Package ‘vein’

December 21, 2025
Type Package

Title Vehicular Emissions Inventories
Version 1.6.0
Date 2025-12-19

Description Elaboration of vehicular emissions inventories,
consisting in four stages, pre-processing activity data, preparing
emissions factors, estimating the emissions and post-processing of emissions
in maps and databases. More details in Ibarra-Espinosa et al (2018) <doi:10.5194/gmd-11-2209-
2018>.
Before using VEIN you need to know the vehicular composition of your study area, in other words,
the combination of of type of vehicles, size and fuel of the fleet. Then, it is recommended to
start with the project to download a template to create a structure of directories and scripts.

License MIT + file LICENSE
URL https://github.com/atmoschem/vein

BugReports https://github.com/atmoschem/vein/issues
LazyData no
Depends R (>=3.5.1)

Imports sf (>=1.0.1), data.table, units, graphics, stats, dotCall64,
cptcity, grDevices

Suggests knitr, rmarkdown, testthat
RoxygenNote 7.3.3

Encoding UTF-8
NeedsCompilation yes
Config/testthat/parallel true
VignetteBuilder knitr

Author Sergio Ibarra-Espinosa [aut, cre] (ORCID:
<https://orcid.org/0000-0002-3162-1905>),
Daniel Schuch [ctb] (ORCID: <https://orcid.org/0000-0001-5977-4519>),
Joao Bazzo [ctb] (ORCID: <https://orcid.org/0000-0002-7371-1116>),
Mario Gavidia-Calderén [ctb] (ORCID:

https://doi.org/10.5194/gmd-11-2209-2018
https://doi.org/10.5194/gmd-11-2209-2018
https://github.com/atmoschem/vein
https://github.com/atmoschem/vein/issues
https://orcid.org/0000-0002-3162-1905
https://orcid.org/0000-0001-5977-4519
https://orcid.org/0000-0002-7371-1116

2 Contents

<https://orcid.org/0000-0003-4536-5006>),
Karl Ropkins [ctb] (ORCID: <https://orcid.org/0000-0002-0294-6997>)

Maintainer Sergio Ibarra-Espinosa <zergioibarra@gmail.com>
Repository CRAN
Date/Publication 2025-12-21 18:50:02 UTC

Contents
addscale L e e e e 4
add_lkm e e e e e 5
add_miles e e e e e 6
add_polid e 6
adt . .. e e e e 7
AZC . o e e e e e e e e e e 9
age_hdv e e 10
age_ldv e e 12
AZE_MOLO + . v v v v e e e e e e e e e e e e e e e e e e 13
age_veh e e 15
AW . o e e e e e e e e e e e e e 16
celsius e e e e 18
check_nt. e e e e e e 18
cold_mileage 19
colplot Lo e 20
decoder e e 21
dmonth e 22
ef_cetesb L L e e 23
ef_china e e 26
ef_ china_det. e 30
ef_ china_h. e 31
ef_china_hu e 32
ef china_long 33
ef china S e 34
ef china_speed 35
ef china te s 36
ef china th 37
ef eea L s 38
ef_emfac 39
ef_evap 40
ef fun s 42
ef hdv_scaled s 43
ef_hdv_speed e 44
ef 1M . . . s 47
ef 1dv_cold e 48
ef 1dv_cold list e 49
ef 1dv_scaled e 51
ef_ldv_speed e 52

ef local e 56

https://orcid.org/0000-0003-4536-5006
https://orcid.org/0000-0002-0294-6997

Contents

3
ef Nitro L e 58
ef_wear e e 59
ef_ whe. e 61
CIMIS . . . o o ot e e e e e e e e e e e e 62
EmissionFactors e e e e 65
EmissionFactorsListo 67
Emissions 68
EmissionsAIray o . e e e e e e e 70
emis_chem?2 L s 71
emis_china e 73
emis_cold e 75
emis_cold_td e e e 77
emis_det e s 80
emis_diSt L e 81
emis_emfac L e 82
BIMIS_EVAD « . v v v vt e e e e e e e e e e e e e e e e e e e 84
MIS_EVAP2 . . . o i i e e e e e e e 85
emis_grid e e e e 88
emis_hot_td e e e e 90
eMIS_lONg 95
EMIS_OIdEr e e e e 96
emis_paved L e e e e 98
BMIS_POSt . . . o o o e e e e e e 100
EMIS_TO_SIIEELS o o o e e e e e e e 102
EMIS_WEAL . .+ v v v v o o e e e e e e e e e 104
2015 e e e e e e 105
fkmy . . e 106
fuel_corr. e 107
get_ef ref e 108
GEL_PIOJECt e 108
GriddedEmissSionSAITayo e e e 110
grid_emis e e e 111
make_grid e 113
moves_ef . . . L e 114
moves_Ipdo e 115
moves_tpdy e e e e e 117
moves_tpdy_meta e e e e e 118
moves_rpdy_sf 119
MOVES_TPSY_IMELA . .« o v v v v e e e e e e e e e e e e e e e e e 121
moves_tpsy_sf 122
moves_speed 123
MY_AZC . o o o o e e e e e e e e e e e e e e e 124
NEL . . o e e e e e e e e e e e e e e 125
netspeedo L e e e 126
pe_cold . ..o 127
pe_profile e e 128
pollutants L 129

profiles 129

4 addscale
TEMOVE_UNILS . . . o v v v v o e e e e e e e e e e e e 130
SPECIALE e e e e e e e e e e e e e 131
Speed . .. e e 135
SPlit_emis 137
temp_fact e e e e e 138
temp_veh e 139
to_latexX e e 140
Vehicles e 141
VEIN_NOTES . . . v v v ot e e e e e e e e e e e e e e 142
VKM . . L e e e 143
Index 145
addscale function to add a scale to a image plot
Description
method to plot a scale in image plot.
Usage
addscale(
Z y
zlim = range(z, na.rm = TRUE),
col = grDevices: :heat.colors(12),
breaks = pretty(zlim),
horiz = TRUE,
ylim = NULL,
xlim = NULL,
)
Arguments
z matrix or vector
zlim z limit
col color
breaks interval for the tickmarks
horiz TRUE (default) to a horizontal scale
ylim y limitS
x1im X limit

other arguments to plot

add_lkm

Examples

Not run:

mat <- matrix(100:1,ncol = 10, byrow = F)

cor <- grDevices::heat.colors(100)

image(mat,axe = FALSE, main = "numbers from 1 to 100", col = cor)
axis(2)

addscale(mat, col = cor)

End(Not run)

add_lkm Construction function to add unit km

Description

add_1km just add unit ’km’ to different R objects

Usage

add_lkm(x)

Arguments

non non

X Object with class "data.frame", "matrix", "numeric" or "integer"

Value

Objects of class "data.frame" or "units"

See Also

Other Add distance unitts: add_miles()

Examples

Not run:

a <- add_lkm(rnorm(100)*10)

plot(a)

b <- add_lkm(matrix(rnorm(100)*1@, ncol = 10))
print(head(b))

End(Not run)

6 add_polid

add_miles Construction function to add unit miles

Description

add_miles just add unit 'miles’ to different R objects

Usage
add_miles(x)

Arguments

non non

X Object with class "data.frame", "matrix", "numeric" or "integer"

Value

Objects of class "data.frame" or "units"

See Also
Other Add distance unitts: add_lkm()

Examples

Not run:

a <- add_miles(rnorm(100)*10)

plot(a)

b <- add_miles(matrix(rnorm(100)*10, ncol = 10))
print(head(b))

End(Not run)

add_polid Add polygon id to lines road network

Description

Sometimes you need to add polygon id into your streets road network. add_polid add add_polid
id into your road network cropping your network by.

For instance, you have open street maps road network the you have the polygon of your regions.
This function adds the id of your polygon as a new column in the streets network.

Usage
add_polid(polyg, street, by)

adt

Arguments

polyg sf object POLYGON or sp

street streets road network class sf or sp

by Character indicating the column with the id in polyg
See Also

emis_to_streets

Examples

Not run:

data(net)

nets <- sf::st_as_sf(net)

bb <- sf::st_as_sf(sf::st_as_sfc(sf::st_bbox(nets)))
bb$id <- "a"

a <- add_polid(polyg = bb, street = nets, by = "id")

End(Not run)

adt Average daily traffic (ADT) from hourly traffic data.

Description

adt calculates ADT based on hourly traffic data.

Usage

adt(

pc,

lcv,

hgv,

bus,

mc,

p_pc,
p_lcv,
p_hgv,
p_bus,
p_mc,
feq_pc = 1
feqg_lcv =
feq_hgv
feq_bus
feq_mc = 0.

1]
NN =~

Ul -

Arguments
pc
lcv
hgv
bus
mc
p_pc
p_lcv
p_hgv
p_bus
p_mc
feq_pc
feq_lcv
feq_hgv
feq_bus

feq_mc

Value

adt

numeric vector for passenger cars

numeric vector for light commercial vehicles

numeric vector for heavy good vehicles or trucks

numeric vector for bus

numeric vector for motorcycles

data-frame profile for passenger cars, 24 hours only.
data-frame profile for light commercial vehicles, 24 hours only.
data-frame profile for heavy good vehicles or trucks, 24 hours only.
data-frame profile for bus, 24 hours only.

data-frame profile for motorcycles, 24 hours only.

Numeric, factor equivalence

Numeric, factor equivalence

Numeric, factor equivalence

Numeric, factor equivalence

Numeric, factor equivalence

numeric vector of total volume of traffic per link as ADT

Examples

Not run:

data(net)

data(pc_profile)
p1 <- pc_profile[, 1]
adtl <- adt(pc = net$ldv*0.75,

head(adt1)

lcv = net$ldvx0.1,
hgv = net$hdv,

bus = net$hdv*0.1,
mc = net$ldv*0.15,

p_pc = pl,
p_lcv = pi,
p_hgv = p1,
p_bus = p1,
p_mc = p1)

End(Not run)

age 9

age Applies a survival rate to numeric new vehicles

Description

age returns survived vehicles

Usage

age(x, type = "weibull”, a = 14.46, b = 4.79, agemax, verbose = FALSE)

Arguments

X Numeric; numerical vector of sales or registrations for each year

type Character; any of "gompertz", "double_logistic", "weibull" and "weibull2"

a Numeric; parameter of survival equation

b Numeric; parameter of survival equation

agemax Integer; age of oldest vehicles for that category

verbose Logical; message with average age and total numer of vehicles regions or streets.
Value

dataframe of age distrubution of vehicles

Note

The functions age* produce distribution of the circulating fleet by age of use. The order of using
these functions is:

1. If you know the distribution of the vehicles by age of use , use: my_age 2. If you know the sales
of vehicles, or the registry of new vehicles, use age to apply a survival function. 3. If you know
the theoretical shape of the circulating fleet and you can use age_ldv, age_hdv or age_moto. For
instance, you dont know the sales or registry of vehicles, but somehow you know the shape of this
curve. 4. You can use/merge/transform/dapt any of these functions.

gompertz: 1 - exp(-exp(a + b*time)), defaults PC: b = -0.137, a = 1.798, LCV: b = -0.141, a
= 1.618 MCT (2006). de Gases de Efeito Estufa-Emissoes de Gases de Efeito Estufa por Fontes
Moveis, no Setor Energético. Ministerio da Ciencia e Tecnologia. This curve is also used by
Guo and Wang (2012, 2015) in the form: V*exp(alpha*exp(beta*E)) where V is the saturation
car ownership level and E GDP per capita Huo, H., & Wang, M. (2012). Modeling future vehicle
sales and stock in China. Energy Policy, 43, 17-29. doi:10.1016/j.enpol.2011.09.063 Huo, Hong,
et al. "Vehicular air pollutant emissions in China: evaluation of past control policies and future
perspectives." Mitigation and Adaptation Strategies for Global Change 20.5 (2015): 719-733.
double_logistic: 1/(1 + exp(a*(time + b))) + 1/(1 + exp(a*(time - b))), defaults PC: b =21, a =
0.19, LCV: b=153,a=0.17, HGV: b= 17, a= 0.1, BUS: b = 19.1, a = 0.16 MCT (2006). de
Gases de Efeito Estufa-Emissoes de Gases de Efeito Estufa por Fontes Moveis, no Setor Energético.
Ministerio da Ciencia e Tecnologia.

10 age_hdv

weibull: exp(-(time/a)*b), defaults PC: b = 4.79, a = 14.46, Taxi: b = +inf, a = 5, Government
and business: b = 5.33, a = 13.11 Non-operating vehicles: b =5.08, a = 11.53 Bus: b = +inf, a =
9, non-transit bus: b = +inf, a = 5.5 Heavy HGV: b = 5.58, a = 12.8, Medium HGV: b =5.58, a =
10.09, Light HGV: b = 5.58, a = 8.02 Hao, H., Wang, H., Ouyang, M., & Cheng, F. (2011). Vehicle
survival patterns in China. Science China Technological Sciences, 54(3), 625-629.

weibull2: exp(-((time + b)/a)"b), defaults b = 11, a = 26 Zachariadis, T., Samaras, Z., Zierock,
K. H. (1995). Dynamic modeling of vehicle populations: an engineering approach for emissions
calculations. Technological Forecasting and Social Change, 50(2), 135-149. Cited by Huo and
Wang (2012)

See Also

Other age: age_hdv (), age_ldv(), age_moto(), age_veh()

Examples

Not run:

vehLIA <- rep(1, 25)

PV_Minia <- age(x = vehLIA)

PV_Minib <- age(x = vehLIA, type = "weibull2”, b = 11, a = 26)

PV_Minic <- age(x = vehLIA, type = "double_logistic”, b = 21, a = 0.19)
PV_Minid <- age(x = vehLIA, type = "gompertz", b = -0.137, a = 1.798)
dff <- data.frame(PV_Minia, PV_Minib, PV_Minic, PV_Minid)

colplot(dff)

End(Not run)

age_hdv Returns amount of vehicles at each age

Description

age_hdv returns amount of vehicles at each age

Usage

age_hdv(
X,
name = "age",
a=20.2,
b =17,
agemin = 1,
agemax = 50,
k=1,
bystreet = F,
net,
verbose = FALSE,
namerows,

age_hdv

time

Arguments

X

name
a

b

agemin
agemax

k
bystreet

net
verbose
namerows
time

Value

11

Numeric; numerical vector of vehicles with length equal to lines features of road
network

Character; of vehicle assigned to columns of dataframe

Numeric; parameter of survival equation

Numeric; parameter of survival equation

Integer; age of newest vehicles for that category

Integer; age of oldest vehicles for that category

Numeric; multiplication factor. If its length is > 1, it must match the length of x

Logical; when TRUE it is expecting that ’a’ and ’b’ are numeric vectors with
length equal to x

SpatialLinesDataFrame or Spatial Feature of "LINESTRING"
Logical; message with average age and total numer of vehicles
Any vector to be change row.names. For instance, name of regions or streets.

Character to be the time units as denominator, eg "1/h"

dataframe of age distrubution of vehicles at each street

Note

The functions age* produce distribution of the circulating fleet by age of use. The order of using

these functions is:

1. If you know the distribution of the vehicles by age of use , use: my_age 2. If you know the sales
of vehicles, or the registry of new vehicles, use age to apply a survival function. 3. If you know
the theoretical shape of the circulating fleet and you can use age_ldv, age_hdv or age_moto. For
instance, you dont know the sales or registry of vehicles, but somehow you know the shape of this
curve. 4. You can use/merge/transform/adapt any of these functions.

See Also

Other age: age(), age_ldv(), age_moto(), age_veh()

Examples

Not run:
data(net)

LT_B5 <- age_hdv(x = net$hdv,name = "LT_B5")

plot(LT_B5)

LT_B5 <- age_hdv(x = net$hdv, name = "LT_B5"”, net = net)

plot(LT_B5)

End(Not run)

12

age_ldv

age_ldv

Returns amount of vehicles at each age

Description

age_ldv returns amount of vehicles at each age

Usage
age_ldv(
X ’
name = "age",
a=1.698,
b=-0.2,
agemin =1,
agemax = 50,
k=1,
bystreet = F,
net,
verbose = FALSE,
namerows,
time
)
Arguments
X Numeric; numerical vector of vehicles with length equal to lines features of road
network
name Character; of vehicle assigned to columns of dataframe
a Numeric; parameter of survival equation
b Numeric; parameter of survival equation
agemin Integer; age of newest vehicles for that category
agemax Integer; age of oldest vehicles for that category
k Numeric; multiplication factor. If its length is > 1, it must match the length of x
bystreet Logical; when TRUE it is expecting that ’a’ and ’b’ are numeric vectors with
length equal to x
net SpatialLinesDataFrame or Spatial Feature of "LINESTRING"
verbose Logical; message with average age and total numer of vehicles
namerows Any vector to be change row.names. For instance, name of regions or streets.
time Character to be the time units as denominator, eg "1/h"
Value

dataframe of age distrubution of vehicles

age_moto 13

Note

The functions age* produce distribution of the circulating fleet by age of use. The order of using
these functions is:

1. If you know the distribution of the vehicles by age of use , use: my_age 2. If you know the sales
of vehicles, or the registry of new vehicles, use age to apply a survival function. 3. If you know
the theoretical shape of the circulating fleet and you can use age_ldv, age_hdv or age_moto. For
instance, you dont know the sales or registry of vehicles, but somehow you know the shape of this
curve. 4. You can use/merge/transform/adapt any of these functions.

It consists in a Gompertz equation with default parameters from 1 national emissions inventory for
green housegases in Brazil, MCT 2006

See Also

Other age: age(), age_hdv(), age_moto(), age_veh()

Examples

Not run:

data(net)

PC_E25_1400 <- age_ldv(x = net$ldv, name = "PC_E25_1400")
plot(PC_E25_1400)

PC_E25_1400 <- age_ldv(x = net$ldv, name = "PC_E25_1400", net = net)
plot (PC_E25_1400)

End(Not run)

age_moto Returns amount of vehicles at each age

Description

age_moto returns amount of vehicles at each age

Usage

age_moto(
X,
name = "age",
a=290.2,
b =17,
agemin = 1
agemax = 5
k =1,
bystreet = FALSE,
net,
verbose = FALSE,
namerows,

o,

14

time

Arguments

X

name
a

b

agemin
agemax

k
bystreet

net
verbose
namerows
time

Value

age_imoto

Numeric; numerical vector of vehicles with length equal to lines features of road
network

Character; of vehicle assigned to columns of dataframe

Numeric; parameter of survival equation

Numeric; parameter of survival equation

Integer; age of newest vehicles for that category

Integer; age of oldest vehicles for that category

Numeric; multiplication factor. If its length is > 1, it must match the length of x

Logical; when TRUE it is expecting that ’a’ and ’b’ are numeric vectors with
length equal to x

SpatialLinesDataFrame or Spatial Feature of "LINESTRING"

Logical; message with average age and total numer of vehicles

Any vector to be change row.names. For instance, name of regions or streets.
Character to be the time units as denominator, eg "1/h"

dataframe of age distrubution of vehicles

Note

The functions age* produce distribution of the circulating fleet by age of use. The order of using

these functions is:

1. If you know the distribution of the vehicles by age of use , use: my_age 2. If you know the sales
of vehicles, or the registry of new vehicles, use age to apply a survival function. 3. If you know
the theoretical shape of the circulating fleet and you can use age_ldv, age_hdv or age_moto. For
instance, you dont know the sales or registry of vehicles, but somehow you know the shape of this
curve. 4. You can use/merge/transform/adapt any of these functions.

See Also

Other age: age(), age_hdv(), age_ldv(), age_veh()

Examples

Not run:
data(net)

MOTO_E25_500 <- age_moto(x = net$ldv, name = "M_E25_500", k = 0.4)
plot (MOTO_E25_500)

MOTO_E25_500 <- age_moto(x = net$ldv, name = "M_E25_500", k

0.4, net = net)

plot (MOTO_E25_500)

End(Not run)

age_veh 15

age_veh Returns amount of vehicles at each age

Description

age_veh returns amount of vehicles at each age

Usage
age_veh(
X ’
type = "ldv",
name = "age",
a = if (type == "ldv") 1.698 else 0.2,
b = if (type == "ldv") -0.2 else 17,
agemin = 1,
agemax = 50,
k=1,
bystreet = F,
net,
verbose = FALSE,
namerows,
time
)
Arguments
X Numeric; numerical vector of vehicles with length equal to lines features of road
network
type "ldv", "hdv", or "mc" representing light vehicles, heavy vehicles or motorcycles
name Character; of vehicle assigned to columns of dataframe
a Numeric; parameter of survival equation
b Numeric; parameter of survival equation
agemin Integer; age of newest vehicles for that category
agemax Integer; age of oldest vehicles for that category
k Numeric; multiplication factor. If its length is > 1, it must match the length of x
bystreet Logical; when TRUE it is expecting that ’a’ and ’b’ are numeric vectors with
length equal to x
net SpatialLinesDataFrame or Spatial Feature of "LINESTRING"
verbose Logical; message with average age and total numer of vehicles
namerows Any vector to be change row.names. For instance, name of regions or streets.

time Character to be the time units as denominator, eg "1/h"

16 aw

Value

dataframe of age distrubution of vehicles

Note

The functions age* produce distribution of the circulating fleet by age of use. The order of using
these functions is:

1. If you know the distribution of the vehicles by age of use , use: my_age 2. If you know the sales
of vehicles, or the registry of new vehicles, use age to apply a survival function. 3. If you know
the theoretical shape of the circulating fleet and you can use age_ldv, age_hdv or age_moto. For
instance, you dont know the sales or registry of vehicles, but somehow you know the shape of this
curve. 4. You can use/merge/transform/adapt any of these functions.

It consists in a Gompertz equation with default parameters from 1 national emissions inventory for
green housegases in Brazil, MCT 2006

See Also

Other age: age(), age_hdv(), age_ldv(), age_moto()

Examples

Not run:

data(net)

PC_E25_1400 <- age_ldv(x = net$ldv, name = "PC_E25_1400")
plot(PC_E25_1400)

PC_E25_1400 <- age_ldv(x = net$ldv, name = "PC_E25_1400", net = net)
plot(PC_E25_1400)

End(Not run)

aw Average Weight for hourly traffic data.

Description

aw average weight form traffic.

Usage

aw(
pc,
lev,
hgv,
bus,
mc,
p_pc,
p_lcv,

aw

Arguments
pc
lev
hgv
bus
mc
p_pc
p_lcv
p_hgv
p_bus
p_mc
w_pc
w_lcv
w_hgv
w_bus
w_mc

net

Value

numeric vector for passenger cars

numeric vector for light commercial vehicles
numeric vector for heavy good vehicles or trucks
numeric vector for bus

numeric vector for motorcycles

data-frame profile for passenger cars, 24 hours only.

data-frame profile for light commercial vehicles, 24 hours only.

data-frame profile for heavy good vehicles or trucks, 24 hours only.

data-frame profile for bus, 24 hours only.
data-frame profile for motorcycles, 24 hours only.
Numeric, factor equivalence

Numeric, factor equivalence

Numeric, factor equivalence

Numeric, factor equivalence

Numeric, factor equivalence

SpatialLinesDataFrame or Spatial Feature of "LINESTRING"

data.frame with with average weight

Examples

Not run:
data(net)

data(pc_profile)

p1 <- pc_profile[, 1]

awl <- aw(pc =
lev
hgv
bus
mc

net$ldv*0.75,

net$ldv*0.1,

net$hdv,

net$hdv*0.1,
net$ldv*0.15,

17

18

head(aw1)

p_pc = pl,
p_lcv = pl,
p_hgv = p1,
p_bus = p1,

p_mc = pl1)

End(Not run)

check nt

celsius

Construction function for Celsius temperature

Description

celsius just add unit celsius to different R objects

Usage

celsius(x)

Arguments

X

Value

Object with class "data.frame", "matrix",

non non

Objects of class "data.frame" or "units"

Examples

{

a <- celsius(rnorm(100)*10)

plot(a)

b <- celsius(matrix(rnorm(100)*10, ncol = 10))
print(head(b))

}

numeric" or "integer"

check_nt

Check the max number of threads

Description

get_threads check the number of threads in this machine

Usage

check_nt()

cold_mileage 19

Value

Integer with the max number of threads

Examples
{
check_nt()
}
cold_mileage Fraction of mileage driven with a cold engine or catalizer below nor-
mal temperature
Description

This function depends length of trip and on ambient temperature. From the guidelines EMEP/EEA
air pollutant emission inventory guidebook http://www.eea.europa.eu/themes/air/emep-eea-air-pollutant-
emission-inventory-guidebook

Usage

cold_mileage(ltrip, ta)

Arguments
ltrip Numeric; Length of trip. It must be in ’units’ km.
ta Numeric or data.frame; average monthly temperature Celsius. Itif is a data.frame,
it is convenient that each column is each month.
Note

This function is set so that values varies between 0 and 1.

Examples

Not run:

lkm <- units::set_units(1:10, km)

ta <- celsius(matrix(@:9, ncol = 12, nrow = 10))
a <- cold_mileage(lkm, ta)

colplot(a)

End(Not run)

20

colplot

colplot

Function to plot columns of data.frames

Description

colplot plots columns of data.frame

Usage

colplot(

df,

cols
xlab
ylab
xlim
ylim
main

names (df),

nn
’
nn

c(1, nrow(df)),
range(unlist(df[[cols]]), na.rm = TRUE),
NULL,

theme = "black”,
col = cptcity::cpt(pal = cptcity::find_cpt(”"pastel”)[4], n = length(names(df))),
type = Ilbll,

lwd =

2,

pch 1:ncol(df),
familyfont = "",
)
Arguments
df data.frame.
cols Character, columns of data.frame.
x1lab a label for the x axis, defaults to a description of x.
ylab a label for the x axis, defaults to a description of x.
x1lim x limits
ylim y limits
main Character, a main title for the plot, see also title.
theme Character; "black”, "dark", "clean", "ink"
col Colors. Default are cptcity colour palette "kst_18_pastels"”
type "p" for points, "1" for lines, "b" for both points and lines, "c" for empty points
joined by lines, "0" for overplotted points and lines, "s" and "S" for stair steps
and "h" for histogram-like vertical lines. Finally, "n" does not produce any
points or lines.
lwd a vector of line widths, see par.
pch plotting ‘character’, i.e., symbol to use.

decoder

familyfont "Character" to specify font, default is

according device

plot arguments

Value

a nice plot

Note

21

nn "non

, options "serif", "sans", "mono" or more

This plot shows values > 0 by default. To plot all values, use all_values = TRUE

See Also

par
Other helpers: dmonth(), to_latex()

Examples

Not run:
a <- ef_cetesb("C0", c("PC_G", "PC_FE", "P
colplot(df = a, ylab = "CO [g/km]"”, theme

colplot(df = a, ylab = "CO [g/km]"”, theme =
colplot(df = a, ylab = "CO [g/km]", theme
colplot(df = a, ylab = "CO [g/km]", theme

#colplot(df = a, cols = "PC_FG", main = "EF",

C_

FG", "PC_E"), agemax = 20)
"dark”, type = "b")

"dark”, pch = NULL, type = "b")
"clean”, type = "b")

"clean”, pch = NULL, type = "b")
ylab = "CO [g/km]")

#colplot(df = a, ylab = "CO [g/km]"”, theme = "clean")

End(Not run)

decoder Description data.frame for MOVES

Description

A data.frame descriptors to use MOVES functions

Usage

data(decoder)

Format

A data frame with 69 rows and 4 columns:

CategoryField dayID, sourceTyplD, roadTypelD, pollutantID and procesID

pollutantID Associated number
Description Associatd description
V4 pollutants

22 dmonth

Source

US/EPA MOVES

dmonth Number of days of the month

Description

ef_ldv_speed return the number of days of the month

Usage

dmonth(year, month)

Arguments
year Numeric
month Numeric
Value

days of the month

See Also

Other helpers: colplot(), to_latex()

Examples
Not run:
dmonth (2022, 1)
dmonth(Sys.Date())

End(Not run)

ef_cetesb 23

ef_cetesb Emissions factors for Environment Company of Sao Paulo, Brazil
(CETESB)

Description

ef_cetesb returns a vector or data.frame of Brazilian emission factors.

Usage
ef_cetesb(
P,
veh,
year = 2017,
agemax = 40,
scale = "default”,
sppm,
full = FALSE,
efinput,
verbose = FALSE,
csv
)
Arguments
p Character;

Pollutants: "CO", "HC", "NMHC", "CH4", "NOx", "CO2", "RCHO" (aldehy-
des + formaldehyde), "ETOH", "PM", "N20", "KML", "FC", "NO2", "NO",
"NH3", "eD/KWH", "gCO2/KWH", "RCHO_Okm" (aldehydes + formaldehyde),
"PM25RES", "PM10RES", "CO_Okm", "HC_Okm", "NMHC_0Okm", "NOx_Okm",
"NO2_0Okm" ,"NO_Okm", "RCHO_Okm" and "ETOH_Okm", "FS" (fuel sales)
(g/km). If scale = "tunnel" is used, there is also "ALD" for aldehydes and
"HCHO" for formaldehydes Evaporative emissions at average temperature ranges:
"D_20_35","S_20_35","R_20_35","D_10_25","S_10_25","R_10_25","D_0_15",
"S_0_15"and "R_0_15" where D means diurnal (g/day), S hot/warm soak (g/trip)
and R hot/warm running losses (g/trip). THe deteriorated emission factors are
calculated inside this function.

veh Character; Vehicle categories: "PC_G", "PC_FG", "PC_FE", "PC_E", "LCV_G",
"LCV_FG","LCV_FE", "LCV_E", "LCV_D", "TRUCKS_SL", "TRUCKS_L",
"TRUCKS_M", "TRUCKS_SH", "TRUCKS_H", "BUS_URBAN", "BUS_MICRO",
"BUS_COACH", "BUS_ARTIC", "MC_150_G", "MC_150_500_G", "MC_500_G",
"MC_150_FG", "MC_150_500_FG", "MC_500_FG", "MC_150_FE", "MC_150_500_FE",
"MC_500_FE", "CICLOMOTOR", "GNV"

year Numeric; Filter the emission factor to start from a specific base year. If project
is *constant’ values above 2017 and below 1980 will be repeated

agemax Integer; age of oldest vehicles for that category

24

scale

sppm
full

efinput

verbose

CsVv

Value

ef _cetesb

Character; values "default","tunnel" o "tunnel2018". If "tunnel", emission fac-
tors are scaled to represent EF measurements in tunnels in Sao Paulo
Numeric, sulfur (sulphur) in ppm in fuel. Length 1 or EF

Logical; To return a data.frame instead or a vector adding Age, Year, Brazilian
emissions standards and its euro equivalents.

data.frame with efinput structure of sysdata cetesb. Allow apply deterioration
for future emission factors

Logical; To show more information

String with the path to download the ef in a .csv file. For instance, ef.csv

A vector of Emission Factor or a data.frame

Note

new emission factors ar projects as the lates available,

The new convention for vehicles names are translated from CETESB report:

veh

PC_G

PC_E

PC_FG

PC_FE

LCV_G

LCV_E

LCV_FG
LCV_FE

LCV_D
TRUCKS_SL_D
TRUCKS_L_D
TRUCKS_M_D
TRUCKS_SH_D
TRUCKS_H_D
BUS_URBAN_D
BUS_MICRO_D
BUS_COACH_D
BUS_ARTIC_D
MC_150_G
MC_150_500_G
MC_500_G
MC_150_FG
MC_150_500_FG
MC_500_FG
MC_150_FE
MC_150_500_FE
MC_500_FE

description

Passenger Car Gasohol (Gasoline + 27perc of anhydrous ethanol)

Passenger Car Ethanol (hydrous ethanol)

Passenger Car Flex Gasohol (Gasoline + 27perc of anhydrous ethanol)

Passenger Car Flex Ethanol (hydrous ethanol)

Light Commercial Vehicle Gasohol (Gasoline + 27perc of anhydrous ethanol)

Light Commercial Vehicle Ethanol (hydrous ethanol)

Light Commercial Vehicle Flex Gasohol (Gasoline + 27perc of anhydrous ethanol)
Light Commercial Vehicle Flex Ethanol (hydrous ethanol)

Light Commercial Vehicle Diesel (Sperc bio-diesel)

Trucks Semi Light Diesel (Sperc bio-diesel)

Trucks Light Diesel (Sperc bio-diesel)

Trucks Medium Diesel (Sperc bio-diesel)

Trucks Semi Heavy Diesel (Sperc bio-diesel)

Trucks Heavy Diesel (Sperc bio-diesel)

Urban Bus Diesel (Sperc bio-diesel)

Micro Urban Bus Diesel (Sperc bio-diesel)

Coach (inter-state) Bus Diesel (Sperc bio-diesel)

Articulated Urban Bus Diesel (Sperc bio-diesel)

Motorcycle engine less than 150cc Gasohol (Gasoline + 27perc of anhydrous ethanol)
Motorcycle engine 150-500cc Gasohol (Gasoline + 27perc of anhydrous ethanol)
Motorcycle greater than 500cc Gasohol (Gasoline + 27perc of anhydrous ethanol)
Flex Motorcycle engine less than 150cc Gasohol (Gasoline + 27perc of anhydrous ethanol)
Flex Motorcycle engine 150-500cc Gasohol (Gasoline + 27perc of anhydrous ethanol)
Flex Motorcycle greater than 500cc Gasohol (Gasoline + 27perc of anhydrous ethanol)
Flex Motorcycle engine less than 150cc Ethanol (hydrous ethanol)

Flex Motorcycle engine 150-500cc Ethanol (hydrous ethanol)

Flex Motorcycle greater than 500cc Ethanol (hydrous ethanol)

ef_cetesb 25

PC_ELEC Passenger Car Electric
LCV_ELEC Light Commercial Vehicle Electric

The percentage varies of biofuels varies by law.
This emission factors are not exactly the same as the report of CETESB.

1) In this emission factors, there is also NO and NO2 based on split by published in the EMEP/EEA
air pollutant emission inventory guidebook.

2) Also, the emission factors were extended till 50 years of use, repeating the oldest value.

3) CNG emission factors were expanded to other pollutants by comparison of US.EPA-AP42 emis-
sion factor: Section 1.4 Natural Gas Combustion.

In the previous versions I used the letter ’d’ for deteriorated. I removed the letter ’d’ internally to
not break older code.

If by mistake, the user inputs one of veh names from the old convention, they are internally changed

to the new convention: "SLT", "LT", "MT", "SHT","HT", "UB", "SUB", "COACH", "ARTIC",
"M_G_150","M_G_150_500", "M_G_500", "M_FG_150", "M_FG_150_500", "M_FG_500", "M_FE_150",
"M_FE_150_500","M_FE_500", PC_ELEC, LCV_ELEC, TRUCKS_ELEC, BUS_ELEC, MC_150_ELEC,
MC_150_500_ELEC, MC_500_ELEC

If pollutant is "SO2", it needs sppm. It is designed when veh has length 1, if it has length 2 or more,
it will show a warning

Emission factor for vehicles older than the reported by CETESB were filled with las highest
EF

» Range EF from PC and LCV otto: 2018 - 1982. EF for 1981 and older as moving average.
* Range LCV diesel : 2018 - 2006. EF for 2005 and older as moving average.

» Range Trucks and Buse: 2018 - 1998. EF for 1997 and older as moving average.

* Range MC Gasoline: 2018 - 2003. EF for 2002 and older as moving average.

* Range MC Flex 150-500cc and >500cc: 2018 - 2012. EF for 2011 and older as moving
average.

Currently, 2020, there are not any system for recovery of fuel vapors in Brazil. Hence, the FS takes
into account the vapour that comes from the fuel tank inside the car and released into the atmosphere
when injecting new fuel. There are discussions about increasing implementing stage I and II and/or
ORVR these days. The ef FS is calculated by transforming g FC/km into (L/KM)*g/L with g/LL 1.14
fgor gasoline and 0.37 for ethanol (CETESB, 2016). The density considered is 0.75425 for gasoline
and 0.809 for ethanol (t/m”3)

CETESB emission factors did not cover evaporative emissions from motorcycles, which occur.
Therefore, in the absence of better data, it was assumed the same ratio from passenger cars.

Li, Lan, et al. "Exhaust and evaporative emissions from motorcycles fueled with ethanol gasoline
blends." Science of the Total Environment 502 (2015): 627-631.

If scale is used with tunnel, the references are:

26 ef _china

* Pérez-Martinez, P. J., Miranda, R. M., Nogueira, T., Guardani, M. L., Fornaro, A., Ynoue, R.,
and Andrade, M. F. (2014). Emission factors of air pollutants from vehicles measured inside
road tunnels in Sao Paulo: case study comparison. International Journal of Environmental
Science and Technology, 11(8), 2155-2168.

* Nogueira, T., de Souza, K. F., Fornaro, A., de Fatima Andrade, M., and de Carvalho, L. R.
F. (2015). On-road emissions of carbonyls from vehicles powered by biofuel blends in traffic
tunnels in the Metropolitan Area of Sao Paulo, Brazil. Atmospheric Environment, 108, 88-97.

* Nogueira, T., et al (2021). In preparation (for tunnel 2018)
Emission factors for resuspension applies only with top-down approach as a experimental feature.

Units are g/(streets*veh)/day. These values were derived form a bottom-up resuspension emissions
from metropolitan area of Sao Paulo 2018, assuming 50000 streets

NH3 from EEA Tier 2

References

Emissoes Veiculares no Estado de Sao Paulo 2016. Technical Report. url: https://cetesb.sp.gov.br/veicular/relatorios-
e-publicacoes/.

Examples
{
a <- ef_cetesb(p = "C0", veh = "PC_G")
a <- ef_cetesb(p = "NOx", veh = "TRUCKS_M_D")
a <- ef_cetesb("R_10_25", "PC_G")
a <- ef_cetesb("C0", c("PC_G", "PC_FE"))

ef_cetesb(p = "C0", veh = "PC_G", year = 1970, agemax = 40)

ef_cetesb(p = "C0", veh = "TRUCKS_L_D", year = 2018)

ef_cetesb(p = "C0", veh = "SLT", year = 2018) # olds names

a <- ef_cetesb(p = "NMHC", veh = c("PC_G", "PC_FG", "PC_FE", "PC_E"), year = 2018, agemax = 20)
colplot(a, main = "NMHC EF", ylab = "[g/km]", xlab = "Years of use")

ef_cetesb(p = "PM25RES"”, veh = "PC_ELEC", year = 1970, agemax = 40)

ef_cetesb(p = "PM25RES"”, veh = "BUS_ELEC", year = 1970, agemax = 40)

3

ef_china Emissions factors from Chinese emissions guidelines

Description

ef_china returns emission factors as vector or data.frames. The emission factors comes from the
chinese emission guidelines (v3) from the Chinese Ministry of Ecology and Environment http://www.mee.gov.cn/gkml/hbb/b;

ef _china

Usage

ef_china(

= "PV",

= "Small”
= “G”,
standard,

p,
k=1,

—H o+ < |
1

’

27

ta = celsius(15),
humidity = 0.5,
1000,
speed = Speed(30),
baseyear_det = 2016,
sulphur = 50,

altitude =

load_factor

0.5,

details = FALSE,
correction_only = FALSE

Arguments

.F

standard

k
ta

humidity

altitude

speed

baseyear_det

sulphur

load_factor

Character; category vehicle: "PV" for Passenger Vehicles or *Trucks"

Character; sub-category of of vehicle: PV Gasoline: "Mini", "Small","Medium",
"Large", "Taxi", "Motorcycles", "Moped", PV Diesel: "Mediumbus", "Large-
bus", "3-Wheel". Trucks: "Mini", "Light" , "Medium", "Heavy"

Character;fuel: "G", "D", "CNG", "ALL"

Character or data.frame; "PRE", "I", "II", "III", "IV", "V". When it is a data.frame,
it each row is a different region and ta, humidity, altitud, speed, sulphur and
load_factor lengths have the same as the number of rows.

Character; pollutant: "CO", "NOx","HC", "PM", "Evaporative_driving" or "Evap-
orative_parking"

Numeric; multiplication factor

Numeric; temperature of ambient in celcius degrees. When standard is a data.frame,
the length must be equal to the number of rows of standard.

Numeric; relative humidity. When standard is a data.frame, the length must be
equal to the number of rows of standard.

Numeric; altitude in meters. When standard is a data.frame, the length must be
equal to the number of rows of standard.

Numeric; altitude in km/h When standard is a data.frame, the length must be
equal to the number of rows of standard.

Integer; any of 2014, 2015, 2016, 2017, 2018

Numeric; sulphur in ppm. When standard is a data.frame, the length must be
equal to the number of rows of standard.

Numeric; When standard is a data.frame, the length must be equal to the number
of rows of standard.

28

ef _china

details Logical; When TRUE, it shows a description of the vehicle in chinese and en-
glish. Only when length standard is 1.

correction_only

Logical; When TRUE, return only correction factors.

Value

An emission factor

Note

Combination of vehicles:

PV
PV
PV
PV
PV
PV
PV
PV
PV
PV
PV
PV
PV
PV
PV
PV
PV
PV
PV
PV
PV
PV
PV
PV
Trucks
Trucks
Trucks
Trucks
Trucks
Trucks
Trucks
Trucks
Trucks

t
Mini
Bus
Mini
Bus
Mini
Small
Medium
Large
Taxi
Bus
Motorcycles
Moped
Mini
Small
Mediumbus
Medium
Largebus
Bus
3-Wheel
Small
Mediumbus
Largebus
Taxi
Bus
Bus
Light
Medium
Heavy
Light
Medium
Heavy
Low Speed
Mini

GHY
DHYD

oNe)
Z Z
QaQ

gogogoooogaaaaoaoaa

> >
C
ol o

>

>
oo
ol

>
o

JooooaaaQ

ef _china 29

standard VI is assumed as V

See Also

ef_ldv_speed emis_hot_td

Other China: ef_china_det (), ef_china_h(), ef_china_hu(), ef_china_long(), ef_china_s(),
ef_china_speed(), ef_china_te(), ef_china_th(), emis_china(), emis_long()

Examples

Not run:

when standard is 'character'

Checking

df_st <- rev(c(as.character(as.roman(5:1)), "PRE"))
ef_china(t = "Mini”, f = "G", standard = df_st, p = "C0")

ef_china(t = "Mini”, f = "G", standard = df_st, p = "HC")
ef_china(t = "Mini"”, f = "G", standard = df_st, p = "NOx")
ef_china(t = "Mini”, f = "G", standard = df_st, p = "PM2.5")
ef_china(t = "Mini”, f = "G", standard = df_st, p = "PM10")
ef_china(t = "Small”, f = "G", standard = df_st, p = "C0")
ef_china(t = "Small”, f = "G", standard = df_st, p = "HC")
ef_china(t = "Small”, f = "G", standard = df_st, p = "NOx")
ef_china(t = "Small”, f = "G", standard = df_st, p = "PM2.5")
ef_china(t = "Small”, f = "G", standard = df_st, p = "PM10")
ef_china(t = "Mini",

standard = c("PRE"),

p = "C0",

k=1,

ta = celsius(15),
humidity = 0.5,
altitude = 1000,
speed = Speed(30),
baseyear_det = 2014,
sulphur = 50,
load_factor = 0.5,
details = FALSE)
ef_china(standard = c("PRE", "I"), p = "C0O", correction_only = TRUE)

when standard is 'data.frame'
df_st <- matrix(c("v", "IV", "III", "III", "II", "I", "PRE"), nrow =2, ncol = 7, byrow = TRUE)
df_st <- as.data.frame(df_st)
a <- ef_china(standard = df_st,
p = "PM1Q",
ta = rep(celsius(15), 2),
altitude = rep(1000, 2),
speed = rep(Speed(30), 2),
sulphur = rep(50, 2))
dim(a)
dim(df_st)

30

ef china_det

ef_china(standard = df_st, p = "PM2.5", ta = rep(celsius(20), 2),
altitude = rep(1501, 2), speed = rep(Speed(29), 2), sulphur = rep(50, 2))
a

when standard, temperature and humidity are data.frames

assuming 10 regions

df_st <- matrix(c("v", "Iv", "III", "III", "I1I", "I", "PRE"), nrow =10, ncol =7, byrow = TRUE)
df_st <- as.data.frame(df_st)

df_t <- matrix(21:30, nrow = 10, ncol = 12, byrow = TRUE)

df_t <- as.data.frame(df_t)

for(i in 1:12) df_t[, il <- celsius(df_t[, il)

assuming 10 regions

df_h <- matrix(seq(@0.4, 0.5, 0.05), nrow = 10, ncol = 12, byrow = TRUE)

df_h <- as.data.frame(df_h)

a <- ef_china(standard = df_st, p = "C0", ta = df_t, humidity = df_h,
altitude = rep(1501, 10), speed = rep(Speed(29), 10), sulphur = rep(50, 10))
a

a <- ef_china(standard = df_st, p = "PM2.5", ta = df_t, humidity = df_h,
altitude = rep(1501, 10), speed = rep(Speed(29), 10), sulphur = rep(50, 10))
a

a <- ef_china(standard = df_st, p = "PM10", ta = df_t, humidity = df_h,
altitude = rep(1501, 10), speed = rep(Speed(29), 10), sulphur = rep(50, 10))
a

dim(a)

End(Not run)

ef_china_det Correction of Chinese emission factors by deterioration

Description

Correction of Chinese emission

Usage

ef_china_det(v = "PV", t = "Small”, f = "G", standard, yeardet = 2015, p)

Arguments

v Character; category vehicle: "PV" for Passenger Vehicles or *Trucks"
Character; sub-category of of vehicle: PV Gasoline: "Mini", "Small","Medium",
"Large", "Taxi", "Motorcycles", "Moped", PV Diesel: "Mediumbus", "Large-
bus", "3-Wheel". Trucks: "Mini", "Light" , "Medium", "Heavy"

f Character;fuel: "G", "D", "CNG", "ALL"

standard Character vector; "PRE", "I", "II", "IIT", "TV", "V".

yeardet Integer; any of 2014, 2015, 2016, 2017, 2018

p Character; pollutant: "CO", "NOx","HC", "PM", "Evaporative_driving" or "Evap-

orative_parking"

ef china_h 31

Value

long data.frame

See Also

Other China: ef_china(), ef_china_h(), ef_china_hu(), ef_china_long(), ef_china_s(),
ef_china_speed(), ef_china_te(), ef_china_th(), emis_china(), emis_long()

Examples

{
ef_china_det(standard = "I", p = "C0")
ef_china_det(standard = c("I", "III"),

b = "CO",
f = HDH)
3
ef_china_h Correction of Chinese factors by altitude
Description

Correction of Chinese emission

Usage
ef_china_h(h, v = "PV", t = "Small”, f = "G", p)

Arguments

h numeric altitude

v Character; category vehicle: "PV" for Passenger Vehicles or *Trucks"

t Character; sub-category of of vehicle: PV Gasoline: "Mini", "Small","Medium",
"Large", "Taxi", "Motorcycles", "Moped", PV Diesel: "Mediumbus", "Large-
bus", "3-Wheel". Trucks: "Mini", "Light" , "Medium", "Heavy"

f Character;fuel: "G", "D", "CNG"

p Character; pollutant: "CO", "NOx","HC", "PM", "Evaporative_driving" or "Evap-
orative_parking"

Value

long data.frame

See Also

Other China: ef_china(), ef_china_det(), ef_china_hu(), ef_china_long(), ef_china_s(),
ef_china_speed(), ef_china_te(), ef_china_th(), emis_china(), emis_long()

32 ef china_hu

Examples

{
ef_china_h(h = 1600, p = "C0")

3

ef_china_hu Correction of Chinese emission factors by humidity

Description

Correction of Chinese emission

Usage

ef_china_hu(hu, v = "PV", t = "Small”, f = "G", standard, p)

Arguments

hu numeric humidity

v Character; category vehicle: "PV" for Passenger Vehicles or *Trucks"

t Character; sub-category of of vehicle: PV Gasoline: "Mini", "Small","Medium",
"Large", "Taxi", "Motorcycles", "Moped", PV Diesel: "Mediumbus", "Large-
bus", "3-Wheel". Trucks: "Mini", "Light" , "Medium", "Heavy"

f Character;fuel: "G", "D", "CNG"

standard Character vector; "PRE", "I", "II", "III", "IV", "V".

p Character; pollutant: "CO", "NOx","HC", "PM", "Evaporative_driving" or "Evap-
orative_parking"

Value

long data.frame

See Also

Other China: ef_china(), ef_china_det(), ef_china_h(), ef_china_long(), ef_china_s(),
ef_china_speed(), ef_china_te(), ef_china_th(), emis_china(), emis_long()

Examples

{
ef_china_hu(hu = 60, standard = "I", p = "C0")

}

ef_china_long 33

ef_china_long Chinese emission factors by emissions standard

Description

Chinese emission factors in long format

Correction of Chinese emission

Usage

ef_china_long(v "PV", t "Small”, f = "G", standard, p)

ef_china_long(v = "PV", t = "Small”, f = "G", standard, p)

Arguments

v Character; category vehicle: "PV" for Passenger Vehicles or ’Trucks"

t Character; sub-category of of vehicle: PV Gasoline: "Mini", "Small","Medium",
"Large", "Taxi", "Motorcycles", "Moped", PV Diesel: "Mediumbus", "Large-
bus", "3-Wheel". Trucks: "Mini", "Light" , "Medium", "Heavy"

f Character;fuel: "G", "D", "CNG", "ALL"

standard Character vector; "PRE", "I", "II", "III", "IV", "V".

p Character; pollutant: "CO", "NOx","HC", "PM", "Evaporative_driving" or "Evap-
orative_parking"

Value

long data.frame

long data.frame

See Also

Other China: ef_china(), ef_china_det(), ef_china_h(), ef_china_hu(), ef_china_s(),
ef_china_speed(), ef_china_te(), ef_china_th(), emis_china(), emis_long()

Other China: ef_china(), ef_china_det(), ef_china_h(), ef_china_hu(), ef_china_s(),
ef_china_speed(), ef_china_te(), ef_china_th(), emis_china(), emis_long()

Examples

{
Not run:

Do not run

End(Not run)
3
{

34 ef china_s

ef_china_long(standard = "I", p = "C0")
3

ef_china_s Correction of Chinese emission factors by sulfur

Description

Correction of Chinese emission

Usage

ef_china_s(s, f = "G", standard, p)

Arguments
s Numeric sulfur content in ppm
f Character;fuel: "G", "D", "CNG", "ALL"
standard Character vector; "PRE", "I", "II", "III", "IV", "V".
p Character; pollutant: "CO", "NOx","HC", "PM", "Evaporative_driving" or "Evap-
orative_parking"
Value

long data.frame

See Also

Other China: ef_china(), ef_china_det (), ef_china_h(), ef_china_hu(), ef_china_long(),
ef_china_speed(), ef_china_te(), ef_china_th(), emis_china(), emis_long()

Examples

{
ef_china_s(s = 1000, standard = "I", p = "C0")
}

ef_china_speed 35

ef_china_speed Correction of Chinese emission factors by speed

Description

Correction of Chinese emission

Usage

ef_china_speed(speed, f = "G", standard, p, long = FALSE)

Arguments
speed numeric speed km/h
f Character;fuel: "G", "D", "CNG"
standard Character vector; "PRE", "I", "II", "III", "IV", "V".
p Character; pollutant: "CO", "NOx","HC", "PM", "Evaporative_driving" or "Evap-
orative_parking"
long Logical, to process long format of ef
Value

long data.frame

See Also

Other China: ef_china(), ef_china_det (), ef_china_h(), ef_china_hu(), ef_china_long(),
ef_china_s(), ef_china_te(), ef_china_th(), emis_china(), emis_long()

Examples

{
data(net)
head(ef_china_speed(speed = net$ps, standard = "I", p = "C0"))
head(ef_china_speed(speed = net$ps,
standard = c("II", "I"),
p = "NOX"))

36 ef _china_te

ef_china_te Correction of Chinese emission factors by temperature

Description

Correction of Chinese emission

Usage

ef_china_te(te, v = "PV", t = "Small”, f = "G", p)

Arguments

te numeric temperature in celsius

v Character; category vehicle: "PV" for Passenger Vehicles or *Trucks"

t Character; sub-category of of vehicle: PV Gasoline: "Mini", "Small","Medium",
"Large", "Taxi", "Motorcycles", "Moped", PV Diesel: "Mediumbus", "Large-
bus", "3-Wheel". Trucks: "Mini", "Light" , "Medium", "Heavy"

f Character;fuel: "G", "D", "CNG"

p Character; pollutant: "CO", "NOx","HC", "PM", "Evaporative_driving" or "Evap-
orative_parking"

Value

long data.frame

See Also

Other China: ef_china(), ef_china_det (), ef_china_h(), ef_china_hu(), ef_china_long(),
ef_china_s(), ef_china_speed(), ef_china_th(), emis_china(), emis_long()

Examples

{
data(net)
head(ef_china_te(te = net$ps, p = "C0"))
head(ef_china_te(te = net$ps,
p = "NOX"))
3

ef _china_th 37

ef_china_th Correction of Chinese factors by humidity when temperature > 24

Description

Correction of Chinese emission

Usage

ef_china_th(hu, te, v = "PV", t = "Small”, f = "G", p)

Arguments

hu numeric humidity

te numeric temperature in celsius

v Character; category vehicle: "PV" for Passenger Vehicles or *Trucks"

t Character; sub-category of of vehicle: PV Gasoline: "Mini", "Small","Medium",
"Large", "Taxi", "Motorcycles", "Moped", PV Diesel: "Mediumbus", "Large-
bus", "3-Wheel". Trucks: "Mini", "Light" , "Medium", "Heavy"

f Character;fuel: "G", "D", "CNG"

p Character; pollutant: "CO", "NOx","HC", "PM", "Evaporative_driving" or "Evap-
orative_parking"

Value

long data.frame

See Also

Other China: ef_china(), ef_china_det (), ef_china_h(), ef_china_hu(), ef_china_long(),
ef_china_s(), ef_china_speed(), ef_china_te(), emis_china(), emis_long()

Examples

{
ef_china_th(hu = 60, te = 25, p = "C0")

}

38

ef eea

ef_eea

Emissions factors from European European Environment Agency

Description

ef_cetesb returns a vector or data.frame of Brazilian emission factors.

Usage

ef_eea(
category,
fuel,
segment,
euro,
tech,
pol,
mode,
slope,
load,
speed,

fcorr = rep(1, 8)

Arguments

category

fuel

segment
euro

tech
pol

mode
slope
load
speed
fcorr

String: "PC" (Passenger Cars), "LCV" (Light Commercial Vehicles), "TRUCKS"
(Heavy Duty Trucks), "BUS" (Buses) or "MC" (Motorcycles or L-Category as
in EEA 2019).

String; "G", "G HY", "G PHEV G", "G PHEV ELEC", "D", "D PHEV D",
"D PHEV ELEC", "LPG BIFUEL LPG", "LPG BIFUEL G", "CNG BIFUEL
CNG", "CNG BIFUEL G", "D HY D", "D HY ELEC", "CNG", "BIO D"
String for type of vehicle (try different, the function will show values).

String; euro standard: "PRE", "IMPROVED CONVENTIONAL", "OPEN LOOP",
"ECE 15/00-01", "ECE 15/02", "ECE 15/03", "ECE 15/04". "I", "II", "III",
"IV", "V'", "VI A/B/C", "VI D", "VI D-TEMP", "VI D/E", "EEV".

String; technology: "DPF", "DPF With S/W Update", "DPF+SCR" "EGR",
"GDI", "GDI+GPF", "LNT+DPF", "PFI", "SCR".

String; "CO", "NOx", "NMHC" (VOC), "PM" (PM Exhaust), "EC", "CH4",
"NH3", "N20"

String; "Urban Peak", "Urban Off Peak", "Rural", "Highway", NA.

Numeric; 0.00, -0.06, -0.04, -0.02, 0.02, 0.04, 0.06, or NA

Numeric; 0.0,0.5, 1.0 or NA

Numeric; optional numeric in km/h.

Numeric; Correction by fuel properties by euro technology. See fuel_corr.
The order from first to last is "PRE", "I", "II", "III", "IV", "V", "VI", "or other
VI. Default is 1

ef_emfac

Value

39

Return a function depending of speed or numeric (g/km)

Examples

{

ef_eea(category = "I DONT KNOW")
ef_eea(category = "PC",

fuel = "G",
segment = "Small”,
euro = "I",
tech = NA,
pol = "C0",
mode = NA,
slope = 0,

load = 0)(10)
3

ef_emfac

Emission Factors from EMFAC emission factors

Description

ef_emfac reads path to ef EMFAC. You must download the emission factors from EMFAC website.

Usage

ef_emfac(
efpath,
dg = 750,
dd = 850,
dhy = 750,

dcng = 0.8,

fill_missing = TRUE,
verbose = TRUE

Arguments
efpath
dg
dd
dhy
dcng
fill_missing

verbose

Character path to EMFAC ef (g/miles)
Numeric density of gasoline, default 750 kg/m3
Numeric density of diesel, default 850 kg/m3
Numeric density of hybrids, default 750 kg/m3
Numeric density of CNG, default 0.8 kg/m3
Logical to fill and correct ef = 0

Logical, to show more information

40

Value

data.table with emission estimation in long format

Note

Fuel consumption must be present

Examples

Not run:
do not run

End(Not run)

ef_evap

ef_evap

Evaporative emission factor

Description

ef_evap is a lookup table with tier 2 evaporative emission factors from EMEP/EEA emisison guide-

lines

Usage

ef_evap(
ef,
v,
cc,
dt,
ca,

pollutant = "NMHC",

k=1,
ltrip,
kmday,
show = FALSE,

verbose = FALSE

Arguments

ef

Name of evaporative emission factor as *eshotc*: mean hot-soak with carbu-
rator, *eswarmc*: mean cold and warm-soak with carburator, eshotfi: mean
hot-soak with fuel injection, *erhotc*: mean hot running losses with carbura-
tor, *erwarmc* mean cold and warm running losses, *erhotfi* mean hot running

losses with fuel injection. Length of ef 1.

Type of vehicles, "PC", "Motorcycle", "Motorcycle_2S" and "Moped"

ef_evap 41

cc Size of engine in cc. PC "<=1400", "1400_2000" and ">2000" Motorcycle_2S:
"<=50". Motorcyces: ">50", "<=250", "250_750" and ">750". Only engines of
>750 has canister.

dt Character or Numeric: Average monthly temperature variation: "-5_10", "0_15",
"10_25" and "20_35". This argument can vector with several elements. dt can
also be data.frame, but it is recommended that the number of columns are each
month. So that dt varies in each row and each column.

ca Size of canister: "no" meaning no canister, "small", "medium" and "large".

pollutant Character indicating any of the covered pollutants: "NMHC", "ethane", "propane”,

"i-butane", "n-butane", "i-pentane", "n-pentane”, "2-methylpentane", "3-methylpentane"”,

"non "non: non

"n-hexane", "n-heptane", "propene", "trans-2-butene", "isobutene", "cis-2-butene",
"1,3-butadiene", "trans-2-pentene", "cis-2-pentene"”, "isoprene", "propyne", "acety-
lene", "benzene", "toluene", "ethylbenzene", "m-xylene", "o-xylene", "1,2,4-

trimethylbenzene" and "1,3,5-trimethylbenzene". Default is "NMHC"

k multiplication factor

ltrip Numeric; Length of trip. Experimental feature to conter g/trip and g/proced
(assuming proced similar to trip) in g/km.

kmday Numeric; average daily mileage. Experimental option to convert g/day in g/km.
it is an information more solid than to know the average number of trips per day.

show when TRUE shows row of table with respective emission factor.

verbose Logical; To show more information

Value

emission factors in g/trip or g/proced. The object has class (g) but it order to know it is g/trip or
g/proceed the argument show must by T

Note

Diurnal loses occur with daily temperature variations. Running loses occur during vehicles use.
Hot soak emission occur following vehicles use.

References

Mellios G and Ntziachristos 2016. Gasoline evaporation. In: EEA, EMEP. EEA air pollutant
emission inventory guidebook-2009. European Environment Agency, Copenhagen, 2009

Examples

Not run:

Do not run

a <- ef_evap(ef = "eshotc”, v = "PC", cc = "<=1400", dt = "@_15", ca = "no",
pollutant = "cis-2-pentene”)

a <- ef_evap(ef = "ed”, v = "PC", cc = "<=1400", dt = "0_15", ca = "no",
show = TRUE)

a <- ef_evap(ef = c("erhotc”, "erhotc"), v = "PC", cc = "<=1400",

dt = "0_15", ca = "no",

show = TRUE)

42 ef fun

a <- ef_evap(ef = c("erhotc”, "erhotc"), v =
dt = "@_15", ca = "no”,

show = FALSE)

a <- ef_evap(ef = "eshotc”, v = "PC", cc = "<=1400", dt = "0_15", ca = "no”

"PC", cc = n<:14®®n’

’

show = TRUE)
ef_evap(ef = "erhotc”, v = "PC", cc = "<=1400", dt = "0@_15", ca = "no",
show = TRUE)

temps <- 10:20

a <- ef_evap(ef = "erhotc”, v = "PC", cc = "<=1400", dt = temps, ca = "no”",
show = TRUE)

dt <- matrix(rep(1:24,5), ncol = 12) # 12 months

dt <- celsius(dt)

a <- ef_evap(ef ="erhotc”, v = "PC", cc = "<=1400",

dt = dt, ca = "no")

1km <- units::set_units(10, km)

a <- ef_evap(ef ="erhotc”, v = "PC", cc
dt = dt, ca = "no")

"<=1400", ltrip = lkm,

End(Not run)

ef_fun Experimental: Returns a function of Emission Factor by age of use

Description

ef_fun returns amount of vehicles at each age

Usage

ef_fun(
ef,
type = "logistic”,
x = 1:1length(ef),
x@ = mean(ef),

k = 1/4,
L = max(ef),
verbose = TRUE
)
Arguments
ef Numeric; numeric vector of emission factors.
type Character; "logistic" by default so far.
X Numeric; vector for ages of use.
X0 Numeric; the x-value of the sigmoid’s midpoint,
k Numeric; the steepness of the curve.
L Integer; the curve’s maximum value.
verbose Logical; to show the equation

ef_hdv_scaled 43

Value

numeric vector.

References

https://en.wikipedia.org/wiki/Logistic_function

Examples

Not run:

CO <- ef_cetesb(p = "C0", veh = "PC_G")

ef_logit <- ef_fun(ef = CO, x0 = 27, k = 0.4, L = max(C0))
df <- data.frame(CO, ef_logit)

colplot(df)

End(Not run)

ef_hdv_scaled Scaling constant with speed emission factors of Heavy Duty Vehicles

Description

ef_hdv_scaled creates a list of scaled functions of emission factors. A scaled emission factor
which at a speed of the dricing cycle (SDC) gives a desired value. This function needs a dataframe
with local emission factors with a columns with the name "Euro_ HDV" indicating the Euro equiv-
alence standard, assuming that there are available local emission factors for several consecutive
years.

Usage
ef_hdv_scaled(df, dfcol, SDC = 34.12, v, t, g, eu, gr =0, 1 = 0.5, p)

Arguments

df deprecated

dfcol Column of the dataframe with the local emission factors eg df$dfcol

SDC Speed of the driving cycle

v Category vehicle: "Coach", "Trucks" or "Ubus"
Sub-category of of vehicle: "3Axes", "Artic", "Midi", "RT, "Std" and "TT"

g Gross weight of each category: "<=18", ">18", "<=15", ">15 & <=18", "<=7.5",
">7.5 & <=12", ">12 & <=14", ">14 & <=20", ">20 & <=26", ">26 & <=28",
">28 & <=32", ">32", ">20 & <=28", ">28 & <=34", ">34 & <=40", ">40 &
<=50" or ">50 & <=60"

eu Euro emission standard: "PRE", "I", "II", "III", "IV" and "V"

gr Gradient or slope of road: -0.06, -0.04, -0.02, 0.00, 0.02. 0.04 or 0.06

1 Load of the vehicle: 0.0, 0.5 or 1.0

p Pollutant: "CO", "FC", "NOx" or "HC"

44 ef_hdv_speed

Value

A list of scaled emission factors g/km

Note

The length of the list should be equal to the name of the age categories of a specific type of vehicle

Examples

{

Do not run
CO <- ef_cetesb(p = "C0O", veh = "TRUCKS_SL_D", full = TRUE)
lef <- ef_hdv_scaled(dfcol = C0$CO,

v = "Trucks”,

t = "RT",

g = "<=7.5",

eu = CO$Euro_EgHDV,
gr =0,

1=o20.5,

p = IICOVI)

length(lef)

ages <- c(1, 10, 20, 30, 40)

EmissionFactors(do.call("cbind”,
lapply(ages, function(i) {

data.frame(i = lef[[i]1](1:100))

) -> df

names(df) <- ages

colplot(df)

}

ef_hdv_speed Emissions factors for Heavy Duty Vehicles based on average speed

Description

This function returns speed dependent emission factors. The emission factors comes from the guide-
lines EMEP/EEA air pollutant emission inventory guidebook http://www.eea.europa.eu/themes/air/emep-
eea-air-pollutant-emission-inventory-guidebook

Usage
ef_hdv_speed(

ef_hdv_speed 45
1=20.5,
P,
k=1,
show.equation = FALSE,
speed,
fcorr = rep(1, 8)
)
Arguments
v Category vehicle: "Coach", "Trucks" or "Ubus"
t Sub-category of of vehicle: "3Axes", "Artic", "Midi", "RT, "Std" and "TT"
g Gross weight of each category: "<=18", ">18", "<=15", ">15 & <=18", "<=7.5",
">7.5 & <=12", ">12 & <=14", ">14 & <=20", ">20 & <=26", ">26 & <=28",
">28 & <=32", ">32", ">20 & <=28", ">28 & <=34", ">34 & <=40", ">40 &
<=50" or ">50 & <=60"
eu Euro emission standard: "PRE", "I", "II", "III", "IV", "V". Also "I[I+CRDPF",
"III+CRDPF", "IV+CRDPF", "II+SCR", "III+SCR" and "V+SCR" for pollu-
tants Number of particles and Active Surface.
X Numeric; if pollutant is "SO2", it is sulfur in fuel in ppm, if is "Pb", Lead in fuel
in ppm.
gr Gradient or slope of road: -0.06, -0.04, -0.02, 0.00, 0.02. 0.04 or 0.06
1 Load of the vehicle: 0.0, 0.5 or 1.0
p Character; pollutant: "CO", "FC", "NOx", "NO", "NO2", "HC", "PM", "NMHC",
"CH4", "CO2", "SO2" or "Pb". Only when p is "SO2" pr "Pb" x is needed. See
notes.
k Multiplication factor
show.equation Option to see or not the equation parameters
speed Numeric; Speed to return Number of emission factor and not a function. It needs
units in km/h
fcorr Numeric; Correction by fuel properties by euro technology. See fuel_corr.
The order from first to last is "PRE", "I", "II", "III", "IV", "V", VI, "VIc". De-
fault is 1
Value

an emission factor function which depends of the average speed V g/km

Note

Pollutants (g/km): "CO", "NOx", "HC", "PM", "CH4", "NMHC", "CO2", "SO2", "Pb".
Black Carbon and Organic Matter (g/km): "BC", "OM"
PAH and POP (g/km): See speciate Dioxins and furans (g equivalent toxicity / km): See

speciate

Metals (g/km): See speciate

46 ef_hdv_speed

Active Surface (cm2/km) See speciate
Total Number of particles (N/km): See speciate

The available standards for Active Surface or number of particles are: Euro II and III Euro II and
III + CRDPF Euro II and IIT + SCR Euro IV + CRDPF Euro V + SCR

The categories Pre Euro and Euro I were assigned with the factors of Euro II and Euro III The
categories euro IV and euro V were assigned with euro III + SCR

Fuel consumption for heavy VI comes from V

See Also

fuel_corr emis ef_ldv_cold speciate

Examples

Not run:

Quick view

pol <- c("C0O", "NOx", "HC", "NMHC", "CH4", "FC", "PM", "CO2", "S02")
f <- sapply(1:length(pol), function(i){

print(pol[il)

ef_hdv_speed(v = "Trucks",t = "RT", g = "<=7.5", e = "II", gr = 0,
1=0.5 p=pollil, x = 10)(30)

»

f’

V <- 0:130

ef1 <- ef_hdv_speed(v = "Trucks"”,t = "RT", g = "<=7.5", e = "II", gr =0,

1=20.5 p="HC"

plot(1:130, ef1(1:130), pch = 16, type = "b")

euro <- c(rep("V", 5), rep("IV", 5), rep("III", 5), rep("II", 5),
rep("I", 5), rep("PRE", 15))

lef <- lapply(1:30, function(i) {

ef_hdv_speed(v = "Trucks”, t = "RT", g = ">32", gr = 0,

eu = euro[i], 1 = 0.5, p = "NOx",

show.equation = FALSE)(25) })

efs <- EmissionFactors(unlist(lef)) #returns 'units'

plot(efs, xlab = "age")

lines(efs, type = "1")

a <- ef_hdv_speed(v = "Trucks”, t = "RT", g = ">32", gr = 0,

eu = euro, 1 = 0.5, p = "NOx", speed = Speed(0:125))

a$speed <- NULL

filled.contour(as.matrix(a), col = cptcity::lucky(n = 24),

xlab = "Speed”, ylab = "Age")

persp(x = as.matrix(a), theta = 35, xlab = "Speed”, ylab

zlab = "NOx [g/km]"”, col = cptcity::lucky(), phi = 25)

aa <- ef_hdv_speed(v = "Trucks”", t = "RT", g = ">32", gr = 0,

eu = rbind(euro, euro), 1 = 0.5, p = "NOx", speed = Speed(0:125))

”Age” ,

End(Not run)

ef im 47

ef_im Emission factors deoending on accumulated mileage

Description

ef_im calculate the theoretical emission factors of vehicles. The approache is different from includ-
ing deterioration factors (emis_det) but similar, because they represent how much emits a vehicle
with a normal deterioration, but that it will pass the Inspection and Manteinance program.

Usage

ef_im(ef, tc, amileage, max_amileage, max_ef, verbose = TRUE)

Arguments
ef Numeric; emission factors of vehicles with 0 mileage (new vehicles).
tc Numeric; rate of growth of emissions by year of use.
amileage Numeric; Accumulated mileage by age of use.

max_amileage Numeric; Max accumulated mileage. This means that after this value, mileage
is constant.

max_ef Numeric; Max ef. This means that after this value, ef is constant.
verbose Logical; if you want detailed description.
Value

An emission factor of a deteriorated vehicle under normal conditions which would be approved in
a inspection and mantainence program.

Examples

Not run:

Do not run

Passenger Cars PC

data(fkm)

cumulative mileage from 1 to 50 years of use, 40:50
mil <- cumsum(fkm$KM_PC_E25(1:10))

ef_im(ef = seq(0.1, 2, 0.2), seq(@.1, 1, 0.1), mil)

End(Not run)

48 ef Idv_cold

ef_ldv_cold Cold-Start Emissions factors for Light Duty Vehicles

Description

ef_ldv_cold returns speed functions or data.frames which depends on ambient temperature aver-
age speed. The emission factors comes from the guidelines EMEP/EEA air pollutant emission in-
ventory guidebook http://www.eea.europa.eu/themes/air/emep-eea-air-pollutant-emission-inventory-
guidebook

Usage
ef_ldv_cold(
vV = ”LDV n ,
ta,
cc,
f,
eu,
P,
k=1,
show.equation = FALSE,
speed,
fcorr = rep(1, 8)
)
Arguments
v Character; Category vehicle: "LDV"
ta Numeric vector or data.frame; Ambient temperature. Monthly mean can be
used. When ta is a data.frame, one option is that the number of rows should be
the number of rows of your Vehicles data.frame. This is convenient for top-down
approach when each simple feature can be a polygon, with a monthly average
temperature for each simple feature. In this case, the number of columns can be
the 12 months.
cc Character; Size of engine in cc: "<=1400", "1400_2000" or ">2000"
f Character; Type of fuel: "G", "D" or "LPG"
eu Character or data.frame of Characters; Euro standard: "PRE", "I", "II", "III",
"IV","V","VI" or "VIc". When ’eu’ is a data.frame and ’ta’ is also a data.frame
both has to have the same number of rows. For instance, When you want that
each simple feature or region has a different emission standard.
p Character; Pollutant: "CO", "FC", "NOx", "HC" or "PM"
k Numeric; Multiplication factor

show.equation Option to see or not the equation parameters

speed Numeric; Speed to return Number of emission factor and not a function.

ef _Idv_cold_list 49

fcorr Numeric; Correction by fuel properties by euro technology. See fuel_corr.
The order from first to last is "PRE", "I", "II", "III", "IV", "V", VI, "VIc". De-
fault is 1
Value

an emission factor function which depends of the average speed V and ambient temperature. g/km

See Also

fuel_corr

Examples

Not run:

ef1 <- ef_ldv_cold(ta = 15, cc = "<=1400", f ="G", eu = "PRE", p = "CO",
show.equation = TRUE)

ef1(10)

speed <- Speed(10)

ef_ldv_cold(ta = 15, cc = "<=1400", f ="G", eu = "PRE", p = "CO", speed = speed)

lets create a matrix of ef cold at different speeds and temperatures

te <- -50:50

1f <- sapply(1:length(te), function(i){

ef_ldv_cold(ta = te[i], cc = "<=1400", f ="G", eu = "I", p = "CO", speed = Speed(0:120))
»

filled.contour(1lf, col= cptcity::lucky())

euros <- c("v", "v", "1v",6 "III", "II", "I", "PRE", "PRE")

ef_ldv_cold(ta = 10, cc = "<=1400", f ="G", eu = euros, p = "C0", speed = Speed(@))
1f <- ef_ldv_cold(ta =10, cc = "<=1400", f ="G", eu = euros, p = "C0", speed = Speed(0:120))
dt <- matrix(rep(2:25,5), ncol = 12) # 12 months

ef_ldv_cold(ta = dt, cc = "<=1400", f ="G", eu = "I", p = "C0", speed = Speed(0@))
ef_ldv_cold(ta = dt, cc = "<=1400", f ="G", eu = euros, p = "C0", speed = Speed(34))
euros2 <- c("v", "vT, "v' Uiy, "Iy", "Iv", "III", "III")

dfe <- rbind(euros, euros2)

ef_ldv_cold(ta = 10, cc = "<=1400", f ="G", eu = dfe, p = "C0", speed = Speed(0))

ef_ldv_cold(ta = dt[1:2,], cc = "<=1400", f ="G", eu = dfe, p = "C0", speed = Speed(0))
Fuel corrections

fcorr <- ¢(0.5,1,1,1,0.9,0.9,0.9,0.9)

ef1 <- ef_ldv_cold(ta = 15, cc = "<=1400", f ="G", eu = "PRE", p = "CO",

show.equation = TRUE, fcorr = fcorr)

ef_ldv_cold(ta = 10, cc = "<=1400", f ="G", eu = dfe, p = "C0", speed = Speed(9@),

fcorr = fcorr)

End(Not run)

ef_ldv_cold_list List of cold start emission factors of Light Duty Vehicles

50

Description

ef _Idv_cold_list

This function creates a list of functions of cold start emission factors considering different euro
emission standard to the elements of the list.

Usage

ef_ldv_cold_list(df, v = "LDV", ta, cc, f, eu, p)

Arguments
df
v
ta
cc
£

eu

Value

Dataframe with local emission factor

Category vehicle: "LDV"

ambient temperature. Montly average van be used

Size of engine in cc: <=1400", "1400_2000" and ">2000"
Type of fuel: "G" or "D"

character vector of euro standards: "PRE", "I", "II", "III", "IV", "V", "VI" or
"VIC".

Pollutant: "CO", "FC", "NOx", "HC" or "PM"

A list of cold start emission factors g/km

Note

The length of the list should be equal to the name of the age categories of a specific type of vehicle

Examples

Not run:
Do not run

df <- data.frame(agel = c(1,1),

age2 = c(2,2))

eu = c("I", "PRE")

1 <- ef_ldv_cold(t = 17, cc = "<=1400", f = "G",

eu="I", p = "CO")

1_cold <- ef_ldv_cold_list(df, t = 17, cc = "<=1400", f = "G",
eu = eu, p = "C0")

length(1l_cold)

End(Not run)

ef _Idv_scaled 51

ef_ldv_scaled Scaling constant with speed emission factors of Light Duty Vehicles

Description
This function creates a list of scaled functions of emission factors. A scaled emission factor which
at a speed of the driving cycle (SDC) gives a desired value.

Usage
ef_ldv_scaled(df, dfcol, SDC = 34.12, v, t = "4S", cc, f, eu, p)

Arguments
df deprecated
dfcol Column of the dataframe with the local emission factors eg df$dfcol
SDC Speed of the driving cycle
v Category vehicle: "PC", "LCV", "Motorcycle" or "Moped
t Sub-category of of vehicle: PC: "ECE_1501", "ECE_1502", "ECE_1503", "ECE_1504"

, "IMPROVED_CONVENTIONAL", "OPEN_LOOP", "ALL", "2S" or "4S".
LCV: "4S", Motorcycle: "2S" or "4S". Moped: "2S" or "4S"

cc Size of engine in cc: PC: "<=1400", ">1400", "1400_2000", ">2000", "<=800",
"<=2000". Motorcycle: ">=50" (for "2S"), "<=250", "250_750", ">=750".
Moped: "<=50". LCV : "<3.5" for gross weight.

f Type of fuel: "G", "D", "LPG" or "FH" (Full Hybrid: starts by electric motor)
eu Euro standard: "PRE", "I", "II", "III", "III+DPF", "IV", "V", "VI", "VIc"
p Pollutant: "CO", "FC", "NOx", "HC" or "PM". If your pollutant dfcol is based

on fuel, use "FC", if it is based on "HC", use "HC".

Details

This function calls "ef_ldv_speed" and calculate the specific k value, dividing the local emission
factor by the respective speed emissions factor at the speed representative of the local emission
factor, e.g. If the local emission factors were tested with the FTP-75 test procedure, SDC = 34.12
km/h.

Value

A list of scaled emission factors g/km

Note

The length of the list should be equal to the name of the age categories of a specific type of vehicle.
Thanks to Glauber Camponogara for the help.

52 ef_ldv_speed

See Also
ef 1dv_seed

Examples

{
CO <- ef_cetesb(p = "C0", veh = "PC_FG", full = TRUE)
lef <- ef_ldv_scaled(dfcol = C0$CO,

v = "PC",

t = "4S",

cc = "<=1400",

f ="G",

eu = CO$EqEuro_PC,
p = "CO")

length(lef)

ages <- c(1, 10, 20, 30, 40)

EmissionFactors(do.call("cbind",
lapply(ages, function(i) {

data.frame(i = lef[[i]](1:100))

N -> df

names(df) <- ages

colplot(df)

3

ef_ldv_speed Emissions factors for Light Duty Vehicles and Motorcycles

Description

ef_ldv_speed returns speed dependent emission factors, data.frames or list of emission factors.
The emission factors comes from the guidelines EMEP/EEA air pollutant emission inventory guide-
book http://www.eea.europa.eu/themes/air/emep-eea-air-pollutant-emission-inventory-guidebook

Usage
ef_ldv_speed(

t = ”45”,

k=1,

speed,

show.equation = FALSE,
fcorr = rep(1, 8)

ef_ldv_speed 53

Arguments
v Character; category vehicle: "PC", "LCV", "Motorcycle" or "Moped
t Character; sub-category of of vehicle: PC: "ECE_1501", "ECE_1502", "ECE_1503",

"ECE_1504" , "IMPROVED_CONVENTIONAL", "OPEN_LOOP", "ALL", "2S"
or "4S". LCV: "4S", Motorcycle: "2S" or "4S". Moped: "2S" or "4S"

cc Character; size of engine in cc: PC: "<=1400", ">1400", "1400_2000", ">2000",
"<=800", "<=2000". Motorcycle: ">=50" (for "2S"), "<=250", "250_750",
">=750". Moped: "<=50". LCV : "<3.5" for gross weight.

f Character; type of fuel: "G", "D", "LPG" or "FH" (Gasoline Full Hybrid). Full

hybrid vehicles cannot be charged from the grid and recharge; only its own
engine may recharge tis batteries.

eu Character or data.frame of characters; euro standard: "PRE", "I", "II", "III",
"II+DPF", "TV", "V", "VI" or "VIc". When the pollutan is active surface or
number of particles, eu can also be "III+DISI"

o Character; pollutant: "CQO", "FC", "NOx", "NO", "NO2", "HC", "PM", "NMHC",
"CH4", "CO2", "SO2" or "Pb". Only when p is "SO2" pr "Pb" x is needed. Also
polycyclic aromatic hydrocarbons (PAHs), persistent organi pollutants (POPs),
and Number of particles and Active Surface.

X Numeric; if pollutant is "SO2", it is sulphur in fuel in ppm, if is "Pb", Lead in
fuel in ppm.

k Numeric; multiplication factor

speed Numeric; Speed to return Number of emission factor and not a function.

show.equation Logical; option to see or not the equation parameters.

fcorr Numeric; Correction by fuel properties by euro technology. See fuel_corr.
The order from first to last is "PRE", "I", "II", "III", "IV", "V", VI, "VIc". De-
fault is 1
Details

The argument of this functions have several options which results in different combinations that
returns emission factors. If a combination of any option is wrong it will return an empty value.
Therefore, it is important ti know the combinations.

Value

An emission factor function which depends of the average speed V g/km

Note
t = "ALL" and cc == "ALL" works for several pollutants because emission fators are the same.
Some exceptions are with NOx and FC because size of engine.

Hybrid cars: the only cover "PC" and according to EMEP/EEA air pollutant emission inventory
guidebook 2016 (Ntziachristos and Samaras, 2016) only for euro IV. When new literature is avail-
able, I will update these factors.

POlllltalltS (g/km) ”CO", IINOXH’ "ch, HPMII, "CH4”, "NMHC”, “COZ”, "SOZH, ”Pb”, chn.

54 ef_ldv_speed

Black Carbon and Organic Matter (g/km): "BC", "OM"

PAH and POP (g/km): speciate Dioxins and furans(g equivalent toxicity / km): speciate
Metals (g/km): speciate

NMHC (g/km): speciate
Active Surface (cm2/km): speciate"AS_urban", "AS_rural", "AS_highway"

Total Number of particles (N/km): speciate "N_urban", "N_rural", "N_highway", "N_50nm_urban",
"N_50_100nm_rural", "N_100_1000nm_highway".

The available standards for Active Surface or number of particles are Euro I, II, III, III+DPF dor
diesle and III+DISI for gasoline. Pre euro vehicles has the value of Euro I and euro IV, V, VI and
VlIc the value of euro III.

See Also

fuel_corr emis ef_ldv_cold

Examples

Not run:

Passenger Cars PC

Emission factor function

V <- 0:150

ef1 <- ef_ldv_speed(v = "PC",t = "4S", cc = "<=1400", f = "G", eu = "PRE",

p = "C0")

efs <- EmissionFactors(ef1(1:150))

plot(Speed(1:150), efs, xlab = "speed[km/h]", type = "b", pch = 16, col = "blue")

Quick view

pol <_ C(NCO”, "NOX”, IIHCII, IINMHCII s IICH4II, IIFCII , IIPMII , IICOZVI, VISOZII,
"1-butyne”, "propyne")

f <- sapply(1:length(pol), function(i){

ef_ldv_speed("PC", "4S", "<=1400", "G", "PRE", pol[il], x = 10)(30)
»

f’

PM Characteristics

pol <- c("AS_urban”, "AS_rural”, "AS_highway",

"N_urban”, "N_rural”, "N_highway",

"N_5@0nm_urban”, "N_50_100nm_rural”, "N_100_1000nm_highway")

f <- sapply(1:length(pol), function(i){

ef_ldv_speed("PC", "4S", "<=1400", "D", "PRE", pol[il], x = 10)(30)

»

f

PAH POP

ef_ldv_speed(v = "PC",t = "4S", cc = "<=1400", f = "G", eu = "PRE",
p = "indeno(1,2,3-cd)pyrene”) (10)

ef_ldv_speed(v = "PC",t = "4S", cc
p = "napthalene”) (10)

"<=1400", f = "G", eu = "PRE",

Dioxins and Furans
ef_ldv_speed(v = "PC",t = "4S", cc
p = "PCB")(10)

"<=1400", f = "G", eu = "PRE",

ef_ldv_speed

NMHC
ef_ldv_speed(v = "PC",t = "4S", cc = "<=1400", f = "G", eu = "PRE",
p = "hexane") (10)

List of Copert emission factors for 40 years fleet of Passenger Cars.
Assuming a euro distribution of euro V, IV, III, II, and I of
5 years each and the rest 15 as PRE euro:
euro <- c(rep("V", 5), rep("IV", 5), rep("III", 5), rep("II", 5),
rep("I", 5), rep("PRE", 15))
speed <- 25
lef <- lapply(1:40, function(i) {
ef_ldv_speed(v = "PC", t = "4S", cc = "<=1400", f = "G",
eu = euro[i], p = "C0")
ef_ldv_speed(v = "PC", t = "4S", cc = "<=1400", f = "G",
eu = euro[i], p = "C0", show.equation = FALSE)(25) })
to check the emission factor with a plot
efs <- EmissionFactors(unlist(lef)) #returns 'units'
plot(efs, xlab = "age")
lines(efs, type = "1")
euros <- c("vIi", "v", 6 "IV", "III", "II")
ef_ldv_speed(v = "PC", t = "4S", cc = "<=1400", f = "G",
eu = euros, p = "C0")
a <- ef_ldv_speed(v = "PC", t = "4S", cc = "<=1400", f = "G",
eu = euros, p = "C0", speed = Speed(0:120))
head(a)
filled.contour(as.matrix(a)[1:10, 1:length(euros)], col = cptcity::cpt(n = 18))
filled.contour(as.matrix(a)[110:120, 1:length(euros)], col = cptcity::cpt(n = 16))
filled.contour(as.matrix(a)[, 1:length(euros)], col = cptcity::cpt(n = 21))
filled.contour(as.matrix(a)[, 1:length(euros)],
col = cptcity::cpt("mpl_viridis”, n = 21))
filled.contour(as.matrix(a)[, 1:length(euros)],
col = cptcity::cpt("mpl_magma”, n = 21))
persp(as.matrix(a)[, 1:length(euros)], phi = 0, theta = 0)
persp(as.matrix(a)[, 1:length(euros)], phi = 25, theta = 45)
persp(as.matrix(a)[, 1:length(euros)], phi = @, theta = 90)
persp(as.matrix(a)[, 1:length(euros)], phi = 25, theta = 90+45)
persp(as.matrix(a)[, 1:length(euros)], phi = @, theta = 180)
new_euro <- c("VI", "VI", "v" "V" "V")
euro <- c("V", "y, "Iv",6 "III", "II")
old_euro <- c("III", "II", "I", "PRE", "PRE")
meuros <- rbind(new_euro, euro, old_euro)
aa <- ef_ldv_speed(v = "PC", t = "4S", cc = "<=1400", f = "G",
eu = meuros, p = "C0", speed = Speed(10:11))
Light Commercial Vehicles
V <- 0:150
ef1 <- ef_ldv_speed(v = "LCV",t = "4S", cc = "<3.5", f = "G", eu = "PRE",
p = "C0")
efs <- EmissionFactors(ef1(1:150))
plot(Speed(1:150), efs, xlab = "speed[km/h]")
lef <- lapply(1:5, function(i) {
ef_ldv_speed(v = "LCV", t = "4S", cc = "<3.5", f = "G",
eu = euro[i], p = "C0", show.equation = FALSE)(25) })

56 ef _local

to check the emission factor with a plot

efs <- EmissionFactors(unlist(lef)) #returns 'units'
plot(efs, xlab = "age")

lines(efs, type = "1")

Motorcycles

V <- 0:150

ef1 <- ef_ldv_speed(v = "Motorcycle”,t = "4S", cc = "<=250", f = "G",
eu = "PRE", p = "CO0",show.equation = TRUE)

efs <- EmissionFactors(ef1(1:150))

plot(Speed(1:150), efs, xlab = "speed[km/h]")

euro for motorcycles

eurom <- c(rep("III", 5), rep("II", 5), rep("I", 5), rep("PRE", 25))
lef <- lapply(1:30, function(i) {

ef_ldv_speed(v = "Motorcycle”, t = "4S", cc = "<=250", f = "G",

eu = eurom[i], p = "CO",

show.equation = FALSE)(25) })

efs <- EmissionFactors(unlist(lef)) #returns 'units'

plot(efs, xlab = "age")

lines(efs, type = "1")

a <- ef_ldv_speed(v = "Motorcycle”, t = "4S", cc = "<=250", f = "G",
eu = eurom, p = "CO0", speed = Speed(0:125))

a$speed <- NULL

filled.contour(as.matrix(a), col = cptcity::1lucky(),

xlab = "Speed”, ylab = "Age")

persp(x = as.matrix(a), theta = 35, xlab = "Speed”, ylab = "Euros”,
zlab = "CO [g/km]", col = cptcity::lucky(), phi = 25)

ef <- ef_ldv_speed(v = "LCV",
t = "48",
cc = "<3.5",
f ="6",
p = "FC",

eu = C(”I”, VIIIII)’
speed = Speed(10))

End(Not run)

ef_local Local Emissions factors

Description
ef_local process an data.frame delivered by the user, but adding similar funcionality and argu-
ments as ef _cetesb, which are classification, filtering and projections

Usage

ef_local(
P,

ef _local 57

veh,
year = 2017,
agemax = 40,
ef,
full = FALSE,
project = "constant”,
verbose = TRUE
)
Arguments
p Character; pollutant delivered by the user. the name of the column of the data.frame
must be Pollutant.
veh Character; Vehicle categories available in the data.frame provided by the user
year Numeric; Filter the emission factor to start from a specific base year. If project
is *constant’ values above 2017 and below 1980 will be repeated
agemax Integer; age of oldest vehicles for that category
ef data.frame, for local the emission factors. The names of the ef must be ‘Age*
“Year® ‘Pollutant® and all the vehicle categories...
full Logical; To return a data.frame instead or a vector adding Age, Year, Brazilian
emissions standards and its euro equivalents.
project Character showing the method for projecting emission factors in future. Cur-
rently the only value is "constant"
verbose Logical; To show more information
Details

returns a vector or data.frame of Brazilian emission factors.

Value

A vector of Emission Factor or a data.frame

Note

The names of the ef must be ‘Age‘ ‘Year® ‘Pollutant’ and all the vehicle categories...

See Also

ef_cetesb

Examples

Not run:
#do not run

End(Not run)

58 ef nitro

ef_nitro Emissions factors of N20 and NH3

Description

ef_nitro returns emission factors as a functions of acondumulated mileage. The emission factors
comes from the guidelines EMEP/EEA air pollutant emission inventory guidebook http://www.eea.europa.eu/themes/air/eme;
eea-air-pollutant-emission-inventory-guidebook

Usage

ef_nitro(
v,
t = "Hot",
cond = "Urban",
cc,
f,
eu,
p = "NH3",
S =1o,
cumileage,
k =1,

show.equation = FALSE,
fcorr = rep(1, 8)

)
Arguments

% Category vehicle: "PC", "LCV", "Motorcycles_2S", "Motorcycles", "Trucks",
"Trucks-A", "Coach" and "BUS"

t Type: "Cold" or "Hot"

cond "Urban", "Rural", "Highway"

cc PC: "<=1400", "1400_2000", ">2000". LCV: "<3.5". Motorcycles: ">=50",
Motorcycles_28S, "<50", ">=50". Trucks: ">3.5", "7.5_12", "12_28", "28_34".
Trucks_A: ">34". BUS: "<=15", ">15 & <= 18". Coach: "<=18", ">18"

f Type of fuel: "G", "D" or "LPG"

eu Euro Standard: llPREll’ HIH, llII"’ HIII"’ HIVII’ llVll’ HVIII’ IIVICII

p Pollutant: "N20", "NH3"

S Sulphur (ppm). Number.

cumileage Numeric; Acondumulated mileage to return number of emission factor and not
a function.

k Multiplication factor

show.equation Option to see or not the equation parameters

fcorr Numeric; Correction by by euro technology.

ef wear 59

Value

an emission factor function which depends on the acondumulated mileage, or an EmissionFactor

Note

if length of eu is bigger than 1, cumileage can have values of length 1 or length equal to length of
eu

Examples

Not run:

efel@ <- ef_nitro(v = "PC", t = "Hot", cond = "Urban", f = "G", cc = "<=1400",
eu = "III", p = "NH3", S = 10,

show.equation = FALSE)

efe50 <- ef_nitro(v = "PC", t = "Hot", cond = "Urban", f = "G", cc = "<=1400",
eu = "III", p = "NH3", S = 50,

show.equation = TRUE)

efel0(10)

efe50(10)

efel1@ <- ef_nitro(v = "PC", t = "Hot", cond = "Urban”, f = "G", cc = "<=1400",
eu = "III", p = "NH3", S = 10, cumileage = units::set_units(25000, "km"))

End(Not run)

ef_wear Emissions factors from tyre, break and road surface wear

Description

ef_wear estimates wear emissions. The sources are tyres, breaks and road surface.

Usage

ef_wear(
wear,
type,
pol = "TSP",
speed,
load = 0.5,
axle = 2,
road = "urban”,
verbose = FALSE

60 ef _wear

Arguments
wear Character; type of wear: "tyre" (or "tire"), "break” (or "brake") and "road"
type Character; type of vehicle: "2W", "MC", "Motorcycle", "PC", "LCV", "HDV",
"BUS", "TRUCKS"
pol Character; pollutant: "TSP", "PM10", "PM2.5", "PM1" and "PMO.1"
speed Data.frame of speeds
load Load of the HDV
axle Number of axle of the HDV
road Type of road "urban", "rural”, "motorway". Only applies when type is "E6DV"
or "BEV"
verbose Logical to show more information. Only applies when type is "E6DV" or "BEV"
Value

emission factors grams/km

References

Ntziachristos and Boulter 2016. Automobile tyre and break wear and road abrasion. In: EEA,
EMEP. EEA air pollutant emission inventory guidebook-2009. European Environment Agency,
Copenhagen, 2016

When type is "E6DV" or "BEV": Tivey J., Davies H., Levine J., Zietsman J., Bartington S., Ibarra-
Espinosa S., Ropkins K. 2022. Meta Analysis as Early Evidence on the Particulate Emissions
Impact of EURO VI to Battery Electric Bus Fleet Transitions. Paper under development.

Examples

{

data(net)

data(pc_profile)

pc_week <- temp_fact(net$ldv+net$hdv, pc_profile)

df <- netspeed(pc_week, netps, netffs, net$capacity, net$lkm, alpha = 1)
ef <- ef_wear(wear = "tyre"”, type = "PC", pol = "PM1Q@", speed = df)

ef_wear(wear = "tyre",
type = c("E6DV"),
pol = "PM10",

verbose = TRUE)

ef_wear(wear = "tyre”,
type = c("E6DV"),
pol = "PM10",

verbose = FALSE)

ef_whe 61

ef_whe Emission factor that incorporates the effect of high emitters

Description

ef_whe return weighted emission factors of vehicles considering that one part of the fleet has a
normal deterioration and another has a deteriorated fleet that would be rejected in a inspection and
mantainence program but it is still in circulation. This emission factor might be applicable in cities
without a inspection and mantainence program and with Weighted emission factors considering that
part of the fleet are high emitters.

Usage

ef_whe(efhe, phe, ef)

Arguments
efhe Numeric; Emission factors of high emitters vehicles. This vehicles would be
rejected in a inspection and mantainnence program.
phe Numeric; Percentage of high emitters.
ef Numeric; Emission factors deteriorated vehicles under normal conditions. These
vehicles would be approved in a inspection and mantainence program.
Value

An emission factor by annual mileage.

Examples

{
Do not run
Let's say high emitter is 5 times the normal ef.
co_efhe <- ef_cetesb(p = "C0d", "PC_G") * 5
Let's say that the perfil of high emitters increases linearly
till 30 years and after that percentage is constant
perc <- c(seq(@.01, 0.3, 0.01), rep(0.3, 10))
Now, lets use our ef with normal deterioration
co_ef_normal <- ef_cetesb(p = "C0d", "PC_G")
efd <- ef_whe(efhe = co_efhe,

phe = perc,

ef = co_ef_normal)
now, we can plot the three ef
colplot(data.frame(co_efhe, co_ef_normal, efd))

}

62

emis

emis

Estimation of emissions

Description

emis estimates vehicular emissions as the product of the vehicles on a road, length of the road,
emission factor avaliated at the respective speed. E = VEH « LENGTH x EF (speed)

Usage

emis(
veh,
1km,
ef,
speed,

agemax = ifelse(is.data.frame(veh), ncol(veh), ncol(veh[[111)),

profile,

simplify = FALSE,
fortran = FALSE,

hour =

nrow(profile),

day = ncol(profile),

verbose

FALSE,

nt = ifelse(check_nt() == 1, 1, check_nt()/2)

Arguments

veh

1km

ef

speed
agemax
profile
simplify

fortran

hour

"Vehicles" data-frame or list of "Vehicles" data-frame. Each data-frame as num-
ber of columns matching the age distribution of that ype of vehicle. The number
of rows is equal to the number of streets link. If this is a list, the length of the
list is the vehicles for each hour.

Length of each link in km

List of functions of emission factors

Speed data-frame with number of columns as hours. The default value is 34km/h
Age of oldest vehicles for that category

Dataframe or Matrix with nrows equal to 24 and ncol 7 day of the week

Logical; to determine if EmissionsArray should les dimensions, being streets,
vehicle categories and hours or default (streets, vehicle categories, hours and
days). Default is FALSE to avoid break old code, but the recommendation is
that new estimations use this parameter as TRUE

Logical; to try the fortran calculation when speed is not used. I will add fortran
for EmissionFactorsList soon.

Number of considered hours in estimation. Default value is number of rows of
argument profile

emis 63

day Number of considered days in estimation
verbose Logical; To show more information
nt Integer; Number of threads wich must be lower than max available. See check_nt.

Only when fortran = TRUE

Value

If the user applies a top-down approach, the resulting units will be according its own data. For
instance, if the vehicles are veh/day, the units of the emissions implicitly will be g/day.

Examples

Not run:

Do not run

data(net)

data(pc_profile)

data(profiles)

data(fe2015)

data(fkm)

PC_G <- c(
33491, 22340, 24818, 31808, 46458, 28574, 24856, 28972, 37818, 49050, 87923,
133833, 138441, 142682, 171029, 151048, 115228, 98664, 126444, 101027,
84771, 55864, 36306, 21079, 20138, 17439, 7854, 2215, 656, 1262, 476, 512,
1181, 4991, 3711, 5653, 7039, 5839, 4257, 3824, 3068

)

pcl <- my_age(x = net$ldv, y = PC_G, name = "PC")

Estimation for morning rush hour and local emission factors and speed

speed <- data.frame(S8 = net$ps)

lef <- EmissionFactorsList(ef_cetesb(”C0"”, "PC_G", agemax = ncol(pcl)))

system.time(E_CO <- emis(veh = pcl, lkm = net$lkm, ef = lef, speed = speed))
system.time(E_CO_2 <- emis(veh = pc1, 1km = net$lkm, ef = lef, speed = speed, simplify = TRUE))
identical (E_CO, E_CO0_2)

Estimation for morning rush hour and local emission factors without speed
lef <- ef_cetesb("C0", "PC_G", agemax = ncol(pcl))

system.time(E_CO <- emis(veh = pcl, lkm = net$lkm, ef = lef))
system.time(E_CO_2 <- emis(veh = pcl1, lkm = net$lkm, ef = lef, fortran = TRUE))
identical (E_CO, E_CO0_2)

Estimation for 168 hour and local factors and speed

pcw <- temp_fact(net$ldv + net$hdv, pc_profile)

speed <- netspeed(pcw, netps, netffs, net$capacity, net$lkm, alpha = 1)
lef <- EmissionFactorsList(ef_cetesb(”C0"”, "PC_G", agemax = ncol(pcl)))
system. time(

E_CO <- emis(
veh = pcT,
1km = net$lkm,
ef = lef,

speed = speed,
profile = profiles$PC_JUNE_2014

64

)

system. time(
E_CO_2 <- emis(

veh = pcl,
1km = net$lkm,
ef = lef,

speed = speed,
profile = profiles$PC_JUNE_2014,
simplify = TRUE
)
)

Estimation for 168 hour and local factors and without speed
lef <- ef_cetesbh("C0", "PC_G", agemax = ncol(pcl))
system. time(
E_CO <- emis(
veh = pcl,
1km = net$lkm,
ef = lef,
profile = profiles$PC_JUNE_2014
)
)
sum(E_CO)
system. time(
E_CO_2 <- emis(

veh = pcl,
1km = net$lkm,
ef = lef,

profile = profiles$PC_JUNE_2014,
fortran = TRUE
)
)
sum(E_CO)
system.time(
E_CO_3 <- emis(

veh = pcl,
1km = net$lkm,
ef = lef,

profile = profiles$PC_JUNE_2014,
simplify = TRUE
)
)
sum(E_CO)
system.time(
E_CO_4 <- emis(

veh = pcl,
1km = net$lkm,
ef = lef,

profile = profiles$PC_JUNE_2014,
simplify = TRUE,
fortran = TRUE

emis

EmissionFactors 65

sum(E_CO)

identical (round(E_CO, 2), round(E_CO_2, 2))

identical(round(E_CO_3, 2), round(E_CO_4, 2))

identical (round(E_CO_3[, , 1], 2), round(E_CO_4[, , 11, 2))

dim(E_CO_3)

dim(E_CO_4)

but

a <- unlist(lapply(1:41, function(i) {
unlist(lapply(1:168, function(j) {

identical(E_CO_3[, i, j1, E_CO_4[, i, jD

m

1))

unique(a)

Estimation with list of vehicles

lpc <- list(pcl, pcl)

lef <- EmissionFactorsList(ef_cetesb("C0", "PC_G", agemax = ncol(pcl)))
E_COv2 <- emis(veh = lpc, lkm = net$lkm, ef = lef, speed = speed)

top down

veh <- age_ldv(x = net$ldv[1:4], name = "PC_E25_1400", agemax = 4)
mil <- fkm$KM_PC_E25(1:4)

ef <- ef_cetesb("C0d", "PC_G")[1:4]

emis(veh, units::set_units(mil, "km"), ef)

group online
bus1 <- age_hdv(30, agemax = 4)
veh <- bus1
1km <- units::set_units(400, "km")
speed <- 40
efco <- ef_cetesb(”C0d"”, "UB", agemax = 4)
lef <- ef_hdv_scaled(

dfcol = as.numeric(efco),

v = "Ubus”,

t = "Std”,

g = ">15 & <=18",

eu = rep("IV", 4),

gr = 0,
1=o0.5,
p = VICOII

)

for (i in 1:length(lef)) print(lef[[i]]1(10))

(a <- emis(veh = bus1, lkm = lkm, ef = efco, verbose = TRUE))

(b <- emis(veh = bus1, 1lkm = lkm, ef = efco, verbose = TRUE, fortran = TRUE))

End(Not run)

EmissionFactors Construction function for class "EmissionFactors"

66

Description

EmissionFactors

EmissionFactors returns a transformed object with class "EmissionFactors" and units g/km.

Usage

EmissionFactors(x, mass = "g", dist = "km", ...)

S3 method for class 'EmissionFactors'
print(x, ...)

S3 method for class 'EmissionFactors'
summary (object, ...)

S3 method for class 'EmissionFactors'

plot(
X ’
pal = "mpl_viridis”,
rev = TRUE,
figl = c(0, 0.8, 0, 0.8),
fig2 = c(0, 0.8, 0.55, 1),
fig3 = c(0.7, 1, 0, 0.8),
mail = c(0.2, 0.82, 0.82, 0.42),
mai2 = c(1.3, 0.82, 0.82, 0.42),
mai3 = c(0.7, 0.62, 0.82, 0.42),
bias = 1.5,
)
Arguments
X Object with class "data.frame", "matrix" or "numeric"
mass Character to be the time units as numerator, default "g" for grams
dist String indicating the units of the resulting distance in speed.
par arguments if needed
object object with class "EmissionFactors’
pal Palette of colors available or the number of the position
rev Logical; to internally revert order of rgb color vectors.
figl par parameters for fig, par.
fig2 par parameters for fig, par.
fig3 par parameters for fig, par.
mail par parameters for mai, par.
mai2 par parameters for mai, par.
mai3 par parameters for mai, par.

bias positive number. Higher values give more widely spaced colors at the high end.

EmissionFactorsList 67

Value

Objects of class "EmissionFactors" or "units"

Examples

Not run:
#do not run
EmissionFactors(1)

End(Not run)

EmissionFactorsList Construction function for class "EmissionFactorsList"

Description

EmissionFactorslList returns a transformed object with class"EmissionsFactorsList".

Usage

EmissionFactorsList(x, ...)

S3 method for class 'EmissionFactorsList'
print(x, ..., default = FALSE)

S3 method for class 'EmissionFactorsList'
summary (object, ...)

S3 method for class 'EmissionFactorsList'

plot(x, ...)
Arguments
X Object with class "list"
ignored
default Logical value. When TRUE prints default list, when FALSE prints messages
with description of list
object Object with class "EmissionFactorsList"
Value

Objects of class "EmissionFactorsList"

68 Emissions

Examples

Not run:

data(fe2015)

names(fe2015)

class(fe2015)

df <- fe2015[fe2015%$Pollutant=="C0", c(ncol(fe2015)-1,ncol(fe2015))]
ef1 <- EmissionFactorsList(df)
class(ef1)

length(ef1)

length(ef1[[1]1])

summary (ef1)

ef1

End(Not run)

Emissions Construction function for class "Emissions”

Description

Emissions returns a transformed object with class "Emissions". The type of objects supported are
of classes "matrix", "data.frame" and "numeric". If the class of the object is "matrix" this function
returns a dataframe.

Usage

nen

Emissions(x, mass = "g", time, ...)

S3 method for class 'Emissions'
print(x, ...)

S3 method for class 'Emissions'
summary (object, ...)

S3 method for class 'Emissions'

plot(
X,
pal = "colo_angelafaye_Coloured_sky_in",
rev = FALSE,

figl = c(0, 0.8, 0, 0.8),
fig2 = c(0, 0.8, 0.55, 1),
fig3 = c(0.7, 1, 0, 0.8),

mail = c(0.2, 0.82, 0.82, 0.42),
mai2 = c(1.3, 0.82, 0.82, 0.42),
mai3 = c(0.7, 0.72, 0.82, 0.42),
main = NULL,

bias = 1.5,

Emissions

Arguments

X Object with class "data.frame", "matrix" or "numeric"

mass Character to be the time units as numerator, default "g" for grams

time Character to be the time units as denominator, eg "h"

ignored

object object with class "Emissions"

pal Palette of colors available or the number of the position

rev Logical; to internally revert order of rgb color vectors.

figl par parameters for fig, par.

fig2 par parameters for fig, par.

fig3 par parameters for fig, par.

mail par parameters for mai, par.

mai2 par parameters for mai, par.

mai3 par parameters for mai, par.

main title of plot

bias positive number. Higher values give more widely spaced colors at the high end.
Value

Objects of class "Emissions" or "units"

Examples

Not run:

data(net)

data(pc_profile)

data(fe2015)

data(fkm)

PC_G <- ¢(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,
133833,138441,142682,171029,151048,115228,98664,126444,101027,
84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)

veh <- data.frame(PC_G = PC_G)

pcl <- my_age(x = net$ldv, y = PC_G, name = "PC")

pcw <- temp_fact(net$ldv+net$hdv, pc_profile)

speed <- netspeed(pcw, netps, netffs, net$capacity, net$lkm, alpha = 1)

pckm <- units::as_units(fkm[[1]](1:24), "km"); pckma <- cumsum(pckm)

codl <- emis_det(po = "C0", cc = 1000, eu = "III", km = pckma[1:11])

cod2 <- emis_det(po = "C0", cc = 1000, eu = "I", km = pckmal[12:24])

#vehicles newer than pre-euro

col <- fe2015[fe2015%Pollutant=="C0",] #24 obs!!!

cod <- c(col$PC_G[1:24]*c(cod1,cod2),col$PC_G[25:nrow(col)])

lef <- ef_ldv_scaled(col, cod, v = "PC", cc = "<=1400",

f ="G", p="C0", eu=co1$Euro_LDV)

E_CO <- emis(veh = pcl,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,

profile = pc_profile)

70 EmissionsArray

dim(E_CO) # streets x vehicle categories x hours x days

class(E_CO)

plot(E_CO)

fizizisd

Emissions(1)

Emissions(1, time = "h")

End(Not run)

EmissionsArray Construction function for class "EmissionsArray"”

Description

EmissionsArray returns a transformed object with class "EmissionsArray" with 4 dimensions.
Usage

EmissionsArray(x, ...)

S3 method for class 'EmissionsArray'

print(x, ...)

S3 method for class 'EmissionsArray'

summary (object, ...)

S3 method for class 'EmissionsArray'’

plot(x, main = "average emissions”, ...)
Arguments

X Object with class "data.frame", "matrix" or "numeric"

ignored

object object with class "EmissionsArray’

main Title for plot
Value

Objects of class "EmissionsArray"
Note

Future version of this function will return an Array of 3 dimensions.

emis_chem?2 71

Examples

Not run:

data(net)

data(pc_profile)

data(fe2015)

data(fkm)

PC_G <- ¢(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,
133833,138441,142682,171029,151048,115228,98664,126444,101027,
84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)

veh <- data.frame(PC_G = PC_G)

pcl <- my_age(x = net$ldv, y = PC_G, name = "PC")

pcw <- temp_fact(net$ldv+net$hdv, pc_profile)

speed <- netspeed(pcw, netps, netffs, net$capacity, net$lkm, alpha = 1)

pckm <- units::set_units(fkm[[1]1(1:24), "km"); pckma <- cumsum(pckm)

codl <- emis_det(po = "C0", cc = 1000, eu = "III", km = pckma[1:11])

cod2 <- emis_det(po = "C0", cc = 1000, eu = "I", km = pckmal[12:24])

#vehicles newer than pre-euro

col <- fe2015[fe2015%Pollutant=="C0",] #24 obs!!!

cod <- c(col$PC_G[1:24]*c(cod1,cod2),col$PC_G[25:nrow(col)])

lef <- ef_ldv_scaled(col, cod, v = "PC", cc = "<=1400",

f = "G",p = "C0", eu=col$Euro_LDV)

E_CO <- emis(veh = pcl,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,

profile = pc_profile, simplify = TRUE)

class(E_CO)

summary (E_CO)

E_CO

plot(E_CO)

lpc <- list(pcl, pcl)

E_COv2 <- emis(veh = lpc,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,

profile = pc_profile, hour = 2, day = 1)

End(Not run)

emis_chem?2 Aggregate emissions by lumped groups in chemical mechanism

Description

emis_chem?2 aggregates VOC emissions by chemical mechanism and convert grams to mol.

Usage

emis_chem2(df, mech, nx, na.rm = FALSE)

Arguments

df data.frame with emissions including columns "id" and "pol".

72 emis_chem?2

mech Character, "CB4", "CB05", "S99", "S7","CS7","S7T", "S11","S11D","S16C","S18B","RADM?2",
"RACM2","MOZT1", "CBMZ", "CB05opt2"
nx Character, colnames for emissions data, for instance "V1", "V2"...
na.rm Logical, to remove lines with NA from group
Value

data.frame with lumped groups by chemical mechanism.

Note
° CBOS: IIALDII ||ALDX" llETHVV llHC3H VVHCS" ||HC8VI IIHCHO" llKETH llOL2" HOLIH IIOLTH
IITOLH ||XYL||
* CBO5Sopt2: "ALD2" "ALDX" "BENZENE" "ETH" "ETHA" "FORM" "IOLE" "OLE" "PAR"
IITOLH ||XYL||

° RADM2 ”ALDI! llETHn IIHC3|| "HCS" ”HCS" HHCHO" llKETn ”MACR" "OLZ“ ”OLI”
HOLTH HTOLH ”XYLH

° RACMZ: ACD" llACEn HACTII "ALDH ”BALD" nBENn nDIENn "ETE" HETHH nHCSll ”HCS”
HHCS” "HCHO” HMACRH HMEKH HOLIH ”OLT” HTOLH HUALDH IIXYMH "XYO” IIXYPII

. CB4: "ALDZ" HETH" HFORM" ”OLE" IIPARII HTOLH ”XYL"

* S99: "ACET" "ALK1" "ALK2" "ALK3" "ALK4" "ALK5" "AROINBZ" "ARO2" "BALD"
"BENZENE" "CCHO" "ETHENE" "HCHO" "IPROD" "MACR" "MEK" "OLE1" "OLE2"
HRCHOH

* CB4: "ACET" "ACYE" "ALK1" "ALK2" "ALK3" "ALK4" "ALK5" "ARO1" "ARO2" "BALD"
HBENZ" "CCHOII HETHEH "HCHOH "IPRDH HMACR" HMEKH "OLElll HOLEZ" IIRCHOH

» CS7: "ALK3" "ALK4" "ARO1" "ARO2" "CCHO" "ETHE" "HCHO" "IPRD" "NROG" "OLE1"
HOLEZ" llPRDZH IIRCHO"

* S7: "ACET""ACYE" "ALKI1" "ALK2" "ALK3" "ALK4" "ALK5" "ARO1" "ARO2" "BALD"
HBENZH IICCHOII HETHEH llHCHOH "IPRD" HMACRII HMEKH llOLE‘lll HOLEZII IIRCHOH

* S7T:"13BDE" "ACET" "ACRO" "ACYE" "ALK1" "ALK2" "ALK3" "ALK4" "ALK5" "ARO1"
”AROQ{" HB124II HBALDII HBENZ" IICCHOII ||ETHE|| llHCHOH IIIPRDH ||MACR" HMEK"
"MXYL" "OLE1" "OLE2" "OXYL" "PRPE" "PXYL" "RCHO" "TOLU"

* S11: "ACET" "ACYL" "ALK1" "ALK2" "ALK3" "ALK4" "ALKS5" "ARO1" "ARO2" "BALD"
IIBENZH IICCHOII ||ETHE|| llHCHOll "IPRD" ||MACRII IIMEKH llOLElll ||OLE2II IIRCHOH

* S11D: "ACET" "ACRO" "ACYL" "ALLENE" "BALD" "BENZ" "BUTDE13" "BUTENE1"
"C2BENZ" "C2BUTE" "C2PENT" "C4RCHO1" "CCHO" "CROTALD" "ETACTYL" "ETHANE"
"ETHE" "HCHO" "HEXENE1" "ISOBUTEN" "M2C3" "M2C4" "M2C6" "M2C7" "M3C6"
"M3C7" "MACR" "MEACTYL" "MEK" "MXYLENE" "NCI1" "NC4" NC5" "NC6" "NC7"
"NC8" "NC9" "OLE2" "OTH2" "OTH4" "OTH5" "OXYLENE" "PENTENI1" "PROPALD"
"PROPANE" "PROPENE" "PXYLENE" "RCHO" "STYRENE" "TMB123" "TMB 124" "TMB135"
"TOLUENE"

* S16C:"ACET" "ACETL" "ACRO" "ACYLS" "ALK3" "ALK4" "ALKS" "BALD" "BENZ"
"BUT13" "BZ123" "BZ124" "BZ135" "C2BEN" "ETCHO" "ETHAN" "ETHEN" "HCHO"
"MACR" "MECHO" "MEK" "MXYL" "NC4" "OLE1" "OLE2" "OLE3" "OLE4" "OLEA1"
"OTH1" "OTH3" "OTH4" "OXYL" "PROP" "PROPE" "PXYL" "RCHO" "STYRS" "TOLU"

emis_china 73

* S18B:"ACET" "ACETL" "ACRO" "ACYLS" "ALK3" "ALK4" "ALKS5" "BALD" "BENZ"
"BUT13" "BZ123" "BZ124" "BZ135" "C2BEN" "ETCHO" "ETHAN" "ETHEN" "HCHO"
"MACR" "MECHO" "MEK" "MXYL" "NC4" "OLE1" "OLE2" "OLE3" "OLE4" "OLEA1"
"OTH1" "OTH3" "OTH4" "OXYL" "PROP" "PROPE" "PXYL" "RCHO" "STYRS" "TOLU"

References
Carter, W. P. (2015). Development of a database for chemical mechanism assignments for volatile
organic emissions. Journal of the Air & Waste Management Association, 65(10), 1171-1184.

See Also

speciate

Examples

{

id <-1:2

df <- data.frame(V1 = 1:2, V2 = 1:2)
dx <- speciate(x = df,

spec = "nmhc”,
fuel = "E25",
veh = "LDV",
eu = "Exhaust")
dx$id <- rep(id, length(unique(dx$pol)))
names (dx)
VOCE25EX <- emis_chem2(df = dx,
mech = "CB@5",
nx = c("V1", "Vv2"))
3
emis_china Estimation with Chinese factors
Description

Emissions estimates

Usage

emis_china(
X,
1km,
tfs,
v = "PV",
t = "Small”,
f ="G",
standard,

S,

74 emis_china
speed,
te,
hu,
h,
yeardet = 2016,
P,
verbose = TRUE,
array = FALSE
)
Arguments

X Vehicles data.frame

1km Length of each link in km

tfs temporal factor

v Character; category vehicle: "PV" for Passenger Vehicles or *Trucks"

t Character; sub-category of of vehicle: PV Gasoline: "Mini", "Small","Medium",
"Large", "Taxi", "Motorcycles", "Moped", PV Diesel: "Mediumbus", "Large-
bus", "3-Wheel". Trucks: "Mini", "Light" , "Medium", "Heavy"

f Character;fuel: "G", "D", "CNG", "ALL"

standard Character vector; "PRE", "I", "II", "III", "IV", "V".

s Sulhur in ppm

speed Speed (length nrow x)

te Temperature (length tfs)

hu Humidity (length tfs)

h Altitude (length nrow x)

yeardet Year, default 2016

p Character; pollutant: "CO", "NOx","HC", "PM", "Evaporative_driving" or "Evap-
orative_parking"

verbose Logical to show more info

array Logical to return EmissionsArray or not

Value
long data.frame

See Also
Other China: ef_china(), ef_china_det (), ef_china_h(), ef_china_hu(), ef_china_long(),
ef_china_s(), ef_china_speed(), ef_china_te(), ef_china_th(), emis_long()

Examples

{

ef_china_h(h = 1600, p = "C0")

}

emis_cold 75

emis_cold Estimation of cold start emissions hourly for the of the week

Description

emis_cold emissions are estimated as the product of the vehicles on a road, length of the road,
emission factor evaluated at the respective speed. The estimation considers the beta parameter, the
fraction of mileage driven

Usage

emis_cold(
veh,
1km,
ef,
efcold,
beta,
speed = 34,
agemax = if (!inherits(x = veh, what = "list")) {
ncol(veh)
} else {

ncol(veh[[1]1])
b
profile,
simplify = FALSE,
hour = nrow(profile),
day = ncol(profile),

array = TRUE,
verbose = FALSE
)
Arguments
veh "Vehicles" data-frame or list of "Vehicles" data-frame. Each data-frame as num-
ber of columns matching the age distribution of that type of vehicle. The number
of rows is equal to the number of streets link
1km Length of each link
ef List of functions of emission factors of vehicular categories
efcold List of functions of cold start emission factors of vehicular categories
beta Dataframe with the hourly cold-start distribution to each day of the period.
Number of rows are hours and columns are days
speed Speed data-frame with number of columns as hours
agemax Age of oldest vehicles for that category

profile Numerical or dataframe with nrows equal to 24 and ncol 7 day of the week

76 emis_cold

simplify Logical; to determine if EmissionsArray should les dimensions, being streets,
vehicle categories and hours or default (streets, vehicle categories, hours and
days). Default is FALSE to avoid break old code, but the recommendation is
that new estimations use this parameter as TRUE

hour Number of considered hours in estimation
day Number of considered days in estimation
array Deprecated! emis_cold returns only arrays. When TRUE and veh is not a list,

expects a profile as a dataframe producing an array with dimensions (streets x
columns x hours x days)

verbose Logical; To show more information

Value

EmissionsArray g/h

Examples

Not run:

Do not run

data(net)

data(pc_profile)

data(fe2015)

data(fkm)

data(pc_cold)

pcf <- as.data.frame(cbind(pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,pc_cold,

pc_cold))

PC_G <- ¢(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,
133833,138441,142682,171029,151048,115228,98664,126444,101027,
84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)

veh <- data.frame(PC_G = PC_G)

pcl <- my_age(x = net$ldv, y = PC_G, name = "PC")

pcw <- temp_fact(net$ldv+net$hdv, pc_profile)

speed <- netspeed(pcw, netps, netffs, net$capacity, net$lkm, alpha = 1)

pckm <- units::set_units(fkm[[1]](1:24), "km"); pckma <- cumsum(pckm)

codl <- emis_det(po = "CO0", cc = 1000, eu = "III", km = pckmal[1:11])

cod2 <- emis_det(po = "C0", cc = 1000, eu = "I", km = pckma[12:24])

#vehicles newer than pre-euro

col <- fe2015[fe2015%Pollutant=="C0",] #24 obs!!!

cod <- c(col$PC_G[1:24]*c(cod1,cod2),col$PC_G[25:nrow(col)])

lef <- ef_ldv_scaled(col, cod, v = "PC", cc = "<=1400",

f = "G",p = "C0", eu=col$Euro_LDV)

Mohtly average temperature 18 Celcius degrees

lefec <- ef_ldv_cold_list(df = col, ta = 18, cc = "<=1400", f = "G",

eu = col$Euro_LDV, p = "CO")

lefec <- c(lefec,lefec[length(lefec)], lefec[length(lefec)],

lefec[length(lefec)], lefec[length(lefec)],
lefec[length(lefec)])

length(lefec) == ncol(pc1)

#temis change length of 'ef' to match ncol of 'veh'

class(lefec)

emis_cold_td 77

PC_CO_COLD <- emis_cold(veh = pc1,
1km = net$1lkm,
ef = lef,
efcold = lefec,
beta = pcf,
speed = speed,
profile = pc_profile)
class(PC_CO_COLD)
plot(PC_CO_COLD)
lpc <- list(pcl, pcl)
PC_CO_COLDv2 <- emis_cold(veh = pc1,
1km = net$lkm,
ef = lef,
efcold = lefec,
beta = pcf,
speed = speed,
profile = pc_profile,

hour = 2,
day = 1)
End(Not run)
emis_cold_td Estimation of cold start emissions with top-down approach

Description

emis_cold_td estimates cld start emissions with a top-down appraoch. This is, annual or monthly
emissions or region. Especifically, the emissions are esitmated for row of the simple feature (row
of the spatial feature).

In general was designed so that each simple feature is a region with different average monthly
temperature. This funcion, as other in this package, adapts to the class of the input data. providing
flexibility to the user.

Usage

emis_cold_td(
veh,
1km,
ef,
efcold,
beta,
pro_month,
params,
verbose = FALSE,
fortran = FALSE,
nt = ifelse(check_nt() == 1, 1, check_nt()/2)

78 emis_cold_td

Arguments
veh "Vehicles" data-frame or spatial feature, wwhere columns are the age distribu-
tion of that vehicle. and rows each simple feature or region. The number of rows
is equal to the number of streets link
1km Numeric; mileage by the age of use of each vehicle.
ef Numeric; emission factor with
efcold Data.frame. When it is a data.frame, each column is for each type of vehicle by
age of use, rows are are each simple feature. When you have emission factors
for each month, the order should a data.frame ina long format, as rurned by
ef_ldv_cold.
beta Data.frame with the fraction of cold starts. The rows are the fraction for each
spatial feature or subregion, the columns are the age of use of vehicle.
pro_month Numeric; montly profile to distribuite annual mileage in each month.
params List of parameters; Add columns with information to returning data.frame
verbose Logical; To show more information
fortran Logical; to try the fortran calculation.
nt Integer; Number of threads wich must be lower than max available. See check_nt.
Only when fortran = TRUE
Value

Emissions data.frame

See Also
ef_ldv_cold
Examples
Not run:

Do not run
veh <- age_ldv(1:10, agemax = 8)
euros <- c("v", "v", "1v", "III", "II", "I", "PRE", "PRE")
dt <- matrix(rep(2:25, 5), ncol = 12, nrow = 10) # 12 months, 10 rows
row.names(dt) <- paste@("Simple_Feature_", 1:10)
efc <- ef_ldv_cold(ta = dt, cc = "<=1400", f = "G", eu = euros, p = "C0", speed = Speed(34))
efh <- ef_ldv_speed(

v = "PC", t = "4S", cc = "<=1400", f = "G",

eu = euros, p = "C0", speed = Speed(runif(nrow(veh), 15, 40))
)
1km <- units::as_units(18:11, "km") * 1000
cold_lkm <- cold_mileage(ltrip = units::as_units(20, "km"), ta = celsius(dt))
names(cold_lkm) <- paste@("Month_", 1:12)
veh_month <- c(rep(8, 1), rep(10, 5), 9, rep(10, 5))
system.time(

a <- emis_cold_td(

veh = veh,

n = 1 -~

emis_cold_td

1km = 1km,
ef = efh[1, 1,
efcold = efc[1:10,],
beta = cold_lkm[, 11,
verbose = TRUE
)
)

system. time(
a2 <- emis_cold_td(

veh = veh,
lkm = 1km,
ef = efh[1, 1,

efcold = efc[1:10,],
beta = cold_lkm[, 1],
verbose = TRUE,
fortran = TRUE
)
) # emistd2coldf.f95
a$emissions <- round(a$emissions, 8)
a2$emissions <- round(a2%$emissions, 8)
identical(a, a2)

Adding parameters
emis_cold_td(

veh = veh,
lkm = 1km,
ef = efh[1, 1,

efcold = efc[1:10, 1,

beta = cold_lkm[, 117,

verbose = TRUE,

params = list(
paste@("data_", 1:10),
"moredata”

)

)

system. time(
aa <- emis_cold_td(

veh = veh,
1km = 1km,
ef = efh,
efcold = efc,

beta = cold_lkm,
pro_month = veh_month,
verbose = TRUE
)
)

system.time(
aa2 <- emis_cold_td(

veh = veh,
1km = 1km,
ef = efh,
efcold = efc,

beta = cold_lkm,

80 emis_det

pro_month = veh_month,

verbose = TRUE,

fortran = TRUE

)

) # emistd5coldf.f95
aa$emissions <- round(aa$emissions, 8)
aa2$emissions <- round(aa2$emissions, 8)
identical(aa, aa2)

End(Not run)

emis_det Determine deterioration factors for urban conditions

Description

emis_det returns deterioration factors. The emission factors comes from the guidelines for develop-

ing emission factors of the EMEP/EEA air pollutant emission inventory guidebook http://www.eea.europa.eu/themes/air/eme;
eea-air-pollutant-emission-inventory-guidebook This function subset an internal database of emis-

sion factors with each argument

Usage

emis_det(
po,
cc,
eu,
speed = Speed(18.9),
km,
verbose = FALSE,
show.equation = FALSE

)
Arguments
po Character; Pollutant "CO", "NOx" or "HC"
cc Character; Size of engine in cc covering "<=1400", "1400_2000" or ">2000"
eu Character; Euro standard: "I", "II", "IIT", "III", "IV", "V", "VI", "VIc"
speed Numeric; Speed to return Number of emission factor and not a function. It needs
units in km/h
km Numeric; accumulated mileage in km.
verbose Logical; To show more information

show.equation Option to see or not the equation parameters

Value

It returns a numeric vector representing the increase in emissions due to normal deterioring

emis_dist 81

Note

The deterioration factors functions are available for technologies euro "II", "III" and "IV". In order
to cover all euro technologies, this function assumes that the deterioration function of "III" and
"IV" applies for "V", "VI" and "VIc". However, as these technologies are relative new, accumulated
milage is low and hence, deteerioration factors small.

Examples

Not run:

data(fkm)

pckm <- fkm[[111(1:24); pckma <- cumsum(pckm)

km <- units::set_units(pckmal[1:11], km)

length eu = length km = 1

emis_det(po = "C0", cc = "<=1400", eu = "III", km = km[5], show.equation = TRUE)

length eu = length km = 1, length speed > 1

emis_det(po = "CO", cc = "<=1400", eu = "III", km = km[5], speed = Speed(1:10))

length km != length eu error

(codl <- emis_det(po = "CO", cc = "<=1400", eu = c("III", "IV"), speed = Speed(30),
km = km[41))

length eu = 1 length km > 1

emis_det(po = "CO0", cc = "<=1400", eu = "III", km = km)

length eu = 2, length km = 2 (if different length, error!)

(codl <- emis_det(po = "CO", cc = "<=1400", eu = c("III", "IV"), km = km[4:5]))

length eu = 2, length km = 2, length speed >
(codl <- emis_det(po = "CO", cc = "<=1400", eu
km = km[4:5]))

euros <- c("V", "y", "y MTyM, tIVY) "IVY, "IIT”
length eu = 2, length km = 2, length speed >
(cod1 <- emis_det(po = "CO0", cc = "<=1400", eu
km = km[1:101))

codl <- as.matrix(codl1[, 1:111)
filled.contour(codl, col = cptcity::cpt(6277, n = 20))
filled.contour(codl, col = cptcity::lucky(n = 19))

euro <- c(rep("V", 5), rep("IV", 5), "III")

euros <- rbind(euro, euro)

(codl <- emis_det(po = "CO", cc = "<=1400", eu = euros, km = km))

mn =

c("III", "IV"), speed = Speed(0:130),

IIIIIII, ”III”, uIIIn)

N = -

euros, speed = Speed(1:100),

End(Not run)

emis_dist Allocate emissions into spatial objects (street emis to grid)

Description

emis_dist allocates emissions proportionally to each feature. "Spatial" objects are converter to
"sf" objects. Currently, "LINESTRING’ or "MULTILINESTRING’ supported. The emissions are
distributed in each street.

82 emis_emfac

Usage

emis_dist(gy, spobj, pro, osm, verbose = FALSE)

Arguments
gy Numeric; a unique total (top-down)
spobj A spatial dataframe of class "sp" or "sf". When class is "sp" it is transformed to
"Sf"_
pro Matrix or data-frame profiles, for instance, pc_profile.
osm Numeric; vector of length 5, for instance, c(5, 3, 2, 1, 1). The first element
covers ‘motorway’ and 'motorway_link. The second element covers ’trunk’ and
’trunk_link’. The third element covers *primary’ and *primary_link’. The fourth
element covers ’secondary’ and ’secondary_link’. The fifth element covers ’ter-
tiary’ and ’tertiary_link’.
verbose Logical; to show more info.
Note

When spobj is a *Spatial’ object (class of sp), they are converted into ’sf’.

Examples

Not run:

data(net)

data(pc_profile)

po <- 1000

t1 <- emis_dist(gy = po, spobj = net)

head(t1)

sum(t1$gy)

#t1 <- emis_dist(gy = po, spobj = net, osm = c(5, 3, 2, 1, 1))
t1 <- emis_dist(gy = po, spobj = net, pro = pc_profile)

End(Not run)

emis_emfac Emission calculation based on EMFAC emission factors

Description

emis_emfac estimates emissions based on an emission factors database from EMFAC.You must
download the emission factors from EMFAC website.

emis_emfac

Usage

em

is_emfac(

ef,

veh,

1km,

tfs,

speed,

vehname,

pol = "CO_RUNEX",
modelyear = 2021:1982,
vkm = TRUE,
verbose = TRUE

Arguments

ef
ve
1k
tf
sp
ve
po
mo
vk

ve

Value

data.table with emission estimation in long format

Note

Emission factors must be in g/miles

data.frame or character path to EMFAC ef (g/miles)
h Vehicles data.frame
m Distance per street-link in miles
s vector to project activity by hour
eed Speed data.frame in miles/hour
hname numeric vector for heavy good vehicles or trucks
1 character, "CO_RUNEX"
delyear numeric vector, 2021:1982
m logical, to return vkm

rbose logical, to show more information

Examples

#it

Not run:

do not run

#it

End(Not run)

83

84 emis_evap

emis_evap Estimation of evaporative emissions

Description

emis_evap estimates evaporative emissions from EMEP/EEA emisison guidelines

Usage
emis_evap(

veh,
X,
ed,
hotfi,
hotc,
warmc,
carb = 0,
P,
params,
pro_month,
verbose = FALSE

)

Arguments

veh Numeric or data.frame of Vehicles with untis *veh’.

X Numeric which can be either, daily mileage by age of use with units ’lkm’,
number of trips or number of proc. When it has units 'lkm’, all the emission
factors must be in ’g/km’. When ed is in g/day, x it is the number of days
(without units). When hotfi, hotc or warmc are in g/trip, X it is the number of
trips (without units). When hotfi, hotc or warmc are in g/proced, x it is the
number of proced (without units).

ed average daily evaporative emissions. If x has units ’lkm’, the units of ed must
be *g/km’, other case, this are simply g/day (without units).

hotfi average hot running losses or soak evaporative factor for vehicles with fuel in-
jection and returnless fuel systems. If x has units lkm’, the units of ed must be
’g/km’, other case, this is simply g/trip or g/proced

hotc average running losses or soak evaporative factor for vehicles with carburetor or
fuel return system for vehicles with fuel injection and returnless fuel systems. If
x has units ’1km’, the units of ed must be *g/km’,

warmc average cold and warm running losses or soak evaporative factor for vehicles
with carburetor or fuel return system for vehicles with fuel injection and return-
less fuel systems. If x has units 'lkm’, the units of ed must be *g/km’,

carb fraction of gasoline vehicles with carburetor or fuel return system.

p Fraction of trips finished with hot engine

emis_evap2 85

params Character; Add columns with information to returning data.frame
pro_month Numeric; monthly profile to distribute annual mileage in each month.
verbose Logical; To show more information

Value

numeric vector of emission estimation in grams

Note

When veh is a "Vehicles" data.frame, emission factors are evaluated till the number of columns of
veh. For instance, if the length of the emission factor is 20 but the number of columns of veh is 10,
the 10 first emission factors are used.

References

Mellios G and Ntziachristos 2016. Gasoline evaporation. In: EEA, EMEP. EEA air pollutant
emission inventory guidebook-2009. European Environment Agency, Copenhagen, 2009

See Also

ef_evap

Examples

Not run:

(a <- Vehicles(1:10))

(lkm <- units::as_units(1:10, "km"))

(ef <- EmissionFactors(1:10))

(ev <- emis_evap(veh = a, x = lkm, hotfi = ef))

End(Not run)

emis_evap2 Estimation of evaporative emissions 2

Description

emis_evap performs the estimation of evaporative emissions from EMEP/EEA emission guidelines
with Tier 2.

86

Usage

emis_evap2(
veh,
name,
size,
fuel,
aged,
nd4,
nd3,
nd2,
nd1,
hs_nd4,
hs_nd3,
hs_nd2,
hs_nd1,
rl_nd4,
rl_nd3,
rl_nd2,
rl_nd1,
d_nd4,
d_nd3,
d_nd2,
d_nd1

Arguments

veh

name
size
fuel
aged
nd4
nd3
nd2
nd1
hs_nd4

hs_nd3

hs_nd2

emis_evap2

Total number of vehicles by age of use. If is a list of *Vehicles’ data-frames, it
will sum the columns of the eight element of the list representing the 8th hour.
It was chosen this hour because it is morning rush hour but the user can adapt
the data to this function

Character of type of vehicle

Character of size of vehicle

Character of fuel of vehicle

Age distribution vector. E.g.: 1:40

Number of days with temperature between 20 and 35 Celsius degrees
Number of days with temperature between 10 and 25 Celsius degrees
Number of days with temperature between 0 and 15 Celsius degrees
Number of days with temperature between -5 and 10 Celsius degrees

average daily hot-soak evaporative emissions for days with temperature between
20 and 35 Celsius degrees

average daily hot-soak evaporative emissions for days with temperature between
10 and 25 Celsius degrees

average daily hot-soak evaporative emissions for days with temperature between
0 and 15 Celsius degrees

emis_evap2 87

hs_nd1 average daily hot-soak evaporative emissions for days with temperature between
-5 and 10 Celsius degrees

rl_nd4 average daily running losses evaporative emissions for days with temperature
between 20 and 35 Celsius degrees

rl_nd3 average daily running losses evaporative emissions for days with temperature
between 10 and 25 Celsius degrees

rl_nd2 average daily running losses evaporative emissions for days with temperature
between 0 and 15 Celsius degrees

rl_nd1 average daily running losses evaporative emissions for days with temperature
between -5 and 10 Celsius degrees

d_nd4 average daily diurnal evaporative emissions for days with temperature between
20 and 35 Celsius degrees

d_nd3 average daily diurnal evaporative emissions for days with temperature between

10 and 25 Celsius degrees

d_nd2 average daily diurnal evaporative emissions for days with temperature between
0 and 15 Celsius degrees

d_nd1 average daily diurnal evaporative emissions for days with temperature between
-5 and 10 Celsius degrees

Value

dataframe of emission estimation in grams/days

References

Mellios G and Ntziachristos 2016. Gasoline evaporation. In: EEA, EMEP. EEA air pollutant
emission inventory guidebook-2009. European Environment Agency, Copenhagen, 2009

Examples

Not run:

data(net)

PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,
133833,138441,142682,171029,151048,115228,98664,126444,101027,
84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)

veh <- data.frame(PC_G = PC_G)

pcl <- my_age(x = net$ldv, y = PC_G, name = "PC")

ef1 <- ef_evap(ef = "erhotc”,v = "PC", cc = "<=1400", dt = "0_15", ca = "no")
dfe <- emis_evap2(veh = pcl,

name = "PC",

size = "<=1400",

fuel = "G",

aged = 1:ncol(pcl),

nd4 = 10,

nd3 = 4,

nd2 = 2,

ndl = 1,

88 emis_grid

hs_nd4 = ef1*1:ncol(pcl),
hs_nd3 = ef1*1:ncol(pcl),
hs_nd2 = ef1%1:ncol(pcl),
hs_nd1 = ef1*1:ncol(pcl),
d_nd4 = efl1x1:ncol(pcl),
d_nd3 = efl1x1:ncol(pcl),
d_nd2 = ef1x1:ncol(pcl),
d_nd1 = efl1x1:ncol(pcl),
rl_nd4 = ef1x1:ncol(pcl),
rl_nd3 = ef1*1:ncol(pcl),
rl_nd2 = ef1x1:ncol(pcl),
rl_ndl = ef1x1:ncol(pcl))

lpc <- list(pcl, pcl, pcl, pcl,

pcl, pcl, pcl, pcl)
dfe <- emis_evap2(veh = lpc,

name = "PC",

size = "<=1400",
fuel = "G",

aged = 1:ncol(pcl),
nd4 = 10,

nd3 = 4,

nd2 = 2,

ndl = 1

hs_nd4 = ef1*1:ncol(pcl),
hs_nd3 = ef1*1:ncol(pcl),
hs_nd2 = ef1%1:ncol(pcl),
hs_nd1 = ef1*1:ncol(pcl),
d_nd4 = ef1x1:ncol(pcl),
d_nd3 = efl1x1:ncol(pcl),
d_nd2 = ef1x1:ncol(pcl),
d_nd1 = ef1x1:ncol(pcl),
rl_nd4 = ef1x1:ncol(pcl),
rl_nd3 = ef1*1:ncol(pcl),
rl_nd2 = ef1*1:ncol(pcl),
rl_ndl = ef1x1:ncol(pcl))

End(Not run)

emis_grid Allocate emissions into a grid returning point emissions or flux

Description

emis_grid allocates emissions proportionally to each grid cell. The process is performed by the
intersection between geometries and the grid. It means that requires "st" according to your location
for the projection. It is assumed that spobj is a Spatial*DataFrame or an "sf" with the pollutants in
data. This function returns an object of class "sf".

Itis

emis_grid 89

Usage

emis_grid(spobj = net, g, sr, type = "lines”, FN = "sum”, flux = TRUE, k = 1)

Arguments
spobj A spatial dataframe of class "sp" or "sf". When class is "sp" it is transformed to
"sf".
g A grid with class "SpatialPolygonsDataFrame" or "st".
sr Spatial reference e.g: 31983. It is required if spobj and g are not projected.
Please, see http://spatialreference.org/.
type type of geometry: "lines", "points" or "polygons".
FN Character indicating the function. Default is "sum"
flux Logical, if TRUE, it return flux (mass / area / time (implicit)) in a polygon grid,
if false, mass / time (implicit) as points, in a similar fashion as EDGAR provide
data.
k Numeric to multiply emissions
Note

1) If flux = TRUE (default), emissions are flux = mass / area / time (implicit), as polygons. If
flux = FALSE, emissions are mass / time (implicit), as points. Time untis are not displayed
because each use can have different time units for instance, year, month, hour second, etc.

2) Therefore, it is good practice to have time units in ’spobj’. This implies that spobj MUST
include units!.

3) In order to check the sum of the emissions, you must calculate the grid-area in km”2 and
multiply by each column of the resulting emissions grid, and then sum.

4) If FN = "sum'', is mass conservative!.

Examples

Not run:
data(net)
g <- make_grid(net, 1/102.47/2) #500m in degrees
names(net)
netsf <- sf::st_as_sf(net)
netg <- emis_grid(spobj = netsf[, c("ldv”, "hdv")], g = g, sr= 31983)
plot(netg["1ldv"],
axes = TRUE,
graticule = TRUE,
bg = "black”,
1ty = 0)
g <- sf::st_make_grid(net, 1/102.47/2, square = FALSE) #500m in degrees
g <- st_sf(i =1, geometry = g)
netg <- emis_grid(spobj = netsf[, c("ldv”, "hdv")], g = g, sr= 31983)
plot(netg["ldv"],
axes = TRUE,
graticule = TRUE,

90

emis_hot_td

bg = "black”,

1ty = 0)

plot(netg["hdv"], axes = TRUE)

netg <- emis_grid(spobj = netsf[, c("ldv”, "hdv")], g

g, sr= 31983, FN = "mean")

plot(netg["”1dv"], axes = TRUE)
plot(netg[”hdv"], axes = TRUE)
netg <- emis_grid(spobj = netsf[, c("ldv”, "hdv")], g = g, sr= 31983, flux = FALSE)
plot(netg["ldv"],
axes = TRUE,
pch = 16,
pal = cptcity::cpt(colorRampPalette= TRUE,

cex = 3)

rev = TRUE),

End(Not run)

emis_hot_td

Estimation of hot exhaust emissions with a top-down approach

Description

emis_hot_td estimates cold start emissions with a top-down appraoch. This is, annual or monthly
emissions or region. Especifically, the emissions are estimated for the row of the simple feature
(row of the spatial feature).

In general was designed so that each simple feature is a region with different average monthly
temperature. This function, as others in this package, adapts to the class of the input data. providing
flexibility to the user.

Usage
emis_hot_td(
veh,
1km,
ef,
pro_month,
params,
verbose =
fortran =
nt = ifels
)
Arguments
veh
1km

FALSE,
FALSE,
e(check_nt() == 1, 1, check_nt()/2)

"Vehicles" data-frame or spatial feature, where columns are the age distribution
of that vehicle. and rows each simple feature or region.

Numeric; mileage by the age of use of each vehicle.

emis_hot_td 91

ef Numeric or data.frame; emission factors. When it is a data.frame number of
rows can be for each region, or also, each region repeated along 12 months. For
instance, if you have 10 regions the number of rows of ef can also be 120 (10 *
120). when you have emission factors that varies with month, see ef_china.

pro_month Numeric or data.frame; monthly profile to distribute annual mileage in each
month. When it is a data.frame, each region (row) can have a different monthly
profile.

params List of parameters; Add columns with information to returning data.frame

verbose Logical; To show more information

fortran Logical; to try the fortran calculation.

nt Integer; Number of threads which must be lower than max available. See check_nt.

Only when fortran = TRUE

Details
List to make easier to use this function.

. ‘pro_month* is data.frame AND rows of ‘ef® and ‘veh* are equal.
. ‘pro_month* is numeric AND rows of ‘ef and ‘veh* are equal.
. ‘pro_month* is data.frame AND rows of ‘ef* is 12X rows of ‘veh°.

. ‘pro_month* is numeric AND rows of ‘ef* is 12X rows of ‘veh°.

. ‘pro_month* is numeric AND class of ‘ef* is "units’.
. NO ‘pro_month* AND class of ‘ef* is "units’.
. NO ‘pro_month‘ AND ‘ef* is data.frame.

1

2

3

4

5. ‘pro_month‘ is data,frame AND class of ‘ef* is "units’.

6

7

8

9. ‘pro_month‘ is numeric AND rows of ‘ef® is 12 (monthly ‘ef*).

Value

Emissions data.frame

See Also

ef_ldv_speed ef_china

Examples

Not run:
Do not run
euros <- c("v", "y, "Iy", "III", "II", "I", "PRE", "PRE")
efh <- ef_ldv_speed(
v = "PC", t = "4S", cc = "<=1400", f = "G",
eu = euros, p = "CO0", speed = Speed(34)
)
1km <- units::as_units(c(20:13), "km") * 1000
veh <- age_veh(1:10, type = "ldv", agemax = 8)
system.time(

92

a <- emis_hot_td(
veh = veh,
1km = 1km,
ef = EmissionFactors(as.numeric(efh[, 1:81)),
verbose = TRUE
)
)

system. time(
a2 <- emis_hot_td(
veh = veh,
lkm = 1km,
ef = EmissionFactors(as.numeric(efh[, 1:81)),
verbose = TRUE,
fortran = TRUE
)
) # emistd7f.f95
identical(a, a2)

adding columns
emis_hot_td(
veh = veh,
lkm = 1km,
ef = EmissionFactors(as.numeric(efh[, 1:81)),
verbose = TRUE,
params = list(paste@("data_", 1:10), "moredata”)
)

monthly profile (numeric) with numeric ef
veh_month <- c(rep(8, 1), rep(10, 5), 9, rep(10, 5))
system. time(
aa <- emis_hot_td(
veh = veh,
1km = 1km,
ef = EmissionFactors(as.numeric(efh[, 1:81)),
pro_month = veh_month,
verbose = TRUE
)
)
system. time(
aa2 <- emis_hot_td(
veh = veh,
1km = 1km,
ef = EmissionFactors(as.numeric(efh[, 1:81)),
pro_month = veh_month,
verbose = TRUE,
fortran = TRUE
)
) # emistd5f.f95
aa$emissions <- round(aa$emissions, 8)
aa2$emissions <- round(aa2$emissions, 8)
identical(aa, aa2)

monthly profile (numeric) with data.frame ef

emis_hot_td

emis_hot_td

veh_month <- c(rep(8, 1), rep(10, 5), 9, rep(10, 5))
def <- matrix(EmissionFactors(as.numeric(efh[, 1:8])),
nrow = nrow(veh), ncol = ncol(veh), byrow = TRUE
)
def <- EmissionFactors(def)
system. time(
aa <- emis_hot_td(

veh = veh,
1km = 1km,
ef = def,

pro_month = veh_month,
verbose = TRUE
)
)

system. time(
aa2 <- emis_hot_td(

veh = veh,
1km = 1km,
ef = def,

pro_month = veh_month,
verbose = TRUE,
fortran = TRUE
)
) # emistd1f.f95
aa$emissions <- round(aa$emissions, 8)
aa2$emissions <- round(aa2$emissions, 8)
identical(aa, aa2)

monthly profile (data.frame)
dfm <- matrix(c(rep(8, 1), rep(10, 5), 9, rep(10, 5)),
nrow = 10, ncol = 12,
byrow = TRUE
)
system.time(
aa <- emis_hot_td(
veh = veh,
1km = 1km,
ef = EmissionFactors(as.numeric(efh[, 1:81)),
pro_month = dfm,
verbose = TRUE
)
)
system.time(
aa2 <- emis_hot_td(
veh = veh,
1km = 1km,
ef = EmissionFactors(as.numeric(efh[, 1:81)),
pro_month = dfm,
verbose = TRUE,
fortran = TRUE
)
) # emistd6f.f95
aa$emissions <- round(aa$emissions, 2)

93

94

emis_hot_td

aa2$emissions <- round(aa2$emissions, 2)
identical(aa, aa2)

Suppose that we have a EmissionsFactor data.frame with number of rows for each month
number of rows are 10 regions
number of columns are 12 months
tem <- runif(n = 6 * 10, min = -10, max = 35)
temp <- c(rev(tem[order(tem)]), tem[order(tem)])
plot(temp)
dftemp <- celsius(matrix(temp, ncol = 12))
dfef <- ef_evap(
ef = c(rep("eshotfi”, 8)),

v = "PC",

cc = "<=1400",
dt = dftemp,
show = F,

ca = "small”,

ltrip = units::set_units(10, km),

pollutant = "NMHC"
)
dim(dfef) # 120 rows and 9 columns, 8 ef (g/km) and 1 for month
system.time(

aa <- emis_hot_td(

veh = veh,
1km = 1km,
ef = dfef,

pro_month = veh_month,
verbose = TRUE
)
)
system.time(
aa2 <- emis_hot_td(

veh = veh,
1km = 1km,
ef = dfef,

pro_month = veh_month,
verbose = TRUE,
fortran = TRUE
)
) # emistd3f.f95
aa$emissions <- round(aa$emissions, 2)
aa2$emissions <- round(aa2$emissions, 2)
identical(aa, aa2)
plot(aggregate(aa$emissions, by = list(aa$month), sum)$x)

Suppose that we have a EmissionsFactor data.frame with number of rows for each month
monthly profile (data.frame)
system. time(

aa <- emis_hot_td(

veh = veh,
1km = 1km,
ef = dfef,

pro_month = dfm,

emis_long

verbose = TRUE
)
)

system.time(
aa2 <- emis_hot_td(

veh = veh,
1km = 1lkm,
ef = dfef,

pro_month = dfm,
verbose = TRUE,
fortran = TRUE
)
) # emistd4f.f95
aa$emissions <- round(aa$emissions, 8)
aa2$emissions <- round(aa2$emissions, 8)
identical(aa, aa2)
plot(aggregate(aa$emissions, by = list(aa$month), sum)$x)

End(Not run)

95

emis_long Estimation with long format

Description

Emissions estimates

Usage

emis_long(x, lkm, ef, tfs, speed, verbose = TRUE, array = FALSE)

Arguments
X Vehicles data.frame. x repeats down for each hour
1km Length of each link in km. lkm repeats down for each hour
ef data.frame. ef repeats down for each hour
tfs temporal factor
speed Speed data.frame (nrow x)
verbose Logical to show more info
array Logical to return EmissionsArray or not
Value

long data.frame

See Also

emis_order

Other China: ef_china(), ef_china_det(), ef_china_h(), ef_china_hu(), ef_china_long(),

ef_china_s(), ef_china_speed(), ef_china_te(), ef_china_th(), emis_china()

Examples

{

data(net)

net <- net[1:100,]

data(pc_profile)

x <- age_veh(net$ldv)

pc_week <- temp_fact(net$ldv+net$hdv, pc_profile[[1]1])

df <- netspeed(pc_week,
net$ps,
net$ffs,
net$capacity,
net$lkm,
alpha = 1)

s <- do.call("rbind",lapply(1:ncol(df), function(i) {
as.data.frame(replicate(ncol(x), df[, il))
1))

ef <- ef_wear(wear = "tyre",
type = "PC",
pol = "PM10",

speed = as.data.frame(s))

e <- emis_long(x = x,

1km = net$lkm,

ef = ef,

tfs = pc_profile[[1]],
speed = df)

ae <- emis_long(x = x,
1km = net$lkm,

ef = ef,
tfs = pc_profile[[1]],
speed = df,
array = TRUE)
3
emis_order Re-order the emission to match specific hours and days
Description

Emissions are usually estimated for a year, 24 hours, or one week from monday to sunday (with
168 hours). This depends on the availability of traffic data. When an air quality simulation is going

emis_order

97

to be done, they cover specific periods of time. For instance, WRF Chem emissions files support
periods of time, or two emissions sets for a representative day (0-12z 12-0z). Also a WRF Chem
simulation scan starts a Thursday at 00:00 UTC, cover 271 hours of simulations, but hour emissions
are in local time and cover only 168 hours starting on Monday. This function tries to transform our
emissions in local time to the desired UTC time, by recycling the local emissions.

Usage

emis_order(
X,

1t_emissions,

start_utc_time,
desired_length,
tz_1t = Sys.timezone(),

seconds = 0,
k=1,
net,

verbose = TRUE

Arguments

X

1t_emissions

start_utc_time
desired_length

tz_1t

seconds
k

net
verbose

Value

sf or data.frame

one of the following:

* Spatial object of class "Spatial”. Columns are hourly emissions.

* Spatial Object of class "sf". Columns are hourly emissions.

e "data.frame", "matrix" or "Emissions".
In all cases, columns are hourly emissions.
Local time of the emissions at the first hour. It must be the before time of
start_utc_time. For instance, if start_utc_time is 2020-02-02 00:00, and your
emissions starts monday at 00:00, your It_emissions must be 2020-01-27 00:00.
The argument tz_It will detect your current local time zone and do the rest for
you.

UTC time for the desired first hour. For instance, the first hour of the namelist.input
for WRE.

Integer; length to recycle or subset local emissions. For instance, the length of
the WRF Chem simulations, states at namelist.input.

Character, Time zone of the local emissions. Default value is derived from
Sys.timezone(), however, it accepts any other. If you enter a wrong tz, this
function will show you a menu to choose one of the 697 time zones available.

Number of seconds to add

Numeric, factor.

SpatialLinesDataFrame or Spatial Feature of "LINESTRING".
Logical, to show more information, default is TRUE.

98 emis_paved

See Also

GriddedEmissionsArray

Examples

Not run:

#do not run

data(net)

data(pc_profile)

data(fe2015)

data(fkm)

PC_G <- ¢(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,
133833,138441,142682,171029,151048,115228,98664,126444,101027,
84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)

veh <- data.frame(PC_G = PC_G)

pcl <- my_age(x = net$ldv, y = PC_G, name = "PC")

pcw <- temp_fact(net$ldv+net$hdv, pc_profile)

speed <- netspeed(pcw, netps, netffs, net$capacity, net$lkm, alpha = 1)

pckm <- units::set_units(fkm[[1]](1:24), "km")

pckma <- cumsum(pckm)

codl <- emis_det(po = "C0", cc = 1000, eu = "III", km = pckmal[1:11])

cod2 <- emis_det(po = "CO0", cc = 1000, eu = "I", km = pckma[12:24])

#vehicles newer than pre-euro

col <- fe2015[fe2015%Pollutant=="C0", 1 #24 obs!!!

cod <- c(col1$PC_G[1:24]xc(cod1,cod2),col$PC_G[25:nrow(co1)])

lef <- ef_ldv_scaled(col, cod, v = "PC", t = "4S", cc = "<=1400",

f ="G",p = "C0", eu=col$Euro_LDV)

E_CO <- emis(veh = pcl1,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,

profile = pc_profile, simplify = TRUE)

class(E_CO)
E_CO_STREETS <- emis_post(arra = E_CO, pollutant = "C0"”, by = "streets”, net = net)
g <- make_grid(net, 1/102.47/2, 1/102.47/2) #500m in degrees
E_CO_g <- emis_grid(spobj = E_CO_STREETS, g = g, sr= 31983)
head(E_CO_g) #class sf
gr <- GriddedEmissionsArray(E_CO_g, rows = 19, cols = 23, times = 168, T)
wCO <- emis_order(x = E_CO_g,
1t_emissions = "2020-02-19 00:00",
start_utc_time = "2020-02-20 00:00",
desired_length = 241)

End(Not run)

emis_paved Estimation of resuspension emissions from paved roads

emis_paved 99

Description

emis_paved estimates vehicular emissions from paved roads. The vehicular emissions are esti-
mated as the product of the vehicles on a road, length of the road, emission factor from AP42 13.2.1
Paved roads. It is assumed dry hours and annual aggregation should consider moisture factor. It
depends on Average Daily Traffic (ADT)

Usage
emis_paved(
veh,
adt,
1km,
k =0.62,
sL1 = 0.6,
sL2 = 0.2,
sL3 = 0.06,
sL4 = 0.03,
W,
net = net
)
Arguments
veh Numeric vector with length of elements equals to number of streets It is an array
with dimenssions number of streets X hours of day x days of week
adt Numeric vector of with Average Daily Traffic (ADT)
1km Length of each link
k K_PM30 = 3.23 (g/vkm), K_PM15 = 0.77 (g/vkm), K_PM10 = 0.62 (g/vkm)
and K_PM2.5 =0.15 (g/vkm).
sL1 Silt loading (g/m2) for roads with ADT <= 500
sL2 Silt loading (g/m2) for roads with ADT > 500 and <= 5000
sL3 Silt loading (g/m2) for roads with ADT > 5000 and <= 1000
sL4 Silt loading (g/m2) for roads with ADT > 10000
W array of dimensions of veh. It consists in the hourly averaged weight of traffic
fleet in each road
net SpatialLinesDataFrame or Spatial Feature of "LINESTRING"
Value

emission estimation g/h

Note

silt values can vary a lot. For comparison:

100 emis_post

ADT US-EPA g/m2 CENMA (Chile) g/m2
<500 0.6 24
500-5000 0.2 0.7
5000-1000 0.06 0.6
>10000 0.03 0.3

References

EPA, 2016. Emission factor documentation for AP-42. Section 13.2.1, Paved Roads. https://www3.epa.gov/ttn/chief/ap42/ch

CENMA Chile: Actualizacion de inventario de emisiones de contaminntes atmosfericos RM 2020
Universidad de Chile#’

Examples

Not run:

Do not run

veh <- matrix(1000, nrow = 10,ncol = 10)

W <- veh*1.5

lkm <- 1:10

ADT <-1000:1010

emi <- emis_paved(veh = veh, adt = ADT, lkm = lkm, k = 0.65, W = W)
class(emi)

head(emi)

End(Not run)

emis_post Post emissions

Description

emis_post simplify emissions estimated as total per type category of vehicle or by street. It reads
EmissionsArray and Emissions classes. It can return a dataframe with hourly emissions at each
street, or a database with emissions by vehicular category, hour, including size, fuel and other

characteristics.
Usage
emis_post(arra, veh, size, fuel, pollutant, by = "veh", net, type_emi, k = 1)
Arguments
arra Array of emissions 4d: streets x category of vehicles x hours x days or 3d: streets
x category of vehicles x hours
veh Character, type of vehicle

size Character, size or weight

emis_post 101
fuel Character, fuel
pollutant Pollutant
by Type of output, "veh" for total vehicular category , "streets_narrow" or "streets".
"streets" returns a dataframe with rows as number of streets and columns the
hours as days*hours considered, e.g. 168 columns as the hours of a whole week
and "streets repeats the row number of streets by hour and day of the week
net SpatialLinesDataFrame or Spatial Feature of "LINESTRING". Only when by =
*streets_wide’
type_emi Character, type of emissions(exhaust, evaporative, etc)
k Numeric, factor
Note

This function depends on EmissionsArray objests which currently has 4 dimensions. However, a
future version of VEIN will produce EmissionsArray with 3 dimensiones and his fungeorge soros
drugsction also will change. This change will be made in order to not produce inconsistencies with
previous versions, therefore, if the user count with an EmissionsArry with 4 dimension, it will be

able to use this function.

Examples

Not run:

Do not run

data(net)

data(pc_profile)

data(fe2015)

data(fkm)

PC_G <- ¢(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,
133833,138441,142682,171029,151048,115228,98664,126444,101027,
84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)

pcl <- my_age(x = net$ldv, y = PC_G, name = "PC")

Estimation for morning rush hour and local emission factors

speed <- data.frame(S8 = net$ps)

plh <- matrix(1)

lef <- EmissionFactorsList(fe2015[fe2015%Pollutant=="C0", "PC_G"])

E_CO <- emis(veh = pcl,lkm = net$lkm, ef = lef, speed = speed,

profile = p1h)

E_CO_STREETS <- emis_post(arra = E_CO, pollutant = "C0"”, by = "streets_wide")

summary (E_CO_STREETS)

E_CO_STREETSsf <- emis_post(arra = E_CO, pollutant = "CO",

by = "streets”, net = net)

summary (E_CO_STREETSsf)

plot (E_CO_STREETSsf, main = "CO emissions (g/h)")

arguments required: arra, veh, size, fuel, pollutant ad by

E_CO_DF <- emis_post(arra = E_CO, veh = "PC", size = "<1400", fuel = "G",

pollutant = "C0", by = "veh")

Estimation 168 hours

pcl <- my_age(x = net$ldv, y = PC_G, name = "PC")

pcw <- temp_fact(net$ldv+net$hdv, pc_profile)

102 emis_to_streets

speed <- netspeed(pcw, netps, netffs, net$capacity, net$lkm, alpha = 1)
pckm <- units::set_units(fkm[[1]1(1:24),"km"); pckma <- cumsum(pckm)
codl <- emis_det(po = "CO0", cc = 1000, eu = "III", km = pckmal[1:11])
cod2 <- emis_det(po = "C0", cc = 1000, eu = "I", km = pckma[12:24])
#vehicles newer than pre-euro
col <- fe2015[fe2015%Pollutant=="C0",] #24 obs!!!
cod <- c(col$PC_G[1:24]*c(cod1,cod2),col$PC_G[25:nrow(col)])
lef <- ef_ldv_scaled(dfcol = cod, v = "PC", cc = "<=1400",
f = "G",p = "C0", eu=col$Euro_LDV)
E_CO <- emis(veh = pcl1,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,
profile = pc_profile)
arguments required: arra, pollutant ad by
E_CO_STREETS <- emis_post(arra = E_CO, pollutant = "C0", by = "streets")
summary (E_CO_STREETS)
arguments required: arra, veh, size, fuel, pollutant ad by
E_CO_DF <- emis_post(arra = E_CO, veh = "PC", size = "<1400", fuel = "G",
pollutant = "C0", by = "veh")
head(E_CO_DF)
recreating 24 profile
lpc <-list(pcl1*0.2, pcl1*0.1, pc1*x0.1, pcl*0.2, pcl1*0.5, pcl1*0.8,
pcl, pcl1*1.1, pcl,
pc1*0.8, pcl1*0.5, pcl1%0.5,
pc1*0.5, pc1*0.5, pcl1*0.5, pcl1%0.8,
pcl, pcl1*1.1, pcl,
pcl1*@.8, pcl1*0.5, pc1*0.3, pcl*0.2, pcl*0.1)
E_COv2 <- emis(veh = lpc, 1lkm = net$lkm, ef = lef, speed = speed[, 1:24],
agemax = 41, hour = 24, day = 1)
plot(E_COv2)
E_CO_DFv2 <- emis_post(arra = E_COv2,

veh = "PC",
size = "<1400",
fuel = "G",

type_emi = "Exhaust”,
pollutant = "C0", by = "veh")
head(E_CO_DFv2)

End(Not run)

emis_to_streets Emis to streets distribute top-down emissions into streets

Description

emis_to_streets allocates emissions proportionally to each feature. "Spatial" objects are con-
verter to "sf" objects. Currently, "LINESTRING’ or "MULTILINESTRING’ supported. The emis-
sions are distributed in each street.

Usage

emis_to_streets(streets, dfemis, by = "ID", stpro, verbose = TRUE)

emis_to_streets 103

Arguments
streets sf object with geometry "LINESTRING’ or "MULTILINESTRING’. Or Spa-
tialLinesDataFrame
dfemis data.frame with emissions
by Character indicating the columns that must be present in both ’street’ and *dfemis’
stpro data.frame with two columns, category of streets and value. The name of the
first column must be "stpro" and the sf streets must also have a column with the
nam "stpro" indicating the category of streets. The second column must have
the name "VAL" indicating the associated values to each category of street
verbose Logical; to show more info.
Note

When spobj is a *Spatial’ object (class of sp), they are converted into ’sf’.

See Also

add_polid

Examples

Not run:

data(net)

stpro = data.frame(stpro = as.character(unique(net$tstreet)),
VAL = 1:9)

dnet <- net["ldv"]

dnet$stpro <- as.character(net$tstreet)

dnet$ID <- "A"

df2 <- data.frame(BC = 10, CO = 20, ID = "A")

ste <- emis_to_streets(streets = dnet, dfemis = df2)

sum(ste$ldv)

sum(net$ldv)

sum(ste$BC)

sum(df2$BC)

ste2 <- emis_to_streets(streets = dnet, dfemis = df2, stpro = stpro)

sum(ste2$1dv)

sum(net$ldv)

sum(ste2$BC)

sum(df2$BC)

End(Not run)

104 emis_wear

emis_wear Emission estimation from tyre, brake and road surface wear

Description

emis_wear estimates wear emissions. The sources are tyres, breaks and road surface.

Usage

emis_wear(
veh,
1km,
ef,
what = "tyre",
speed,
agemax = ncol(veh),
profile,
hour = nrow(profile),
day = ncol(profile)

)
Arguments
veh Object of class "Vehicles"
1km Length of the road in km.
ef list of emission factor functions class "EmissionFactorsList", length equals to
hours.
what Character for indicating "tyre", "break" or "road"
speed Speed data-frame with number of columns as hours
agemax Age of oldest vehicles for that category
profile Numerical or dataframe with nrows equal to 24 and ncol 7 day of the week
hour Number of considered hours in estimation
day Number of considered days in estimation
Value

emission estimation g/h

References

Ntziachristos and Boulter 2016. Automobile tyre and break wear and road abrasion. In: EEA,
EMEP. EEA air pollutant emission inventory guidebook-2009. European Environment Agency,
Copenhagen, 2016

fe2015 105

Examples

Not run:
data(net)
data(pc_profile)
pc_week <- temp_fact(net$ldv[1:10] + net$hdv[1:10], pc_profile[, 11])
df <- netspeed(pc_week, net$ps[1:10], net$ffs[1:10],
net$capacity[1:10], net$lkm[1:10]1, alpha = 1)
ef <- ef_wear(wear = "tyre", type = "PC", pol = "PM10", speed = df)
emi <- emis_wear(veh = age_ldv(net$ldv[1:10], name = "VEH"),
1km = net$lkm[1:10], ef = ef, speed = df,
profile = pc_profile[, 11)

emi

End(Not run)

fe2015 Emission factors from Environmental Agency of Sao Paulo CETESB

Description

A dataset containing emission factors from CETESB and its equivalency with EURO

Usage
data(fe2015)

Format

A data frame with 288 rows and 12 variables:

Age Age of use

Year Year of emission factor

Pollutant Pollutants included: "CH4", "CO", "CO2", "HC", "N20", "NMHC", "NOx", and "PM"
Proconve_LDV Proconve emission standard: "PP", "L1", "L2", "L3", "L4", "L5", "L6"
t_Euro_LDV Euro emission standard equivalence: "PRE_ECE", "I", "IT", "II","IV", "V"
Euro_LDV Euro emission standard equivalence: "PRE_ECE", "I", "IT", "IIT","IV", "V"
Proconve_HDV Proconve emission standard: "PP", "P1", "P2", "P3", "P4", "P5", "P7"
Euro_HDV Euro emission standard equivalence: "PRE", "I", "II", "III", "V"

PC_G CETESB emission standard for Passenger Cars with Gasoline (g/km)

LT CETESB emission standard for Light Trucks with Diesel (g/km)

Source

CETESB

106 fkm

fkm List of functions of mileage in km fro Brazilian fleet

Description

Functions from CETESB: Antonio de Castro Bruni and Marcelo Pereira Bales. 2013. Curvas de
intensidade de uso por tipo de veiculo automotor da frota da cidade de Sao Paulo This functions
depends on the age of use of the vehicle

Usage

data(fkm)

Format

A data frame with 288 rows and 12 variables:

KM_PC_E25 Mileage in km of Passenger Cars using Gasoline with 25% Ethanol
KM_PC_E100 Mileage in km of Passenger Cars using Ethanol 100%

KM_PC_FLEX Mileage in km of Passenger Cars using Flex engines

KM_LCV_E25 Mileage in km of Light Commercial Vehicles using Gasoline with 25% Ethanol
KM_LCV_FLEX Mileage in km of Light Commercial Vehicles using Flex

KM_PC_BS Mileage in km of Passenger Cars using Diesel with 5% biodiesel
KM_TRUCKS_BS Mileage in km of Trucks using Diesel with 5% biodiesel

KM_BUS_BS Mileage in km of Bus using Diesel with 5% biodiesel

KM_LCV_BS5 Mileage in km of Light Commercial Vehicles using Diesel with 5% biodiesel
KM_SBUS_BS Mileage in km of Small Bus using Diesel with 5% biodiesel
KM_ATRUCKS_BS Mileage in km of Articulated Trucks using Diesel with 5% biodiesel
KM_MOTO_E25 Mileage in km of Motorcycles using Gasoline with 25% Ethanol
KM_LDV_GNV Mileage in km of Light Duty Vehicles using Natural Gas

Source

CETESB

fuel_corr 107

fuel_corr Correction due Fuel effects

Description
Take into account the effect of better fuels on vehicles with older technology. If the ratio is less than
1, return 1. It means that it is nota degradation function.

Usage

fuel_corr(
euro,
g = c(el100 = 52, aro = 39, 02 = 0.4, el150 = 86, olefin = 10, s = 165),

d = c(den = 840, pah = 9, cn = 51, t95 = 350, s = 400)
)
Arguments
euro Character; Euro standards ("PRE", "I", "II", "IIT", "IV", "V", VI, "VIc")
g Numeric; vector with parameters of gasoline with the names: el00(vol. (sul-
phur, ppm)
d Numeric; vector with parameters for diesel with the names: den (density at 15
Celsius degrees kg/m3), pah ((Back end distillation in Celsius degrees) and s
(sulphur, ppm)
Value

A list with the correction of emission factors.

Note
This function cannot be used to account for deterioration, therefore, it is restricted to values between
0 and 1. Parameters for gasoline (g):
02 = Oxygenates in
S = Sulphur content in ppm
ARO = Aromatics content in
OLEFIN = Olefins content in
E100 = Mid range volatility in
E150 = Tail-end volatility in
Parameters for diesel (d):
DEN = Density at 15 C (kg/m3)
S = Sulphur content in ppm
PAH = Aromatics content in
CN = Cetane number
T95 = Back-end distillation in o C.

108 get_project

Examples

Not run:
f <- fuel_corr(euro = "I")
names (f)

End(Not run)

get_ef_ref Get ef reference data

Description

Get the reference data used to build the emission factor (ef) model applied by vein.

Usage
get_ef_ref(ref)

Arguments

ref Character; The ef model required (e.g. "eea" for ef_eea)

Note

This function is a shortcut to access unexported ef model information in vein.

Examples

Not run:
get_ef_ref("eea”

End(Not run)

get_project Download vein project

Description

get_project downloads a project for running vein. The projects are available on Github.com/atmoschem/vein/projects

Usage

get_project(directory, case, url)

get_project

Arguments

directory

case

case
argentina
emislacovid
brazil_bu_chem

brazil_bu_chem_streets

brazil_td_chem
brazil_country
brazil_countryv2
masp2020
sebr_cb05co02
amazon2014
curitiba
ecuador
ecuador_mdpi
moves_bu
manizales_bu
eu_bu_chem

eu_bu_chem_simple

china_bu_chem

china_bu_chem_1h

url

Note

Character; Path to an existing or a new directory to be created.

Character; One of of the following:

Description

top down

Bottom-up March 2020

Bottom-up chemical mechanisms
Bottom-up chemical mechanisms for streets and MUNICH
Top-down with chemical mechanisms
Top down

Top down

Bottom-down

Top-down SP, MG and RJ

Top-down Amazon

Bottom-down +GTFS

Top-down. Renamed ecuador_td_im
Top-down. Renamed ecuador_td_im
Bottom-up

Bottom-up chemical mechanisms
Bottom-up chemical mechanisms
Bottom-up chemical mechanisms 7 veh
Bottom-up chemical mechanisms
Bottom-up chemical mechanisms

String, with the URL to download VEIN project

109

EF

COPERT
CETESB
CETESB+tunnel
CETESB+tunnel
CETESB
CETESB+tunnel
CETESB+tunnel
CETESB+tunnel
CETESB+tunnel
CETESB-+tunnel
CETESB+tunnel
EEA

EEA

US/EPA MOVES
EEA

EEA 2019

EEA 2019

MEE China
MEE China

All projects include option to apply survival functions In Sao Paulo the IM programs was function-

ing until 2011.

Examples

Not run:
#do not run

get_project("awesomecity”, case = "brazil_bu_chem")

End(Not run)

Notes

.rds

.rds

.rds

.rds

.csv and .rds
.rds

rds

csv and.rds

.rds

csv and.rds

csv and.rds

csv and.rds

csv and.rds

csv and.rds (requ
csv, csv.gz, .rds
.rds

.rds

.rds

.rds

110 GriddedEmissionsArray

GriddedEmissionsArray Construction function for class "GriddedEmissionsArray"

Description

GriddedEmissionsArray returns a transformed object with class "EmissionsArray” with 4 dimen-
sions.

Usage
GriddedEmissionsArray(x, ..., cols, rows, times = ncol(x), rotate = "default")

S3 method for class 'GriddedEmissionsArray'
print(x, ...)

S3 method for class 'GriddedEmissionsArray'
summary (object, ...)

S3 method for class 'GriddedEmissionsArray'

plot(x, ..., times = 1)
Arguments
X Object with class "SpatialPolygonDataFrame", "sf" "data.frame" or "matrix"
ignored
cols Number of columns
rows Number of rows
times Number of times
rotate Character, rotate array:"default", "left", "right", "cols","rows", "both", "br", "colsbr",
"rowsbr", "bothbr". br means starting a matrix byrow
object object with class "EmissionsArray’
Value

Objects of class "GriddedEmissionsArray"

Examples

Not run:

data(net)

data(pc_profile)

data(fe2015)

data(fkm)

PC_G <- ¢(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,
133833,138441,142682,171029,151048,115228,98664,126444,101027,
84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,

grid_emis 111

1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)
veh <- data.frame(PC_G = PC_G)
pcl <- my_age(x = net$ldv, y = PC_G, name = "PC")
pcw <- temp_fact(net$ldv+net$hdv, pc_profile)
speed <- netspeed(pcw, netps, netffs, net$capacity, net$lkm, alpha = 1)
pckm <- units::set_units(fkm[[1]1(1:24), "km")
pckma <- cumsum(pckm)
codl <- emis_det(po = "C0", cc = 1000, eu = "III", km = pckmal[1:11])
cod2 <- emis_det(po = "CO0", cc = 1000, eu = "I", km = pckmal[12:24])
#vehicles newer than pre-euro
col <- fe2015[fe2015%Pollutant=="C0", 1 #24 obs!!!
cod <- c(col$PC_G[1:24]*c(cod1,cod2),col$PC_G[25:nrow(col)])
lef <- ef_ldv_scaled(col, cod, v = "PC", t = "4S", cc = "<=1400",
f ="G",p = "C0", eu=col$Euro_LDV)
E_CO <- emis(veh = pcl,lkm = net$lkm, ef = lef, speed = speed, agemax = 41,
profile = pc_profile, simplify = TRUE)

class(E_CO)
E_CO_STREETS <- emis_post(arra = E_CO, pollutant = "C0"”, by = "streets”,
net = net, k = units::set_units(1, "1/h"))

g <- make_grid(net, 1/102.47/2, 1/102.47/2) #500m in degrees
E_CO_g <- emis_grid(spobj = E_CO_STREETS, g = g, sr= 31983)
plot(E_CO_g["V9"])
check all
rots <- c("default”, "left", "right",

"cols"”,"rows"”, "both"”,

"br", "colsbr”, "rowsbr"”, "bothbr")
oldpar <- par()
par(mfrow = c(2,5))
lg <- lapply(seg_along(rots), function(i){

x <- GriddedEmissionsArray(E_CO_g,

rows = 19,
cols = 23,
times = 168,

rotate = rots[i])
plot(x, main = rots[il)
»
par(mfrow = c(1,1))

End(Not run)

grid_emis Allocate emissions gridded emissions into streets (grid to emis street)

Description

grid_emis it is sort of the opposite of emis_grid. It allocates gridded emissions into streets. This
function applies emis_dist into each grid cell using lapply. This function is in development and
pull request are welcome.

112 grid_emis

Usage

grid_emis(spobj, g, top_down = FALSE, sr, pro, char, verbose = FALSE)

Arguments

spobj A spatial dataframe of class "sp" or "sf". When class is "sp" it is transformed to
"Sf”_

g A grid with class "SpatialPolygonsDataFrame" or "sf". This grid includes the
total emissions with the column "emission". If the profile is going to be used,
the column ’emission’ must include the sum of the emissions for each profile.
For instance, if profile covers the hourly emissions, the column ’emission’ bust
be the sum of the hourly emissions.

top_down Logical; requires emissions named ‘emissions* and allows to apply profile fac-
tors. If your data is hourly emissions or a spatial grid with several emissions at
different hours, being each hour a column, it is better to use top_down = FALSE.
In this way all the hourly emissions are considered, however, each hourly emis-
sions has to have the name "V" and the number of the hour like "V1"

sr Spatial reference e.g: 31983. It is required if spobj and g are not projected.
Please, see http://spatialreference.org/.

pro Numeric, Matrix or data-frame profiles, for instance, pc_profile.

char Character, name of the first letter of hourly emissions. New variables in R start
with the letter "V", for your hourly emissions might start with the letter "h". This
option applies when top_down is FALSE. For instance, if your hourly emissions
are: "h1", "h2", "h3"... ‘char* can be "h"

verbose Logical; to show more info.

Note

Your gridded emissions might have flux units (mass / area / time(implicit)) You must multiply
your emissions with the area to return to the original units.

Examples

Not run:
data(net)
data(pc_profile)
data(fkm)
PC_G <- c(33491,22340,24818,31808,46458,28574,24856,28972,37818,49050,87923,
133833,138441,142682,171029,151048,115228,98664,126444,101027,
84771,55864,36306,21079,20138,17439, 7854,2215,656,1262,476,512,
1181, 4991, 3711, 5653, 7039, 5839, 4257,3824, 3068)
pcl <- my_age(x = net$ldv, y = PC_G, name = "PC")
Estimation for morning rush hour and local emission factors
lef <- EmissionFactorsList(ef_cetesb("C0", "PC_G"))
E_CO <- emis(veh = pcl,lkm = net$lkm, ef = lef,
profile = 1, speed = Speed(1))
E_CO_STREETS <- emis_post(arra = E_CO, by = "streets”, net = net)

make_grid 113

g <- make_grid(net, 1/102.47/2) #500m in degrees

gC0O <- emis_grid(spobj = E_CO_STREETS, g = g)
gCO0%emission <- gCO$V1

area <- sf::st_area(gC0)

area <- units::set_units(area, "km”*2") #Check units!
gCO0$emission <- gCO$emission*area

#

\dontrun{

#do not run

library(osmdata)

library(sf)

osm <- osmdata_sf(

add_osm_feature(

opq(bbox = st_bbox(gC0)),

key = 'highway'))$osm_lines[, c("highway")]

st <- c("motorway”, "motorway_link", "trunk", "trunk_link",
"primary"”, "primary_link", "secondary"”, "secondary_link"”,
"tertiary”, "tertiary_link")

osm <- osm[osm$highway %in% st, 1]

plot(osm, axes = T)

top_down requires name “emissions™ into gCO~

xnet <- grid_emis(osm, gCO, top_down = TRUE)

plot(xnet, axes = T)

bottom_up requires that emissions are named “V° plus the hour like V1~
xnet <- grid_emis(osm, gCO,top_down= FALSE)
plot(xnet["V1"], axes = T)

}

End(Not run)

make_grid Creates rectangular grid for emission allocation

Description

make_grid creates a sf grid of polygons. The spatial reference is taken from the spatial object.

Usage
make_grid(spobj, width, height = width, crs = 3857)

Arguments
spobj A spatial object of class sp or sf.
width Width of grid cell. It is recommended to use projected values.
height Height of grid cell.
crs coordinate reference system in numeric format from http://spatialreference.org/

to transform/project spatial data using sf::st_transform. The default value is
3857, Pseudo Mercator

114 moves_ef

Value

A grid of polygons class ’sf’

Examples

Not run:

data(net)

grid <- make_grid(net, width = 0.5/102.47) #500 mts
plot(grid, axes = TRUE) #class sf

make grid now returns warnings for crs with form +init...
#grid <- make_grid(net, width = 0.5/102.47) #500 mts

End(Not run)

moves_ef MOVES emission factors

Description

moves_ef reads and filter MOVES data.frame of emission factors.

Usage

moves_ef (
ef,
vehicles,
source_type_id = 21,
process_id = 1,

fuel_type_id = 1,
pollutant_id = 2,
road_type_id = 5,
speed_bin
)
Arguments
ef emission factors from EmissionRates_running exported from MOVES
vehicles Name of category, with length equal to fuel_type_id and other with id

source_type_id Number to identify type of vehicle as defined by MOVES.
process_id Number to identify emission process defined by MOVES.
fuel_type_id Number to identify type of fuel as defined by MOVES.
pollutant_id Number to identify type of pollutant as defined by MOVES.
road_type_id Number to identify type of road as defined by MOVES.
speed_bin Data.frame or vector of avgSpeedBinID as defined by MOVES.

moves_rpd

Value

EmissionFactors data.frame

Note

‘decoder‘ shows a decoder for MOVES to identify

Examples

{
data(decoder)
decoder

}

115

moves_rpd MOVES estimation of using rates per distance

Description

moves_rpd estimates running exhaust emissions using MOVES emission factors.

Usage

moves_rpd(
veh,
1km,
ef,
fuel_type,
speed_bin,
profile,
source_type_id
fuel_type_id
pollutant_id
road_type_id =
process_id = 1,
vehicle = NULL,
vehicle_type = NULL,
fuel_subtype = NULL,
net,
path_all,
verbose = FALSE

1]
oo =

116

Arguments

veh

1km

ef

fuel_type
speed_bin
profile
source_type_id
fuel_type_id
pollutant_id
road_type_id
process_id
vehicle
vehicle_type
fuel_subtype
net

path_all

verbose

Value

moves_rpd

"Vehicles" data-frame or list of "Vehicles" data-frame. Each data-frame as num-
ber of columns matching the age distribution of that ype of vehicle. The number
of rows is equal to the number of streets link.

Length of each link in miles

emission factors from EmissionRates_running exported from MOVES
Data.frame of fuelSubtypelD exported by MOVES.

Data.frame or vector of avgSpeedBinID as defined by MOVES.
Data.frame or Matrix with nrows equal to 24 and ncol 7 day of the week
Number to identify type of vehicle as defined by MOVES.

Number to identify type of fuel as defined by MOVES.

Number to identify type of pollutant as defined by MOVES.

Number to identify type of road as defined by MOVES.

Number to identify type of pollutant as defined by MOVES.
Character, type of vehicle

Character, subtype of vehicle

Character, subtype of vehicle

Road network class sf

Character to export whole estimation. It is not recommended since it is usually
too heavy.

Logical; To show more information. Not implemented yet

a list with emissions at each street and data.base aggregated by categories. See 1ink{emis_post}

Note

‘decoder shows a decoder for MOVES

Examples

{
data(decoder)
decoder

}

moves_rpdy

117

moves_rpdy

MOVES estimation of using rates per distance by model year

Description

moves_rpdy estimates running exhaust emissions using MOVES emission factors.

Usage

mo

ves_rpdy(
veh,

1km,

ef,

source_type_id

fuel_type_id
pollutant_id
road_type_id
fuel_type,
speed_bin,
profile,
vehicle,
vehicle_type,
fuel_subtype,
process_id,
net,
path_all,
verbose

Arguments

ve

1k
ef

SO

h

m

urce_type_id

fuel_type_id
pollutant_id
road_type_id
fuel_type
speed_bin
profile

vehicle

FALSE

"Vehicles" data-frame or list of "Vehicles" data-frame. Each data-frame as num-
ber of columns matching the age distribution of that ype of vehicle. The number
of rows is equal to the number of streets link.

Length of each link in miles

emission factors from EmissionRates_running exported from MOVES
Number to identify type of vehicle as defined by MOVES.

Number to identify type of fuel as defined by MOVES.

Number to identify type of pollutant as defined by MOVES.

Number to identify type of road as defined by MOVES.

Data.frame of fuelSubtypelD exported by MOVES.

Data.frame or vector of avgSpeedBinID as defined by MOVES.
Data.frame or Matrix with nrows equal to 24 and ncol 7 day of the week

Character, type of vehicle

118

vehicle_type
fuel_subtype
process_id
net

path_all

verbose

Value

moves_rpdy_meta

Character, subtype of vehicle
Character, subtype of vehicle
Character, processID

Road network class sf

Character to export whole estimation. It is not recommended since it is usually
too heavy.

Logical; To show more information. Not implemented yet

a list with emissions at each street and data.base aggregated by categories. See 1ink{emis_post}

Note

‘decoder‘ shows a decoder for MOVES

Examples

{
data(decoder)
decoder

3

moves_rpdy_meta

MOVES estimation of using rates per distance by model year

Description

moves_rpdy_meta estimates running exhaust emissions using MOVES emission factors.

Usage

moves_rpdy_meta(

metadata,
1km,

ef,
fuel_type,
speed_bin,
profile,

agemax = 31,

net,

simplify = TRUE,

verbose =

FALSE

moves_rpdy_sf 119

Arguments
metadata data.frame with the metadata for a vein project for MOVES.
1km Length of each link in miles
ef emission factors from EmissionRates_running exported from MOVES
fuel_type Data.frame of fuelSubtypelD exported by MOVES.
speed_bin Data.frame or vector of avgSpeedBinID as defined by MOVES.
profile Data.frame or Matrix with nrows equal to 24 and ncol 7 day of the week
agemax Integer; max age for the fleet, assuming the same for all vehicles.
net Road network class sf
simplify Logical, to return the whole object or processed by streets and veh
verbose Logical; To show more information. Not implemented yet

Value

a list with emissions at each street and data.base aggregated by categories.

Note

The idea is the user enter with emissions factors by pollutant

Examples

{
data(decoder)
decoder

}

moves_rpdy_sf MOVES estimation of using rates per distance by model year

Description

moves_rpdy_sf estimates running exhaust emissions using MOVES emission factors.

Usage

moves_rpdy_sf(
veh,
1km,
ef,
speed_bin,
profile,
source_type_id = 21,
vehicle = NULL,
vehicle_type = NULL,

120

fuel_subtype
path_all,

moves_rpdy_sf

= NULL,

verbose = FALSE

Arguments

veh

1km
ef

speed_bin
profile
source_type_id
vehicle
vehicle_type
fuel_subtype
path_all

verbose

Value

"Vehicles" data-frame or list of "Vehicles" data-frame. Each data-frame as num-
ber of columns matching the age distribution of that ype of vehicle. The number
of rows is equal to the number of streets link.

Length of each link in miles

emission factors from EmissionRates_running exported from MOVES filtered
by sourceTypelD and fuel TypelD.

Data.frame or vector of avgSpeedBinID as defined by MOVES.
numeric vector of normalized traffic for the morning rush hour
Number to identify type of vehicle as defined by MOVES.
Character, type of vehicle

Character, subtype of vehicle

Character, subtype of vehicle

Character to export whole estimation. It is not recommended since it is usually
too heavy.

Logical; To show more information. Not implemented yet

a list with emissions at each street and data.base aggregated by categories. See link{emis_post}

Note

‘decoder‘ shows a decoder for MOVES

Examples

{
data(decoder)
decoder

}

moves_rpsy_meta 121

moves_rpsy_meta MOVES estimation of using rates per start by model year

Description

moves_rpsy_meta estimates running exhaust emissions using MOVES emission factors.

Usage

moves_rpsy_meta(
metadata,
1km,
ef,
fuel_type,
profile,
agemax = 31,
net,
simplify = TRUE,
verbose = FALSE,

colk,
colkt = F
)
Arguments
metadata data.frame with the metadata for a vein project for MOVES.
1km Length of each link in miles
ef emission factors from EmissionRates_running exported from MOVES
fuel_type Data.frame of fuelSubtypelD exported by MOVES.
profile Data.frame or Matrix with nrows equal to 24 and ncol 7 day of the week
agemax Integer; max age for the fleet, assuming the same for all vehicles.
net Road network class sf
simplify Logical, to return the whole object or processed by streets and veh
verbose Logical; To show more information. Not implemented yet
colk Character identifying a column in *metadata’ to multiply the emission factor
colkt Logical, TRUE if ‘colk* is used
Value

a list with emissions at each street and data.base aggregated by categories.

Note

The idea is the user enter with emissions factors by pollutant

122

Examples

{
data(decoder)
decoder

}

moves_rpsy_sf

moves_rpsy_sf

MOVES estimation of using rates per start by model year

Description

moves_rpsy_sf estimates running exhaust emissions using MOVES emission factors.

Usage

moves_rpsy_sf(
veh,
1km,
ef,
profile,

source_type_id = 21,
vehicle = NULL,

vehicle_type
fuel_subtype
net,
path_all,

= NULL,
= NULL,

verbose = FALSE

Arguments

veh

1km
ef

profile
source_type_id
vehicle
vehicle_type
fuel_subtype
net

path_all

verbose

"Vehicles" data-frame or list of "Vehicles" data-frame. Each data-frame as num-
ber of columns matching the age distribution of that type of vehicle. The number
of rows is equal to the number of streets link.

Length of each link in miles

emission factors from EmissionRates_running exported from MOVES filtered
by sourceTypelD and fuel TypelD.

numeric vector of normalized traffic for the morning rush hour
Number to identify type of vehicle as defined by MOVES.
Character, type of vehicle

Character, subtype of vehicle

Character, subtype of vehicle

Road network class sf

Character to export whole estimation. It is not recommended since it is usually
too heavy.

Logical; To show more information. Not implemented yet

moves_speed 123

Value

a list with emissions at each street and data.base aggregated by categories. See 1ink{emis_post}

Note

‘decoder* shows a decoder for MOVES

Examples

{
data(decoder)
decoder

3

moves_speed Return speed bins according to US/EPA MOVES model

Description
speed_moves return an object of average speed bins as defined by US EPA MOVES. The input
must be speed as miles/h (mph)

Usage

moves_speed(x, net)

Arguments
X Object with class, "sf", "data.frame", "matrix" or "numeric" with speeds in
miles/h (mph)
net optional spatial dataframe of class "sf". it is transformed to "sf".
Examples
{
data(net)

net$mph <- units::set_units(net$ps, "miles/h")
net$speed_bins <- moves_speed(net$mph)
head(net)

moves_speed(net["ps"])

}

124

my_age

my_age

Returns amount of vehicles at each age

Description

my_age returns amount of vehicles at each age using a numeric vector.

Usage
my_age (
X ’
Y,
agemax,
name = "vehicle”,
k=1,
pro_street,
net,
verbose = FALSE,
namerows
)
Arguments

X Numeric; vehicles by street (or spatial feature).

y Numeric or data.frame; when pro_street is not available, y must be 'numeric’,
else, a ’data.frame’. The names of the columns of this data.frame must be the
same as the elements of pro_street and each column must have a profile of age of
use of vehicle. When ’y’ is 'numeric’ the vehicles has the same age distribution
to all streets. When 'y’ is a data.frame, the distribution by age of use varies the
streets.

agemax Integer; age of oldest vehicles for that category

name Character; of vehicle assigned to columns of dataframe.

k Integer; multiplication factor. If its length is > 1, it must match the length of x

pro_street Character; each category of profile for each street. The length of this character
vector must be equal to the length of *x’. The names of the data.frame ’y’ must
have the same content of ’pro_street’

net SpatialLinesDataFrame or Spatial Feature of "LINESTRING"

verbose Logical; message with average age and total number of vehicles.

namerows Any vector to be change row.names. For instance, the name of regions or streets.

Value

dataframe of age distribution of vehicles.

net 125

Note

The functions age* produce distribution of the circulating fleet by age of use. The order of using
these functions is:

1. If you know the distribution of the vehicles by age of use , use: my_age 2. If you know the sales
of vehicles, or (the regis)*better) the registry of new vehicles, use age to apply a survival function.
3. If you know the theoretical shape of the circulating fleet and you can use age_ldv, age_hdv or
age_moto. For instance, you dont know the sales or registry of vehicles, but somehow you know
the shape of this curve. 4. You can use/merge/transform/adapt any of these functions.

Examples

Not run:

data(net)

dpc <- c(seq(1,20,3), 20:10)

PC_E25_1400 <- my_age(x = net$ldv, y = dpc, name = "PC_E25_1400")
class(PC_E25_1400)

plot(PC_E25_1400)

PC_E25_1400sf <- my_age(x = net$ldv, y = dpc, name = "PC_E25_1400", net = net)
class(PC_E25_1400sf)

plot(PC_E25_1400sf)

PC_E25_1400nsf <- sf::st_set_geometry(PC_E25_1400sf, NULL)
class(PC_E25_1400nsf)

yy <- data.frame(a = 1:5, b = 5:1) # perfiles por categoria de calle
pro_street <- c("a", "b", "a") # categorias de cada calle

x <- c(100,5000, 3) # vehiculos

my_age(x = x, y = yy, pro_street = pro_street)

End(Not run)

net Road network of the west part of Sao Paulo city

Description

This dataset is an sf class object with roads from a traffic simulation made by CET Sao Paulo, Brazil

Usage

data(net)

Format
A Spatial data.frame (sf) with 1796 rows and 1 variables:
ldv Light Duty Vehicles (veh/h)

hdv Heavy Duty Vehicles (veh/h)
Ikm Length of the link (km)

126 netspeed

ps Peak Speed (km/h)

ffs Free Flow Speed (km/h)

tstreet Type of street

lanes Number of lanes per link

capacity Capacity of vehicles in each link (1/h)
tmin Time for travelling each link (min)

geometry geometry

netspeed Calculate speeds of traffic network

Description

netspeed Creates a dataframe of speeds for different hours and each link based on morning rush
traffic data

Usage
netspeed(
q=1,
ps,
ffs,
cap,
1km,
alpha = 0.15,
beta = 4,
net,
scheme = FALSE,
dist = "km"
)
Arguments
q Data-frame of traffic flow to each hour (veh/h)
ps Peak speed (km/h)
ffs Free flow speed (km/h)
cap Capacity of link (veh/h)
1km Distance of link (km)
alpha Parameter of BPR curves
beta Parameter of BPR curves
net SpatialLinesDataFrame or Spatial Feature of "LINESTRING"
scheme Logical to create a Speed data-frame with 24 hours and a default profile. It needs

ffs and ps:

pc_cold

127

dist String indicating the units of the resulting distance in speed. Default is units

from peak speed ‘ps‘

00:00-06:00 ffs
06:00-07:00 average between ffs and ps
07:00-10:00 ps
10:00-17:00 average between ffs and ps
17:00-20:00 ps
20:00-22:00 average between ffs and ps
22:00-00:00 ffs

Value

dataframe speeds with units or sf.

Examples

{

data(net)

data(pc_profile)

pc_week <- temp_fact(net$ldv+net$hdv, pc_profile)

df <- netspeed(pc_week, netps, netffs, net$capacity, net$lkm, alpha = 1)
class(df)

plot(df) #plot of the average speed at each hour, +- sd

net$ps <- units::set_units(net$ps, "miles/h")

net$ffs <- units::set_units(net$ffs, "miles/h")
df <- netspeed(pc_week, netps, netffs, net$capacity, net$lkm, alpha = 1)
class(df)
plot(df) #plot of the average speed at each hour, +- sd
df <- netspeed(ps = net$ps, ffs = net$ffs, scheme = TRUE)
class(df)
plot(df) #plot of the average speed at each hour, +- sd
dfsf <- netspeed(ps = net$ps, ffs = net$ffs, scheme = TRUE, net = net)
class(dfsf)
head(dfsf)
plot(dfsf, pal = cptcity::lucky(colorRampPalette = TRUE, rev = TRUE),
key.pos = 1, max.plot = 9)
3
pc_cold Profile of Vehicle start patterns
Description

This dataset is a dataframe with percentage of hourly starts with a lapse of 6 hours with engine
turned off. Data source is: Lents J., Davis N., Nikkila N., Osses M. 2004. Sao Paulo vehicle
activity study. ISSRC. www.issrc.org

128 pc_profile

Usage

data(pc_cold)

Format

A data frame with 24 rows and 1 variables:

V1 24 hours profile vehicle starts for Monday

pc_profile Profile of traffic data 24 hours 7 n days of the week

Description

This dataset is a dataframe with traffic activity normalized monday 08:00-09:00. This data is nor-
malized at 08:00-09:00. It comes from data of toll stations near Sao Paulo City. The source is
ARTESP (www.artesp.com.br)

Usage

data(pc_profile)

Format

A data frame with 24 rows and 7 variables:

V1 24 hours profile for Monday
V2 24 hours profile for Tuesday
V3 24 hours profile for Wednesday
V4 24 hours profile for Thursday
VS 24 hours profile for Friday

V6 24 hours profile for Saturday
V7 24 hours profile for Sunday

pollutants 129

pollutants Data.frame with pollutants names and molar mass used in VEIN

Description

This dataset also includes MIR, MOIR and EBIR is Carter SAPRCO7.x1s https://www.engr.ucr.edu/~carter/SAPRC/

Usage

data(pollutants)

Format

A data frame with 148 rows and 10 variables:

n Number for each pollutant, from 1 to 132

groupl classification for pollutants including "NMHC", "PAH", "METALS", "PM", "criteria" and
HPCDD"

group2 A sub classification for pollutants including "alkenes", "alkynes", "aromatics", "alkanes",
"PAH",, "aldehydes", "ketones", "METALS", "PM_char", "criteria", "cycloalkanes", "NMHC",
"PCDD", "PM10", "PM2.5"

pollutant 1 of the 132 pollutants covered

CAS CAS Registry Number

g mol molar mass

MIR Maximum incremental Reactivity (gm O3 / gm VOC)
MOIR Reactivity (gm O3 / gm VOC)

EBIR Reactivity (gm O3 / gm VOC)

notes Inform some assumption for molar mass

profiles Profile of traffic data 24 hours 7 n days of the week

Description

This dataset is n a list of data-frames with traffic activity normalized monday 08:00-09:00. It comes
from data of toll stations near Sao Paulo City. The source is ARTESP (www.artesp.com.br) for
months January and June and years 2012, 2013 and 2014. The type of vehicles covered are PC,
LCV, MC and HGV.

Usage
data(pc_profile)

130 remove_units

Format

A list of data-frames with 24 rows and 7 variables:

PC_JUNE_2012 168 hours
PC_JUNE_2013 168 hours
PC_JUNE_2014 168 hours
LCV_JUNE_2012 168 hours
LCV_JUNE_2013 168 hours
LCV_JUNE_2014 168 hours
MC_JUNE_2012 168 hours
MC_JUNE_2013 168 hours
MC_JUNE_2014 168 hours
HGV_JUNE_2012 168 hours
HGV_JUNE_2013 168 hours
HGV_JUNE_2014 168 hours
PC_JANUARY_2012 168 hours
PC_JANUARY_2013 168 hours
PC_JANUARY_2014 168 hours
LCV_JANUARY_2012 168 hours
LCV_JANUARY_2013 168 hours
LCV_JANUARY_2014 168 hours
MC_JANUARY_2012 168 hours
MC_JANUARY_2014 168 hours
HGV_JANUARY_2012 168 hours
HGV_JANUARY_2013 168 hours
HGV_JANUARY_2014 168 hours

remove_units Remove units

Description

remove_units Remove units from sf, data.frames, matrix or units.

Usage

remove_units(x, verbose = FALSE)

speciate 131

Arguments
X Object with class "sf", "data.frame", "matrix" or "units"
verbose Logical, to print more information

Value

non

"sf", data.frame", "matrix" or numeric

Examples

Not run:

ef1 <- ef_cetesb(p = "C0", c("PC_G", "PC_FE"))
class(ef1)

sapply(ef1, class)

(a <- remove_units(ef1))

End(Not run)

speciate Speciation of emissions

Description

speciate separates emissions in different compounds. It covers black carbon and organic matter
from particulate matter. Soon it will be added more speciations

Usage

speciate(
x =1,
spec = "bcom”,
veh,
fuel,
eu,
list
pmpar,
verbose = FALSE

FALSE,

Arguments

X Emissions estimation
spec The speciations are:

* "bcom": Splits PM2.5 in black carbon and organic matter.
* "tyre" or "tire": Splits PM in PM10, PM2.5, PM1 and PMO.1.
* "brake": Splits PM in PM10, PM2.5, PM1 and PMO.1.

132

veh

fuel

eu

list

pmpar

verbose

speciate

* "road": Splits PM in PM10 and PM2.5.

* "nox": Splits NOx in NO and NO2.

e "nmhc": Splits NMHC in compounds, see ef _1dv_speed.

* "voc": Splits NMHC in voc groups according EDGAR-CAMS.

non non

* "pmiag", "pmneu", "pmneu2", "pm2023", "pm2025": Splits PM in groups,
see note below.

Type of vehicle:

* "bcom": veh can be "PC", "LCV", HDV" or "Motorcycle".
* "tyre" or "tire": not necessary.

* "brake": not necessary.

* "road": not necessary.

* "nox": veh can be "PC", "LCV", HDV" or "Motorcycle".

* "nmhc":see below

* "voc": read options while running.

* ""pmiag", "pmneu"”, "pmneu2", "pm2023": not necessary.
e "pm2025": "LDV", "HDV"
Fuel.
* "bcom": "G" or "D".
* "tyre" or "tire": not necessary.
* "brake": not necessary.
* "road": not necessary.
* "nox": "G", "D", "LPG", "E85" or "CNG".
* "nmhc":see below
* "voc": read options while running.

non non

e "pmiag", "pmneu", "pmneu2", "pm2023", "pm2025": not necessary.
Emission standard

* "bcom": "G" or "D".

* "tyre" or "tire": not necessary.

* "brake": not necessary.

* "road": not necessary.

* "nox": "G", "D", "LPG", "E85" or "CNG".

* "nmhc":see below

* "voc": read options while running.

non non

e "pmiag", "pmneu”, "pmneu2", "pm2023", "pm2025": not necessary.

when TRUE returns a list with number of elements of the list as the number
species of pollutants

Numeric vector for PM speciation eg: c(e_so4i = 0.0077, e_so4j = 0.0623,
e_no3i = 0.00247, e_no3j = 0.01053, e_pm25i = 0.1, e_pm25j = 0.3, e_orgi
=0.0304, e_orgj = 0.1296, e_eci = 0.056, e_ecj = 0.024, h20 = 0.277) These are
default values. however, when this argument is present, new values are used.

Logical to show more information

speciate

Value

dataframe of speciation in grams or mols

Note

options for spec "nmhc":

veh
LDV
LDV
LDV
HDV
LDV
LDV
LDV
LDV
LDV
LDV
HDV
LDV
LDV
LDV
ALL
ALL
ALL
ALL
LDV
LDV
HDV
MC
ALL
LDV
LDV
LDV
LDV
LDV
LDV
LDV
LDV
LDV
LDV
LDV
LDV
LDV
HDV
HDV
HDV
HDV

ivlvivivivivivivivavEasEaNaNaNaNaNa!

eu
PRE
I
all
all
all
Evaporative
Evaporative
Evaporative
Exhaust
Exhaust
Exhaust
Exhaust
Evaporative
Exhaust
Liquid
Liquid
Liquid
oM
OM-001
OM-002
OM-003
OM-004
OM-005
OM-001-001
OM-001-002
OM-001-003
OM-001-004
OM-001-005
OM-001-006
OM-001-007
OM-002-001
OM-002-002
OM-002-003
OM-002-004
OM-002-005
OM-002-006
OM-003-001
OM-003-002
OM-003-003
OM-003-004

133

134 speciate

HDV D OM-003-005

HDV D OM-003-006
MC G OM-004-001
MC G OM-004-002
MC G OM-004-003
ALL ALL urban

ALL ALL highway

after eu = OM, all profiles are Chinese # the following specs will be removed soon

* "iag_racm": ethanol emissions added in hc3.

* "iag" or "iag_cb05": Splits NMHC by CB05 (WRF exb05_optl) group .

» "petroiag_cb05": Splits NMHC by CB05 (WRF exb05_opt1) group .

* "iag_cb05v2": Splits NMHC by CB05 (WRF exb05_opt2) group .

* "neu_cb05": Splits NMHC by CB05 (WRF exb05_opt2) group alternative.

* "petroiag_cb05v2": Splits NMHC by CB05 (WRF exb05_opt2) group alternative.

spec ''pmiag'' speciate pm2.5 into e_so4i, e_so4j, e_no3i, e_no3j, e_mp2.5i, e_mp2.5j, e_orgi,
e_orgj, e_eci, e_ecj and h20. Reference: Rafee, S.: Estudo numerico do impacto das emissoes
veiculares e fixas da cidade de Manaus nas concentracoes de poluentes atmosfericos da regiao
amazonica, Master thesis, Londrina: Universidade Tecnologica Federal do Parana, 2015.

specs: "neu_cb05", "pmneu" and "pmneu2" provided by Daniel Schuch, from Northeastern Univer-
sity. "pm2023" provided by Iara da Silva; Leila D. Martins

Speciation with fuels ""E25", "E100" and ""B5'' made by Prof. Leila Martins (UTFPR), represents
BRAZILIAN fuel

pmiag? pass the mass only on j fraction

spec ''voc'' splits nmhc into the 25 VOC groups according: Huang et al 2019, "Speciation of
anthropogenic emissions of non-methane volatile organic compounds: a global gridded data set
for 1970-2012" ACP. Speciation In development.

References

"bcom": Ntziachristos and Zamaras. 2016. Passenger cars, light commercial trucks, heavy-duty
vehicles including buses and motorcycles. In: EEA, EMEP. EEA air pollutant emission inventory
guidebook-2009. European Environment Agency, Copenhagen, 2016

"tyre", "brake" and "road": Ntziachristos and Boulter 2016. Automobile tyre and brake wear and
road abrasion. In: EEA, EMEP. EEA air pollutant emission inventory guidebook-2009. European
Environment Agency, Copenhagen, 2016

"iag": Ibarra-Espinosa S. Air pollution modeling in Sao Paulo using bottom-up vehicular emissions
inventories. 2017. PhD thesis. Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Uni-
versidade de Sao Paulo, Sao Paulo, page 88. Speciate EPA: https://cfpub.epa.gov/speciate/. : K.
Sexton, H. Westberg, "Ambient hydrocarbon and ozone measurements downwind of a large auto-
motive painting plant" Environ. Sci. Tchnol. 14:329 (1980).P.A. Scheff, R.A. Schauer, James J.,
Kleeman, Mike J., Cass, Glen R., Characterization and Control of Organic Compounds Emitted

Speed 135

from Air Pollution Sources, Final Report, Contract 93-329, prepared for California Air Resources
Board Research Division, Sacramento, CA, April 1998. 2004 NPRI National Databases as of April
25, 2006, http://www.ec.gc.ca/pdb/npri/npri_dat_rep_e.cfm. Memorandum Proposed procedures
for preparing composite speciation profiles using Environment Canada s National Pollutant Release
Inventory (NPRI) for stationary sources, prepared by Ying Hsu and Randy Strait of E.H. Pechan
Associates, Inc. for David Niemi, Marc Deslauriers, and Lisa Graham of Environment Canada,
September 26, 2006.

Examples

Not run:
Do not run
pm <- rnorm(n = 100, mean = 400, sd = 2)
(df <- speciate(pm, veh = "PC", fuel = "G", eu = "I"))
(df <- speciate(pm, spec = "brake"”, veh = "PC", fuel = "G", eu = "I"))
(dfa <- speciate(pm, spec = "iag", veh = "veh"”, fuel = "G", eu = "Exhaust"))
(dfb <- speciate(pm, spec = "iag_cb@5v2", veh = "veh", fuel = "G", eu = "Exhaust"))
(dfb <- speciate(pm, spec = "neu_cb@5", veh = "veh", fuel = "G", eu = "Exhaust"))
pm <- units::set_units(pm, "g/km*2/h")
#(dfb <- speciate(as.data.frame(pm), spec = "pmiag"”, veh = "veh", fuel = "G", eu = "Exhaust"))
for (i in 1:ncol(dfb)) {
dfb[, i] <- units::set_units(dfb[, iJ], "ug/m*2/s")

3
#(dfb <- speciate(as.data.frame(pm), spec = "pmneu”, veh = "veh", fuel = "G", eu = "Exhaust"))
#(dfb <- speciate(as.data.frame(pm), spec = "pmneu2”, veh = "veh”, fuel = "G", eu = "Exhaust"))
(dfb <- speciate(as.data.frame(pm), spec = "pm2025", veh = "LDV"))
#(dfb <- speciate(as.data.frame(pm), spec = "pm2025", veh = "HDV"))
new
(pah <- speciate(spec = "pah"”, veh = "LDV", fuel = "G", eu = "I"))
(xs <- speciate(spec = "pcdd”, veh = "LDV", fuel = "G", eu = "I"))
(xs <- speciate(spec = "pmchar”, veh = "LDV", fuel = "G", eu = "I"))
(xs <- speciate(spec = "metals”, veh = "LDV", fuel = "G", eu = "all"))
dx1 <- speciate(

X = pm,
spec = "voc”,
fuel = "E25",
veh = "LDV",
eu = "Exhaust”)

End(Not run)

Speed Construction function for class "Speed"

Description

Speed returns a transformed object with class "Speed" and units km/h. This function includes two
arguments, distance and time. Therefore, it is possible to change the units of the speed to "m" to "s"
for example. This function returns a data.frame with units for speed. When this function is applied

to numeric vectors it adds class "units".

136

Usage

Speed(x,

., dist = "km", time = "h")

S3 method for class 'Speed'’

print(x,

.2

S3 method for class 'Speed'’

summary (object,

D)

S3 method for class 'Speed'’

plot(
X,
pal
rev
figl
fig2
fig3
mail
mai2
mai3
bias

Arguments

X

dist
time
object
pal
rev
figl
fig2
fig3
mail
mai2
mai3

bias

Value

"mpl_inferno”,

FALSE,

c(0, 0.8, 0, 0.8),
c(0, 0.8, 0.55, 1),
c(0.7, 1, 0, 0.8),
c(1, 0.82, 0.82, 0.42),
c(1.8, 0.82, 0.5, 0.42),

c(1,
1.5,

1, 0.82, 0.2),

non

Object with class "data.frame", "matrix" or "numeric"

ignored Default is units is "km"

String indicating the units of the resulting distance in speed.

Character to be the time units as denominator, default is "h"
Object with class "Speed"

Palette of colors available or the number of the position
Logical; to internally revert order of rgb color vectors.

par parameters for fig, par.

par parameters for fig, par.

par parameters for fig, par.

par parameters for mai, par.

par parameters for mai, par.

par parameters for mai, par.

Speed

positive number. Higher values give more widely spaced colors at the high end.

Constructor for class "Speed" or "units"

split_emis

Note

137

default time unit for speed is hour

See Also

units

Examples

{
data(net)

data(pc_profile)

speed <- Speed(net$ps)

class(speed)

plot(speed, type = "1")
pc_week <- temp_fact(net$ldv+net$hdv, pc_profile)
df <- netspeed(pc_week, netps, netffs, net$capacity, net$lkm)

summary (df)
plot(df)

changing to miles

net$ps <- units::set_units(net$ps, "miles/h")

net$ffs <- units::set_units(net$ffs, "miles/h")

net$lkm <- units::set_units(net$lkm, "miles”)

df <- netspeed(pc_week, netps, netffs, net$capacity, net$lkm, dist = "miles”)

plot (df)
3

split_emis

Split street emissions based on a grid

Description

split_emis split street emissions into a grid.

Usage

split_emis(net, distance, add_column, verbose = TRUE)

Arguments

net

distance

add_column

verbose

A spatial dataframe of class "sp" or "sf". When class is "sp" it is transformed to
"sf" with emissions.

Numeric distance or a grid with class "sf".

Character indicating name of column of distance. For instance, if distance is an
sf object, and you wand to add one extra column to the resulting object.

Logical, to show more information.

138

Examples

Not run:

data(net)

g <- make_grid(net, 1/102.47/2) #500m in degrees
names(net)

dim(net)

netsf <- sf::st_as_sf(net)[, "ldv"]

x <- split_emis(net = netsf, distance = g)
dim(x)

g$A <- rep(letters, length = 20)[1:nrow(g)]

g$B <- rev(g$A)

netsf <- sf::st_as_sf(net)[, c(”"ldv”, "hdv")]

xx <- split_emis(netsf, g, add_column = c("A", "B"))

End(Not run)

temp_fact

temp_fact Expansion of hourly traffic data

Description

temp_fact is a matrix multiplication between traffic and hourly expansion data-frames to obtain a

data-frame of traffic at each link to every hour

Usage

temp_fact(q, pro, net, time)

Arguments
q Numeric; traffic data per each link
pro Numeric; expansion factors data-frames
net SpatialLinesDataFrame or Spatial Feature of "LINESTRING"
time Character to be the time units as denominator, eg "1/h"
Value

data-frames of expanded traffic or sf.

Examples

Not run:

Do not run

data(net)

data(pc_profile)

pc_week <- temp_fact(net$ldv+net$hdv, pc_profile)
plot(pc_week)

pc_weeksf <- temp_fact(net$ldv+net$hdv, pc_profile, net = net)

temp_veh

plot(pc_weeksf)

End(Not run)

139

temp_veh Expanded Vehicles data.frame by hour

Description

temp_veh multiplies vehicles with temporal factor

Usage

temp_veh(x, tfs, array = FALSE)

Arguments

X Vehicles data.frame
tfs temporal factor

array Logical, to return an array

Value

data.table

See Also

temp_fact

Examples

Not run:
data(net)
data(pc_profile)
x <- age_ldv(x = net$ldv)
dx <- temp_veh(x = x, tfs = pc_profile[[1]1])
plot(Vehicles(as.data.frame(dx[, 1:50])))
dx2 <- temp_veh(x = x,

tfs = pc_profile[[1]],

array = TRUE)
plot(EmissionsArray(dx2))

End(Not run)

140 to_latex

to_latex creates a .tex a table from a data.frame

Description

to_latex reads a data.frme and generates a .tex table, aiming to replicate the method of tablegen-
erator.com

Usage

to_latex(df, file, caption = "My table”, label = "tab:df")

Arguments
df data.frame with three column.
file Character, name of new .tex file
caption Character caption of table
label Character, label of table

Value

a text file with extension .tex.

See Also

vein_notes

Other helpers: colplot(), dmonth()

Examples
Not run:
ef <- ef_cetesb(p = "C0", veh = "PC_FG", full =T)
to_latex(ef)

End(Not run)

Vehicles 141

Vehicles Construction function for class "Vehicles"

Description

Vehicles returns a tranformed object with class "Vehicles" and units ’veh’. The type of objects

"non

supported are of classes "matrix", "data.frame", "numeric" and "array". If the object is a matrix it is
converted to data.frame. If the object is "numeric" it is converted to class "units".

Usage
Vehicles(x, ..., time = NULL)

S3 method for class 'Vehicles'
print(x, ...)

S3 method for class 'Vehicles'
summary (object, ...)

S3 method for class 'Vehicles'

plot(
X,
pal = "colo_lightningmccarl_into_the_night"”,
rev = TRUE,

bk = NULL,

figl = c(0, 0.8, 0, 0.8),

fig2 = c(0, 0.8, 0.55, 1),

fig3 = c(0.7, 1, 0, 0.8),

mail = c(1, 0.82, 0.82, 0.42),
mai2 = c(1.8, 0.82, 0.5, 0.42),
mai3 = c(1, 1, 0.82, 0.2),

bias = 1.5,
)
Arguments
X Object with class "Vehicles"
ignored
time Character to be the time units as denominator, eg "1/h"
object Object with class "Vehicles"
pal Palette of colors available or the number of the position
rev Logical; to internally revert order of rgb color vectors.
bk Break points in sorted order to indicate the intervals for assigning the colors.

figl par parameters for fig, par.

142 vein_notes

fig2 par parameters for fig, par.

fig3 par parameters for fig, par.

mail par parameters for mai, par.

mai2 par parameters for mai, par.

mai3 par parameters for mai, par.

bias positive number. Higher values give more widely spaced colors at the high end.
Value

Objects of class "Vehicles" or "units"

Examples

Not run:

1t <- rnorm(100, 300, 10)

class(1t)

vlt <- Vehicles(lt)

class(vlt)

plot(vlt)

LT_B5 <- age_hdv(x = 1lt,name = "LT_B5")
summary (LT_B5)

plot(LT_B5)

End(Not run)

vein_notes Notes with sysinfo

Description

vein_notes creates aa text file ’.txt’ for writting technical notes about this emissions inventory

Usage

vein_notes(
notes,
file = "README",
yourname = Sys.info()["login"],
title = "Notes for this VEIN run”,

approach = "Top Down",

traffic = "Your traffic information”,

composition = "Your traffic information”,

ef = "Your information about emission factors”,

cold_start = "Your information about cold starts”,

evaporative = "Your information about evaporative emission factors”,
standards = "Your information about standards”,

mileage = "Your information about mileage"”

vkm

Arguments

notes

file

yourname

title

approach
traffic
composition
ef
cold_start
evaporative
standards

mileage

Value

Werites a text file.

Examples

Not run:
#do not run
a <- "delete"

143

Character; vector of notes.

Character; Name of the file. The function will generate a file with an extension
* Xt

Character; Name of the inventor compiler.

Character; Title of this file. For instance: "Vehicular Emissions Inventory of
Region XX, Base year XX"

Character; vector of notes.
Character; vector of notes.
Character; vector of notes.
Character; vector of notes.
Character; vector of notes.
Character; vector of notes.
Character; vector of notes.

Character; vector of notes.

f <- vein_notes("notes”, file = a)

file.remove(f)

End(Not run)

vkm

Estimation of VKM

Description

vkm consists in the product of the number of vehicles and the distance driven by these vehicles in
km. This function reads hourly vehicles and then extrapolates the vehicles

144 vkm

Usage

vkm(
veh,
1km,
profile,
hour = nrow(profile),
day = ncol(profile),

array = TRUE,
as_df = TRUE
)
Arguments
veh Numeric vector with number of vehicles per street
1km Length of each link (km)
profile Numerical or dataframe with nrows equal to 24 and ncol 7 day of the week
hour Number of considered hours in estimation
day Number of considered days in estimation
array When FALSE produces a dataframe of the estimation. When TRUE expects
a profile as a dataframe producing an array with dimensions (streets X hours x
days)
as_df Logical; when TRUE transform returning array in data.frame (streets x hour*days)
Value

emission estimation of vkm

Examples

Not run:

Do not run

pc <- lkm <- abs(rnorm(10,1,1))*100

pro <- matrix(abs(rnorm(24*7,0.5,1)), ncol=7, nrow=24)

vkms <~ vkm(veh = pc, lkm = lkm, profile = pro)

class(vkms)

dim(vkms)

vkms2 <- vkm(veh = pc, lkm = lkm, profile = pro, as_df = FALSE)
class(vkms2)

dim(vkms2)

End(Not run)

Index

+ Add distance unitts
add_lkm, 5
add_miles, 6

* China
ef_china, 26
ef_china_det, 30
ef_china_h, 31
ef_china_hu, 32
ef_china_long, 33
ef_china_s, 34
ef_china_speed, 35
ef_china_te, 36
ef_china_th, 37
emis_china, 73
emis_long, 95

* age
age, 9
age_hdv, 10
age_ldv, 12
age_moto, 13
age_veh, 15
x cold

cold_mileage, 19

ef_ldv_cold, 48

ef_ldv_cold_list, 49
* cumileage

ef_nitro, 58
x datasets
decoder, 21
fe2015, 105
fkm, 106
net, 125
pc_cold, 127

pc_profile, 128
pollutants, 129
profiles, 129

x deterioration
emis_det, 80

* ef _china

145

ef_china, 26

* emission
ef_cetesb, 23
ef_china, 26
ef_eea, 38
ef_hdv_scaled, 43
ef_hdv_speed, 44
ef_im, 47
ef_ldv_cold, 48
ef_ldv_cold_list, 49
ef_ldv_scaled, 51
ef_ldv_speed, 52
ef_local, 56
ef_nitro, 58
ef_whe, 61
emis_det, 80

* emitters
ef_whe, 61

* factors
ef_cetesb, 23
ef_china, 26
ef_eea, 38
ef_hdv_scaled, 43
ef_hdv_speed, 44
ef_im, 47
ef_ldv_cold, 48
ef_ldv_cold_list, 49
ef_ldv_scaled, 51
ef_ldv_speed, 52
ef_local, 56
ef_nitro, 58
ef_whe, 61
emis_det, 80

+ helpers
colplot, 20
dmonth, 22
to_latex, 140

+ high
ef_whe, 61

146

+ mileage
cold_mileage, 19
ef_im, 47

* speed
ef_hdv_scaled, 43
ef_hdv_speed, 44
ef_ldv_scaled, 51
ef_ldv_speed, 52

* start
ef_ldv_cold_list, 49

* units
remove_units, 130

add_1lkm, 5, 6

add_miles, 5,6
add_polid, 6, 6, 103

addscale, 4

adt, 7,7

age, 9,9,11,13, 14, 16, 125
age_hdv, 9, 10, 10, 11, 13, 14, 16, 125
age_ldv, 9-12,12, 13, 14, 16, 125
age_moto, 9-11, 13,13, 14, 16, 125
age_veh, 10, 11, 13-15, 15

aw, 16, 16

celsius, 18
check_nt, 18, 63, 78, 91
cold_mileage, 19
colplot, 20, 20, 22, 140

decoder, 21
dmonth, 21, 22, 140

ef_cetesb, 23, 23, 38, 56, 57
ef_china, 26, 26, 31-37, 74, 91, 96
ef_china_det, 29, 30, 3/1-37, 74, 96
ef_china_h, 29, 31, 31, 32-37, 74, 96
ef_china_hu, 29, 31, 32, 33-37, 74, 96
ef_china_long, 29, 31, 32, 33, 34-37, 74, 96
ef_china_s, 29, 31-33, 34, 35-37, 74, 96
ef_china_speed, 29, 31-34, 35, 36, 37, 74, 96
ef_china_te, 29, 31-35, 36, 37, 74, 96
ef_china_th, 29, 31-36, 37, 74, 96
ef_eea, 38

ef_emfac, 39, 39

ef_evap, 40, 40, 85

ef_fun, 42,42

ef_hdv_scaled, 43, 43

ef_hdv_speed, 44

INDEX

ef_im, 47,47
ef_ldv_cold, 46, 48, 48, 54, 78
ef_ldv_cold_list, 49
ef_ldv_scaled, 51
ef_ldv_speed, 22, 29, 52,52, 91, 132
ef_local, 56, 56
ef_nitro, 58, 58
ef_wear, 59, 59
ef_whe, 61, 61
emis, 46, 54, 62, 62
emis_chem2, 71,71
emis_china, 29, 31-37, 73, 96
emis_cold, 75, 76
emis_cold_td, 77,77
emis_det, 47, 80, 80
emis_dist, 81,81, 111
emis_emfac, 82, 82
emis_evap, 84, 84
emis_evap2, 85
emis_grid, 88, 88, 111
emis_hot_td, 29, 90, 90
emis_long, 29, 31-37, 74, 95
emis_order, 96
emis_paved, 98
emis_post, 100
emis_to_streets, 7, 102, 102
emis_wear, 104
EmissionFactors, 65
EmissionFactorsList, 67
Emissions, 68
EmissionsArray, 70

fe2015, 105
fkm, 106
fuel_corr, 38, 45, 46, 49, 53, 54, 107

get_ef_ref, 108
get_project, 108, 108
grid_emis, 111,111
GriddedEmissionsArray, 98, 110

make_grid, 113

moves_ef, 114,114
moves_rpd, 115, 115
moves_rpdy, 117, 117
moves_rpdy_meta, 118, 118
moves_rpdy_sf, 119,119
moves_rpsy_meta, 121, 121
moves_rpsy_sf, 122,122

INDEX

moves_speed, 123 temp_fact, 138, 139
my_age, 9, 11, 13, 14, 16, 124, 125 temp_veh, 139, 139
title, 20
net, 125 to_latex, 21, 22, 140, 140
netspeed, 126
units, 137
par, 20, 21, 66, 69, 136, 141, 142
pc_cold, 127 Vehicles, 141
pc_profile, 128 vein_notes, 140, 142, 142
plot.EmissionFactors (EmissionFactors), vkm, 143

65
plot.EmissionFactorsList
(EmissionFactorslList), 67
plot.Emissions (Emissions), 68
plot.EmissionsArray (EmissionsArray), 70
plot.GriddedEmissionsArray
(GriddedEmissionsArray), 110
plot.Speed (Speed), 135
plot.Vehicles (Vehicles), 141
pollutants, 129
print.EmissionFactors
(EmissionFactors), 65
print.EmissionFactorsList
(EmissionFactorslList), 67
print.Emissions (Emissions), 68
print.EmissionsArray (EmissionsArray),
70
print.GriddedEmissionsArray
(GriddedEmissionsArray), 110
print.Speed (Speed), 135
print.Vehicles (Vehicles), 141
profiles, 129

weekly (emis_order), 96

remove_units, /30, 130

speciate, 45, 46, 54, 73, 131
Speed, 135
split_emis, 137,137
summary.EmissionFactors
(EmissionFactors), 65
summary.EmissionFactorsList
(EmissionFactorslList), 67
summary.Emissions (Emissions), 68
summary.EmissionsArray
(EmissionsArray), 70
summary.GriddedEmissionsArray
(GriddedEmissionsArray), 110
summary . Speed (Speed), 135
summary.Vehicles (Vehicles), 141

147

	addscale
	add_lkm
	add_miles
	add_polid
	adt
	age
	age_hdv
	age_ldv
	age_moto
	age_veh
	aw
	celsius
	check_nt
	cold_mileage
	colplot
	decoder
	dmonth
	ef_cetesb
	ef_china
	ef_china_det
	ef_china_h
	ef_china_hu
	ef_china_long
	ef_china_s
	ef_china_speed
	ef_china_te
	ef_china_th
	ef_eea
	ef_emfac
	ef_evap
	ef_fun
	ef_hdv_scaled
	ef_hdv_speed
	ef_im
	ef_ldv_cold
	ef_ldv_cold_list
	ef_ldv_scaled
	ef_ldv_speed
	ef_local
	ef_nitro
	ef_wear
	ef_whe
	emis
	EmissionFactors
	EmissionFactorsList
	Emissions
	EmissionsArray
	emis_chem2
	emis_china
	emis_cold
	emis_cold_td
	emis_det
	emis_dist
	emis_emfac
	emis_evap
	emis_evap2
	emis_grid
	emis_hot_td
	emis_long
	emis_order
	emis_paved
	emis_post
	emis_to_streets
	emis_wear
	fe2015
	fkm
	fuel_corr
	get_ef_ref
	get_project
	GriddedEmissionsArray
	grid_emis
	make_grid
	moves_ef
	moves_rpd
	moves_rpdy
	moves_rpdy_meta
	moves_rpdy_sf
	moves_rpsy_meta
	moves_rpsy_sf
	moves_speed
	my_age
	net
	netspeed
	pc_cold
	pc_profile
	pollutants
	profiles
	remove_units
	speciate
	Speed
	split_emis
	temp_fact
	temp_veh
	to_latex
	Vehicles
	vein_notes
	vkm
	Index

