . v v v v v e v e e e e e e e e e e e e e e e e 41
vapour_write_raster_block 45
VECLOT_VIT . . . o v o i e e e e e e e e e e e 46

Index 47

vapour-package vapour
Description

A lightweight GDAL API package for R.

Details

Provides low-level access to ’GDAL’ functionality for R packages. The aim is to minimize the level
of interpretation put on the "GDAL’ facilities, to enable direct use of it for a variety of purposes.
’GDAL’ is the *Geospatial Data Abstraction Library’ a translator for raster and vector geospatial
data formats that presents a single raster abstract data model and single vector abstract data model
to the calling application for all supported formats https://gdal.org/.

Lightweight means we access parts of the GDAL API as near as possible to their native usage.
GDAL is not a lightweight library, but provide a very nice abstraction over format details for a very
large number of different formats.

Functions for raster and vector sources are included.

vapour_all_drivers list of all available drivers, with type and features

vapour_driver report short name of driver that will be used for a data source
vapour_gdal_version report version of GDAL in use

vapour_srs_wkt produce WKT projection string from various projection string inputs
vapour_vsi_list report contents of VSI sources

vapour_raster_gcp return internal ground control points, if present
vapour_raster_info structural metadata of a source

vapour_read_raster read data direct from a window of a raster band source
vapour_sds_names list individual raster sources in a source containing subdatasets
vapour_warp_raster read data direct from a raster source into a specific window

vapour_driver report name of the driver used for a given source

https://gdal.org/

4 vapour-package

vapour_geom_name report attribute name of geometry

vapour_geom_summary report simple properties of each feature geometry
vapour_layer_names list names of vector layers in a data source

vapour_layer_info list of data source, driver, layer name/s, fields, feature count, projection
vapour_read_extent read the extent, or bounding box, of geometries in a layer
vapour_read_fields read attributes of features in a layer, the columnar data associated with each geometry
vapour_read_geometry read geometry in binary (blob, WKB) form
vapour_read_geometry_ia read geometry by index, arbitrary

vapour_read_geometry_ij read geometry by sequential index, i to j
vapour_read_geometry_text read geometry in text form, various formats

vapour_read_names read the 'names’ of features in a layer, the "FID’

vapour_read_type read the GDAL types of attributes

vapour_report_fields report internal type of each attribute by name

As far as possible vapour aims to minimize the level of interpretation provided for the functions, so
that developers can choose how things are implemented. Functions return raw lists or vectors rather
than data frames or classed types.

options

The following options can be set to control global behaviour.

Sys.getenv("vapour.sqgl.dialect”) the current SQL dialect in use

SQL dialect

The SQL dialect can be set to "" (empty string), "OGRSQL", or "SQLITE".

The empty string indicates that the native dialect will be used, see [OGRSQL and SQLITE for
GDAL(https://gdal.org/en/stable/user/ogr_sql_sqlite_dialect.html) and the GDAL_DMD_SUPPORTED_SQL_DIALECTS
development documentation.

Setting "NATIVE" as an alias for "" is quite recent and has not been tested with vapour, similarly
no testing has been done with non OGRSQL-native or SQLITE-native drivers yet.

Author(s)

Maintainer: Michael Sumner <mdsumner@gmail . com> (ORCID)

Other contributors:

» Simon Wotherspoon (RasterIO configuration for resampling options) [contributor]

* Mark Padgham (helped get started :)) [contributor]

* Edzer Pebesma (wrote the field-read handling, adapted here from sf) [contributor]

* Roger Bivand (wrote configure.ac, adapted here from rgdal) [contributor]

* Jim Hester (wrote CollectorList.h, copied here from fs package) [contributor, copyright holder]

» Timothy Keitt (wrote GetPointsInternal copied here from rgdal2 package) [contributor]

https://gdal.org/en/stable/api/raster_c_api.html
https://gdal.org/en/stable/api/raster_c_api.html
https://orcid.org/0000-0002-2471-7511

buildvrt 5

* Jeroen Ooms (tweaked build process, provided Windows build tools) [contributor]
* Dale Maschette (created the hex logo) [contributor]
 Joseph Stachelek [contributor]

* Even Rouault (primary author of the COG format and its use of the GDALwarp app-library,
example code used by the warper function here) [contributor]

* Robert Hijmans (code in terra package used as example/inspiration) [contributor]
* Dewey Dunnington (wrote the columnar-access mode streaming Arrow support) [contributor]

e Tomas Kalibera [contributor]

See Also
Useful links:
e https://github.com/hypertidy/vapour

e https://hypertidy.github.io/vapour/
* Report bugs at https://github.com/hypertidy/vapour/issues

buildvrt Build vrt, special case "-separate”

Description

Build vrt, special case "-separate”

Usage
buildvrt(dsn)

Arguments

dsn one or more raster sources

Value

a character string of the built vrt, multiple sources treated as bands

Examples

f <- system.file("extdata/sst.tif"”, package = "vapour”, mustWork = TRUE)
vrt <- buildvrt(c(f, vapour_vrt(f)))
writeLines(vrt)

https://github.com/hypertidy/vapour
https://hypertidy.github.io/vapour/
https://github.com/hypertidy/vapour/issues

6 gdal_raster_data

gdal_raster_data General raster read and convert

Description

The warper is used to convert source/s to an output file or to data in memory.

Usage

gdal_raster_data(
dsn,
target_crs = NULL,
target_dim = NULL,
target_ext = NULL,
target_res = NULL,
resample = "near”,
bands = 1L,
band_output_type = NULL,
options = character(),
include_meta = TRUE

)

gdal_raster_dsn(
dsn,
target_crs = NULL,
target_dim = NULL,
target_ext = NULL,
target_res = NULL,
resample = "near”,
bands = NULL,

band_output_type = NULL,
options = character(),

out_dsn = tempfile(fileext = ".tif"),
include_meta = TRUE
)
gdal_raster_image(
dsn,
target_crs = NULL,
target_dim = NULL,
target_ext = NULL,
target_res = NULL,
resample = "near”,
bands = NULL,

band_output_type = NULL,
options = character(),
include_meta = TRUE

gdal_raster_data 7

gdal_raster_nara(
dsn,
target_crs = NULL,
target_dim = NULL,
target_ext = NULL,
target_res = NULL,
resample = "near”,
bands = NULL,
band_output_type = NULL,
options = character(),
include_meta = TRUE

)
Arguments
dsn data sources, files, urls, db strings, vrt, etc
target_crs projection of the target grid
target_dim dimension of the target grid
target_ext extent of the target grid
target_res resolution of the target grid
resample resampling algorithm used
bands band or bands to include, default is first band only (use NULL or a value less

that one to obtain all bands)
band_output_type
specify the band type, see vapour_read_raster

options general options passed to gdal warper
include_meta metadata is attached, turn off by setting this to FALSE

out_dsn file name for output "_dsn"

Details

Two functions ’gdal_raster_data’ and ’gdal_raster_dsn’ act like the gdalwarp command line tool, a
convenience third function ’gdal_raster_image()’ works especially for image data.

Value

pixel values in a list vector per band, or a list of file paths

Examples

dsn <- system.file("extdata/sst.tif"”, package = "vapour")
do nothing, get native
X <- gdal_raster_data(dsn)

set resolution (or dimension, extent, crs, or combination thereof - GDAL

8 sst_ ¢

will report/resolve incompatible opts)
X1 <- gdal_raster_data(dsn, target_res = 1)

add a cutline, and cut to it using gdal warp args

if (interactive()) {
cutline <- tempfile(fileext = ".csv")
wkt <- "POLYGON ((142 -41, 149 -41, 146 -58, 142 -41))"
write.csv(data.frame(id = 1, WKT = wkt), cutline, row.names = FALSE)
X1c <- gdal_raster_data(dsn, target_res = .5,

options = c("-cutline”,cutline, "-crop_to_cutline"))
file.remove(cutline)

}

warp whole grid to given res
X2 <- gdal_raster_data(dsn, target_res = 25000, target_crs = "EPSG:32755")

specify exactly (as per vapour originally)
X3 <- gdal_raster_data(dsn, target_ext = c(-1, 1, -1, 1) * 8e6,
target_dim = c(512, 678), target_crs = "+proj=stere +lon_0=147 +lat_0=-90")

X4 <- gdal_raster_dsn(dsn, out_dsn = tempfile(fileext = ".tif"))
sst_c SST contours
Description

Southern Ocean GHRSST contours in sf data frame from 2017-07-28, read from

Details
podaac-ftp.jpl.nasa.gov/allData/ghrsst/data/GDS2/L.4 GLOB/JPL/MUR/v4.1/2017/209/20170728090000-
JPL-L4_GHRSST-SSTfnd-MUR-GLOB-v02.0-fv04.1.nc
See data-raw/sst_c.R for the derivation column sst_c in Celsius.

Also stored in FlatGeoBuf format in system.file("extdata/sst_c.fgb", package = "vapour")

Examples

f <- system.file("extdata/sst_c.fgbh", package = "vapour")

create a class-less form of the data in the 'sst_c.fgb' file with GeoJSON geometry
atts <- vapour_read_fields(f)

dat <- as.data.frame(atts, stringsAsFactors = FALSE)

dat[["json"]] <- vapour_read_geometry_text(f)

names(dat)

names(sst_c)

tas_wkt 9

tas_wkt Example WKT coordinate reference system

Description

A Lambert Azimuthal Equal Area Well-Known-Text string for a region centred on Tasmania.

Details
Created from ’+proj=laea +lon_0=147 +lat_0=-42 +datum=WGS84’. For use in a future warping
example.
vapour_create Create raster file
Description

This is in an incomplete interface to raster writing, for exploring.

Usage

vapour_create_options(driver = "GTiff")

vapour_create(
filename,
driver = "GTiff",
extent = c(-180, 180, -90, 90),
dimension = c(2048, 1024),

projection = "EPSG:4326",
n_bands = 1L,
overwrite = FALSE,

datatype = "Float32",
options = vapour_create_options(driver)

)
Arguments
driver GDAL driver to use (GTiff is default, and recommended)
filename filename/path to create
extent Xmin,xmax,ymin,ymax 4-element vector
dimension dimension of the output, X * Y
projection projection of the output, best to use a full WKT but any string accepted

n_bands number of bands in the output, default is 1

10 vapour_crs_is_lonlat

overwrite not TRUE by default
datatype the name of a GDAL datatype (’Float32’, *Int64’, etc)
options character vector of creation of options for the driver in use ¢ (' COMPRESS=DEFLATE ")

note how these are constructed (no ’-co’ element)

Details

If GeoTIFF is used (driver = "GTiff", recommended) then the output is tiled 512x512, and has
DEFLATE compression, and is sparse when created (no values are initiated, so the file is tiny).

Note that there is no restriction on where you can read or write from, the responsibility is yours.
There is no auto driver detection done for the file format, it’s up to you to set the file extension and
the driver.

File is created using CreateCopy from a VRT in memory. This is so that we can instantiate
COG layer with “driver = "COG". Please note that performance is best for GTiff itself, with
’SPARSE_OK=YES’. We don’t yet know how to instantiate a large COG with overviews.

There are default creation options set for COG and GTiff drivers, see *vapour_create_options(driver
"GTiff")’ for what those are.

Value

the file path that was created

Examples

tfile <- tempfile(fileext = ".tif")

if (!file.exists(tfile)) {

vapour_create(tfile, extent = c(-1, 1, -1, 1) * 1e6,
dimension = c(128, 128),
projection = "+proj=laea”)

file.remove(tfile)

}

vapour_crs_is_lonlat Is the CRS string representative of angular coordinates

Description
Returns TRUE if this is longitude latitude data. Missing, malformed, zero-length values are disal-
lowed.

Usage

vapour_crs_is_lonlat(crs)

Arguments

crs character string of length 1

vapour_gdal_version 11

Value

logical value TRUE for lonlat, FALSE otherwise

Examples

vapour_gdal_version() ## versions to catch problems with string input
vapour_proj_version()

vapour_crs_is_lonlat("+proj=aeqd +lon_0=147 +lat_0=-42")
vapour_crs_is_lonlat("EPSG:4326")

vapour_srs_wkt("+proj=laea”)

vapour_crs_is_lonlat("+proj=laea +type=crs")
vapour_crs_is_lonlat("0GC:CRS84")

vapour_crs_is_lonlat ("WGS84")

vapour_crs_is_lonlat (”"NAD27")

vapour_crs_is_lonlat("EPSG:3031")

vapour_gdal_version GDAL version and drivers.

Description

Return information about the GDAL library in use.

Usage

vapour_gdal_version()
vapour_proj_version()
vapour_all_drivers()

vapour_driver(dsource)

Arguments

dsource data source string (i.e. file name or URL or database connection string)

Details

vapour_gdal_version returns the version of GDAL as a string. This corresponds to the "—version"
as described for "GDALVersionInfo". GDAL documentation.

vapour_all_drivers returns the names and capabilities of all available drivers, in a list. This
contains:

e driver the driver (short) name

* name the (long) description name

* vector logical vector indicating a vector driver

https://gdal.org/

12 vapour._geolocation

* raster logical vector indicating a raster driver
* create driver can create (note vapour provides no write capacity)
* copy driver can copy (note vapour provides no write capacity)

* virtual driver has virtual capabilities ("vsi’)

vapour_driver() returns the short name of the driver, e.g. *GPKG’ or *GTiff’, to get the long
name and other properties use vapour_all_drivers() and match on ’driver’.

Value

please see Details, character vectors or lists of character vectors

Examples

vapour_gdal_version()
drv <- vapour_all_drivers()

f <- system.file("extdata/sst_c.fgb", package = "vapour")
vapour_driver(f)

as.data.frame(drv)[match(vapour_driver(f), drv$driver), 1]

vapour_geolocation Retrieve geolocation information for a dataset

Description

Value is a named vector in a list.

Usage

vapour_geolocation(x, sds = NULL)

Arguments
X data source string (i.e. file name or URL or database connection string)
sds a subdataset number, if necessary

Details

If no geolocation exist the return value is an empty list.

Value

list with a single character vector

vapour_geom_name 13

Examples

drivers <- vapour_all_drivers()

ok <- drivers$raster[drivers$driver == "netCDF"]

if (isTRUE(ok) && interactive()) {
vapour_geolocation(system.file("extdata/gdal/geos_rad.nc", package = "vapour"), OL)

}

vapour_geom_name Read geometry column name

Description

There might be one or more geometry column names, or it might be an empty string.

Usage
vapour_geom_name (dsource, layer = @OL, sql = "")
Arguments
dsource data source name (path to file, connection string, URL)
layer integer of layer to work with, defaults to the first (0) or the name of the layer
sql if not empty this is executed against the data source (layer will be ignored)
Details

It mightbe "", or "geom", or "ogr_geometry" - the last is a default name given when SQL is executed
by GDAL but there was no geometry name, and *SELECT * ’ or equivalent was used.

This feature is required by the DBI backend work in RGDALSQL, so that when SELECT * is used
we can give a reasonable name to the geometry column which is obtained separately.

Value

character vector of geometry column name/s

Examples

file <- system.file("extdata/tab/list_locality_postcode_meander_valley.tab"”, package = "vapour”)
vapour_geom_name(file) ## empty string

14

vapour_geom_summary

vapour_geom_summary Summary of available geometry

Description

Read properties of geometry from a source, optionally after SQL execution.

Usage
vapour_geom_summary (
dsource,
layer = oL,
sql = nn ,
limit_n = NULL,
skip_n = 0,
extent = NA
)
Arguments
dsource data source name (path to file, connection string, URL)
layer integer of layer to work with, defaults to the first (0) or the name of the layer
sql if not empty this is executed against the data source (layer will be ignored)
limit_n an arbitrary limit to the number of features scanned
skip_n an arbitrary number of features to skip
extent apply an arbitrary extent, only when ’sql’ used (must be ’ex = c(xmin, Xxmax,
ymin, ymax)’ but sp bbox, sf bbox, and raster extent also accepted)
Details

Use 1limit_n to arbitrarily limit the number of features queried.

Value
list containing the following
* FID the feature id value (an integer, usually sequential)

* valid_geometry logical value if a non-empty geometry is available

* type integer value of geometry type from GDAL enumeration

e xmin, xmax, ymin, ymax numeric values of the extent (bounding box) of each geometry

https://gdal.org/en/stable/doxygen/ogr__core_8h.html

vapour_layer_extent

Examples

file <- "list_locality_postcode_meander_valley.tab"
mvfile <- system.file(file.path("extdata/tab"”, file), package="vapour")
vapour_geom_summary(mvfile, limit_n = 3L)

gsum <- vapour_geom_summary(mvfile)

plot(NA, xlim = range(c(gsum$xmin, gsum$xmax), na.rm = TRUE),
ylim = range(c(gsum$ymin, gsum$ymax), na.rm = TRUE))

rect(gsum$xmin, gsum$ymin, gsum$xmax, gsum$ymax)

text(gsum$xmin, gsum$ymin, labels = gsum$FID)

15

vapour_layer_extent Read layer extent

Description

Extent of all features in entire layer, possibly after execution of sql query and input extent filter.

Usage
vapour_layer_extent(dsource, layer = 0L, sql = "", extent = 0, ...)
Arguments
dsource data source name (path to file, connection string, URL)
layer integer of layer to work with, defaults to the first (0) or the name of the layer
sql if not empty this is executed against the data source (layer will be ignored)
extent optional extent (xmin,xmax,ymin,ymax)
unused
Value

vector of numeric values xmin,xmax,ymin,ymax

See Also

vapour_read_extent vapour_layer_info

Examples

file <- "list_locality_postcode_meander_valley.tab"

A MapInfo TAB file with polygons

mvfile <- system.file(file.path("extdata/tab"”, file), package="vapour")
vapour_layer_extent(mvfile)

16 vapour_layer_info

vapour_layer_info Read GDAL layer info

Description

Read GDAL layer information for a vector data source.

Usage
vapour_layer_info(
dsource,
layer = oL,
sql = nn ,
extent = NA,
count = TRUE,
)
Arguments
dsource data source name (path to file, connection string, URL)
layer integer of layer to work with, defaults to the first (0) or the name of the layer
sql if not empty this is executed against the data source (layer will be ignored)
extent apply an arbitrary extent, only when ’sql’ used (must be ’ex = c(xmin, Xxmax,
ymin, ymax)’ but sp bbox, sf bbox, and raster extent also accepted)
count logical to control if count calculated and returned, TRUE by default (set to
FALSE to avoid the extra calculation and missing value is the result)
unused, reserved for future use
Details

Set extent and/or count to FALSE to avoid calculating them if not needed, it might take some time.

The layer information elements are

dsn the data source name

driver the short name of the driver used

layer the name of the layer queried

layer_names the name/s of all available layers (see vapour_layer_names)

fields a named vector of field types (see vapour_report_fields)

count the number of features in this data source (can be turned off to avoid the extra work count)

extent the extent of all features xmin, xmax, ymin, ymax (can be turned off to avoid the extra work
extent)

projection a list of character strings, see next

vapour_layer_names 17

$projectionis alist of various formats of the projection metadata. Use $projection$Wkt as most
authoritative, but we don’t enter into the discussion or limit what might be done with this (that’s up
to you). Currently we see c("Proj4", "MICoordSys"”, "PrettyWkt", "Wkt", "EPSG", "XML")
as names of this $projection element.

To get the geometry type/s of a layer see vapour_read_type().

Value

list with a list of character vectors of projection metadata, see details

See Also

vapour_geom_name vapour_layer_names vapour_report_fields vapour_read_fields vapour_driver
vapour_read_names

Examples

file <- "list_locality_postcode_meander_valley.tab"

A MapInfo TAB file with polygons

mvfile <- system.file(file.path("extdata/tab"”, file), package="vapour")
info <- vapour_layer_info(mvfile)

names (info$projection)

info depends on the query/spatial-filter
vapour_layer_info(mvfile, extent = c(412000, 420000, 5352612.8, 5425154.3),
sql = "SELECT * FROM list_locality_postcode_meander_valley")$count

vapour_layer_names Read GDAL layer names

Description

Obtain the names of available layers from a GDAL vector source.

Usage
vapour_layer_names(dsource, ...)
Arguments
dsource data source name (path to file, connection string, URL)

arguments ignore for deprecated compatibility (no ’sql’ argument any longer)

18 vapour_raster_gcp

Details

Some vector sources have multiple layers while many have only one. Shapefiles for example have
only one, and the single layer gets the file name with no path and no extension. GDAL provides a
quirk for shapefiles in that a directory may act as a data source, and any shapefile in that directory
acts like a layer of that data source. This is a little like the one-or-many sleight that exists for raster
data sources with subdatasets (there’s no way to virtualize single rasters into a data source with
multiple subdatasets, oh except by using VRT....)

See vapour_sds_names for more on the multiple topic.

Value

character vector of layer names

Examples

file <- "list_locality_postcode_meander_valley.tab"”
mvfile <- system.file(file.path("extdata/tab"”, file), package="vapour")
vapour_layer_names(mvfile)

vapour_raster_gcp Raster ground control points

Description

Return any ground control points for a raster data set, if they exist.

Usage
vapour_raster_gcp(x, ...)
Arguments
X data source string (i.e. file name or URL or database connection string)
ignored currently
Details

Pixel and Line coordinates do not correspond to cells in the underlying raster grid, they refer to the
index space of that array in 0, ncols and 0, nrows. They are usually a subsample of the grid and may
not align with the grid spacing itself (though they often do in satellite remote sensing products).

The coordinate system of the GCPs is currently not read.

vapour._raster_info 19

Value

list with

* Pixel the pixel coordinate

* Line the line coordinate

* X the X coordinate of the GCP

* Y the Y coordinate of the GCP

¢ Z the Z coordinate of the GCP (usually zero)

Examples

this file has no ground control points

they are rare, and tend to be in large files

f <- system.file("extdata”, "sst.tif"”, package = "vapour")
vapour_raster_gcp(f)

a very made-up example with no real use
f1 <- system.file("extdata/gcps”, "volcano_gcp.tif", package = "vapour")
vapour_raster_gcp(f1)

vapour_raster_info Raster information

Description

Return the basic structural metadata of a raster source understood by GDAL. Subdatasets may be
specified by number, starting at 1. See vapour_sds_names for more.

Usage
vapour_raster_info(x, ..., sds = NULL, min_max = FALSE)
Arguments
X data source string (i.e. file name or URL or database connection string)
currently unused
sds a subdataset number, if necessary

min_max logical, control computing min and max values in source CFALSE’ by default)

20

vapour_raster_info

Details

The structural metadata are

extent the extent of the data, xmin, xmax, ymin, ymax - these are the lower left and upper right
corners of pixels

geotransform the affine transform

dimension dimensions x-y, columns*rows

minmax numeric values of the computed min and max from the first band (optional)
block dimensions x-y of internal tiling scheme

projection text version of map projection parameter string

bands number of bands in the dataset

projstring the proj string version of ’projection’

nodata_value not implemented

overviews the number and size of any available overviews

filelist the list of files involved (may be none, and so will be a single NA character value)
datatype the band type name, in GDAL form *Byte’, "Int16’, Float32’, etc.
subdatasets any subdataset DSNs is present, otherwise NULL

corners corner coordinates of the data, for non-zero skew geotransforms a 2-column matrix with
rows upperLeft, lowerLeft, lowerRight, upperRight, and center

Note that the geotransform is a kind of obscure combination of the extent and dimension, I don’t
find it useful and modern GDAL is moving away from needing it so much. Extent is more sensible
and used in many places in a straightforward way.

On access vapour functions will report on the existence of subdatasets while defaulting to the first
subdataset found.

Value

list with vectors ’geotransform’, ’dimXY’, *'minmax’, ’tilesXY’, *projection’, *bands’, ’proj4’, 'no-
data_value’, "overviews’, ’filelist’ see sections in Details for more on each element

Subdatasets

Some sources provide multiple data sets, where a dataset is described by a 2- (or more) dimensional
grid whose structure is described by the metadata described above. Note that subdataset is a differ-
ent concept to band or dimension. Sources that may have multiple data sets are HDF4/HDF5 and
NetCDF, and they are loosely analogous to the concept of layer in GDAL vector data. Variables are
usually seen as distinct data but in GDAL and related 2D-interpretations this concept is leveraged
as a 3rd dimension (and higher). In a GeoTIFF a third dimension might be implicit across bands,
i.e. to express time varying data and so each band is not properly a variable. Similarly in NetCDF,
the data may be any dimensional but there’s only an implicit link for other variables that exist in
that same dimensional space. When using GDAL you are always traversing this confusing realm.

If subdatasets are present but not specified the first is queried. The choice of subdataset is analogous
to the way that the raster package behaves, and uses the argument varname. Variables in NetCDF
correspond to subdatasets, but a single data set might have multiple variables in different bands or
in dimensions, so this guide does not hold across various systems.

vapour._raster_info 21

The Geo Transform

From https://gdal.org/en/stable/user/raster_data_model.html.

The affine transform consists of six coefficients returned by GDALDataset: :GetGeoTransform()
which map pixel/line coordinates into georeferenced space using the following relationship:

Xgeo = GT(0) + Xpixel*GT (1) + Y1inexGT(2)
Ygeo = GT(3) + Xpixel*GT(4) + Y1inexGT(5)
They are

GTO0, xmin the x position of the lower left corner of the lower left pixel

GT1, xres the scale of the x-axis, the width of the pixel in x-units

GT2, yskew y component of the pixel width

GT3, ymax the y position of the upper left corner of the upper left pixel

GT4, xskew x component of the pixel height

GTS, yres the scale of the y-axis, the height of the pixel in negative y-units

Please note that these coefficients are equivalent to the contents of a world file but that the order

is not the same and the world file uses cell centre convention rather than edge. https://en.
wikipedia.org/wiki/World_file

Usually the skew components are zero, and so only four coefficients are relevant and correspond
to the offset and scale used to position the raster - in combination with the number of rows and
columns of data they provide the spatial extent and the pixel size in each direction. Very rarely a an
actual affine raster will be use with this rotation specified within the transform coefficients.

Calculation of *'minmax’ can take a significant amount of time, so it’s not done by default. Use
’minmax = TRUE’ to do it. (It does perform well, but may be prohibitive for very large or remote
sources.)

Overviews

If there are no overviews this element will simply be a single-element vector of value 0. If there are
overviews, the first value will give the number of overviews and their dimensions will be listed as
pairs of x,y values.

See Also

vapour_sds_info

Examples

f <- system.file("extdata”, "sst.tif"”, package = "vapour")
vapour_raster_info(f)

https://gdal.org/en/stable/user/raster_data_model.html
https://en.wikipedia.org/wiki/World_file
https://en.wikipedia.org/wiki/World_file

22

vapour_read_fids

vapour_read_fids

Read feature names

Description

Obtains the internal *Feature ID (FID)’ for a data source.

Usage
vapour_read_fids(
dsource,
layer = oL,
sql = nn ,
limit_n = NULL,
skip_n = 0,
extent = NA
)
vapour_read_names (
dsource,
layer = oL,
sql = nn ,
limit_n = NULL,
skip_n = 0,
extent = NA
)
Arguments
dsource data source name (path to file, connection string, URL)
layer integer of layer to work with, defaults to the first (0) or the name of the layer
sql if not empty this is executed against the data source (layer will be ignored)
limit_n an arbitrary limit to the number of features scanned
skip_n an arbitrary number of features to skip
extent apply an arbitrary extent, only when ’sql’ used (must be ’ex = c(xmin, xmax,
ymin, ymax)’ but sp bbox, sf bbox, and raster extent also accepted)
Details

This may be virtual (created by GDAL for the SQL interface) and may be 0- or 1- based. Some
drivers have actual names, and they are persistent and arbitrary. Please use with caution, this func-
tion can return the current FIDs, but there’s no guarantee of what it represents for subsequent access.

An earlier version use 'OGRSQL’ to obtain these names, which was slow for some drivers and
also clashed with independent use of the sql argument. vapour_read_names() is an older name,
aliased to vapour_read_fids().

vapour._read_fields 23

Value

character vector of geometry id 'names’

Examples

file <- "list_locality_postcode_meander_valley.tab"”

mvfile <- system.file(file.path("extdata/tab"”, file), package="vapour")
range(fids <- vapour_read_names(mvfile))

length(fids)

vapour_read_fields Read feature field data

Description

Read features fields (attributes), optionally after SQL execution.

Usage
vapour_read_fields(
dsource,
layer = oL,
sql = nn ,
limit_n = NULL,
skip_n = 0,
extent = NA
)
vapour_read_attributes(
dsource,
layer = oL,
sql = nn ,
limit_n = NULL,
skip_n = 0,
extent = NA
)
Arguments
dsource data source name (path to file, connection string, URL)
layer integer of layer to work with, defaults to the first (0) or the name of the layer
sql if not empty this is executed against the data source (layer will be ignored)
limit_n an arbitrary limit to the number of features scanned
skip_n an arbitrary number of features to skip
extent apply an arbitrary extent, only when ’sql’ used (must be ’ex = c(xmin, Xmax,

ymin, ymax)’ but sp bbox, sf bbox, and raster extent also accepted)

24 vapour_read_geometry

Details

Internal types are not fully supported, there are straightforward conversions for numeric, integer
(32-bit) and string types. Date, Time, DateTime are returned as character, and Integer64 is returned
as numeric.

Value

list of vectors one for each field in the source, each will be the same length which will depend on the
values of ’skip_n’, ’limit_n’, ’sql’, and the available records in the source. The types will be raw,
numeric, integer, character, logical depending on the available mapping to the types in the source
for the data there to R’s native vectors.

Examples

file <- "list_locality_postcode_meander_valley.tab"”

mvfile <- system.file(file.path("extdata/tab"”, file), package="vapour")

att <- vapour_read_fields(mvfile)

str(att)

sq <- "SELECT * FROM list_locality_postcode_meander_valley WHERE FID < 5"

(att <- vapour_read_fields(mvfile, sql = sq))

pfile <- "list_locality_postcode_meander_valley.tab”

dsource <- system.file(file.path("extdata/tab”, pfile), package="vapour")

SQL <- "SELECT NAME FROM list_locality_postcode_meander_valley WHERE POSTCODE < 7300"
vapour_read_fields(dsource, sql = SQL)

vapour_read_geometry Read GDAL feature geometry

Description

Read GDAL geometry as binary blob, text, or numeric extent.

Usage
vapour_read_geometry_ia(dsource, layer = QL, sql = "", extent = NA, ia = NULL)
vapour_read_geometry_ij(dsource, layer = QL, sql = "", extent = NA, ij = NULL)

vapour_read_geometry(

dsource,

layer = oL,

sql = "",
limit_n = NULL,
skip_n = 0,
extent = NA

vapour_read_geometry_text(

vapour_read_geometry

dsource,
layer = oL,

nn

sql = ,

textformat = "json",

limit_n = NULL,
skip_n = 0@
N

extent = NA

vapour_read_extent(

va

dsource,

layer = oL,

sql = "",
limit_n = NULL,
skip_n = 0,
extent = NA

pour_read_type(
dsource,

25

layer = oL,
sql - nn ,
limit_n = NULL,
skip_n = 0,
extent = NA
)
Arguments
dsource data source name (path to file, connection string, URL)
layer integer of layer to work with, defaults to the first (0) or the name of the layer
sql if not empty this is executed against the data source (layer will be ignored)
extent apply an arbitrary extent, only when ’sql’ used (must be ’ex = c(xmin, xmax,
ymin, ymax)’ but sp bbox, sf bbox, and raster extent also accepted)
ia an arbitrary index, integer vector with values between 0 and one less the number
of features, duplicates allowed and arbitrary order is ok
ij an range index, integer vector of length two with values between 0 and one less
the number of features, this range of geometries is returned
limit_n an arbitrary limit to the number of features scanned
skip_n an arbitrary number of features to skip
textformat indicate text output format, available are "json" (default), "gml", "kml", "wkt"
Details

vapour_read_geometry will read features as binary WKB, vapour_read_geometry_text as var-
ious text formats (geo-json, wkt, kml, gml),

26 vapour_read_geometry

vapour_read_extent a numeric extent which is the native bounding box, the four numbers (in this
order) xmin, xmax, ymin, ymax. For each function an optional SQL string will be evaluated
against the data source before reading.

vapour_read_geometry_ia will read features by arbitrary index, so any integer between 0 and
one less than the number of features. These may be duplicated. If ’ia’ is greater than the highest
index NULL is returned, but if less than O the function will error.

vapour_read_geometry_ij will read features by index range, so two numbers to read ever feature
between those limits inclusively. ’i’ and ’j” must be increasing.

vapour_read_type will read the (wkb) type of the geometry as an integer. These are @ unknown, 1
Point, 2 LineString, 3 Polygon, 4 MultiPoint, 5 MultiLineString, 6 MultiPolygon, 7 GeometryCol-
lection, and the other more exotic types listed in "api/vector_c_api.html" from the GDAL home
page (as at October 2020). A missing value "NA’ indicates an empty geometry.

Note that 1imit_n and skip_n interact with the affect of sql, first the query is executed on the
data source, then while looping through available features skip_n features are ignored, and then a
feature-count begins and the loop is stopped if Limit_n is reached.

Note that extent applies to the *SpatialFilter’ of "ExecuteSQL’: https://gdal.org/user/ogr_sql_dialect.html#executesql.

Value

for vapour_read_geometry (), vapour_read_geometry_ia() and vapour_read_geometry_ij()

araw vector of geometry, for vapour_read_extent () alist of numeric vectors each with ’xmin,xmax,ymin,ymax’
respectively for each geometry, for vapour_read_type() a character vector. See Details for more

information.

Examples

file <- "list_locality_postcode_meander_valley.tab"

A MapInfo TAB file with polygons

mvfile <- system.file(file.path("extdata/tab"”, file), package="vapour")
A shapefile with points

pfile <- system.file("extdata/point.shp”, package = "vapour")

raw binary WKB points in a list

ptgeom <- vapour_read_geometry(pfile)

create a filter query to ensure data read is small

SQL <- "SELECT FID FROM list_locality_postcode_meander_valley WHERE FID < 3"
polygons in raw binary (WKB)

plgeom <- vapour_read_geometry_text(mvfile, sql = SQL)

polygons in raw text (GeoJSON)

txtjson <- vapour_read_geometry_text(mvfile, sql = SQL)

polygon extents in a list xmin, xmax, ymin, ymax
exgeom <- vapour_read_extent(mvfile)

points in raw text (GeoJSON)

txtpointjson <- vapour_read_geometry_text(pfile)

points in raw text (WKT)

txtpointwkt <- vapour_read_geometry_text(pfile, textformat = "wkt")

vapour_read_raster 27

vapour_read_raster Raster 10 (read)

Description

Read a window of data from a GDAL raster source. The first argument is the source name and the
second is a 6-element window of offset, source dimension, and output dimension.

Usage

vapour_read_raster(
X,
band = 1,
window,
resample = "nearestneighbour”,
sds = NULL,
native = FALSE,
set_na = TRUE,
band_output_type = "",
unscale = TRUE,

nara = FALSE
)
Arguments
X data source
band index of which band to read (1-based)
window src_offset, src_dim, out_dim
resample resampling method used (see details)
reserved
sds index of subdataset to read (usually 1)
native apply the full native window for read, FALSE by default
set_na specify whether NA values should be set for the NODATA

band_output_type
numeric type of band to apply (else the native type if), is mapped to one of
‘Byte’, *Int32’, or *Float64’

unscale default is TRUE so native values will be converted by offset and scale to floating
point

nara logical whether to return a (scaled) nativeRaster

28

Details

vapour_read_raster_block

The value of window may be input as only 4 elements, in which case the source dimension Will be

used as the output dimension.

This is analogous to the rgdal function readGDAL with its arguments offset, region.dim and
output.dim. There’s no semantic wrapper for this in vapour, but see https://github.com/hypertidy/lazyraster

for one approach.

Resampling options will depend on GDAL version, but currently *NearestNeighbour’ (default),
’Average’, *Bilinear’, *Cubic’, *CubicSpline’, *Gauss’, ’Lanczos’, "Mode’ are potentially available.
These are compared internally by converting to lower-case. Detailed use of this is barely tried or
tested with vapour, but is a standard facility used in GDAL. Easiest way to compare results is with

gdal_translate.

There is no write support in vapour.

Currently the window argument is required. If this argument unspecified and native = TRUE then
the default window specification will be used, the entire extent at native resolution. If *window’ is
specified and native = TRUE then the window is used as-is, with a warning (native is ignored).

’band_output_type’ can be ‘raw’, ’integer’, ’double’, or case-insensitive versions of the GDAL
types 'Byte’, *Ulnt16’, "Int16’, *Ulnt32’, *Int32’, *Float32’, or "Float64’. These are mapped to one
of the supported types 'Byte’ ("==raw’), 'Int32’ (== integer’), or "Float64’ (’== double’).

Value

list of numeric vectors (only one for *band’)

Examples

f <- system.file("extdata”, "sst.tif", package
a 5%5 window from a 10%10 region
vapour_read_raster(f, window = c(0, @, 10, 10,
vapour_read_raster(f, window = c(@, 0, 10, 10,
find the information first

ri <- vapour_raster_info(f)
str(matrix(vapour_read_raster(f, window = c(0,
the method can be used to up-sample as well
str(matrix(vapour_read_raster(f, window = c(@,

[S2BN¢,)

0’

0!

"vapour")

5

5), resample = "Lanczos")

ri$dimxy, ri$dimxY)), ri$dimXY[11))

10, 10, 15, 25)), 15))

vapour_read_raster_block
Read or write raster block

Description

Read a ’block’ from raster.

vapour_read_raster_raw 29

Usage

vapour_read_raster_block(
dsource,
offset,
dimension,
band = 1L,
band_output_type = "",
unscale = TRUE,

nara = FALSE
)
Arguments
dsource file name to read from, or write to
offset position X,y to start writing (0-based, y-top)
dimension window size to read from, or write to
band which band to read (1-based)

band_output_type

numeric type of band to apply (else the native type if ”’) can be one of 'Byte’,
’Int32’, or ’Float64’

unscale default is TRUE so native values will be converted by offset and scale to floating
point
nara if "TRUE’ return in nativeRaster format
Value

a list with a vector of data from the band read

Examples

f <- system.file("extdata”, "sst.tif", package = "vapour")
v <- vapour_read_raster_block(f, c(@0L, oL), dimension = c(2L, 3L), band = 1L)

vapour_read_raster_raw
type safe(r) raster read

Description

These wrappers around vapour_read_raster() guarantee single vector output of the nominated
type.

30

Usage

vapour_read_raster_raw(
X,
band = 1,
window,

resample = "nearestneighbour”,

sds = NULL,
native = FALSE,
set_na = TRUE,

nara = FALSE
)
vapour_read_raster_int(
X)
band = 1,
window,
resample = "nearestneighbour”,
sds = NULL,

native = FALSE,
set_na = TRUE

vapour_read_raster_dbl(
X,
band = 1,
window,

resample = "nearestneighbour”,

sds = NULL,
native = FALSE,
set_na TRUE

vapour_read_raster_chr(
X,
band = 1,
window,

resample = "nearestneighbour”,

sds = NULL,
native = FALSE,
set_na = TRUE

vapour_read_raster_hex(
X,

vapour_read_raster_raw

vapour._report_fields

band = 1,

window,

resample = "nearestneighbour”,
sds = NULL,

native = FALSE,

set_na = TRUE

)
Arguments

X data source

band index of which band to read (1-based)

window src_offset, src_dim, out_dim

resample resampling method used (see details)

reserved

sds index of subdataset to read (usually 1)

native apply the full native window for read, FALSE by default

set_na specify whether NA values should be set for the NODATA

nara logical whether to return a (scaled) nativeRaster
Details

*_hex and *_chr are aliases of each other.

Value

atomic vector of the nominated type raw, int, dbl, or character (hex)

Examples

f <- system.file("extdata”, "sst.tif"”, package = "vapour")
vapour_read_raster_int(f, window = c(@, @, 5, 4))

vapour_read_raster_raw(f, window = c(@, @, 5, 4))

vapour_read_raster_chr(f, window = c(@, @, 5, 4))
plot(vapour_read_raster_dbl(f, native = TRUE), pch = ".", ylim = c(273, 300))

vapour_report_fields Read feature field types.

Description

Obtains the internal type-constant name for the data attributes in a source.

32 vapour_sds_names

Usage
vapour_report_fields(dsource, layer = 0L, sql = "")
vapour_report_attributes(dsource, layer = 0L, sql = "")
Arguments
dsource data source name (path to file, connection string, URL)
layer integer of layer to work with, defaults to the first (0) or the name of the layer
sql if not empty this is executed against the data source (layer will be ignored)
Details

Use this to compare the interpreted versions converted into R types by vapour_read_fields.

This and vapour_read_fields() are aliased to older versions named "vapour_report_attributes()’
and ’vapour_read_attributes()’, but "field" is a clearer and more sensible name (in our opinion).

These are defined for the enum OGRFieldType in GDAL itself. https://gdal.org/en/stable/
doxygen/ogr__core_8h.html

Value

named character vector of the GDAL types for each field

Examples

file <- "list_locality_postcode_meander_valley.tab"”
mvfile <- system.file(file.path("extdata/tab"”, file), package="vapour")
vapour_report_fields(mvfile)

modified by sql argument
vapour_report_fields(mvfile,
sql = "SELECT POSTCODE, NAME FROM list_locality_postcode_meander_valley")

vapour_sds_names GDAL raster subdatasets (variables)

Description

A subdataset is a collection abstraction for a number of variables within a single GDAL source. If
there’s only one variable the datasource and the variable have the same data source string. If there
is more than one the subdatasets have the form DRIVER:' datasourcename'':varname. Each
subdataset name can stand in place of a data source name that has only one variable, so we always
treat a source as a subdataset, even if there’s only one.

Usage

vapour_sds_names(x)

https://gdal.org/en/stable/doxygen/ogr__core_8h.html
https://gdal.org/en/stable/doxygen/ogr__core_8h.html

vapour_set_config 33

Arguments

X a data source string, filename, database connection string, or other URL

Details

Returns a character vector of ’subdatasets. In the case of a normal data source, with no subdatasets the value is
source‘.

If the raw SDS names contain spaces these are replaced by *%20’ escape strings. A specific example

is "WCS:https://elevation.nationalmap.gov:443" with request "arcgis/services/3DEPElevation/ImageServer/WCSServer?vers
Gray". This function will return "..DEP3Elevation_Hillshade%20Gray". See wiki post for more de-

tails.

Value

character vector of subdataset names, or just the source itself if no SDS are present

Examples

f <- system.file("extdata/gdal”, "sds.nc", package = "vapour")
protect from error with netcdf problems

result <- try(vapour_sds_names(f), silent = TRUE)

if (!inherits(result, "try-error”)) {

print(result)
3
vapour_sds_names(system.file("extdata”, "sst.tif", package = "vapour"))
vapour_set_config Set and query GDAL configuration options
Description

These functions can get and set configuration options for GDAL, for fine control over specific
GDAL behaviours.

Usage
vapour_set_config(option, value)
vapour_get_config(option)

Arguments

option GDAL config name (see Details), character string

value value for config option, character string

https://github.com/hypertidy/vapour/wiki/Examples-of-subdatasets

34 vapour._srs_wkt

Details

Configuration options may also be set as environment variables.

See GDAL config options for details on available options.

Value

character string for vapour_get_config, integer 1 for successful vapour_set_config()

Examples

Not run:

(orig <- vapour_get_config("GDAL_CACHEMAX"))
vapour_set_config("GDAL_CACHEMAX", "64")
vapour_get_config("GDAL_CACHEMAX")
vapour_set_config("GDAL_CACHEMAX", orig)

End(Not run)

vapour_srs_wkt PROJ4 string to WKT

Description

Convert a projstring to Well Known Text.

Usage

vapour_srs_wkt(crs)

Arguments

crs projection string, see Details.

Details
The function is vectorized because why not, but probably only ever will be used on single element
vectors of character strings.

Note that no sanitizing is done on inputs, we literally just’OGRSpatialReference.SetFromUserInput(crs)’
and give the output as WKT. If it’s an error in GDAL it’s an error in R.

Common inputs are WKT variants, ’AUTH:CODE’s e.g. ’EPSG:3031’°, the ’OGC:CRS84’ for
long,lat WGS84, ’ESRI:code’ and other authority variants, and datum names such as "WGS84’) NAD27’
recognized by PROJ itself.

See help for ’SetFromUserInput’ in ’OGRSpatialReference’, and ’proj_create_crs_to_crs’.
c.proj_create_crs_to_crs
c.proj_create

SetFromUserInput

https://gdal.org/en/stable/user/configoptions.html
https://proj.org/development/reference/functions.html#c.proj_create_crs_to_crs
https://proj.org/development/reference/functions.html#c.proj_create
https://gdal.org/en/stable/doxygen/classOGRSpatialReference.html

vapour._vrt 35

Value

WKT?2 projection string

Examples

vapour_srs_wkt("+proj=laea +datum=WGS84")

vapour_vrt Virtual raster

Description

Simple VRT creation of a GDAL virtual raster. The data source string is augmented by input of
other optional arguments. That means it overrides their values provided by the source data, or
stands in place of this information if it is missing.

Usage

vapour_vrt(
X,
extent = NULL,
projection = NULL,
sds = 1L,
bands = NULL,
geolocation = NULL,

L

relative_to_vrt = FALSE,

nomd = FALSE,
overview = -1L,
options = character()
)
Arguments
X data source name, filepath, url, database connection string, or VRT text
extent (optional) numeric extent, Xmin,xmax,ymin,ymax
projection (optional) character string, projection string ("auth:code", proj4, or WKT, or
anything understood by PROJ, see Details)
sds which subdataset to select from a source with more than one
bands (optional) which band/s to include from the source
geolocation vector of 2 dsn to longitude, latitude geolocation array sources

. ignored
relative_to_vrt
default FALSE, if TRUE input strings that identify as files on the system are left
as-is (by default they are made absolute at the R level)

36

vapour_vrt
nomd if TRUE the Metadata tag is removed from the resulting VRT (it can be quite
substantial)
overview pick an integer overview from the source (OL is highest resolution, default -1L
does nothing)
options pass in options to the VRT creation, like "c("-expand", "rgb", "-ot", "Byte"(’

Details

Create a GDAL data source string (to be used like a filename) with various helpers. VRT stands for
’ViRTual’. A VRT string then acts as a representative of a data source for further use (to read or
warp it).

An input string will be converted to a single subdataset, use ’sds’ argument to select.

If ’extent’, *projection’ is provided this is applied to override the source’s extent and/or projection.
(These might be invalid, or missing, so we facilitate correcting this).

If *bands’ is provided this is used to select a set of bands (numbered from 1), which might be
repeated, or in any order and contain repetitions.

vapour_vrt() is vectorized, it will return multiple VRT strings for multiple inputs in a "length > 1"
character vector. These are all independent, this is different to the function vapour_warp_raster()
where multiple inputs are merged (possibly by sequential overlapping).

If geolocation is set the ’GeoTransform’ element is forcibly removed from the vrt output, in order
to avoid https://github.com/hypertidy/vapour/issues/210 (there might be a better fix).

Value

VRT character string (for use by GDAL-capable tools, i.e. reading raster)

Rationale

For a raster, the basic essentials we can specify or modify for a source are

1. the source, 2) the extent, 3) the projection 4) what subdataset (these are variables from NetCDF
and the like that contain multiple datasets) and 5) which band/s to provided. For extent and
projection we are simply providing or correcting complete information about how to interpret
the georeferencing, with subdatasets and bands this is more like a query of which ones we
want. If we only wanted band 5, then the output data would have one band only (and we we
read it we need band = 1).

We don’t provide ability override the dimension, but that is possible as well. More features may
come with a *"VRTBuilder’ interface.

Projections

Common inputs for projection are WKT variants, "AUTH:CODE"s e.g. "EPSG:3031", the
"OGC:CRS84" for long,lat WGS84, "ESRI:code" and other authority variants, and datum names
such as "WGS84’ ' NAD27’ recognized by PROJ itself.

See the following links to GDAL and PROJ documentation:

PROJ documentation: c.proj_create_crs_to_crs

https://proj.org/development/reference/functions.html#c.proj_create_crs_to_crs

vapour._vsi_list 37

PROJ documentation: c.proj_create

GDAL documentation: SetFromUserInput

Examples

tif <- system.file("extdata”, "sst.tif"”, package = "vapour")
vapour_vrt(tif)

vapour_vrt(tif, bands = c(1, 1))

vapour_vsi_list Read GDAL virtual source contents

Description

Obtain the names of available items in a virtual file source.

Usage
vapour_vsi_list(dsource, ...)
Arguments
dsource data source name (path to file, connection string, URL) with virtual prefix, see
Details
ignored
Details

The dsource must begin with a valid form of the special vsiPREFIX, for details see GDAL Virtual
File Systems.

Note that the listing is not recursive, and so cannot be used for automation. One would use this
function interactively to determine a useable /vsiPREFIX/dsource data source string.

Value

character vector listing of items

Examples

pointzipfile <- system.file("extdata/vsi/point_shp.zip"”, package = "vapour")
vapour_vsi_list(sprintf("/vsizip/%s", pointzipfile))

Not run:

example from https://github.com/hypertidy/vapour/issues/55

#file <- "http/radmap_v3_2015_filtered_dose/radmap_v3_2015_filtered_dose.ers.zip"

#url <- "http://dapds@@.nci.org.au/thredds/fileServer/rr2/national_geophysical_compilations”

https://proj.org/development/reference/functions.html#c.proj_create
https://gdal.org/en/stable/doxygen/classOGRSpatialReference.html
https://gdal.org/en/stable/user/virtual_file_systems.html
https://gdal.org/en/stable/user/virtual_file_systems.html

38

vapour_warp_raster

#u <- sprintf("/vsizip//vsicurl/%s", file.path(url, file))

#vapour_vsi_list(u)

#[1] "radmap_v3_2015_filtered_dose" "radmap_v3_2015_filtered_dose.ers”
#[3] "radmap_v3_2015_filtered_dose.isi” "radmap_v3_2015_filtered_dose.txt"
#tgdalinfo /vsitar//home/ubuntu/LT@O5_L1GS_027026_20060116_20160911_01_T2.tar.gz
#vapour_vsi_list("”/vsitar//home/ubuntu/LT@5_L1GS_027026_20060116_20160911_01_T2.tar.gz")
#"LTO5_L1TP_027026_20061218_20160911_01_T1_ANG. txt"
#"LTO5_L1TP_027026_20061218_20160911_01_T1_B1.TIF"
#"LTO5_L1TP_027026_20061218_20160911_01_T1_B2.TIF"
#"LTO5_L1TP_027026_20061218_20160911_01_T1_B3.TIF"

#...

End(Not run)

vapour_warp_raster Raster warper (reprojection)

Description

Read a window of data from a GDAL raster source through a warp specification. The warp specifi-
cation is provided by “extent’, ’dimension’, and ’projection’ properties of the transformed output.

Usage

vapour_warp_raster(
X’
bands = NULL,

extent = NULL,

dimension = NULL,
projection = "",

set_na = TRUE,
source_projection = NULL,
source_extent = 0,
resample = "near”,
silent = TRUE,
band_output_type = "",
warp_options = ""
transformation_options = "",

nn

open_options = ,
options = "",

nomd = FALSE,
overview = -1L,

nara = FALSE

vapour_warp_raster 39

Arguments

X vector of data source names (file name or URL or database connection string)

bands index of band/s to read (1-based), may be new order or replicated, or NULL (all
bands used, the default)

extent extent of the target warped raster ’c(xmin, Xmax, ymin, ymax)’

dimension dimensions in pixels of the warped raster (x, y)

projection projection of warped raster (in Well-Known-Text, or any projection string ac-
cepted by GDAL)

set_na NOT IMPLEMENTED logical, should "'NODATA’ values be set to NA

source_projection
optional, override or augment the projection of the source (in Well-Known-Text,
or any projection string accepted by GDAL)

source_extent extent of the source raster, used to override/augment incorrect source metadata

resample resampling method used (see details in vapour_read_raster)
silent TRUE by default, set to FALSE to report messages
unused

band_output_type
numeric type of band to apply (else the native type if) can be one of 'Byte’,
’Int32’, or *Float64’ but see details in vapour_read_raster()
warp_options character vector of options, as in gdalwarp -wo - see Details
transformation_options
character vector of options, as in gdalwarp -to see Details

open_options character vector of options, as in gdalwarp -oo - see Details

options character vectors of options as per the gdalwarp command line
nomd if TRUE the Metadata tag is removed from the resulting VRT (it can be quite
substantial)
overview pick an integer overview from the source (OL is highest resolution, default -1L
does nothing)
nara if "TRUE’ return in nativeRaster format
Details

Any bands may be read, including repeats.

This function is not memory safe, the source is left on disk but the output raster is all computed
in memory so please be careful with very large values for ’dimension’. 1000 * 1000 x 8 for 1000
columns, 1000 rows and floating point double type will be 8Mb.

There’s control over the output type, and is auto-detected from the source (raw/Byte, integer/Int32,
numeric/Float64) or can be set with *band_output_type’.

’projection’ refers to any projection string for a CRS understood by GDAL. This includes the full
Well-Known-Text specification of a coordinate reference system, PROJ strings, "AUTH:CODE"
types, and others. See vapour_srs_wkt () for conversion from PROJ.4 string to WKT, and vapour_raster_info()
and vapour_layer_info() for various formats available from a data source. Any string accepted

40

vapour_warp_raster

by GDAL may be used for ’projection’ or ’source_projection’, including EPSG strings, PROJ4
strings, and file names. Note that this argument was named ’wkt’ up until version 0.8.0.

“extent’ is the four-figure xmin,xmax,ymin,ymax outer corners of corner pixels
’dimension’ is the pixel dimensions of the output, x (ncol) then y (nrow).

Options for missing data are not yet handled, just returned as-is. Note that there may be regions of
"zero data" in a warped output, separate from propagated missing "NODATA" values in the source.

Argument ’source_projection’ may be used to assign the projection of the source, ’source_extent’
to assign the extent of the source. Sometimes both are required. Note, this is now better done
by creating *VRT’, see vapour_vrt() for assigning the source projection, extent, and some other
options.

If multiple sources are specified via x’ and either ’source_projection’ or ’source_extent’ are pro-
vided, these are applied to every source even if they have valid values already. If this is not sensible
please use VRT to wrap the multiple sources first.

Wild combinations of ’source_extent’ and/or ’extent’ may be used for arbitrary flip orientations,
scale and offset. For expert usage only. Old versions allowed transform input for target and source
but this is now disabled (maybe we’ll write a new wrapper for that).

Value

list of vectors (only 1 for ’band’) of numeric values, in raster order

Options

The various options are convenience arguments for *warp options -wo’, transformation options -
to’, “open options -00’, and ’options’ for any other arguments in gdalwarp. There are no ’creation
options -co’ or ’dataset output options -doo’, because these are not supported by the MEM driver.

All warp_options’ are paired with a *-wo’ declaration and similarly for ’-to’, and ’-o00’, this is
purely a convenience, since ’options’ itself can be used for these as well but we recommend using
the individual arguments. An example for warp options is warp_options = c("SAMPLE_GRID=YES",

"SAMPLE_STEPS=30") and one for general arguments might be ’options = c("-ovr", "AUTO", "-

nomd", "-cutline", "/path/to/cut.gpkg", "-crop_to_cutline")’. If they would be separated by spaces
on the command line then include as separate elements in the options character vector.

See GDALWarpOptions for ’-wo’.

See GDAL transformation options for ’-to’.

See GDALWARP command line app for further details.

Note we already apply the following gdalwarp arguments based on input R arguments to this func-
tion.

-of MEM is hardcoded, but may be extended in future
-t_srs set via 'projection’

-s_srs set via ’source_projection’

-te set via extent’

-ts set via ’dimension’

-r set via ‘resample’

https://gdal.org/en/stable/api/gdalwarp_cpp.html
https://gdal.org/en/stable/api/gdal_alg.html
https://gdal.org/en/stable/programs/gdalwarp.html

vapour_warp_raster_raw 41

-ot set via ’band_output_type’
-te_srs not supported

-a_ullr (not a gdalwarp argument, but we do analog) set via ’source_extent’ use vapour_vrt()
instead

In future all ’source_*’ arguments may be deprecated in favour of augmentation by "vapour_vrt()’.

Common inputs for projection are WKT variants, ”AUTH:CODE’s e.g. "TEPSG:3031’, the ’OGC:CRS84’
for lon,lat WGS84, ’ESRI:code’ and other authority variants, and datum names such as "WGS84’’NAD27’
recognized by PROJ itself.

See help for ’SetFromUserInput’ in ’OGRSpatialReference’, and ’proj_create_crs_to_crs’.
Cc.proj_create_crs_to_crs
c.proj_create

SetFromUserInput

See Also

vapour_read_raster vapour_read_raster_raw vapour_read_raster_int vapour_read_raster_dbl vapour_read_raster_chr
vapour_read_raster_hex

Examples

b <- 4eb
f <- system.file("extdata”, "sst.tif"”, package = "vapour")
prj <- "+proj=aeqd +lon_0=147 +lat_0=-42"
vals <- vapour_warp_raster(f, extent = c(-b, b, -b, b),
dimension = c(186, 298),
bands = 1,
projection = vapour_srs_wkt(prj),
warp_options = c("SAMPLE_GRID=YES"))

image(list(x = seq(-b, b, length.out = 187), y = seq(-b, b, length.out = 298),
z = matrix(unlist(vals, use.names = FALSE), 186)[,298:1]), asp = 1)

vapour_warp_raster_raw
type safe(r) raster warp

Description

These wrappers around vapour_warp_raster() guarantee single vector output of the nominated
type.

https://proj.org/development/reference/functions.html#c.proj_create_crs_to_crs
https://proj.org/development/reference/functions.html#c.proj_create
https://gdal.org/en/stable/doxygen/classOGRSpatialReference.html

42 vapour_warp_raster_raw

Usage

vapour_warp_raster_raw(
X,
bands = NULL,
extent = NULL,
dimension = NULL,
projection = "",
set_na = TRUE,
source_projection = NULL,
source_extent = 0,
resample = "near”,
silent = TRUE,

L
— nn

warp_options = ,
transformation_options = "",
nn

open_options = ,
options = ""

vapour_warp_raster_int(
X,
bands = NULL,
extent = NULL,
dimension = NULL,
projection = "",
set_na = TRUE,
source_projection = NULL,
source_extent = 0,
resample = "near”,
silent = TRUE,

L
nn

warp_options = ,
transformation_options = "",
nn

open_options = ,
options = ""

vapour_warp_raster_dbl(
X,
bands = NULL,
extent = NULL,
dimension = NULL,
projection = "",
set_na = TRUE,
source_projection = NULL,
source_extent = 0,
resample = "near”,
silent = TRUE,

vapour_warp_raster_raw 43

*
warp_options =
transformation_options =

nn

open_options = ,
options = ""

nn

nn

vapour_warp_raster_chr(
X,
bands = NULL,
extent = NULL,
dimension = NULL,
projection = "",
set_na = TRUE,
source_projection = NULL,
source_extent = 0,
resample = "near”,
silent = TRUE,

*
warp_options = "",
transformation_options = "",
nn

open_options = ,
options = ""

vapour_warp_raster_hex(
X,
bands = NULL,
extent = NULL,
dimension = NULL,
projection = "",
set_na = TRUE,
source_projection = NULL,
source_extent = 0,
resample = "near”,
silent = TRUE,
warp_options =
transformation_options = "",

nn

open_options = ,

nn

options = ""
)
Arguments
X vector of data source names (file name or URL or database connection string)
bands index of band/s to read (1-based), may be new order or replicated, or NULL (all

bands used, the default)

44

vapour_warp_raster_raw

extent extent of the target warped raster *c(xmin, xmax, ymin, ymax)’
dimension dimensions in pixels of the warped raster (X, y)
projection projection of warped raster (in Well-Known-Text, or any projection string ac-

cepted by GDAL)
set_na NOT IMPLEMENTED logical, should "NODATA’ values be set to NA

source_projection
optional, override or augment the projection of the source (in Well-Known-Text,
or any projection string accepted by GDAL)

source_extent extent of the source raster, used to override/augment incorrect source metadata

resample resampling method used (see details in vapour_read_raster)
silent TRUE by default, set to FALSE to report messages
unused

warp_options character vector of options, as in gdalwarp -wo - see Details

transformation_options
character vector of options, as in gdalwarp -to see Details

open_options character vector of options, as in gdalwarp -oo - see Details

options character vectors of options as per the gdalwarp command line

Details

_hex and _chr are aliases of each other.

Value

atomic vector of the nominated type raw, int, dbl, or character (hex)

Examples

b <- 4e5
f <- system.file("extdata”, "sst.tif", package = "vapour")
prj <- "+proj=aeqd +lon_0=147 +lat_0=-42"
bytes <- vapour_warp_raster_raw(f, extent = c(-b, b, -b, b),
dimension = c(18, 2),
bands = 1,
projection = prj)
not useful given source type floating point, but works
str(bytes)

vapour_write_raster_block

45

vapour_write_raster_block

Write data to a block in an existing file.

Description

Be careful! The write function doesn’t create a file, you have to use an existing one. Don’t write to
a file you don’t want to update by mistake.

Usage
vapour_write_raster_block(
dsource,
data,
offset,
dimension,
band = 1L,
overwrite = FALSE
)
Arguments
dsource data source name
data data vector, length should match prod(dimension) or length 1 allowed
offset offset to start
dimension dimension to write
band which band to write to (1-based)
overwrite set to FALSE as a safety valve to not overwrite an existing file
Value

a logical value indicating success (or failure) of the write

Examples

f <- system.file("extdata”, "sst.tif"”, package = "vapour")
v <- vapour_read_raster_block(f, c(@L, @OL), dimension = c(2L, 3L), band = 1L)

file.copy(f, tf <- tempfile(fileext = ".tif"))

try(vapour_write_raster_block(tf, data = v[[1]], offset = c(oL, 0OL),
dimension = c(2L, 3L), band = 1L))

if (file.exists(tf)) file.remove(tf)

46 vector_vrt

vector_vrt Vector VRT

Description
Just a simple text generator to generate the VRT for a vector layer, First layer is chosen if not
otherwise specified.

Usage

vector_vrt(x, layer = 1L, projection = NULL, sql = NULL, a_srs = NULL)

Arguments
X data source name
layer layer index (1-based) or name
projection crs of the output
sql SQL for ExecuteSQL to define the layer
a_srs set the source crs

Details

Using ’sql’ overrides the "layer’, and using ’projection’ results in the geometries being transformed.
No check is made of the layer source projection.

Use a_srs’ to ensure the source has a source crs (that might be the only thing you use this for, even
if not reprojecting).

It’s expected that if you use this with a source without a source projection, you’ll get "Failed to
import source SRS", so use argument "a_srs" to set it if needed (or many other GDAL other facilities
that do this).

Value

single element character vector

Examples

file <- "list_locality_postcode_meander_valley.tab"

A MapInfo TAB file with polygons

mvfile <- system.file(file.path("extdata/tab”, file), package="vapour")

vector_vrt(mvfile, sql = "SELECT * FROM list_locality_postcode_meander_valley LIMIT 5 OFFSET 4")

read this with vapour_read_geometry() and it will be projected to VicGrid
vector_vrt(mvfile, projection = "EPSG:3111")

Index

buildvrt, 5

gdal_raster_data, 6

gdal_raster_dsn (gdal_raster_data), 6
gdal_raster_image (gdal_raster_data), 6
gdal_raster_nara (gdal_raster_data), 6

sst_c, 8
tas_wkt, 9

vapour (vapour-package), 3
vapour-package, 3
vapour_all_drivers, 3
vapour_all_drivers
(vapour_gdal_version), 11
vapour_create, 9
vapour_create_options (vapour_create), 9
vapour_crs_is_lonlat, 10
vapour_driver, 3
vapour_driver (vapour_gdal_version), 11
vapour_gdal_version, 3, 11
vapour_geolocation, 12
vapour_geom_name, 4, 13
vapour_geom_summary, 4, 14
vapour_get_config (vapour_set_config),
33
vapour_layer_extent, 15
vapour_layer_info, 4, 16
vapour_layer_info(), 39
vapour_layer_names, 4, 16, 17
vapour_proj_version
(vapour_gdal_version), 11
vapour_raster_gcp, 3, 18
vapour_raster_info, 3, 19
vapour_raster_info(), 39
vapour_read_attributes
(vapour_read_fields), 23
vapour_read_extent, 4
vapour_read_extent
(vapour_read_geometry), 24

47

vapour_read_extent(), 26
vapour_read_fids, 22
vapour_read_fids(), 22
vapour_read_fields, 4, 23
vapour_read_fields(), 32
vapour_read_geometry, 4, 24
vapour_read_geometry(), 26
vapour_read_geometry_ia, 4
vapour_read_geometry_ia
(vapour_read_geometry), 24
vapour_read_geometry_ia(), 26
vapour_read_geometry_ij, 4
vapour_read_geometry_ij
(vapour_read_geometry), 24
vapour_read_geometry_ij(), 26
vapour_read_geometry_text, 4
vapour_read_geometry_text
(vapour_read_geometry), 24
vapour_read_names, 4
vapour_read_names (vapour_read_fids), 22
vapour_read_names(), 22
vapour_read_raster, 3, 7, 27, 39, 44
vapour_read_raster(), 29, 39
vapour_read_raster_block, 28
vapour_read_raster_chr
(vapour_read_raster_raw), 29
vapour_read_raster_dbl
(vapour_read_raster_raw), 29
vapour_read_raster_hex
(vapour_read_raster_raw), 29
vapour_read_raster_int
(vapour_read_raster_raw), 29
vapour_read_raster_raw, 29
vapour_read_type, 4
vapour_read_type
(vapour_read_geometry), 24
vapour_read_type(), 17, 26
vapour_report_attributes
(vapour_report_fields), 31

48

vapour_report_fields, 4, 16, 31
vapour_sds_names, 3, 18, 19, 32

vapour_set_config, 33
vapour_srs_wkt, 3, 34
vapour_srs_wkt (), 39
vapour_vrt, 35
vapour_vrt(), 40, 41
vapour_vsi_list, 3, 37
vapour_warp_raster, 3, 38
vapour_warp_raster(), 41
vapour_warp_raster_chr

(vapour_warp_raster_raw), 41

vapour_warp_raster_dbl

(vapour_warp_raster_raw), 41

vapour_warp_raster_hex

(vapour_warp_raster_raw), 41

vapour_warp_raster_int

(vapour_warp_raster_raw), 41

vapour_warp_raster_raw, 41
vapour_write_raster_block, 45
vector_vrt, 46

INDEX

	vapour-package
	buildvrt
	gdal_raster_data
	sst_c
	tas_wkt
	vapour_create
	vapour_crs_is_lonlat
	vapour_gdal_version
	vapour_geolocation
	vapour_geom_name
	vapour_geom_summary
	vapour_layer_extent
	vapour_layer_info
	vapour_layer_names
	vapour_raster_gcp
	vapour_raster_info
	vapour_read_fids
	vapour_read_fields
	vapour_read_geometry
	vapour_read_raster
	vapour_read_raster_block
	vapour_read_raster_raw
	vapour_report_fields
	vapour_sds_names
	vapour_set_config
	vapour_srs_wkt
	vapour_vrt
	vapour_vsi_list
	vapour_warp_raster
	vapour_warp_raster_raw
	vapour_write_raster_block
	vector_vrt
	Index

