

Package ‘weightedRank’

January 11, 2026

Type Package

Title Sensitivity Analysis Using Weighted Rank Statistics

Version 0.7.0

Description Performs a sensitivity analysis using weighted rank tests in observational studies with I blocks of size J; see Rosenbaum (2024) <[doi:10.1080/01621459.2023.2221402](https://doi.org/10.1080/01621459.2023.2221402)>. The package can perform adaptive inference in block designs; see Rosenbaum (2012) <[doi:10.1093/biomet/ass032](https://doi.org/10.1093/biomet/ass032)>. The package can increase design sensitivity using the conditioning tactic in Rosenbaum (2025) <[doi:10.1093/rssb/qkaf007](https://doi.org/10.1093/rssb/qkaf007)>. The main functions are wgtRank(), wgtRankCI(), wgtRanktt() and wgtRankC().

License GPL-2

Encoding UTF-8

LazyData true

Imports stats, graphics, mvtnorm, sensitivitymv, senstrat, BiasedUrn

Suggests sensitivitymw, sensitivitymult, DOS2, aamatch, nbpMatching, MASS

Depends R (>= 3.5.0)

NeedsCompilation no

Author Paul Rosenbaum [aut, cre]

Maintainer Paul Rosenbaum <rosenbaum@wharton.upenn.edu>

Repository CRAN

Date/Publication 2026-01-11 22:40:02 UTC

Contents

weightedRank-package	2
aBP	4
aHDL	7
aHDL _e	9
amplify	12
dwgtRank	14

ef2C	20
estPower	24
gwgtRank	31
gwgtRankC	33
Peri24and15	40
PeriND	44
stepSolve	48
wgtRank	49
wgtRankC	52
wgtRankCI	54
wgtRanktt	58

Index	63
--------------	-----------

weightedRank-package *Sensitivity Analysis Using Weighted Rank Statistics*

Description

Performs a sensitivity analysis using weighted rank tests in observational studies with I blocks of size J; see Rosenbaum (2024) [doi:10.1080/01621459.2023.2221402](https://doi.org/10.1080/01621459.2023.2221402). The package can perform adaptive inference in block designs; see Rosenbaum (2012) [doi:10.1093/biomet/ass032](https://doi.org/10.1093/biomet/ass032). The package can increase design sensitivity using the conditioning tactic in Rosenbaum (2025) [doi:10.1093/jrsssb/qkaf007](https://doi.org/10.1093/jrsssb/qkaf007). The main functions are wgtRank(), wgtRankCI(), wgtRanktt() and wgtRankC().

Details

The DESCRIPTION file:

Package:	weightedRank
Type:	Package
Title:	Sensitivity Analysis Using Weighted Rank Statistics
Version:	0.7.0
Authors@R:	person("Paul", "Rosenbaum", email = "rosenbaum@wharton.upenn.edu", role = c("aut", "cre"))
Description:	Performs a sensitivity analysis using weighted rank tests in observational studies with I blocks of size J; see Ro
License:	GPL-2
Encoding:	UTF-8
LazyData:	true
Imports:	stats, graphics, mvtnorm, sensitivitymv, senstrat, BiasedUrn
Suggests:	sensitivitymw, sensitivitymult, DOS2, aamatch, nbpMatching, MASS
Depends:	R (>= 3.5.0)
Author:	Paul Rosenbaum [aut, cre]
Maintainer:	Paul Rosenbaum <rosenbaum@wharton.upenn.edu>

Index of help topics:

Peri24and15	Periodontal Disease and Smoking in a Mixed Block Design
PeriND	New Designs for an Observational Study of Periodontal Disease and Smoking
aBP	Binge Drinking and Blood Pressure
aHDL	Alcohol and HDL Cholesterol
aHDLe	HDL Cholesterol and Light Daily Alcohol 2013-2020
amplify	Amplification of sensitivity analysis in observational studies.
dwgtRank	Weighted Rank Statistics for Evidence Factors with Two Control Groups
ef2C	Evidence Factors For Matched Triples With Two Control Groups
estPower	Estimate the Power of a Sensitivity Analysis
gwgtRank	Generalized Sensitivity Analysis for Weighted Rank Statistics in Block Designs
gwgtRankC	Generalized Conditional Weighted Rank Test
stepSolve	Root of a Monotone Decreasing Step Function
weightedRank-package	Sensitivity Analysis Using Weighted Rank Statistics
wgtRank	Sensitivity Analysis for Weighted Rank Statistics in Block Designs
wgtRankC	Sensitivity Analysis for a Conditional Weighted Rank Test
wgtRankCI	Sensitivity Analysis for Confidence Intervals and Point Estimates from Weighted Rank Statistics in Block Designs
wgtRanktt	Adaptive Inference Using Two Test Statistics in a Block Design

The package conducts either fixed or adaptive sensitivity analyses for observational studies with I blocks and J individuals in each block, one treated and J-1 controls. The two main functions are wgtRank() for a fixed test statistic, and wgtRanktt() for an adaptive choice of one of two test statistics. The function wgtRankCI() inverts the test to obtain confidence intervals and Hodges-Lehmann point estimates. The function ef2C() is used to extract two evidence factors when a treated group is compared to two different control groups.

Author(s)

Paul Rosenbaum [aut, cre]

Maintainer: Paul Rosenbaum <rosenbaum@wharton.upenn.edu>

References

Berk, R. H. and Jones, D. H. (1978) <<https://www.jstor.org/stable/4615706>> Relatively optimal combinations of test statistics. Scandinavian Journal of Statistics, 5, 158-162.

Quade, D. (1979) <[doi:10.2307/2286991](https://doi.org/10.2307/2286991)> Using weighted rankings in the analysis of complete blocks with additive block effects. Journal of the American Statistical Association, 74, 680-683.

Rosenbaum, P. R. (1987). <doi:10.1214/ss/1177013232> The role of a second control group in an observational study. *Statistical Science*, 2, 292-306.

Rosenbaum, P. R. (2011) <doi:10.1111/j.1541-0420.2010.01535.x> A new U-Statistic with superior design sensitivity in matched observational studies. *Biometrics*, 67(3), 1017-1027.

Rosenbaum, P. R. (2012) <doi:10.1093/biomet/ass032> Testing one hypothesis twice in observational studies. *Biometrika*, 99(4), 763-774.

Rosenbaum, P. R. (2021) <doi:10.1201/9781003039648> *Replication and Evidence Factors in Observational Studies*. Chapman and Hall/CRC.

Rosenbaum, P. R. (2023) <doi:10.1111/biom.13921> A second evidence factor for a second control group. *Biometrics*, 79(4), 3968-3980.

Rosenbaum, P. R. (2024) <doi:10.1080/01621459.2023.2221402> Bahadur efficiency of observational block designs. *Journal of the American Statistical Association*.

Tardif, S. (1987) <doi:10.2307/2289476> Efficiency and optimality results for tests based on weighted rankings. *Journal of the American Statistical Association*, 82(398), 637-644.

Examples

```
data(aHDL)
y<-t(matrix(aHDL$hd1,4,406))
wgtRank(y,phi="u878",gamma=6) # New U-statistic weights (8,7,8)
wgtRanktt(y,phi1="u868",phi2="u878",gamma=5.9)
```

aBP

Binge Drinking and Blood Pressure

Description

A matched observational study from NHANES with two control groups, examining the possible effects of on blood pressure of frequent binge drinking of alcohol.

Usage

```
data("aBP")
```

Format

A data frame with 621 observations on the following 13 variables.

SEQN NHANES identification number

age Age in years

female 1=female, 0=male

education Education, with levels: "<9th" = less than 9th grade, "9-11" = grades 9 to 11, "HS" = high school, "SomeCol" = Some College, ">=BA" = BA degree or more

bmi BMI or body-mass index

waisthip Waist-to-hip ratio

`vigorR` Engages in vigorous recreational exercise, 1=yes, 0=no
`smokenow` Do you smoke now? Answers: Everyday, Some days, No
`bpRX` Reports currently taking medication for high blood pressure
`bpSystolic` Systolic blood pressure, mm Hg. Average of up to three readings.
`bpDiastolic` Diastolic blood pressure, mm Hg. Average of up to three readings.
`group` Drinking group, B=currently engages in frequent binge drinking, N=never binged regularly, and drank at most one drink per week in the last year, P=binged on most days for some period in the past but stopped, never binged in the last year, and drank at most one drink per week in the last year. See Details.
`mset` Matched set indicator, 1, 2, ..., 207. There are 207 blocks of size 3, each containing one B, one N and one P.

Details

The data are from data from the 2017-2020 National Health and Nutrition Examination Survey (which was interrupted by COVID-19, so it is not a survey). There were 5624 people who were at least 20 years of age, with an alcohol use survey, blood pressure measurements and covariates used here. Blood pressure measurements are the average of up to three measurements. One question asked about binge drinking in the past, defined as 4 drinks for women or 5 drinks for men. Question ALQ151 asks (essentially): "Was there ever a time or times in your life when you drank 4/5 or more drinks of any kind of alcoholic beverage almost every day?" Another question ALQ142 asked about binge drinking last year: "During the past 12 months, about how often did you have 4/5 or more drinks of any alcoholic beverage?" Question ALQ121 about the overall frequency of alcohol consumption in the past 12 months. Proper use of ALQ121 and ALQ142 accounts for certain screening questions. By definition, group "binge" responded by saying that they engaged in binge drinking on 3 or more days each week in the past 12 months. By definition, group "never" responded to ALQ142 saying they never binged in the past 12 months, responded to ALQ151 saying they had no past time when they binged almost every day, and drank any alcohol on at most one day a week in the past 12 months. By definition, group "past" said yes to question ALQ151, so there was a period in their life of binge drinking almost every day, but they never binged in the past 12 months, and drank alcohol on at most one day a week in the past 12 months. There were 9232 people aged 20 or more. Of these, 9187 had covariate information, aside from BMI and waist/hip ratio. Of these, 7876 had an alcohol survey. Of these, 7281 had at least one measurement of diastolic and systolic blood pressure. Of these, 7076 had body measurements, namely BMI and waist/hip ratio. The three treatment groups — binge, never and past — are mutually exclusive but not exhaustive, and 5624 people fell in one of the groups. All 207 members of the binge group were matched to one control from each control group. Before matching, the never group had 3995 people and the past group had 505 people. The never group was large enough to closely match two or three controls to each member of the binge group, but that was not done in this illustrative example. Up to 3 repeated measures of blood pressure were often present, and the analysis uses their average.

Note

The data are used as an example in Rosenbaum (2023).

Source

US National Health and Nutrition Examination Survey (<https://www.cdc.gov/nchs/nhanes/index.htm>)

References

Roerecke, M., Kaczorowski, J., Tobe, S. W., Gmel, G., Hasan, O. S. and Rehm, J. (2017). <doi:10.1016/S2468-2667(17)30003-8> The effect of a reduction in alcohol consumption on blood pressure: a systematic review and meta-analysis. *Lancet Public Health*, 2, e108-e120.

Rosenbaum, P. R. (2023) <doi:10.1111/biom.13921> A second evidence factor for a second control group. *Biometrics*, 79(4), 3968-3980.

Examples

```
# The following code creates Figure 2 in Rosenbaum (2023)

data(aBP)
attach(aBP)

yD<-t(matrix(bpDiastolic,3,207))
yS<-t(matrix(bpSystolic,3,207))
vS<-c(yS[,1]-yS[,2],yS[,1]-yS[,3],yS[,2]-yS[,3])
vD<-c(yD[,1]-yD[,2],yD[,1]-yD[,3],yD[,2]-yD[,3])
y<-(yD/median(abs(vD)))+(yS/median(abs(vS)))

par(mfrow=c(1,3))
graphics::boxplot(yD[,1]-yD[,2],yD[,1]-yD[,3],yD[,2]-yD[,3],las=1,
  main="",ylab="Difference mm Hg",
  names=c("B-N","B-P","N-P"),cex.main=.9,
  cex.axis=.8,cex.lab=.9,xlab="Diastolic Difference")
graphics::abline(h=0)
wx<-round(stats::wilcox.test(yD[,1]-yD[,2],conf.int=TRUE)$conf.int,1)
graphics::segments(1,wx[1],1,wx[2],col="black",lwd=2)
wx<-round(stats::wilcox.test(yD[,1]-yD[,3],conf.int=TRUE)$conf.int,1)
graphics::segments(2,wx[1],2,wx[2],col="black",lwd=2)
wx<-round(stats::wilcox.test(yD[,2]-yD[,3],conf.int=TRUE)$conf.int,1)
graphics::segments(3,wx[1],3,wx[2],col="black",lwd=2)

graphics::boxplot(yS[,1]-yS[,2],yS[,1]-yS[,3],yS[,2]-yS[,3],las=1,
  main="",ylab="Difference mm Hg",
  names=c("B-N","B-P","N-P"),cex.main=.9,
  cex.axis=.8,cex.lab=.9,xlab="Systolic Difference")
graphics::abline(h=0)
wx<-round(stats::wilcox.test(yS[,1]-yS[,2],conf.int=TRUE)$conf.int,1)
graphics::segments(1,wx[1],1,wx[2],col="black",lwd=2)
wx<-round(stats::wilcox.test(yS[,1]-yS[,3],conf.int=TRUE)$conf.int,1)
graphics::segments(2,wx[1],2,wx[2],col="black",lwd=2)
wx<-round(stats::wilcox.test(yS[,2]-yS[,3],conf.int=TRUE)$conf.int,1)
graphics::segments(3,wx[1],3,wx[2],col="black",lwd=2)

graphics::boxplot(y[,1]-y[,2],y[,1]-y[,3],y[,2]-y[,3],las=1,
  main="",ylab="(Diastolic/10.7)+(Systolic/14.7)",
  names=c("B-N","B-P","N-P"),cex.main=.9,
  cex.axis=.8,cex.lab=.9,xlab="Combined Difference")
```

```

graphics::abline(h=0)
wx<-round(stats::wilcox.test(y[,1]-y[,2],conf.int=TRUE)$conf.int,1)
graphics::segments(1,wx[1],1,wx[2],col="black",lwd=2)
wx<-round(stats::wilcox.test(y[,1]-y[,3],conf.int=TRUE)$conf.int,1)
graphics::segments(2,wx[1],2,wx[2],col="black",lwd=2)
wx<-round(stats::wilcox.test(y[,2]-y[,3],conf.int=TRUE)$conf.int,1)
graphics::segments(3,wx[1],3,wx[2],col="black",lwd=2)
graphics::abline(h=0)
par(mfrow=c(1,1))
detach(aBP)

```

aHDL*Alcohol and HDL Cholesterol*

Description

A small observational study of light daily alcohol consumption and HDL cholesterol – so-called good cholesterol – derived from NHANES 2013-2014 and 2015-2016. There are 406 matched sets of four individuals, making 1624 individuals in total. Sets were matched for age, female and education in five ordered categories.

Usage

```
data("aHDL")
```

Format

A data frame with 1624 observations on the following 11 variables.

nh NHANES 2013-2014 is 1314, and NHANES 2015-2016 is 1516

SEQN NHANES ID number

age Age in years

female 1=female, 0=male

education 1 is <9th grade, 3 is high school, 5 is a BA degree

z 1=light almost daily alcohol, 0=little or no alcohol last year.

grp Treated group and control groups. Daily=light almost daily alcohol, Never=fewer than 12 drinks during entire life, Rarely=more than 12 drinks in life, but fewer than 12 in the past year, and never had a period of daily binge drinking, PastBinge = a past history of binge drinking on most days, but currently drinks once a week or less. For details, see Rosenbaum (2023, Appendix).

grpL Short labels for plotting formed as the first letters of grp. D < N < R < B

hdl HDL cholesterol level mg/dL

mm mercury Methylmercury level ug/L

mset Matched set indicator, 1, 2, ..., 406. The 1624 observations are in 406 matched sets, each of size 4.

Details

There is a debate about whether light daily alcohol consumption – a single glass of red wine – shortens or lengthens life. LoConte et al. (2018) emphasize that alcohol is a carcinogen. Suh et al. (1992) claim reduced cardiovascular mortality brought about by an increase in high density high-density lipoprotein (HDL) cholesterol, the so-called good cholesterol. There is on-going debate about whether there are cardiovascular benefits, and if they exist, whether they are large enough to offset an increased risk of cancer. This example looks at a small corner of the larger debate, namely the effect on HDL cholesterol.

The example contains several attempts to detect unmeasured confounding bias, if present. There is a secondary outcome thought to be unaffected by alcohol consumption, namely methylmercury levels in the blood, likely an indicator of the consumption of fish, not of alcohol; see Pedersen et al. (1994) and WHO (2021). There are also three control groups, all with little present alcohol consumption, but with different uses of alcohol in the past; see the definition of variable grp above.

The appendix to Rosenbaum (2023) describes the data and matching in detail. The data are used as an example in Rosenbaum (2022). The help file for boxplotTT() applies the tail transformation to this example, reproducing a plot from Rosenbaum (2022).

This data set is also included in the tailTransform package. See also the informedSen package which contains a part of this data set.

Source

US National Health and Nutrition Examination Survey (NHANES), 2013-2014 and 2015-2016.

References

LoConte, N. K., Brewster, A. M., Kaur, J. S., Merrill, J. K., and Alberg, A. J. (2018). Alcohol and cancer: a statement of the American Society of Clinical Oncology. *Journal of Clinical Oncology* 36, 83-93. <doi:10.1200/JCO.2017.76.1155>

Pedersen, G. A., Mortensen, G. K. and Larsen, E. H. (1994) Beverages as a source of toxic trace element intake. *Food Additives and Contaminants*, 11, 351–363. <doi:10.1080/02652039409374234>

Rosenbaum, P. R. (1987). The role of a second control group in an observational study. *Statistical Science*, 2, 292-306. <doi:10.1214/ss/1177013232>

Rosenbaum, P. R. (1989). The role of known effects in observational studies. *Biometrics*, 45, 557-569. <doi:10.2307/2531497>

Rosenbaum, P. R. (1989). On permutation tests for hidden biases in observational studies. *The Annals of Statistics*, 17, 643-653. <doi:10.1214/aos/1176347131>

Rosenbaum, P. R. (2014) <doi:10.1080/01621459.2013.879261> Weighted M-statistics with superior design sensitivity in matched observational studies with multiple controls. *Journal of the American Statistical Association*, 109(507), 1145-1158

Rosenbaum, P. R. (2023) <doi:10.1111/biom.13558> Sensitivity analyses informed by tests for bias in observational studies. *Biometrics* 79, 475–487.

Rosenbaum, P. R. (2022). <doi:10.1080/00031305.2022.2063944> A new transformation of treated-control matched-pair differences for graphical display. *American Statistician*, 76(4), 346-352.

Rosenbaum, P. R. (2024) <doi:10.1080/01621459.2023.2221402> Bahadur efficiency of observational block designs. *Journal of the American Statistical Association*.

Suh, I., Shaten, B. J., Cutler, J. A., and Kuller, L. H. (1992). Alcohol use and mortality from coronary heart disease: the role of high-density lipoprotein cholesterol. *Annals of Internal Medicine* 116, 881-887. <doi:10.7326/0003-4819-116-11-881>

World Health Organization (2021). Mercury and Health, <<https://www.who.int/news-room/fact-sheets/detail/mercury-and-health>>, (Accessed 30 August 2021).

Examples

```
data(aHDL)
table(aHDL$grp,aHDL$grpL) # Short labels for plotting
boxplot(aHDL$age~aHDL$grp,xlab="Group",ylab="Age")
boxplot(aHDL$education~aHDL$grp,xlab="Group",ylab="Education")
table(aHDL$female,aHDL$grpL)
table(aHDL$z,aHDL$grpL)

# The sets were also matched for is.na(aHDL$mm mercury), for use
# in Rosenbaum (2023). About half of the matched sets
# have values for mm mercury.
table(is.na(aHDL$mm mercury),aHDL$grp)

# See also the informedSen package for additional analysis
```

Description

A blocked observational study of light daily alcohol consumption and HDL cholesterol from NHANES 2013-2020. This is an enlarged version of the aHDL data in this package, adding data from NHANES 2017-2020.

Usage

```
data("aHDL")
```

Format

A data frame with 2888 observations on the following 10 variables.

nh NHANES 2013-2014 is 1314, NHANES 2015-2016 is 1516, and NHANES 2017-2020 is 1720

SEQN NHANES ID number

age Age in years

female 1=female, 0=male

education 1 is <9th grade, 3 is high school, 5 is a BA degree

z 1=light almost daily alcohol, 0=little or no alcohol last year.

grpL Treated group and control groups. D=Daily=light almost daily alcohol, Never=never drinks – see note, Rarely drinks – see note, B = PastBinge = a past history of binge drinking on most days, but currently drinks once a week or less. For details, see Rosenbaum (2023, Appendix).

hdl HDL cholesterol level mg/dL

mm mercury Methylmercury level ug/L

mset Matched set indicator, 1, 2, ..., 722. The 2888 observations are in 722 matched sets, each of size 4.

Details

This data set enlarges the aHDL data in this package to include also data from NHANES 2017-2020. The aHDL data included 406 blocks of 4 people from NHANES 2013-2016, and they are included in aHDLe. From NHANES 2017-2020, an additional 316 blocks of 4 people were added, making 722 blocks of size 4 in total.

The alcohol questions changed slightly in NHANES 2017-2020, forcing small changes in the definitions of two of the control groups. See the Note for specifics.

There is a debate about whether light daily alcohol consumption – a single glass of red wine – shortens or lengthens life. LoConte et al. (2018) emphasize that alcohol is a carcinogen. Suh et al. (1992) claim reduced cardiovascular mortality brought about by an increase in high density high-density lipoprotein (HDL) cholesterol, the so-called good cholesterol. There is on-going debate about whether there are cardiovascular benefits, and if they exist, whether they are large enough to offset an increased risk of cancer. This example looks at a small corner of the larger debate, namely the effect on HDL cholesterol.

The example contains several attempts to detect unmeasured confounding bias, if present. There is a secondary outcome thought to be unaffected by alcohol consumption, namely methylmercury levels in the blood, likely an indicator of the consumption of fish, not of alcohol; see Pedersen et al. (1994) and WHO (2021). There are also three control groups, all with little present alcohol consumption, but with different uses of alcohol in the past; see the definition of variable grp above.

The appendix to Rosenbaum (2023) describes the 2013-2016 data and matching in detail. See also the documentation in this package for the aHDL data.

Note

There is a treated group and three control groups, with one member of each group in each of 722 blocks. Of these, 406 blocks came from NHANES 2013-2016 and 316 blocks came from NHANES 2017-2020, making $722 = 406 + 316$ blocks in total.

In all three NHANES surveys, 2013-2014, 2015-2016 and 2017-2020, groups D and B had the same definition, as described in the data appendix to Rosenbaum (2023). Specifically:

D=Daily alcohol. Drank alcohol on most days, meaning at least $260 = 5 \times 52$ days in the past year, drinking between 1 and 3 alcoholic drinks on drinking days.

B=Past binge drinker. An individual in this control group had a period in their life when they drank at least 4 or 5 drinks on most days, but quit, and now drinks on at most one day a week, or at most 52 days in the past year.

NHANES slightly changed its alcohol questions in 2017-2020, so that small changes were required in the definitions of the other two control groups. NHANES 2013-2016 had asked whether a person

had "12 drinks in their life," but in 2017-2020 NHANES asked whether a person had "ever had a drink". These were screen questions, so little was asked of a person about alcohol consumption if the person said at the outset that they had never had much alcohol. As it turned out, a yes to the old question, "fewer than 12 drinks in their life," was fairly common, but a yes to the new question, "never had one drink," was much less common. This affects the definitions of groups N=never and R=rare drinking.

As described in greater detail in the data appendix to Rosenbaum (2023), for NHANES 2013-2016, group N=never was comprised of people who said they had fewer than 12 drinks in their life. In the expansion to include data from NHANES 2017-2020, group N=never was comprised of people who either (i) never had a drink of alcohol, or (ii) had 0 alcoholic drinks in the past year and never in their life had a period of regular binge drinking on most days, defined to be at least 4 or 5 drinks per day.

As described in greater detail in the data appendix to Rosenbaum (2023), for NHANES 2013-2016, group R="rare drinking" was comprised of people who did have 12 or more drinks in their life, but had fewer than 12 drinks in the past year, and never in their life had a period of regular binge drinking on most days, defined to be at least 4 or 5 drinks per day. In the expansion to include data from NHANES 2017-2020, group R="rare drinking" drank between 1 and 11 alcoholic drinks in the past year and never in their life had a period of regular binge drinking on most days, defined to be at least 4 or 5 drinks per day.

In brief, everyone in control groups N and R reports drinking little or no alcohol in the past year. No one in groups N and R reports a period in their lives when they engaged in binge drinking on most days. As nearly as possible given the questions asked, group N appears to be abstaining from alcohol, at least in the past year. As nearly as possible given the questions asked, group R appears to be open to having a rare drink at a wedding or a wake, but drank a negligible amount of alcohol in the past year. Yet, the exact definitions of control groups N and R are slightly different for NHANES 2017-2020. In each block, everyone was given the same structured questions by NHANES, so differences between questions occur between blocks, not within blocks.

Source

US National Health and Nutrition Examination Survey, 2013-2014, 2015-2016 and 2017-2020.

References

LoConte, N. K., Brewster, A. M., Kaur, J. S., Merrill, J. K., and Alberg, A. J. (2018). Alcohol and cancer: a statement of the American Society of Clinical Oncology. *Journal of Clinical Oncology* 36, 83-93. <doi:10.1200/JCO.2017.76.1155>

Pedersen, G. A., Mortensen, G. K. and Larsen, E. H. (1994) Beverages as a source of toxic trace element intake. *Food Additives and Contaminants*, 11, 351-363. <doi:10.1080/02652039409374234>

Rosenbaum, P. R. (1987) <doi:10.1214/ss/1177013232> The role of a second control group in an observational study. *Statistical Science*, 2, 292-306. Discusses multiple control groups, as in this example.

Rosenbaum, P. R. (1989) <doi:10.2307/2531497> The role of known effects in observational studies. *Biometrics*, 45, 557-569. Discusses a known effect, such as the effect of alcohol on methylmercury.

Rosenbaum, P. R. (1989) <doi:10.1214/aos/1176347131> On permutation tests for hidden biases in observational studies. *The Annals of Statistics*, 17, 643-653. Abstractly discusses multiple control groups and known effects.

Rosenbaum, P. R. (2014) <doi:10.1080/01621459.2013.879261> Weighted M-statistics with superior design sensitivity in matched observational studies with multiple controls. *Journal of the American Statistical Association*, 109(507), 1145-1158. An alternative to weighted rank statistics for weighted block analyses.

Rosenbaum, P. R. (2023) <doi:10.1111/biom.13558> Sensitivity analyses informed by tests for bias in observational studies. *Biometrics* 79, 475–487. Uses the known effect of alcohol on methylmercury. Data appendix contains detail information about the NHANES data.

Rosenbaum, P. R. (2024) <doi:10.1080/01621459.2023.2221402> Bahadur efficiency of observational block designs. *Journal of the American Statistical Association*. Discusses properties of weighted rank statistics.

Suh, I., Shaten, B. J., Cutler, J. A., and Kuller, L. H. (1992) <doi:10.7326/0003-4819-116-11-881> Alcohol use and mortality from coronary heart disease: the role of high-density lipoprotein cholesterol. *Annals of Internal Medicine* 116, 881-887.

World Health Organization (2021). Mercury and Health, <<https://www.who.int/news-room/fact-sheets/detail/mercury-and-health>>, (Accessed 30 August 2021).

Examples

```
data(aHDLe)
nh20172020<-aHDLe$nh==1720
table(nh20172020)
table(nh20172020,aHDLe$grpL)
par(mfrow=c(1,2))
boxplot(aHDLe$hd1[!nh20172020]~aHDLe$grpL[!nh20172020],main="NHANES 2013-2016",
       ylim=c(15,230),ylab="HDL Cholesterol",xlab="Group",las=1)
boxplot(aHDLe$hd1[nh20172020]~aHDLe$grpL[nh20172020],main="NHANES 2017-2020",
       ylim=c(15,230),ylab="HDL Cholesterol",xlab="Group",las=1)
par(mfrow=c(1,1))
```

amplify

Amplification of sensitivity analysis in observational studies.

Description

Uses the method in Rosenbaum and Silber (2009) to interpret a value of the sensitivity parameter gamma. Each value of gamma amplifies to a curve (lambda,delta) in a two-dimensional sensitivity analysis, the inference being the same for all points on the curve. That is, a one-dimensional sensitivity analysis in terms of gamma has a two-dimensional interpretation in terms of (lambda,delta).

Usage

```
amplify(gamma, lambda)
```

Arguments

gamma	gamma > 1 is the value of the sensitivity parameter, for instance the parameter in senmv. length(gamma)>1 will generate an error.
lambda	lambda is a vector of values > gamma. An error will result unless lambda[i] > gamma > 1 for every i.

Details

A single value of gamma, say gamma = 2.2 in the example, corresponds to a curve of values of (lambda, delta), including (3, 7), (4, 4.33), (5, 3.57), and (7, 3) in the example. An unobserved covariate that is associated with a lambda = 3 fold increase in the odds of treatment and a delta = 7 fold increase in the odds of a positive pair difference is equivalent to gamma = 2.2.

The curve is $\text{gamma} = (\text{lambda} * \text{delta} + 1) / (\text{lambda} + \text{delta})$. Amplify is given one gamma and a vector of lambdas and solves for the vector of deltas. The calculation is elementary.

This interpretation of gamma is developed in detail in Rosenbaum and Silber (2009), and it makes use of Wolfe's (1974) family of semiparametric deformations of an arbitrary symmetric distribution. See also Rosenbaum (2020, Section 3.6). For an elementary discussion, see Rosenbaum (2017, Table 9.1).

Strictly speaking, the amplification describes matched pairs, not matched sets. The senm function views a k-to-1 matched set with k controls matched to one treated individual as a collection of k correlated treated-minus-control matched pair differences; see Rosenbaum (2007). For matched sets, it is natural to think of the amplification as describing any one of the k matched pair differences in a k-to-1 matched set.

The curve has asymptotes that the function amplify does not compute: gamma corresponds with (lambda,delta) = (gamma, Inf) and (Inf, gamma).

A related though distinct idea is developed in Gastwirth et al (1998). The two approaches agree when the outcome is binary, that is, for McNemar's test.

Value

Returns a vector of values of delta of length(lambda) with names lambda.

Note

The amplify function is also in the sensitivitymv package where a different example is used.

Author(s)

Paul R. Rosenbaum

References

Gastwirth, J. L., Krieger, A. M., Rosenbaum, P. R. (1998) <doi:10.1093/biomet/85.4.907> Dual and simultaneous sensitivity analysis for matched pairs. *Biometrika*, 85, 907-920.

Rosenbaum, P. R. and Silber, J. H. (2009) <doi:10.1198/jasa.2009.tm08470> Amplification of sensitivity analysis in observational studies. *Journal of the American Statistical Association*, 104, 1398-1405.

Rosenbaum, P. R. (2017) <doi:10.4159/9780674982697> Observation and Experiment: An Introduction to Causal Inference. Cambridge, MA: Harvard University Press. Table 9.1.

Rosenbaum, P. R. (2020) <doi:10.1007/978-3-030-46405-9> Design of Observational Studies (2nd ed.) NY: Springer. Section 3.6.

Wolfe, D. A. (1974) <doi:10.2307/2286025> A characterization of population weighted symmetry and related results. *Journal of the American Statistical Association*, 69, 819-822.

Examples

```
# Consider a treated-control match pair as the unit of measure,
# analogous to one meter or one foot. The calculation
# amplify(4,7) says that, in a matched pair, gamma=4
# is the same a bias that increases the odds of treatment
# 7-fold and increases the odds of positive matched-pair
# difference in outcomes 9-fold.
amplify(4,7)
# It is also true that, in a matched pair, gamma=4
# is the same a bias that increases the odds of treatment
# 9-fold and increases the odds of positive matched-pair
# difference in outcomes 7-fold.
amplify(4,9)
# It is also true that, in a matched pair, gamma=4
# is the same a bias that increases the odds of treatment
# 5-fold and increases the odds of positive matched-pair
# difference in outcomes 19-fold.
amplify(4,5)
# The amplify function can produce the entire curve at once:
amplify(4,5:19)
```

dwgtRank

Weighted Rank Statistics for Evidence Factors with Two Control Groups

Description

In an observational complete block design, dwgtRank computes a sensitivity analysis for a weighted rank statistic designed to perform well when the comparison of a treated group and two control groups is conducted as two nearly independent evidence factors; see Rosenbaum (2023). For this task, a suggested setting of m, m1, m2, scores and range is given in a note in the documentation below. A simpler way to use the suggested settings is to use the function ef2C instead.

Usage

```
dwgtRank(y, gamma = 1, m = 2, m1 = 2, m2 = 2, phifunc = NULL,
         alternative = "greater", scores = NULL, range = TRUE)
```

Arguments

y	With I blocks and J individuals in each block, y is and I x J matrix or dataframe containing the outcomes. The first column of y is compared to columns 2, ..., J. J must be at least 2.
gamma	A real number ≥ 1 giving the value of the sensitivity parameter. $\text{gamma}=1$ yields a randomization test.
m	One of three parameters that define the weights that attach to blocks. The three parameters are integers with $1 \leq m_1 \leq m_2 \leq m$. See Details.
m1	See m.
m2	See m.
phifunc	An optional function that can be used to substitute your own weights for the weights defined by (m, m1, m2). The function must map [0,1] into [0,1]. If phifunc is NULL, then the weight function is defined by (m, m1, m2). If phifunc is not NULL, then it defines the weights and (m, m1, m2) are ignored.
alternative	For an upper-tailed test, use the default, alternative ="greater". For an lower-tailed test, use alternative ="less". An error will result if alternative is something besides "greater" or "less". In this context, a two-sided test is best viewed as two one-sided tests with a Bonferroni correction, e.g., testing in both tails at level 0.025 to ensure overall level of 0.05; see Cox (1977). For more information, see the notes.
scores	If scores is NULL, the scores are 1, 2, ..., J. Otherwise, scores should specify the J scores for the J within-block ranks. If scores are specified, there must be J scores, but the J scores need not be distinct.
range	If range=TRUE, then the within-block ranges are calculated, ranked from 1 to I, and scored (m, m1, m2) or phifunc. If range=FALSE, then the within-block gap between the largest response and the average of the remaining J-1 responses is used instead.

Details

The method uses a weighted rank statistic to compare the first column of y to the rest; see Rosenbaum (2023, 2024). Weighted rank statistics generalize the methods of Quade (1979) and Tardif (1987). Quade (1979) applied unscored ranks to the I within block ranges, and used unscored ranks within-blocks. In contrast, here, the scores of ranks of ranges or gaps are based on expression (9) in Rosenbaum (2011a); see also Rosenbaum (2014) where weighted M-statistics are used instead of weighted rank statistics. If J=2, the method agrees exactly with the method for pairs in Rosenbaum (2011a).

Using $m=1, m_1=1, m_2=1$, is the same as the stratified Wilcoxon rank sum with I strata, ignoring the ranges or gaps; see Lehmann 1975, Chapter 3). Using $m=2, m_1=2, m_2=2$ applies unscored ranks to the I ranges or gaps. Using $m=5, m_1=5, m_2=5$ is the suggestion of Conover and Salsburg (1988), and $m=8, m_1=8, m_2=8$ is a more extreme version of the same theme. In pairs, $J=2, m=8, m_1=7, m_2=8$ performs well in Rosenbaum (2011a), as does $m=8, m_1=6, m_2=8$. Detailed evaluations in terms of design sensitivity and Bahadur efficiency are in Rosenbaum (2023, 2024).

Value

pval	Upper bound on the one-sided P-value.
detail	A vector with the standarized deviate, the statistic, its null expectation and variance and the value of gamma.

Note

SUGGESTED SETTINGS FOR m , m_1 , m_2 , range AND scores WHEN USED WITH TWO CONTROL GROUPS. These suggested settings are more conveniently implemented in the function `ef2C`. Rosenbaum (2023) considered a matched block design with I blocks of size 3, containing one treated individual and one control from each of two control groups. The two evidence factors are: (1) compare treated to the first control group, and (2) compare the second control group to the pooled group that does not distinguish the treated individual and the control from the first control group. For the matched pair comparison (1) with one control group, the suggested settings are $(m=8, m_1=7, m_2=8)$, together with the defaults of $\text{range}=TRUE$ and $\text{scores}=NULL$; see Rosenbaum (2011a). For comparison (2), Rosenbaum (2023) evaluated 40 statistics, judging best the statistic with $(m=8, m_1=8, m_2=8)$, $\text{range}=FALSE$, $\text{scores}=c(1,2,5)$, as illustrated below. This statistic had good Bahadur efficiency of a sensitivity analysis against several simple alternative hypotheses involving a treatment effect and no unmeasured bias.

If we expect the treated group to have higher responses than controls, then comparison (1) sets alternative to greater and comparison (2) sets alternative to less. If we expect the treated group to have lower responses than controls, then comparison (1) sets alternative to less and comparison (2) sets alternative to greater. See also the note about alternatives.

Suppose that the data are initially in an $I \times 3$ matrix with outcomes for treated in the first column, control group 1 in the second column, and control group 2 in the third column. The `dwgtRank` function always compares the first column to the remaining columns. So, the first factor applies the function to $y[,1:2]$ and the second factor applies the function to $y[,3:1]$. Note carefully here that $y[,3:1]$ has reversed the order of the columns, so column 3 is compared with the other two columns. If the treatment is expected to cause an increase in the response, then comparison (1) applies the function to $y[,1:2]$ with alternative = greater, and comparison (2) applies the function to $y[,3:1]$ with alternative = less. This is illustrated in the example below which reproduces analyses from Rosenbaum (2023). If the treatment is expected to cause a decrease in the response, then repeat these steps with y replaced by $-y$, so the treatment is expected to increase $-y$.

Note

ALTERNATIVE. Setting alternative to less is the same as changing the sign of the within-block scored rank, that is, changing $\phi(a_{ij})$ to $-\phi(a_{ij})$ in Rosenbaum (2023); see especially equation (1) in the on-line supplement to that paper. Note carefully that setting alternative to less does not change the between block ranks, even when $\text{range}=FALSE$. In general, in `dwgtRank`, changing the alternative will give a different answer from changing y to $-y$ if $\text{range}=FALSE$ because, unlike the range, the gap is not invariant to the sign change. I suggest using function `ef2C` – the recommended analysis – before trying out variations on that analysis using `dwgtRank`.

The `dwgtRank` function was designed for the evidence factor analysis with two different control groups in blocks of size 3, and this is reflected in the way alternative is defined when $\text{range}=FALSE$. For a simple analysis in the suggested form, use `ef2C` instead of `dwgtRank`; it calls `dwgtRank` with

appropriate settings. If you wish to explore alternative settings for this problem, use dwgtRank. For several controls from a single control group, use wgtRank instead of dwgtRank.

Note

TIES WITHIN BLOCKS. If there are ties within blocks, then these are resolved as follows. If scores are not specified, so the within block ranks are intended to be 1, 2, ..., J, then average ranks are used for ties. If scores are specified, then ties are resolved by the ties.method="min" in the rank function in base R. This means that tied observations are all given the same rank, hence the same score, and that score corresponds with the smallest rank to which a tied group is entitled. Suppose the scores are scores=c(1,2,5) for J=3. If all three observations are different, then the smallest observation gets score 1, the middle gets 2, and the largest gets 5. If the three values are, say, 16, 14, 14 in a block, they get ranks 3, 1, 1, with scores 5, 1, 1. If the three values are 16, 16, 14 in a block, they get ranks 2, 2, 1, with scores 2, 2, 1. This is in keeping with the idea that we want to emphasize those blocks in which one observation stands well above the rest. In the example, there are no within-block ties, so the issue does not arise.

TIES BETWEEN BLOCKS. If there are ties among the I blocks in the within-block ranges or gaps, then average ranks are used for ties.

Note

This function compares the first column of y to the other columns. To implement the second evidence factor analysis in Rosenbaum (2023), the second control group must be placed in the first column. See the examples, where y is y[,1:2] for the first evidence factor, but y becomes y[,3:1] for the second evidence factor. All of this is automated in the function ef2C.

Author(s)

Paul R. Rosenbaum

References

Conover, W. J. and Salsburg, D. S. (1988). <doi:10.2307/2531906> Locally most powerful tests for detecting treatment effects when only a subset of patients can be expected to "respond" to treatment. *Biometrics*, 44, 189-196.

Cox, D. R. (1977). The role of significance tests [with discussion and reply]. *Scandinavian Journal of Statistics*, 4, 49-70.

Gastwirth, J. L., Krieger, A. M., and Rosenbaum, P. R. (2000). <doi:10.1111/1467-9868.00249> Asymptotic separability in sensitivity analysis. *Journal of the Royal Statistical Society B* 2000, 62, 545-556.

Lehmann, E. L. (1975). *Nonparametrics: Statistical Methods Based on Ranks*. San Francisco: Holden-Day.

Quade, D. (1979). <doi:10.2307/2286991> Using weighted rankings in the analysis of complete blocks with additive block effects. *Journal of the American Statistical Association*, 74, 680-683.

Rosenbaum, P. R. (1987). <doi:10.2307/2336017> Sensitivity analysis for certain permutation inferences in matched observational studies. *Biometrika*, 74(1), 13-26.

Rosenbaum, P. R. (2010). <doi:10.1093/biomet/asq019> Evidence factors in observational studies. *Biometrika*, 97(2), 333-345.

Rosenbaum, P. R. (2011a). <doi:10.1111/j.1541-0420.2010.01535.x> A new U-Statistic with superior design sensitivity in matched observational studies. *Biometrics*, 67(3), 1017-1027.

Rosenbaum, P. R. (2011b). <doi:10.1198/jasa.2011.tm10422> Some approximate evidence factors in observational studies. *Journal of the American Statistical Association*, 106(493), 285-295.

Rosenbaum, P. R. (2013). <doi:10.1111/j.1541-0420.2012.01821.x> Impact of multiple matched controls on design sensitivity in observational studies. *Biometrics*, 2013, 69, 118-127.

Rosenbaum, P. R. (2014) <doi:10.1080/01621459.2013.879261> Weighted M-statistics with superior design sensitivity in matched observational studies with multiple controls. *Journal of the American Statistical Association*, 109(507), 1145-1158.

Rosenbaum, P. R. (2015). <doi:10.1080/01621459.2014.960968> Bahadur efficiency of sensitivity analyses in observational studies. *Journal of the American Statistical Association*, 110(509), 205-217.

Rosenbaum, P. (2017). <doi:10.4159/9780674982697> *Observation and Experiment: An Introduction to Causal Inference*. Cambridge, MA: Harvard University Press.

Rosenbaum, P. R. (2018). <doi:10.1214/18-AOAS1153> Sensitivity analysis for stratified comparisons in an observational study of the effect of smoking on homocysteine levels. *The Annals of Applied Statistics*, 12(4), 2312-2334.

Rosenbaum, P. R. (2023) <doi:10.1111/biom.13921> A second evidence factor for a second control group. *Biometrics* 79, 3968-3980.

Rosenbaum, P. R. (2021) <doi:10.1201/9781003039648> *Replication and Evidence Factors in Observational Studies*. Chapman and Hall/CRC.

Rosenbaum, P. R. (2024) <doi:10.1080/01621459.2023.2221402> Bahadur efficiency of observational block designs. *Journal of the American Statistical Association*, 119, 1871-1881.

Rosenbaum, P. R. (2025) <doi:10.1007/978-3-031-90494-3> *An Introduction to the Theory of Observational Studies*. Switzerland: Springer.

Tardif, S. (1987). <doi:10.2307/2289476> Efficiency and optimality results for tests based on weighted rankings. *Journal of the American Statistical Association*, 82(398), 637-644.

Examples

```
# The calculation below reproduce analyses from Rosenbaum (2023).

data(aBP)
attach(aBP)

yD<-t(matrix(bpDiastolic,3,207))
yS<-t(matrix(bpSystolic,3,207))
vS<-c(yS[,1]-yS[,2],yS[,1]-yS[,3],yS[,2]-yS[,3])
vD<-c(yD[,1]-yD[,2],yD[,1]-yD[,3],yD[,2]-yD[,3])
y<-(yD/median(abs(vD)))+(yS/median(abs(vS)))

# The following analysis contrasts the second P control
# with the pooled group consisting of the treated B
# binge drinker and the N control. That contrast creates
```

```

# a second evidence factor, not redundant with the comparison
# of B and N, yet avoids dilution of the effect by using
# a statistic like that of Conover and Salsburg (1988)
# that allows for nonresponders.

# SECOND EVIDENCE FACTOR: CONTROL2 VS TREATED+CONTROL1
dwgtRank(y[,3:1],gamma=1.45,alternative="less",
          scores=c(1,2,5),range=FALSE,m=8,m1=8,m2=8)

amplify(1.45, 2.5)

# This is a much less sensitive result than is obtained
# from the stratified Wilcoxon rank sum statistic with
# 1 strata,

dwgtRank(y[,3:1],gamma=1.45,alternative="less",
          scores=c(1,2,3),m=1,m1=1,m2=1)

# and theory leads us to expect this difference
# in performance of the two statistics; see Rosenbaum (2023)

# EVIDENCE FACTOR ANALYSIS, COMBINING TWO FACTORS
# The evidence factor analysis compares treated to the first control group,
# then compares the second control group to the pooled group consisting of
# treated and first control, then combines the two analyses using meta-analysis.
# Treated/first-control matched pairs are compared using the method in
# Rosenbaum (2011).

p1<-dwgtRank(y[,1:2],gamma=2.3,alternative="greater",
               m=8,m1=7,m2=8)$pval
p2<-dwgtRank(y[,3:1],gamma=1.45,alternative="less",
               scores=c(1,2,5),range=FALSE,m=8,m1=8,m2=8)$pval
c(p1,p2)
sensitivitymv::truncatedP(c(p1,p2))
amplify(2.3,4)
amplify(1.45,2.5)

# THE COMBINED ANALYSIS IS INSENSITIVE TO LARGER BIASES
# The combined analysis is insensitive to larger biases
# than are its components
p1<-dwgtRank(y[,1:2],gamma=2.6,alternative="greater",
               m=8,m1=7,m2=8)$pval
p2<-dwgtRank(y[,3:1],gamma=1.7,alternative="less",
               scores=c(1,2,5),range=FALSE,m=8,m1=8,m2=8)$pval
c(p1,p2)
sensitivitymv::truncatedP(c(p1,p2))

amplify(2.6,5)
amplify(1.7,3)

# CONNECTION WITH OTHER PACKAGES
# Although dwgtRank() computes the matched pair P-value bound,
dwgtRank(y[,1:2],gamma=2.3,alternative="greater",

```

```

m=8,m1=7,m2=8)$pval
# a simpler way to do it uses senU() in the DOS2 package
DOS2::senU(y[,1]-y[,2],m=8,m1=7,m2=8,gamma=2.3)
# where senU also provides bounds on point estimates and confidence
# intervals for each gamma
DOS2::senU(y[,1]-y[,2],m=8,m1=7,m2=8,gamma=1.5,conf.int=TRUE)

detach(aBP)
rm(p1,p2)
rm(y)

# USING SIMULATION TO GET THE GENERAL IDEAS OF DESIGN SENSITIVITY
# AND THE BAHADUR EFFICIENCY OF A SENSITIVITY ANALYSIS

# IN THIS LARGE SAMPLE SIZE, THE DESIGN SENSITIVITY PREDICTS
# U888 WILL HAVE MORE POWER THAN U555, AND IT DOES.
# SEE TABLE 2 OF ROSENBAUM (2023), NORMAL tau=1/2
# FOR U888/125/GAP AND U555/125/GAP
set.seed(1)
ss<-10000
ysim<-matrix(rnorm(3*ss),ss,3)
ysim[,1]<-ysim[,1]+sqrt(2)/2 # This is tau=1/2 for Normal errors
# Compare U888/125/gap and U555/125/gap
dwgtRank(ysim[,3:1],gamma=3,alternative="less",scores=c(1,2,5),
range=FALSE,m=8,m1=8,m2=8)$pval
dwgtRank(ysim[,3:1],gamma=3,alternative="less",scores=c(1,2,5),
range=FALSE,m=5,m1=5,m2=5)$pval
# IF YOU INCREASED ss FROM 10000, AS ABOVE, TO INFINITY, THE
# POWER FUNCTION WOULD TEND TO A STEP FUNCTION WITH A SINGLE
# STEP DOWN FROM POWER 1 TO POWER 0 AT THE DESIGN SENSITIVITY.

# IN THIS SMALLER SAMPLE SIZE, THE BAHADUR EFFICIENCY PREDICTS
# U555 WILL HAVE MORE POWER THAN U888, AND IT DOES.
# SEE TABLE 3 OF ROSENBAUM (2023), NORMAL tau=1/2
# FOR U888/125/GAP AND U555/125/GAP AT UPSILON = 1.5
set.seed(1)
ss<-100
ysim<-matrix(rnorm(3*ss),ss,3)
ysim[,1]<-ysim[,1]+sqrt(2)/2 # This is tau=1/2 for Normal errors
# Compare U888/125/gap and U555/125/gap
dwgtRank(ysim[,3:1],gamma=1.5,alternative="less",scores=c(1,2,5),
range=FALSE,m=8,m1=8,m2=8)$pval
dwgtRank(ysim[,3:1],gamma=1.5,alternative="less",scores=c(1,2,5),
range=FALSE,m=5,m1=5,m2=5)$pval

```

Description

In an observational complete block design, with blocks of size three, each containing a treated individual and one control from each of two control groups, ef2C (with the default settings) performs the evidence factor analysis suggested in Rosenbaum (2023). One factor compares the treated group to the first control group in a matched pairs analysis. The other factor pools the treated group and the first control group and compares it to the second control group.

Usage

```
ef2C(y, gamma=1, upsilon=1, alternative="greater", trunc=0.2,
      m=c(8,8), m1=c(7,8), m2=c(8,8), scores=c(1,2,5), range=FALSE)
```

Arguments

y	With I blocks and 3 individuals in each block, y is and I x 3 matrix or data frame containing the outcomes. The first column is the response of the treated individual. The second response is the response of the control from the first control group. The third response is the response of the control from the second control group.
gamma	A real number ≥ 1 giving the value of the sensitivity parameter for the comparison of the treated group and the first control group. gamma=1 yields a randomization test.
upsilon	A real number ≥ 1 giving the value of the sensitivity parameter for the comparison of the second control group and the combination of the treated group plus the first control group. upsilon=1 yields a randomization test.
alternative	Use alternative=greater if the treatment is expect to cause an increase in the response in y. Use alternative=less if the treatment is expect to cause a decrease in the response in y. In this context, a two-sided test is best viewed as two one-sided tests with a Bonferroni correction, e.g., testing in both tails at level 0.025 to ensure overall level of 0.05; see Cox (1977). For more information, see the notes.
trunc	The two P-values from the two factors are combined using the truncated product of P-values due to Zaykin et al. (2002): it is the P-value derived from the product of those P-values that are less than trunc. For more information, see the notes.
m	A vector of two integers greater than or equal to 1. The first coordinate of m is for the first evidence factor, comparing the treated individual to the control from the first control group. The second coordinate of m is for the second evidence factor, comparing the control from the second control group to the set containing the treated individual and the first control. One of three parameters that define the weights that attach to blocks. The three parameters are integers with $1 \leq m1[1] \leq m2[1] \leq m[1]$ and $1 \leq m1[2] \leq m2[2] \leq m[2]$. The default settings are suggested in Rosenbaum (2023). See Details.
m1	A vector of two integers greater than or equal to 1. See m.
m2	A vector of two integers greater than or equal to 1. See m.
scores	A vector of three nonnegative integer scores used to rank the three responses in each block in the test concerning the second evidence factor. The default settings are suggested in Rosenbaum (2023). See Details.

range	A TRUE or a FALSE for the second evidence factor. If TRUE, blocks are ranked by their within-block ranges. If FALSE, blocks are ranked by the so-called gap, which is the difference between the maximum order statistic in a block and the average of the remaining order statistics. The default setting of FALSE is suggested in Rosenbaum (2023). See Details.
-------	--

Details

The default settings produce the recommended evidence-factor analysis in Rosenbaum (2023). The example below reproduces some results from the example in that paper. That paper considered 40 test statistics in terms of the Bahadur efficiency of a sensitivity – all of these analyses can be reproduced by the more flexible but more complicated dwgtRank function. The ef2C function calls dwgtRank twice and combines the resulting two analyses.

The comparison of the treated group and the first control group is equivalent to dwgtRank(y[,1:2],gamma=gamma,m=8,m1=7) and these settings are motivated by results in Rosenbaum (2011, 2015). Notice that y[,1:2] uses the first two columns of y.

The comparison of the second control group and the merger of the treated group with the first control group is equivalent to dwgtRank(y[,3:1], gamma=upsilon, m=8,m1=8,m2=8, range=FALSE, alternative="less", scores=c(1,2,5)), and these settings are motivated by results in Rosenbaum (2023). Notice that y[,3:1] compares the third column to the pooled group consisting of columns 1 and 2.

Value

pvals	Upper bounds on the one-sided P-values for the two factors and their combination.
detail	A matrix with some details of the computations that produced the P-values.

Note

The two P-values from the two factors are combined using the truncated product of P-values due to Zaykin et al. (2002): it is the P-value derived from the product of those P-values that are less than trunc. Taking trunc=1 yields Fisher's method for combining independent P-values. Fisher's method is not ideal when combining P-value bounds produced by sensitivity analyses; see Hsu et al. (2013). Reasonable values are trunc=.1, trunc=.15 and trunc=.2. As illustrated in the example below, lower truncation values produce smaller combined P-values when the P-values are below the truncation point, but a P-value that barely exceeds the truncation point is effectively discarded. Hsu et al. (2013) compare truncation values when used in a sensitivity analysis. For discussion of combining sensitivity analyses as independent, see the required conditions in Rosenbaum (2011b, 2021). These conditions hold for the comparison performed by ef2C.

Note

The setting alternative = "less" simply replaces y by -y before testing in the upper tail.

Note

For a deeper understanding, see the documentation of dwgtRank.

Author(s)

Paul R. Rosenbaum

References

Cox, D. R. (1977). The role of significance tests [with discussion and reply]. *Scandinavian Journal of Statistics*, 4, 49-70.

Hsu, J. Y., Small, D. S., & Rosenbaum, P. R. (2013). <doi:10.1080/01621459.2012.742018> Effect modification and design sensitivity in observational studies. *Journal of the American Statistical Association*, 108(501), 135-148.

Rosenbaum, P. R. (1987). <doi:10.1214/ss/1177013232> The role of a second control group in an observational study. *Statistical Science*, 2, 292-306.

Rosenbaum, P. R. (2011a). <doi:10.1111/j.1541-0420.2010.01535.x> A new U-Statistic with superior design sensitivity in matched observational studies. *Biometrics*, 67(3), 1017-1027.

Rosenbaum, P. R. (2011a). <doi:10.1111/j.1541-0420.2010.01535.x> A new U-Statistic with superior design sensitivity in matched observational studies. *Biometrics*, 67(3), 1017-1027.

Rosenbaum, P. R. (2011b). <doi:10.1198/jasa.2011.tm10422> Some approximate evidence factors in observational studies. *Journal of the American Statistical Association*, 106(493), 285-295.

Rosenbaum, P. R. (2015). <doi:10.1080/01621459.2014.960968> Bahadur efficiency of sensitivity analyses in observational studies. *Journal of the American Statistical Association*, 110(509), 205-217.

Rosenbaum, P. R. (2021) <doi:10.1201/9781003039648> *Replication and Evidence Factors in Observational Studies*. Chapman and Hall/CRC.

Rosenbaum, P. R. (2023) <doi:10.1111/biom.13921> A second evidence factor for a second control group. *Biometrics* 79, 3968-3980.

Zaykin, D. V., Zhivotovsky, L. A., Westfall, P. H. and Weir, B. S. (2002) <doi:10.1002/gepi.0042> Truncated product method of combining P-values. *Genetic Epidemiology*, 22, 170-185.

Examples

```
# The calculation below reproduce analyses from Rosenbaum (2023).

data(aBP)
attach(aBP)

yD<-t(matrix(bpDiastolic,3,207))
yS<-t(matrix(bpSystolic,3,207))
vS<-c(yS[,1]-yS[,2],yS[,1]-yS[,3],yS[,2]-yS[,3])
vD<-c(yD[,1]-yD[,2],yD[,1]-yD[,3],yD[,2]-yD[,3])
y<-(yD/median(abs(vD)))+(yS/median(abs(vS)))

# EVIDENCE FACTOR ANALYSIS, COMBINING TWO FACTORS
# The evidence factor analysis compares treated to the first control group,
# then compares the second control group to the pooled group consisting of
# treated and first control, then combines the two analyses using meta-analysis.
# Treated/first-control matched pairs are compared using the method in
# Rosenbaum (2011).
```

```

ef2C(y,gamma=2.3,upsilon=1.45)
amplify(2.3,4)
amplify(1.45,2.5)

# THE COMBINED ANALYSIS IS INSENSITIVE TO LARGER BIASES
# The combined analysis is insensitive to larger biases
# than are its components
ef2C(y,gamma=2.6,upsilon=1.7)
amplify(2.6, 5)
amplify(1.7,c(2.7,3))

# The calculations above are also produced in the
# example for dwgtRank, where alternative
# analyses from Rosenbaum (2023) are compared.

#####
# Comparing truncation points to understand trunc:
ef2C(y,gamma=2.6,upsilon=1.7,trunc=.2) # Default
ef2C(y,gamma=2.6,upsilon=1.7,trunc=1) # Fisher's method
ef2C(y,gamma=2.6,upsilon=1.7,trunc=.1)
ef2C(y,gamma=2.5,upsilon=1.6,trunc=.2)
ef2C(y,gamma=2.5,upsilon=1.6,trunc=.1)
# See Hsu et al. (2013) for discussion of the
# truncation point for a sensitivity analysis.

```

estPower

*Estimate the Power of a Sensitivity Analysis***Description**

Uses the jackknife to estimate the power of a sensitivity analysis based on pilot data for an I x J observational block design in which each of I blocks contains one treated individual and J-1 controls.

Usage

```
estPower(y,gammas,ssratio=1,phi="u868",alpha=0.05)
```

Arguments

y	A matrix or data frame with I rows and J columns containing the pilot data. Column 1 contains the response of the treated individuals and columns 2 through J contain the responses of controls in the same block. An error will result if y contains NAs.
gammas	A vector of values of the sensitivity parameter gamma at which power will be estimated. All values in gammas must be greater than or equal to 1.

ssratio	The sample size ratio. One positive value indicating the ratio of the sample size at which power is to be computed divided by the sample size of the pilot data. If the pilot data contain 100 blocks, and power is to be computed for a study with 1000 blocks, then ssratio is $10 = 1000/100$.
phi	The weight function to be applied to the ranks of the within block ranges. The options are the same as the corresponding options in the wgtRank() function in this package. The options are: (i) "wilc" for the stratified Wilcoxon test, which gives every block the same weight, (ii) "quade" which ranks the within block ranges from 1 to I, and is closely related to Quade's (1979) statistic; see also Tardif (1987), (iii) "u858", "u868", "u878", "u888" or "mixed" based on Rosenbaum (2011, 2025a,b).
alpha	The level of the test, conventionally alpha=0.05. Power is computed for a one-sided level-alpha test that rejects the hypothesis of no effect when the weighted rank statistic is large. Commonly, the power of a two-sided 0.05-level test is computed by setting alpha=0.025 and viewing a two-sided test as two one-sided tests with a Bonferroni correction for conducting two tests; see Cox (1977).

Details

For a weighted rank statistic of the type computed by wgtRank() in this package, the estPower() function uses the jackknife to estimate its expectation and variance under the alternative hypothesis that the blocks are an iid sample from a population of blocks in which there is a treatment effect and there is no bias from unmeasured covariates. Then, ssratio is used to adjust the estimated variance to a possibly different sample size, and power is estimated using a Normal approximation.

The method is discussed in Rosenbaum (2025b) where it is observed that the weighted rank statistics in Rosenbaum (2024) are U-statistics that are asymptotically Normal under both the null and alternative hypotheses, thereby justifying the use of a Normal approximation in the estimate of power.

One should not estimate the power for several test statistics using y, and then analyze y using the most powerful test, because that uses the data twice. Instead, use adaptive inference in the wgtRanktt() function in this package; see Rosenbaum (2024, Section 5), Rosenbaum (2025a, Section 9.5) or Rosenbaum (2025b, Section 4.4). Alternatively, estimate the power using estPower for pilot data provided by split samples; see Heller et al. (2009).

For general discussion of the jackknife, see Chapter 11 of Efron and Tibshirani (1993). For discussion of the jackknife applied to a U-statistic, see Arvesen (1969) and Chapter 5 of Lee (1990).

Value

power	A vector with the same length as gammas, where power[i] is the estimated power in a sensitivity analysis with gamma set to gammas[i].
jackm	The jackknife estimate of the expectation of the test statistic in the pilot data.
jackv	The jackknife estimate of the variance of the test statistic in the pilot data.

Author(s)

Paul R. Rosenbaum

References

Arvesen, J. N. (1969) Jackknifing U-statistics. *Annals of Mathematical Statistics*, 40, 2076-2100.

Cox, D. R. (1977). The role of significance tests [with discussion and reply]. *Scandinavian Journal of Statistics*, 4, 49-70.

Efron, B. and Tibshirani, R. J. (1993) *An Introduction to the Bootstrap*. Chapman and Hall/CRC, Boca Raton, FL.

Gastwirth, J. L., Krieger, A. M., and Rosenbaum, P. R. (2000). <doi:10.1111/1467-9868.00249> Asymptotic separability in sensitivity analysis. *Journal of the Royal Statistical Society B* 2000, 62, 545-556.

Heller, R., Small, D. S. and Rosenbaum, P. R. (2009) <doi:10.1198/jasa.2009.tm08338> Split samples and design sensitivity in observational studies. *Journal of the American Statistical Association*, 104, 1090-1101.

Lee, A. J. (1990) *U-Statistics: Theory and Practice*. Chapman and Hall/CRC, Boca Raton, FL.

Lehmann, E. L. (1975). *Nonparametrics: Statistical Methods Based on Ranks*. San Francisco: Holden-Day.

Quade, D. (1979). <doi:10.2307/2286991> Using weighted rankings in the analysis of complete blocks with additive block effects. *Journal of the American Statistical Association*, 74, 680-683.

Rosenbaum, P. R. (1987). <doi:10.2307/2336017> Sensitivity analysis for certain permutation inferences in matched observational studies. *Biometrika*, 74(1), 13-26.

Rosenbaum, P. R. (2011). <doi:10.1111/j.1541-0420.2010.01535.x> A new U-Statistic with superior design sensitivity in matched observational studies. *Biometrics*, 67(3), 1017-1027.

Rosenbaum, P. R. (2013). <doi:10.1111/j.1541-0420.2012.01821.x> Impact of multiple matched controls on design sensitivity in observational studies. *Biometrics*, 2013, 69, 118-127.

Rosenbaum, P. R. (2014) <doi:10.1080/01621459.2013.879261> Weighted M-statistics with superior design sensitivity in matched observational studies with multiple controls. *Journal of the American Statistical Association*, 109(507), 1145-1158.

Rosenbaum, P. R. (2015). <doi:10.1080/01621459.2014.960968> Bahadur efficiency of sensitivity analyses in observational studies. *Journal of the American Statistical Association*, 110(509), 205-217.

Rosenbaum, P. (2017). <doi:10.4159/9780674982697> *Observation and Experiment: An Introduction to Causal Inference*. Cambridge, MA: Harvard University Press.

Rosenbaum, P. R. (2018). <doi:10.1214/18-AOAS1153> Sensitivity analysis for stratified comparisons in an observational study of the effect of smoking on homocysteine levels. *The Annals of Applied Statistics*, 12(4), 2312-2334.

Rosenbaum, P. R. (2024) <doi:10.1080/01621459.2023.2221402> Bahadur efficiency of observational block designs. *Journal of the American Statistical Association*, 119, 1871-1881.

Rosenbaum, P. R. (2025a) <doi:10.1007/978-3-031-90494-3> *An Introduction to the Theory of Observational Studies*. Switzerland: Springer.

Rosenbaum, P. R. (2025b) A jackknife estimate of the power of a sensitivity analysis in an observational study. Manuscript.

Tardif, S. (1987). <doi:10.2307/2289476> Efficiency and optimality results for tests based on weighted rankings. *Journal of the American Statistical Association*, 82(398), 637-644.

Examples

```

data(aHDL)
hdl0<-t(matrix(aHDL$hdl,4,406))

# The code that follows reproduces the computations and figures in
# Rosenbaum (2025b), including the plots of power and the plots of
# phi-functions.

gammas<-(10:110)/10

plot(gammas,c(0,rep(1,length(gammas)-1)),type="n",
      cex.axis=.7,xlim=c(min(gammas)-.5,max(gammas)+.2),
      ylab="Power",xlab=expression(Gamma),las=1,
      cex.lab=.8,main="I=406",cex.main=.8)
legend(0,.85,c("Wilcoxon","Quade","U868","U878","U888","Mixed"),
       col=c("gray","gray","black","black","black","black"),
       lty=c(2,1,3,2,4,1),lwd=c(2,2,2,1,1,1),cex=.6,bty="n")
lines(gammas,estPower(hdl0,gammas,ssratio=1,phi="wilc")$power,
      col="gray",lty=2,lwd=2)
lines(gammas,estPower(hdl0,gammas,ssratio=1,phi="quade")$power,
      col="gray",lty=1,lwd=2)
lines(gammas,estPower(hdl0,gammas,ssratio=1,phi="u868")$power,
      col="black",lty=3,lwd=2)
lines(gammas,estPower(hdl0,gammas,ssratio=1,phi="u878")$power,
      col="black",lty=2,lwd=1)
lines(gammas,estPower(hdl0,gammas,ssratio=1,phi="u888")$power,
      col="black",lty=4,lwd=1)
lines(gammas,estPower(hdl0,gammas,ssratio=1,phi="mixed")$power,
      col="black",lty=1,lwd=1)

gammas<-(10:110)/10
ssratio<-1000/406

plot(gammas,c(0,rep(1,length(gammas)-1)),type="n",
      cex.axis=.7,xlim=c(min(gammas)-.5,max(gammas)+.2),
      ylab="Power",xlab=expression(Gamma),las=1,
      cex.lab=.8,main="I=1000",cex.main=.8)
legend(0,.85,c("Wilcoxon","Quade","U868","U878","U888","Mixed"),
       col=c("gray","gray","black","black","black","black"),
       lty=c(2,1,3,2,4,1),lwd=c(2,2,2,1,1,1),cex=.6,bty="n")
lines(gammas,estPower(hdl0,gammas,ssratio=ssratio,phi="wilc")$power,
      col="gray",lty=2,lwd=2)
lines(gammas,estPower(hdl0,gammas,ssratio=ssratio,phi="quade")$power,
      col="gray",lty=1,lwd=2)
lines(gammas,estPower(hdl0,gammas,ssratio=ssratio,phi="u868")$power,
      col="black",lty=3,lwd=2)
lines(gammas,estPower(hdl0,gammas,ssratio=ssratio,phi="u878")$power,
      col="black",lty=1,lwd=1)

```

```

col="black",lty=2,lwd=1)
lines(gammas,estPower(hd10,gammas,ssratio=ssratio,phi="u888")$power,
      col="black",lty=4,lwd=1)
lines(gammas,estPower(hd10,gammas,ssratio=ssratio,phi="mixed")$power,
      col="black",lty=1,lwd=1)

plotPhi<-
  function (phi = "u868")
  {
    m<-NULL
    if (is.null(m)) {
      stopifnot(is.element(phi, c("u868", "u878", "u888", "u858",
                                "quade", "wilc","mixed")))
    }
    multrnksU <- function(pk, m1 = 2, m2 = 2, m = 2) {
      n <- length(pk)
      q <- rep(0, n)
      q <- rep(0, n)
      for (l in m1:m2) {
        q <- q + (l * choose(m, l) * (pk^(l - 1)) * ((1 -
                                                       pk)^(m - 1)))
      }
      q
    }
    mixed<-function(pk){
      q<-multrnksU(pk, m1 = 19, m2 = 20, m = 20) +
        multrnksU(pk, m1 = 19, m2 = 19, m = 20)
      q/max(q)
    }

    u868 <- function(pk) {
      q<-multrnksU(pk, m1 = 6, m2 = 8, m = 8)
      q/max(q)
    }
    u878 <- function(pk) {
      q<-multrnksU(pk, m1 = 7, m2 = 8, m = 8)
      q/max(q)
    }
    u888 <- function(pk) {
      q<-multrnksU(pk, m1 = 8, m2 = 8, m = 8)
      q/max(q)
    }
    u858 <- function(pk) {
      q<-multrnksU(pk, m1 = 5, m2 = 8, m = 8)
      q/max(q)
    }
    quade <- function(pk) {
      pk/max(pk)
    }
    wilc <- function(pk) {
      rep(1, length(pk))
    }
  }

```

```

if (is.null(m)) {
  if (phi == "mixed")
    phifunc <- mixed
  if (phi == "u868")
    phifunc <- u868
  else if (phi == "u878")
    phifunc <- u878
  else if (phi == "quade")
    phifunc <- quade
  else if (phi == "wilc")
    phifunc <- wilc
  else if (phi == "u888")
    phifunc <- u888
  else if (phi == "u858")
    phifunc <- u858
}
u<-(0:300)/300
phifunc(u)
}

u<-(0:300)/300
plot(u,u,type="n",ylab=expression(varphi(v[i])),las=1,
  cex.axis=.6,xlab=expression(v[i]),cex.lab=.7,
  ylim=c(0,1.1),xlim=c(0,1),cex.main=.7)
legend(0,.90,c("Wilcoxon","Quade","U868","U878"),
  col=c("gray","gray","black","black"),
  lty=c(2,1,3,2),lwd=c(2,2,2,1),cex=.5,bty="n")
lines(u,plotPhi(phi="wilc"),
  col="gray",lty=2,lwd=2)
lines(u,plotPhi(phi="quade"),
  col="gray",lty=1,lwd=2)
lines(u,plotPhi(phi="u868"),
  col="black",lty=3,lwd=2)
lines(u,plotPhi(phi="u878"),
  col="black",lty=2,lwd=1)

u<-(0:300)/300
plot(u,u,type="n",ylab=expression(varphi(v[i])),las=1,
  cex.axis=.6,xlab=expression(v[i]),cex.lab=.7,
  ylim=c(0,1.1),xlim=c(.5,1),cex.main=.7)
legend(.5,.95,c("U888","Mixed"),
  col=c("black","black"),
  lty=c(4,1),lwd=c(1,1),cex=.5,bty="n")
lines(u,plotPhi(phi="u888"),
  col="black",lty=4,lwd=1)
lines(u,plotPhi(phi="mixed"),
  col="black",lty=1,lwd=1)

# Larger sample sizes for the appendix

```

```

gammas<-(10:110)/10
ssratio<-2000/406

plot(gammas,c(0,rep(1,length(gammas)-1)),type="n",
      cex.axis=.7,xlim=c(min(gammas)-.5,max(gammas)+.2),
      ylab="Power",xlab=expression(Gamma),las=1,
      cex.lab=.8,main="I=2000",cex.main=.8)
legend(0,.85,c("Wilcoxon","Quade","U868","U878","U888","Mixed"),
      col=c("gray","gray","black","black","black","black"),
      lty=c(2,1,3,2,4,1),lwd=c(2,2,2,1,1,1),cex=.6,bty="n")
lines(gammas,estPower(hd10,gammas,ssratio=ssratio,phi="wilc")$power,
      col="gray",lty=2,lwd=2)
lines(gammas,estPower(hd10,gammas,ssratio=ssratio,phi="quade")$power,
      col="gray",lty=1,lwd=2)
lines(gammas,estPower(hd10,gammas,ssratio=ssratio,phi="u868")$power,
      col="black",lty=3,lwd=2)
lines(gammas,estPower(hd10,gammas,ssratio=ssratio,phi="u878")$power,
      col="black",lty=2,lwd=1)
lines(gammas,estPower(hd10,gammas,ssratio=ssratio,phi="u888")$power,
      col="black",lty=4,lwd=1)
lines(gammas,estPower(hd10,gammas,ssratio=ssratio,phi="mixed")$power,
      col="black",lty=1,lwd=1)

gammas<-(10:110)/10
ssratio<-5000/406

plot(gammas,c(0,rep(1,length(gammas)-1)),type="n",
      cex.axis=.7,xlim=c(min(gammas)-.5,max(gammas)+.2),
      ylab="Power",xlab=expression(Gamma),las=1,
      cex.lab=.8,main="I=5000",cex.main=.8)
legend(0,.85,c("Wilcoxon","Quade","U868","U878","U888","Mixed"),
      col=c("gray","gray","black","black","black","black"),
      lty=c(2,1,3,2,4,1),lwd=c(2,2,2,1,1,1),cex=.6,bty="n")
lines(gammas,estPower(hd10,gammas,ssratio=ssratio,phi="wilc")$power,
      col="gray",lty=2,lwd=2)
lines(gammas,estPower(hd10,gammas,ssratio=ssratio,phi="quade")$power,
      col="gray",lty=1,lwd=2)
lines(gammas,estPower(hd10,gammas,ssratio=ssratio,phi="u868")$power,
      col="black",lty=3,lwd=2)
lines(gammas,estPower(hd10,gammas,ssratio=ssratio,phi="u878")$power,
      col="black",lty=2,lwd=1)
lines(gammas,estPower(hd10,gammas,ssratio=ssratio,phi="u888")$power,
      col="black",lty=4,lwd=1)
lines(gammas,estPower(hd10,gammas,ssratio=ssratio,phi="mixed")$power,
      col="black",lty=1,lwd=1)

rm(u,gammas,ssratio,plotPhi)

```

Description

Uses a weighted rank statistic to perform a sensitivity analysis for an $I \times J$ observational block design in which each of I blocks contain J individuals, some of whom are treated individuals and others are controls.

Usage

```
gwgtRank(y, z, phi = "u868", phifunc = NULL, gamma = 1, detail=FALSE)
```

Arguments

<code>y</code>	A matrix or data frame of responses with I rows and J columns. An error will result if <code>y</code> contains NAs.
<code>z</code>	A matrix or data frame of treatment indicators with I rows and J columns. In <code>z</code> , the i th row and j th column is a 1 if this individual is treated, or a 0 if this individual is a control. If a row of <code>z</code> contains J ones or J zeros, that block will be removed from further computations as there is no one to compare, and a warning will appear. An error will result if <code>z</code> contains NAs.
<code>phi</code>	The weight function to be applied to the ranks of the within block ranges. The options are: (i) "wilc" for the stratified Wilcoxon test, which gives every block the same weight, (ii) "quade" which ranks the within block ranges from 1 to I , and is closely related to Quade's (1979) statistic; see also Tardif (1987), (iii) "u868" based on Rosenbaum (2011), (iv) u878 based on Rosenbaum (2011). Note that <code>phi</code> is ignored if <code>phifunc</code> is not <code>NULL</code> .
<code>phifunc</code>	If not <code>NULL</code> , a user specified weight function for the ranks of the within block ranges. The function should map $[0,1]$ into $[0,1]$. The function is applied to the ranks divided by the sample size. See the example.
<code>gamma</code>	A single number greater than or equal to 1. <code>gamma</code> is the sensitivity parameter. Two individuals with the same observed covariates may differ in their odds of treatment by at most a factor of <code>gamma</code> ; see Rosenbaum (1987; 2017, Chapter 9).
<code>detail</code>	If <code>detail=FALSE</code> , then brief output is given, similar to that provided by <code>wgtRank()</code> . In both cases, the asymptotically separable approximation of Gastwirth et al. (2000) is used. If <code>detail=TRUE</code> , then the separable approximation is compared with a bound in Rosenbaum (2018), and the output from the <code>senstrat</code> package is given. For moderate J and large I , the bound is likely to agree exactly with the separable approximation.

Details

The function gwgtRank() differs from wgtRank() in that wgtRank requires one treated individual and J-1 controls, whereas gwgtRank permits 1 to J-1 treated individuals with the rest as controls.

This function uses the senstrat() function in the senstrat package to perform the calculations.

To test in the lower tail – to test against the alternative that treated responses are lower than control responses, apply the function to $-y$. For a two-sided test, do both one-sided tests and apply the Bonferroni inequality, doubling the smaller of the two one-sided P-value bounds; see Cox (1977, Section 4.2).

Value

pval	Upper bound on the one-sided P-value when testing the null hypothesis of no treatment effect against the alternative hypothesis that treated responses are higher than control responses.
detail	Details of the computation of pval: the standardized deviate, the test statistic, its null expectation, its null variance and the value of gamma.

Author(s)

Paul R. Rosenbaum

References

Brown, B. M. (1981). [doi:10.1093/biomet/68.1.235](https://doi.org/10.1093/biomet/68.1.235) Symmetric quantile averages and related estimators. *Biometrika*, 68(1), 235-242.

Cox, D. R. (1977). The role of significance tests [with discussion and reply]. *Scandinavian Journal of Statistics*, 4, 49-70.

Gastwirth, J. L., Krieger, A. M., and Rosenbaum, P. R. (2000). [doi:10.1111/1467-9868.00249](https://doi.org/10.1111/1467-9868.00249) Asymptotic separability in sensitivity analysis. *Journal of the Royal Statistical Society B* 2000, 62, 545-556.

Lehmann, E. L. (1975). *Nonparametrics: Statistical Methods Based on Ranks*. San Francisco: Holden-Day.

Quade, D. (1979). [doi:10.2307/2286991](https://doi.org/10.2307/2286991) Using weighted rankings in the analysis of complete blocks with additive block effects. *Journal of the American Statistical Association*, 74, 680-683.

Rosenbaum, P. R. (1987). [doi:10.2307/2336017](https://doi.org/10.2307/2336017) Sensitivity analysis for certain permutation inferences in matched observational studies. *Biometrika*, 74(1), 13-26.

Rosenbaum, P. R. (2011). [doi:10.1111/j.1541-0420.2010.01535.x](https://doi.org/10.1111/j.1541-0420.2010.01535.x) A new U-Statistic with superior design sensitivity in matched observational studies. *Biometrics*, 67(3), 1017-1027.

Rosenbaum, P. R. (2013). [doi:10.1111/j.1541-0420.2012.01821.x](https://doi.org/10.1111/j.1541-0420.2012.01821.x) Impact of multiple matched controls on design sensitivity in observational studies. *Biometrics*, 2013, 69, 118-127.

Rosenbaum, P. R. (2014) [doi:10.1080/01621459.2013.879261](https://doi.org/10.1080/01621459.2013.879261) Weighted M-statistics with superior design sensitivity in matched observational studies with multiple controls. *Journal of the American Statistical Association*, 109(507), 1145-1158.

Rosenbaum, P. R. (2015). <doi:10.1080/01621459.2014.960968> Bahadur efficiency of sensitivity analyses in observational studies. *Journal of the American Statistical Association*, 110(509), 205-217.

Rosenbaum, P. (2017). <doi:10.4159/9780674982697> *Observation and Experiment: An Introduction to Causal Inference*. Cambridge, MA: Harvard University Press.

Rosenbaum, P. R. (2018). <doi:10.1214/18-AOAS1153> Sensitivity analysis for stratified comparisons in an observational study of the effect of smoking on homocysteine levels. *The Annals of Applied Statistics*, 12(4), 2312-2334.

Rosenbaum, P. R. (2024) <doi:10.1080/01621459.2023.2221402> Bahadur efficiency of observational block designs. *Journal of the American Statistical Association*, 119, 1871-1881.

Rosenbaum, P. R. (2025) <doi:10.1007/978-3-031-90494-3> *An Introduction to the Theory of Observational Studies*. Switzerland: Springer.

Tardif, S. (1987). <doi:10.2307/2289476> Efficiency and optimality results for tests based on weighted rankings. *Journal of the American Statistical Association*, 82(398), 637-644.

See Also

An alternative approach avoids rank tests and uses weighted M-statistics instead, as in the sensitivitmw package and Rosenbaum (2014). However, Bahadur efficiency calculations are available for weighted rank statistics; see Rosenbaum (2024).

Examples

```
data(aHDL)
y<-t(matrix(aHDL$hd1,4,406))
z<-matrix(0,dim(y)[1],dim(y)[2])
z[,1]<-1
gwgtRank(y,z,phi="quade",gamma=3.5) # Quade's test
gwgtRank(y,z,phi="quade",gamma=3.5,detail=TRUE) # Alternative output

# A user defined weight function, brown, analogous to Brown (1981).
brown<-function(v){((v>=.333)+(v>=.667))/2}
gwgtRank(y,z,phifunc=brown,gamma=4.7)
```

gwgtRankC

Generalized Conditional Weighted Rank Test

Description

By focusing on decisive blocks in an observational block design with I blocks of size J, the gwgtRankC() function seeks to increase design sensitivity using a conditional test. Unlike wgtRankC() in this package, gwgtRankC() does not require each block to contain 1 treated individual and J-1 controls.

Usage

```
gwgtRankC(y, z, gamma = 1, m = 8, m1 = 7, m2 = 8,
           m2plus = NULL, alternative="greater", warn0=FALSE)
```

Arguments

y	An I x J matrix or data.frame of outcomes in a block design with I blocks of size J. An error will result if y contains NAs.
z	z is a matrix, data.frame or a single integer. If z is I x J matrix or data.frame of binary treatment indicators in a block design, then z[i,j]=1 if the jth person in the ith block is treated, and z[i,j]=0 if this person is a control. An error will result unless all z[i,j] are 1 or 0. If z is a single integer greater than or equal to 1 and strictly less than the number of columns of y, then an I x J binary treatment/control matrix is constructed in which the first z columns are 1 and the last J-z columns are zero, meaning the first z individuals in each block are treated and the last J-z individuals are controls.
gamma	A number greater than or equal to 1. gamma is the sensitivity parameter.
m	See m2 below.
m1	See m2 below.
m2	The triple (m,m1,m2) defines a test statistic. Specifically, (m,m1,m2) defines the weights that are attached to blocks. Each coordinate of (m,m1,m2) is a positive integer. An error will result unless m is greater than or equal to m2 which in turn is greater than or equal to m1. See the Details. The default weights are often reasonable.
m2plus	If m2plus is not NULL, then the weights for (m,m1,m2) are added to the weights for (m,m1,m2plus). See the Details.
alternative	alternative must equal "greater" or "less". For alternative="greater", the null hypothesis of no effect is tested against the one-sided alternative of a treatment effect that increases responses. To test against a treatment effect that reduces responses, set alternative="less". See the Note.
warn0	If warn0=TRUE, then a warning is printed if some within block ranges are zero. The number of blocks with zero ranges is also printed. (In warn0, 0 is zero, no oh.)

Details

The conditional test focuses on so-called “decisive” blocks in which one of the following two conditions holds: (i) the highest response is treated and the lowest response is control, or (ii) the highest response is control and the lowest response is treated. This generalizes the conditioning tactic in Rosenbaum (2025a), which is restricted to matching one treated individual to J-1 controls and is implemented in wgtRankC() in this package.

If a block has a zero within-block range, then by definition, it is not decisive. However, like all blocks, such a block is included when ranking the ranges.

The weight function (m,m1,m2) is derived from a U-statistic for matched pairs in Rosenbaum (2011), and was applied to block designs in Rosenbaum (2024, 2025a). A possible alternative to the default weights is m=20, m1=19, m2=20. Setting m=20, m1=19, m2=20 and m2plus=19 produces continuous weights that resemble with winning tailored step-function in Rosenbaum (2015): they are not monotone increasing in the within block ranges, declining slightly for the largest ranges.

The weights are calculated from the within-block ranges from the I rows of y, as in Quade (1979) and Tardiff (1987). Quade’s (1979) ranks – ordinary ranks of the ranges – correspond with m=2,

`m1=2, m2=2`. The ranges are ranked from 1 to I , with average ranks for ties, and these ranks are scored (or transformed) using the weight function. The default weight function is monotone increasing but pays little attention to blocks with small ranges.

Ties are handled by creating for each block a 2x2 contingency table for observations with the highest or lowest responses in the block. In the untied case, a decisive block has row and column totals of 1 in this 2x2 table, but ties may increase the number of observations with the maximum or minimum response. The sensitivity bound is obtained as a weighted combination of extended hypergeometric random variables with parameter gamma; see Proposition 2 in Rosenbaum (1995).

Value

<code>pval</code>	The upper bound on the one-sided P-value testing the null hypothesis of no treatment effect against the alternative hypothesis that the treatment causes responses to increase. The upper bound is the largest P-value that can be produced by a bias of at most gamma when the null hypothesis is true.
<code>detail</code>	A vector of five numbers: the test statistic T , its maximum expectation under the null hypothesis with a bias of at most gamma, its associated variance, the standardized deviate that is compared to the Normal distribution to calculate <code>pval</code> , and the value of gamma.
<code>comp2</code>	A vector of four counts: the number of blocks, the number of blocks with relevant ties, the number of decisive blocks, and the number of decisive blocks in which the highest response is a treated response.

Note

Properties of the method are developed in Rosenbaum (2025c).

Note

Two sided tests: Do a two-sided test by testing in both tails and rejecting at level alpha if the smaller P-value is less than alpha/2; see Cox (1977, section 4.2). Setting alternative to "less" is the same as applying `gwgtRankC()` to `-y` rather than to `y`.

Note

There is a minor detail about the relationship between `gwgtRankC` and `wgtRankC` in this package: They handle ties differently. Both functions can be applied to a block design with 1 treated individual and $J-1$ controls in each block, but `gwgtRankC()` is more general: it permits more than one treated individual, or varied numbers of treated individuals, in blocks of size J . The two functions give the same answer with untied data when there is 1 treated individual and $J-1$ controls, but they give ever so slightly different answers with tied data. With 1 treated individual and $J-1$ controls, there is no reason to prefer one way of scoring ties to the other; so, either function can be used. The two functions were not harmonized because `wgtRankC()` replicates certain published results.

Author(s)

Paul R. Rosenbaum

References

Cox, D. R. (1977) The role of significance tests (with discussion and reply). *Scandinavian Journal of Statistics*, 4, 49-70.

Quade, D. (1979) <doi:10.2307/2286991> Using weighted rankings in the analysis of complete blocks with additive block effects. *Journal of the American Statistical Association*, 74, 680-683.

Rosenbaum, P. R. (1995) <doi:10.1080/01621459.1995.10476648> Quantiles in nonrandom samples and observational studies. *Journal of the American Statistical Association*, 90(432), 1424-1431.

Rosenbaum, P. R. (2011) <doi:10.1111/j.1541-0420.2010.01535.x> A new U-Statistic with superior design sensitivity in matched observational studies. *Biometrics*, 67(3), 1017-1027.

Rosenbaum, P. R. (2015). <doi:10.1080/01621459.2014.960968> Bahadur efficiency of sensitivity analyses in observational studies. *Journal of the American Statistical Association*, 110(509), 205-217.

Rosenbaum, P. R. (2024) <doi:10.1080/01621459.2023.2221402> Bahadur efficiency of observational block designs. *Journal of the American Statistical Association*, 119, 1871-1881.

Rosenbaum, P. R. (2025a) <doi:10.1093/jrsssb/qkaf007> A conditioning tactic that increases design sensitivity in observational block designs. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 85, 1085-1099.

Rosenbaum, P. R. (2025b) <doi:10.1007/978-3-031-90494-3> An Introduction to the Theory of Observational Studies. Switzerland: Springer.

Rosenbaum, P. R. (2026) Two Simple, Widely Applicable Observational Designs that Improve Upon the Matched Pairs Design. Manuscript.

Tardif, S. (1987) <doi:10.2307/2289476> Efficiency and optimality results for tests based on weighted rankings. *Journal of the American Statistical Association*, 82, 637-644.

Zaykin, D. V., Zhivotovsky, L. A., Westfall, P. H. and Weir, B. S. (2002) <doi:10.1002/gepi.0042> Truncated product method of combining P-values. *Genetic Epidemiology*, 22, 170-185.

Examples

```
# The example replicates results from Rosenbaum (2026).

data(Peri24and15)
pppairs<-Peri24and15[Peri24and15$pair==1,] # Just the pairs of pairs
perD<-t(matrix(pppairs$pd,4,606)) # Periodontal disease outcomes
z<-matrix(0,606,4)
z[,c(1,3)]<-1 # Treatment/control indicator matrix
weightedRank::gwgtRankC(perD,z,gamma=11,m1=19,m2=20,m=20)
#-----
# Selected results from Table 5 of Rosenbaum (2026):

# This uses just the 606 blocks of size J=4 with k=2 smokers
# Using decisive pairs, Tc
weightedRank::gwgtRankC(perD,z,gamma=11,m1=19,m2=20,m=20)$pval
weightedRank::gwgtRankC(perD,z,gamma=7,m1=7,m2=8,m=8)$pval
weightedRank::gwgtRankC(perD,z,gamma=4.5,m1=2,m2=2,m=2)$pval

# Using weighted ranks without decisive pairs, T
weightedRank::wgtRank(perD,phi="u878",gamma=7)$pval
```

```

weightedRank::wgtRank(perD,phi="u878",gamma=5)$pval
weightedRank::wgtRank(perD,phi="u878",gamma=3)$pval

# This analyzes the same observations as pairs, not blocks of size 4.
uperD<-rbind(perD[,1:2],perD[,3:4])
weightedRank::gwgtRankC(uperD,1,gamma=7,m1=19,m2=20,m=20)$pval
weightedRank::gwgtRankC(uperD,1,gamma=5,m1=19,m2=20,m=20)$pval
weightedRank::gwgtRankC(uperD,1,gamma=3,m1=19,m2=20,m=20)$pval

#-----
# Replication of Rosenbaum (2026, section 8.2)

# Combining blocks of size J=4 with k=2 smokers
# and blocks (i.e., matched set) of size J=5 with k=1 smoker

sets<-Peri24and15[Peri24and15$pair==0,] # Just the 1-to-4 matched sets
sperD<-t(matrix(sets$pd,5,213)) # Periodontal outcomes for the sets
zs<-matrix(0,213,5)
zs[,1]<-1 # Treatment indicators for the sets

# Results for sets alone.
weightedRank::gwgtRankC(sperD,zs,gamma=8.9,m1=7,m2=8,m=8)

# Combining (J,k)=(4,2) and (5,1), or all 819 blocks:

pool<-function(y1,z1,y2,z2,gamma=1,m=8,m1=7,m2=8){
  res1<-weightedRank::gwgtRankC(y1,z1,m=m,m1=m1,m2=m2,gamma=gamma)
  res2<-weightedRank::gwgtRankC(y2,z2,m=m,m1=m1,m2=m2,gamma=gamma)
  fisher<-sensitivitymv::truncatedP(c(res1$pval,res2$pval),trunc=1)
  trunc<-sensitivitymv::truncatedP(c(res1$pval,res2$pval))
  TS<-res1$detail[1]+res2$detail[1]
  EX<-res1$detail[2]+res2$detail[2]
  VA<-res1$detail[3]+res2$detail[3]
  dev<-(TS-EX)/sqrt(VA)
  pval<-1-pnorm(dev)
  detail<-c(TS,EX,VA,dev,gamma)
  names(detail)<-c("T","E(T)","var(T)","Deviate","Gamma")
  pvals<-c(pval,fisher,trunc)
  names(pvals)<-c("Pooled","Fisher","Truncated")
  list(pval=pvals,detail=detail,result1=res1,result2=res2)
}

# Pooling (J,k)=(4,2) and (J,k)=(5,1), or blocks and sets
pool(perD,z,sperD,zs,m=20,m1=19,m2=20,gamma=11)
pool(perD,z,sperD,zs,m=20,m1=19,m2=20,gamma=12)
# Pooling (J,k)=(2,1) and (J,k)=(5,1), or pairs and sets
pool(rbind(perD[,1:2],perD[,3:4]),rbind(z[,1:2],z[,3:4]),sperD,zs,
  m=20,m1=19,m2=20,gamma=6.6)

#-----
# Make Figure 1 in Rosenbaum (2026)

```

```

decisive<-function(y,z){
  stopifnot(is.matrix(y)|is.data.frame(y))
  stopifnot(is.matrix(z)|is.data.frame(z))
  stopifnot(all(dim(y)==dim(z)))
  stopifnot(all((as.vector(z)==1)|(as.vector(z)==0)))
  I<-dim(y)[1]
  J<-dim(y)[2]
  ys<-matrix(NA,I,J)
  zs<-matrix(NA,I,J)
  os<-t(apply(y,1,order))
  for (i in 1:I){
    ys[i,]<-y[i,os[i,]]
    zs[i,]<-z[i,os[i,]]
  }
  relevantTie<-(ys[,1]==ys[,2])|(ys[,J-1]==ys[,J])
  dif<-(ys[,J]-ys[,1])*(zs[,J]-zs[,1])
  zero<-abs(dif)==0
  decDif<-dif
  decDif[zero|relevantTie]<-NA
  o<-data.frame(decDif,zero,dif,relevantTie)
  if (!is.null(rownames(y))) rownames(o)<-rownames(y)
  o
}

temp<-decisive(perD,z)
pdif<-c(perD[,1]-perD[,2],perD[,3]-perD[,4])

old.par <- par(no.readonly = TRUE)
par(mfrow=c(1,2))
barplot(table(factor(round(pdif/10),levels=(-10):10,ordered=TRUE)),
        cex.names=.8,horiz = TRUE,las=1,cex.axis=.8,xlab="Count",cex.lab=.8,
        ylab="Rounded Difference/10",xlim=c(0,400),
        main="Pair Difference",cex.main=.8)
barplot(table(factor(round(temp$decDif/10),levels=(-10):10,ordered=TRUE)),
        cex.names=.8,horiz = TRUE,las=1,cex.axis=.8,cex.lab=.8,
        xlab="Count",ylab="Rounded Difference/10",
        main="Decisive Pair Difference",cex.main=.8)
par(old.par)
rm(temp,pdif)
# Note that the plot excludes "relevant" ties for decisive pairs,
# but the analyses include "relevant" ties.
#
#-----
#
# This is the evidence factor analysis in Section 8.3 of Rosenbaum (2026).
#
# First, a data frame is constructed for pack-years with one
# observation per block.
#
s<-pppairs$z==1
packyears<-tapply((pppairs$age[s]-pppairs$ageStart[s])*  

  pppairs$cigsperday[s]/20,pppairs$block[s],mean)
pdDif<-tapply(pppairs$pd[s],pppairs$block[s],mean)-

```

```

    tapply(pppairs$pd[!s],pppairs$block[!s],mean)
block<-tapply(pppairs$block[s],pppairs$block[s],median)
dEF<-data.frame(block,packyears,pdDif)
rm(block,packyears,pdDif,s)
library(DOS2)
crosscutplot(dEF$packyears,dEF$pdDif)
crosscut(dEF$packyears,dEF$pdDif,gamma=3.75)

# This function will create Figure 3 from Rosenbaum (2026)
# The function slightly edits the crosscutplot function
# in the DOS2 package.
crosscutplot2<-function(x, y, ct = 0.25, xlab = "",cex=.5,rnd=0,
                        ylab = "", main = "", ylim = NULL)
{
  par(mar=c(5,4,4,4))
  stopifnot(is.vector(x))
  stopifnot(is.vector(y))
  stopifnot(length(x) == length(y))
  stopifnot((ct > 0) & (ct <= 0.5))
  qx1 <- stats::quantile(x, ct)
  qx2 <- stats::quantile(x, 1 - ct)
  qy1 <- stats::quantile(y, ct)
  qy2 <- stats::quantile(y, 1 - ct)
  use <- ((x <= qx1) | (x >= qx2)) & ((y <= qy1) | (y >= qy2))
  if (is.null(ylim))
    graphics::plot(x, y, xlab = xlab, ylab = ylab, main = main,
                  type = "n",cex.lab=.9,cex.axis=.9,las=1)
  else graphics::plot(x, y, xlab = xlab, ylab = ylab, ylim = ylim,
                      main = main, type = "n",las=1)
  graphics::points(x[use], y[use], pch = 16, cex=cex)
  graphics::points(x[!use], y[!use], col = "gray", pch = 16,cex=cex)
  graphics::abline(h = c(qy1, qy2))
  graphics::abline(v = c(qx1, qx2))
  lines(lowess(x,y),lwd=2)
  cout<-DOS2::crosscut(x, y, ct = 0.25)
  axis(3,at=cout$quantiles[1:2],rnd,labels=round(cout$quantiles[1:2],rnd),
       cex.axis=.9,tick=TRUE)
  axis(4,at=cout$quantiles[3:4],rnd,labels=round(cout$quantiles[3:4],rnd),
       cex.axis=.9,las=1)
}

s<-sets$z==1
pdDif<-tapply(sets$pd[s],sets$mset[s],mean)-
  tapply(sets$pd[!s],sets$mset[!s],mean)
block<-(max(dEF$block)+1):(max(dEF$block)+length(pdDif))
packyears<-sets$packY[s]
Jk<-c(rep("J4k2",dim(dEF)[1]),rep("J5k1",length(pdDif)))
Jk<-as.factor(Jk)
dEF<-rbind(dEF,data.frame(block,packyears,pdDif))
dEF<-cbind(dEF,Jk)
rm(pdDif,block,packyears,Jk,s)

```

```

#
# The crosscut analysis.
DOS2::crosscut(dEF$packyears,dEF$pdDif, gamma=4)
#
# Create the plot
crosscutplot2(dEF$packyears,dEF$pdDif, ylab="Periodontal Disease",
              xlab="Pack-Years")
text(2,-50, "n=62", cex=.75)
text(2,90, "n=22", cex=.75)
text(90,90, "n=94", cex=.75)
text(90,-50, "n=37", cex=.75)

# Combine the two evidence factors using the truncated
# product of P-values (or Fisher's method if trunc=.2)
joint<-function(gamma1, gamma2, trunc=.2){
  p1<-pool(perD, z, sperD, zs, m=20, m1=19, m2=20, gamma=gamma1)$pval[1]
  p2<-crosscut(dEF$packyears, dEF$pdDif, gamma=gamma2)$output$pval
  pf<-sensitivitymv::truncatedP(c(p1,p2), trunc=trunc)
  o<-c(p1,p2, pf)
  names(o)<-c("P1", "P2", "Pooled")
  list(pval=o)
}

joint(13,5,trunc=.2)
joint(99,3.4,trunc=.2)
joint(9.4,10,trunc=.2)

rm(dEF,perD,pppairs,sets,sperD,uperD,z,zs)
rm(crosscutplot2,decisive,joint,pool)
par(old.par)
rm(old.par)

```

Description

An observational study of smoking and periodontal disease in which there are 819 block, where 606 blocks contain 2 smokers and 2 controls, and 213 blocks contain 1 smoker and 4 controls.

Usage

```
data("Peri24and15")
```

Format

A data frame with 3489 observations on the following 21 variables.

SEQN NHANES ID number
female 1=female, 0=male

age Age in years, capped at 80 for confidentiality
 ageFloor Age decade = floor(age/10)
 educ Education as 1 to 5. 1 is less than 9th grade, 2 at least 9th grade with no high school degree, 3 is a high school degree, 4 is some college, such as a 2-year associates degree, 5 is at least a 4-year college degree.
 noHS No high school degree. 1 if educ is 1 or 2, 0 if educ is 3 or more
 income Ratio of family income to the poverty level, capped at 5 for confidentiality
 nh The specific NHANES survey. A factor nh0910 < nh1112 < nh1314
 cigsperday Number of cigarettes smoked per day. 0 for nonsmokers.
 z Daily smoker. 1 indicates someone who smokes everyday. 0 indicates a never-smoker who smoked fewer than 100 cigarettes in their life.
 pd A percent indicating periodontal disease. See details.
 prop A propensity score created in the example for PeriUnmatched. This propensity score decided which smokers would have 1 control and which would have 5 controls.
 pr A second propensity score used to create matched pairs or matched 1-to-4 sets, after the split based on prop
 mset Indicator of the matched set, 1, 2, ..., 1425
 treated The SEQN for the smoker in this matched set. Contains the same information as mset, but in a different form.
 pair 1 for a matched pair, 0 for a 1-to-4 matched set
 grp2 An ordered factor with the same information as z: S=daily smoker, N=never smoker. S < N
 grp3 A factor with the joint information in pair and grp2. 1-1:S 1-1:N 1-4:S 1-4:N
 ageStart Age at which a smoker began smoking. See details.
 packY Pack-years of smoking. Missing for nonsmokers.
 block Block identifiers, 1, 2, ..., 819.

Details

The data in Peri24and15 rearranges the data in PeriMatched in the aamatch package. Specifically, the 1212 matched pairs in PeriMatched are paired to form 606 blocks of size J=4 containing two smokers and two nonsmoking controls. The variable pair indicates whether an individual was in the 1212 pairs in PeriMatched or in one of the 213 1-4 matched sets. The original matched sets in Peri24and15 are indicated by mset, but the 606+213 blocks in Peri24and15 are indicated by block.

The construction of Peri24and15 from PeriUnmatched is in a donttest section of the example below. The pairing of pairs is done using the nbpMatching package in R; see Greevy and Lu (2023), Lu et al. (2011) and Derigs (1988).

Additionally, Peri24and15 adds two new variables, ageStart and packY. Seven of 1425 smokers were missing ageStart, and the missing value was replaced by the median starting age of 17.

Measurements were made for up to 28 teeth, 14 upper, 14 lower, excluding 4 wisdom teeth. Pocket depth and loss of attachment are two complementary measures of the degree to which the gums have separated from the teeth; see Wei, Barker and Eke (2013). Pocket depth and loss of attachment are measured at six locations on each tooth, providing the tooth is present. A measurement at a

location was taken to exhibit disease if it had either a loss of attachment ≥ 4 mm or a pocked depth ≥ 4 mm, so each tooth contributes six binary scores, up to $6 \times 28 = 168$ binary scores. The variable pd is the percent of these binary scores indicating periodontal disease, 0 to 100 percent.

The data from three NHANES surveys (specifically 2009-2010, 2011-2012, and 2013-2014) contain periodontal data and are used as an example in Rosenbaum (2026). The data from one survey, 2011-2012, were used in Rosenbaum (2016). The example replicates analyses from Rosenbaum (2026); see also the documentation for gwgtRankC in this package where further analyses are replicated.

Note

Analyses should distinguish blocks of different sizes, but the information they can be combined in various ways: see the documentation for gwgtRankC in this package. In contrast, some care is required in plots and descriptive statistics. One can straightforwardly but separately plot the blocks of the same size, but one cannot ignore block size by merging blocks of different sizes. Suppose, however, that one merges the two treated groups from 2-to-2 blocks and 1-to-4 blocks, and merges the two control groups also; then marginal distributions of outcomes from the pooled treated and control groups are no longer comparable. See Pimentel, Yoon and Keele (2015). For instance, in the example, there is exact matching for sex; however, most 2-to-2 blocks are men and most 1-to-4 blocks are women. Pool them and the pooled control group has proportionately more women than the pooled treated group. The simple, often enlightening, solution is to plot 2-to-2 and 1-to-4 blocks in parallel but separately, and to do the same with descriptive statistics.

Source

US National Health and Nutrition Examination Survey (NHANES). <https://www.cdc.gov/nchs/nhanes/>

References

Derigs, U. (1988) <doi:10.1007/BF02288324> Solving non-bipartite matching problems via shortest path techniques. *Annals of Operations Research*, 13(1), 225-261.

Greevy, R. A., & Lu, B. (2023) <doi:10.1201/9781003102670> Optimal nonbipartite matching. *Handbook of Matching and Weighting Adjustments for Causal Inference*, Chapman and Hall/CRC, pp. 227-238.

Lu, B., Greevy, R., Xu, X., & Beck, C. (2011) <doi:10.1198/tast.2011.08294> Optimal nonbipartite matching and its statistical applications. *The American Statistician*, 65(1), 21-30.

Pimentel, S. D., Yoon, F., & Keele, L. (2015) <doi:10.1002/sim.6593> Variable-ratio matching with fine balance in a study of the Peer Health Exchange. *Statistics in Medicine*, 34(30), 4070-4082.

Rosenbaum, P. R. (2015) <doi:10.1353/obs.2015.0000> Two R packages for sensitivity analysis in observational studies. *Observational Studies*, 1(2), 1-17. Available on-line at: muse.jhu.edu/article/793399/summary

Rosenbaum, P. R. (2016) <doi:10.1214/16-AOAS942> Using Scheffe projections for multiple outcomes in an observational study of smoking and periodontal disease. *Annals of Applied Statistics*, 10, 1447-1471.

Rosenbaum, Paul R. (2025) A design for observational studies in which some people avoid treatment. Manuscript.

Rosenbaum, Paul R. (2026) Simple, widely applicable observational designs that improve upon the matched pairs design. Manuscript.

Tomar, S. L. and Asma, S. (2000). Smoking attributable periodontitis in the United States: Findings from NHANES III. *J. Periodont.* 71, 743-751.

Wei, L., Barker, L. and Eke, P. (2013). Array applications in determining periodontal disease measurement. SouthEast SAS User's Group. (SESUG2013) Paper CC-15, analytics.ncsu.edu/sesug/2013/CC-15.pdf.

Examples

```

data(Peri24and15)
# There are 606 blocks of size J=4 and 213 blocks of size J=5
table(table(Peri24and15$block))
# Blocks of size J=4 contain k=2 smokers,
# and blocks of size J=5 contain k=1 smoker.
table(tapply(Peri24and15$z,Peri24and15$block,sum),table(Peri24and15$block))
# The data are analyzed in the example for the gwgtRankC() function in
# this package.

# This donttest portion documents the creation of Peri24and15 from PeriMatched.
# There is no need to run this portion if you only wish to use Peri24and15.
# This portion is slow but instructive if you wish to convert a paired
# design into a design with blocks of size 4 with 2 treated
# individuals and 2 controls in each block.
# The steps that follow convert the pairs in PeriMatched into
# pairs of pairs in Peri24and15 using optimal nonbipartite matching.
# The 1-to-4 matched sets are the same in PeriMatched and Peri24and15.

library(aamatch)
data("PeriMatched")
pairs<-PeriMatched[PeriMatched$pair==1,]

pairsMean<-cbind(
  tapply(pairs$female,pairs$mset,mean),
  tapply(pairs$ageFloor,pairs$mset,mean),
  tapply(pairs$age,pairs$mset,mean),
  tapply(pairs$educ,pairs$mset,mean),
  tapply(pairs$income,pairs$mset,mean))
colnames(pairsMean)<-c("female","ageFloor","age","educ","income")
npairs<-dim(pairsMean)[1]
dist<-matrix(NA,npairs,npairs)
icov<-MASS::ginv(stats::cov(pairsMean))
icov2<-MASS::ginv(stats::cov(pairsMean[,1:2]))
for (i in 1:npairs){
  mh<-stats::mahalanobis(pairsMean,pairsMean[i,],icov,inverted=TRUE)
  mh2<-stats::mahalanobis(pairsMean[,1:2],pairsMean[i,1:2],icov2,inverted=TRUE)
  dist[i,]<-mh+30*mh2
}
mset<-pairs$mset[pairs$z==1]
rownames(pairsMean)<-mset
dist<-cbind(mset,dist)
dist2<-nbpMatching::distancematrix(dist)
pp<-nbpMatching::nonbimatch(dist2)

```

```

pppairs<-NULL
halves<-pp$halves
halves1<-as.numeric(halves$Group1.ID)
halves2<-as.numeric(halves$Group2.ID)
for (i in 1:(dim(halves)[1])){
  pppairs<-rbind(pppairs,pairs[pairs$mset==halves1[i],])
  pppairs<-rbind(pppairs,pairs[pairs$mset==halves2[i],])
}
block<-as.vector(t(matrix(rep(1:(dim(halves)[1]),4),(dim(halves)[1]),4)))
pppairs<-cbind(pppairs,block)

# The pairs of pairs in pppairs and Peri24and15 are the same.
table(pppairs$SEQN==Peri24and15$SEQN[1:2424])

# The blocks are fairly homogeneous in the matched covariates.
# Of course, covariate balance is unchanged by pairing pairs,
# because the treated and control groups have not changeds.
range2<-function(v){max(v)-min(v)}
summary(tapply(pppairs$ageFloor,pppairs$block,range2))
summary(tapply(pppairs$female,pppairs$block,range2))
summary(tapply(pppairs$age,pppairs$block,range2))
summary(tapply(pppairs$educ,pppairs$block,range2))
summary(tapply(pppairs$income,pppairs$block,range2))

rm(npairs,halves1,halves2,dist2,i,block,pp,mh,mh2,mset,
  range2,icov,icov2,dist,halves)

```

Description

A new design for data from NHANES 2009-2010, 2011-2012, 2013-2014 concerning smoking and periodontal disease. The blocked data were built from the matched data in PeriMatched in package aamatch by pairing its 1212 matched pairs to form 606 blocks of size four, and adding the 213 1-to-4 sets from PeriMatched.

Usage

```
data("PeriND")
```

Format

A data frame with 3489 observations on the following 19 variables.

SEQN NHANES ID number
female 1=female, 0=male

age Age in years, capped at 80 for confidentiality
 ageFloor Age decade = floor(age/10)
 educ Education as 1 to 5. 1 is less than 9th grade, 2 at least 9th grade with no high school degree, 3 is a high school degree, 4 is some college, such as a 2-year associates degree, 5 is at least a 4-year college degree.
 noHS No high school degree. 1 if educ is 1 or 2, 0 if educ is 3 or more
 income Ratio of family income to the poverty level, capped at 5 for confidentiality
 nh The specific NHANES survey. A factor $nh0910 < nh1112 < nh1314$
 cigsperday Number of cigarettes smoked per day. 0 for nonsmokers.
 z Daily smoker. 1 indicates someone who smokes everyday. 0 indicates a never-smoker who smoked fewer than 100 cigarettes in their life.
 pd A percent indicating periodontal disease. See details.
 prop A propensity score created in the example for PeriUnmatched. This propensity score decided which smokers would have 1 control and which would have 4 controls.
 pr A second propensity score used to create matched pairs or matched 1-to-4 sets, after the split based on prop
 mset Indicator of the matched set, 1, 2, ..., 1425
 treated The SEQN for the smoker in this matched set. Contains the same information as mset, but in a different form.
 pair 1 for a matched pair, 0 for a 1-to-4 matched set
 grp2 An ordered factor with the same information as z: S=daily smoker, N=never smoker. S < N
 grp3 A factor with the joint information in pair and grp2. 1-1:S 1-1:N 1-4:S 1-4:N
 block Block indicators, 1 to 816, for 606 blocks of two treated individuals and two controls, and 213 blocks of one treated individual and five controls, where $816 = 606 + 213$.

Details

The PeriMatched data in package aamatch contains 1212 matched treated-control pairs and 213 1-to-4 matched sets. The PeriND data uses optimal nonbipartite matching from the nbpMatching package to pair the 1212 pairs into 606 pairs-of-pairs or blocks of size 4 with 2 treated and 2 controls in each block. For optimal nonbipartite matching, see Lu et al. (2011).

Briefly, PeriND rearranges the rows of PeriMatched and adds one variable, blocks, that identifies the 606 2-to-2 blocks and the 213 1-to-4 blocks.

The steps of the construction of PeriND from PeriMatched by optimal nonbipartite matching is given below in the example.

Measurements were made for up to 28 teeth, 14 upper, 14 lower, excluding 4 wisdom teeth. Pocket depth and loss of attachment are two complementary measures of the degree to which the gums have separated from the teeth; see Wei, Barker and Eke (2013). Pocket depth and loss of attachment are measured at six locations on each tooth, providing the tooth is present. A measurement at a location was taken to exhibit disease if it had either a loss of attachment ≥ 4 mm or a pocked depth ≥ 4 mm, so each tooth contributes six binary scores, up to $6 \times 28 = 168$ binary scores. The variable pd is the percent of these binary scores indicating periodontal disease, 0 to 100 percent.

The data from three NHANES surveys (specifically 2009-2010, 2011-2012, and 2013-2014) contain periodontal data and are used as an example in Rosenbaum (2025). The data from one survey, 2011-2012, were used in Rosenbaum (2016). The example replicates analyses from Rosenbaum (2025).

Source

US National Health and Nutrition Examination Survey (NHANES). <https://www.cdc.gov/nchs/nhanes/>

References

Beck C, Lu B, Greevy R (2024). `_nbpMatching`: Functions for Optimal Non-Bipartite Matching_. R package version 1.5.6. <<https://CRAN.R-project.org/package=nbpMatching>>.

Lu, Bo, Robert Greevy, Xinyi Xu, and Cole Beck. (2011) <doi:10.1198/tast.2011.08294> Optimal nonbipartite matching and its statistical applications. *American Statistician* 65(1), 21-30.

Rosenbaum, P. R. (2007) Sensitivity analysis for m-estimates, tests, and confidence intervals in matched observational studies. *Biometrics*, 63(2), 456-464. <doi:10.1111/j.1541-0420.2006.00717.x>

Rosenbaum, P. R. (2015) <doi:10.1353/obs.2015.0000> Two R packages for sensitivity analysis in observational studies. *Observational Studies*, 1(2), 1-17. Available on-line at: muse.jhu.edu/article/793399/summary

Rosenbaum, P. R. (2016) <doi:10.1214/16-AOAS942> Using Scheffe projections for multiple outcomes in an observational study of smoking and periodontal disease. *Annals of Applied Statistics*, 10, 1447-1471.

Rosenbaum, P. R., & Small, D. S. (2017) <doi:10.1111/biom.12591> An adaptive Mantel–Haenszel test for sensitivity analysis in observational studies. *Biometrics*, 73(2), 422-430.

Rosenbaum, Paul R. (2025) A Design for Observational Studies in Which Some People Avoid Treatment. Manuscript.

Tomar, S. L. and Asma, S. (2000). Smoking attributable periodontitis in the United States: Findings from NHANES III. *J. Periodont.* 71, 743-751.

Wei, L., Barker, L. and Eke, P. (2013). Array applications in determining periodontal disease measurement. SouthEast SAS User's Group. (SESUG2013) Paper CC-15, analytics.ncsu.edu/sesug/2013/CC-15.pdf.

Examples

```
data(PeriND)
# The calculations that follow show that the block, while not perfectly
# homogeneous in the covariates, are typically quite homogeneous.
# the 606+213 within-block ranges are summarized for each covariate.
range2<-function(v){max(v)-min(v)}
summary(tapply(PeriND$ageFloor,PeriND$block,range2)) # age decade
summary(tapply(PeriND$female,PeriND$block,range2)) # female indicator
summary(tapply(PeriND$age,PeriND$block,range2)) # age in years
sum(tapply(PeriND$age,PeriND$block,range2)>10)
summary(tapply(PeriND$educ,PeriND$block,range2)) # 5 categories of education
sum(tapply(PeriND$educ,PeriND$block,range2)>1)
summary(tapply(PeriND$income,PeriND$block,range2)) # income
sum(tapply(PeriND$income,PeriND$block,range2)>2)

rm(PeriND)
# The following code creates PeriND from PeriMatched
# using optimal nonbipartite matching in package nbpMatching.
```

```

data("PeriMatched", package="aamatch")
pairs<-PeriMatched[PeriMatched$pair==1,] # 1212 matched pairs
sets<-PeriMatched[PeriMatched$pair==0,] # 213 1-to-4 matched sets
#
# For each pair, compute the covariate mean of the two individuals
# in that pair.
pairsMean<-cbind(
  tapply(pairs$female,pairs$mset,mean),
  tapply(pairs$ageFloor,pairs$mset,mean),
  tapply(pairs$age,pairs$mset,mean),
  tapply(pairs$educ,pairs$mset,mean),
  tapply(pairs$income,pairs$mset,mean))
colnames(pairsMean)<-c("female","ageFloor","age","educ","income")
npairs<-dim(pairsMean)[1]
#
# Construct a 1212 x 1212 distance matrix between the 1212
# covariate mean vectors for the 1212 matched pairs
dist<-matrix(NA,npairs,npairs)
icov<-MASS::ginv(stats::cov(pairsMean))
icov2<-MASS::ginv(stats::cov(pairsMean[,1:2]))
for (i in 1:npairs){
  mh<-stats::mahalanobis(pairsMean,pairsMean[i,],icov,inverted=TRUE)
  mh2<-stats::mahalanobis(pairsMean[,1:2],pairsMean[i,1:2],icov2,inverted=TRUE)
  dist[i,]<-mh+30*mh2
}
# Note that this distance matrix is the sum of two distance matrices, where
# mh2 emphasizes age-decade and sex with weight 30, and mh uses all values
# of all covariates with weight 1.
#
# Set up and call nbpMatching to do the match
mset<-pairs$mset[pairs$z==1]
rownames(pairsMean)<-mset
dist<-cbind(mset,dist)
dist2<-nbpMatching::distancematrix(dist)
pp<-nbpMatching::nonbimatch(dist2)
#
# Reorganize the pairs into pairs-of-pairs using match results
pppairs<-NULL
halves<-pp$halves
halves1<-as.numeric(halves$Group1.ID)
halves2<-as.numeric(halves$Group2.ID)
for (i in 1:(dim(halves)[1])){
  pppairs<-rbind(pppairs,pairs[pairs$mset==halves1[i],])
  pppairs<-rbind(pppairs,pairs[pairs$mset==halves2[i],])
}
block<-as.vector(t(matrix(rep(1:(dim(halves)[1]),4),(dim(halves)[1]),4)))
pppairs<-cbind(pppairs,block)
idx<-(max(block)+1):(max(block)+(dim(sets)[1]/5))
rm(block)
#
# Now add the 1-to-4 matched sets
block<-as.vector(t(matrix(idx,length(idx),5)))

```

```

sets<-cbind(sets,block)
PeriIND<-rbind(pppairs,sets)
rm(npairs,halves1,halves2,dist2,i,block,pp,mh,mh2,mset,
  icov,icov2,dist,halves,pairs,pairsMean,pppairs,sets,idx)
dim(PeriMatched)
dim(PeriIND)
length(unique(PeriIND$SEQN))
sum(is.element(PeriIND$SEQN,PeriMatched$SEQN))
sum(is.element(PeriMatched$SEQN,PeriIND$SEQN))

```

stepSolve*Root of a Monotone Decreasing Step Function***Description**

Of limited interest to most users, stepSolve finds a root of a monotone decreasing step function by bisection search. It is called by other functions in this package, including wgtRankCI. If the function *f* passes but never equals zero, then the argument where *f* passes zero is returned. If the function equals zero for an interval, the average of the endpoints of the interval are returned. The function is used to obtain confidence intervals and point estimates by inverting a rank test, in the spirit of the Hodges-Lehman estimate.

Usage

```
stepSolve(f, int, eps = 1e-05)
```

Arguments

<i>f</i>	A nonincreasing function of a single argument.
<i>int</i>	A vector of length 2 with <i>int</i> [1]< <i>int</i> [2]. A search for a root of <i>f</i> will be done on the interval <i>int</i> .
<i>eps</i>	A small number. In searching for a root, a difference of <i>eps</i> will be regarded as negligible. A larger <i>eps</i> will produce an answer more quickly, while a smaller <i>eps</i> will produce a more accurate answer.

Value

<i>average</i>	The average of <i>low</i> and <i>high</i> , defined below.
<i>low</i>	See <i>high</i> , defined below.
<i>high</i>	If the monotone decreasing step function <i>f</i> equals zero for an interval, then that interval is approximately [<i>low</i> , <i>high</i>]. If <i>f</i> crosses zero but never equals zero, then the crossing point is between <i>low</i> and <i>high</i> , which should be close. Reducing <i>eps</i> will search longer to improve the accuracy of [<i>low</i> , <i>high</i>].

Author(s)

Paul R. Rosenbaum

References

Hodges Jr, J. L. and Lehmann, E. L. (1963) <doi:10.1214/aoms/1177704172> Estimates of location Bbased on rank tests. The Annals of Mathematical Statistics, 34(2), 598-611.

Lehmann, E. L. (1963). Nonparametric confidence intervals for a shift parameter. The Annals of Mathematical Statistics, 34(4), 1507-1512.

Rosenbaum, P. R. (1993) <doi:10.1080/01621459.1993.10476405> Hodges-Lehmann point estimates of treatment effect in observational studies. Journal of the American Statistical Association, 88 (424), 1250-1253.

Examples

```
# Uses stepSolve to find the one-sample Hodges-Lehmann estimate
## Not run:
set.seed(1)
y<-rnorm(4)+7
wilcox.test(y,conf.int=TRUE,conf.level=.5)$estimate
f<-function(hl){wilcox.test(y-hl)$statistic-(length(y)*(1+length(y)))/4}
stepSolve(f,c(-100,100))

## End(Not run)
```

Description

Uses a weighted rank statistic to perform a sensitivity analysis for an I x J observational block design in which each of I blocks contains one treated individual and J-1 controls.

Usage

```
wgtRank(y, phi = "u868", phifunc = NULL, gamma = 1)
```

Arguments

y A matrix or data frame with I rows and J columns. Column 1 contains the response of the treated individuals and columns 2 throught J contain the responses of controls in the same block. An error will result if y contains NAs.

phi The weight function to be applied to the ranks of the within block ranges. The options are: (i) "wilc" for the stratified Wilcoxon test, which gives every block the same weight, (ii) "quade" which ranks the within block ranges from 1 to I, and is closely related to Quade's (1979) statistic; see also Tardif (1987), (iii) "u858", "u868", "u878", "u888" or "mixed" based on Rosenbaum (2011, 2025a,b). Note that phi is ignored if phifunc is not NULL.

phifunc If not NULL, a user specified weight function for the ranks of the within block ranges. The function should map [0,1] into [0,1]. The function is applied to the ranks divided by the sample size. See the example.

gamma	A single number greater than or equal to 1. gamma is the sensitivity parameter. Two individuals with the same observed covariates may differ in their odds of treatment by at most a factor of gamma; see Rosenbaum (1987; 2017, Chapter 9).
-------	--

Details

This method is developed and evaluated in Rosenbaum (2024); see also Chapters 9, 10, and 11 in Rosenbaum (2025a). The "mixed" phi function is discussed in Rosenbaum (2025b): it is a smooth phi function that resembles the winning "tailored" step function in Rosenbaum (2015).

To test in the lower tail – to test against the alternative that treated responses are lower than control responses, apply the function to $-y$. For a two-sided test, do both one-sided tests and apply the Bonferroni inequality, doubling the smaller of the two one-sided P-value bounds; see Cox (1977, Section 4.2).

Value

pval	Upper bound on the one-sided P-value when testing the null hypothesis of no treatment effect against the alternative hypothesis that treated responses are higher than control responses.
detail	Details of the computation of pval: the standardized deviate, the test statistic, its null expectation, its null variance and the value of gamma.

Note

The computations use the separable approximation discussed in Gastwirth et al. (2000) and Rosenbaum (2018). Compare with the method in Rosenbaum (2014) and the R package sensitivitymw.

Author(s)

Paul R. Rosenbaum

References

Brown, B. M. (1981). [doi:10.1093/biomet/68.1.235](https://doi.org/10.1093/biomet/68.1.235) Symmetric quantile averages and related estimators. *Biometrika*, 68(1), 235-242.

Cox, D. R. (1977). The role of significance tests [with discussion and reply]. *Scandinavian Journal of Statistics*, 4, 49-70.

Gastwirth, J. L., Krieger, A. M., and Rosenbaum, P. R. (2000). [doi:10.1111/1467-9868.00249](https://doi.org/10.1111/1467-9868.00249) Asymptotic separability in sensitivity analysis. *Journal of the Royal Statistical Society B* 2000, 62, 545-556.

Lehmann, E. L. (1975). *Nonparametrics: Statistical Methods Based on Ranks*. San Francisco: Holden-Day.

Quade, D. (1979). [doi:10.2307/2286991](https://doi.org/10.2307/2286991) Using weighted rankings in the analysis of complete blocks with additive block effects. *Journal of the American Statistical Association*, 74, 680-683.

Rosenbaum, P. R. (1987). [doi:10.2307/2336017](https://doi.org/10.2307/2336017) Sensitivity analysis for certain permutation inferences in matched observational studies. *Biometrika*, 74(1), 13-26.

Rosenbaum, P. R. (2011). <doi:10.1111/j.1541-0420.2010.01535.x> A new U-Statistic with superior design sensitivity in matched observational studies. *Biometrics*, 67(3), 1017-1027.

Rosenbaum, P. R. (2013). <doi:10.1111/j.1541-0420.2012.01821.x> Impact of multiple matched controls on design sensitivity in observational studies. *Biometrics*, 2013, 69, 118-127.

Rosenbaum, P. R. (2014) <doi:10.1080/01621459.2013.879261> Weighted M-statistics with superior design sensitivity in matched observational studies with multiple controls. *Journal of the American Statistical Association*, 109(507), 1145-1158.

Rosenbaum, P. R. (2015). <doi:10.1080/01621459.2014.960968> Bahadur efficiency of sensitivity analyses in observational studies. *Journal of the American Statistical Association*, 110(509), 205-217.

Rosenbaum, P. (2017). <doi:10.4159/9780674982697> *Observation and Experiment: An Introduction to Causal Inference*. Cambridge, MA: Harvard University Press.

Rosenbaum, P. R. (2018). <doi:10.1214/18-AOAS1153> Sensitivity analysis for stratified comparisons in an observational study of the effect of smoking on homocysteine levels. *The Annals of Applied Statistics*, 12(4), 2312-2334.

Rosenbaum, P. R. (2024) <doi:10.1080/01621459.2023.2221402> Bahadur efficiency of observational block designs. *Journal of the American Statistical Association*, 119, 1871-1881.

Rosenbaum, P. R. (2025a) <doi:10.1007/978-3-031-90494-3> *An Introduction to the Theory of Observational Studies*. Switzerland: Springer.

Rosenbaum, P. R. (2025b) A jackknife estimate of the power of a sensitivity analysis in an observational study. Manuscript.

Tardif, S. (1987). <doi:10.2307/2289476> Efficiency and optimality results for tests based on weighted rankings. *Journal of the American Statistical Association*, 82(398), 637-644.

See Also

An alternative approach avoids rank tests and uses weighted M-statistics instead, as in the sensitivity package and Rosenbaum (2014). However, Bahadur efficiency calculations are available for weighted rank statistics; see Rosenbaum (2024).

Examples

```
data(aHDL)
y<-t(matrix(aHDL$hd1,4,406))
wgtRank(y,phi="wilc",gamma=3.5) # Stratified Wilcoxon rank sum test
wgtRank(y,phi="quade",gamma=3.5) # Quade's test
wgtRank(y,phi="quade",gamma=4.5) # Quade's test, larger gamma
wgtRank(y,phi="quade",gamma=4.6) # Quade's test, larger gamma
wgtRank(y,phi="u868",gamma=5.4) # New U-statistic weights (8,6,8)
wgtRank(y,phi="u878",gamma=6) # New U-statistic weights (8,7,8)

# As an aid to interpreting gamma, see the amplify function.
amplify(3.5,8)
amplify(4.6,8)
amplify(5.4,8)
amplify(6,8)
```

```
# A user defined weight function, brown, analogous to Brown (1981).
brown<-function(v){((v>=.333)+(v>=.667))/2}
wgtRank(y,phifunc=brown,gamma=4.7)
```

wgtRankC

Sensitivity Analysis for a Conditional Weighted Rank Test

Description

Uses a conditional weighted rank statistic to perform a sensitivity analysis for an I x J observational block design in which each of I blocks contains one treated individual and J-1 controls. The size J of a block must be at least 3.

Usage

```
wgtRankC(y, phi = "u878", phifunc = NULL, gamma = 1,
         alternative = "greater")
```

Arguments

y	A matrix or data frame with I rows and J columns, where J is at least 3. Column 1 contains the response of the treated individuals and columns 2 through J contain the responses of controls in the same block. An error will result if y contains NAs. An error will result if y has fewer than 3 columns.
phi	The weight function to be applied to the ranks of the within block ranges. The options are: (i) "wilc" for the stratified Wilcoxon test, which gives every block the same weight, (ii) "quade" which ranks the within block ranges from 1 to I, and is closely related to Quade's (1979) statistic; see also Tardif (1987), (iii) "u868", "u878", or "u888" based on Rosenbaum (2011). Note that phi is ignored if phifunc is not NULL.
phifunc	If not NULL, a user specified weight function for the ranks of the within block ranges. The function should map [0,1] into [0,1]. The function is applied to the ranks divided by the sample size. See the example.
gamma	A single number greater than or equal to 1. gamma is the sensitivity parameter. Two individuals with the same observed covariates may differ in their odds of treatment by at most a factor of gamma; see Rosenbaum (1987; 2017, Chapter 9).
alternative	The null hypothesis asserts that the treatment has no effect. If alternative is "greater", then the null hypothesis is tested against the alternative that the treatment increases the response of treated individuals. If alternative is "less", then the null hypothesis is tested against the alternative that the treatment decreases the response of treated individuals.

Details

The conditional test restricts attention to blocks in which the treated individual has either the highest or lowest response in a block. This tactic may be shown to increase design sensitivity; see Rosenbaum (2025a).

Value

pval	The upper bound on the one-sided P-value
detail	Details of the computation of the P-value
block.information	The conditional test uses a block only if the treated individual has either the highest or lowest responses in the block. This vector indicates: (i) the number of blocks that were used, (ii) in those blocks, the number in which the treated individual had the highest response, and (iii) in those blocks, the number of blocks in which there was a tie for the maximum or minimum response.

Note

Do a two-sided test by testing in both tails and rejecting at level alpha if the smaller P-value is less than alpha/2; see Cox (1977, section 4.2). Aside from labeling the output, setting alternative to "less" is the same as applying the test to -y with alternative set to "greater".

Author(s)

Paul R. Rosenbaum

References

Brown, B. M. (1981) <doi:10.1093/biomet/68.1.235> Symmetric quantile averages and related estimators. *Biometrika*, 68, 235-242.

Cox, D. R. (1977). The role of significance tests (with discussion and reply). *Scandinavian Journal of Statistics*, 4, 49-70.

Noether, G. E. (1963) <doi:10.2307/2283321> Efficiency of the Wilcoxon two-sample statistic for randomized blocks. *Journal of the American Statistical Association*, 58, 894-898.

Noether, G. E. (1973) <doi:10.2307/2284805> Some simple distribution-free confidence intervals for the center of a symmetric distribution. *Journal of the American Statistical Association*, 68, 716-719.

Quade, D. (1979) <doi:10.2307/2286991> Using weighted rankings in the analysis of complete blocks with additive block effects. *Journal of the American Statistical Association*, 74, 680-683.

Rosenbaum, P. R. (1987). <doi:10.2307/2336017> Sensitivity analysis for certain permutation inferences in matched observational studies. *Biometrika*, 74(1), 13-26.

Rosenbaum, P. R. (2004) <doi:10.1093/biomet/91.1.153> Design sensitivity in observational studies. *Biometrika*, 91, 153-164.

Rosenbaum, P. R. (2011) <doi:10.1111/j.1541-0420.2010.01535.x> A new U-Statistic with superior design sensitivity in matched observational studies. *Biometrics*, 67(3), 1017-1027.

Rosenbaum, P. R. (2017) <doi:10.4159/9780674982697> *Observation and Experiment: An Introduction to Causal Inference*. Cambridge, MA: Harvard University Press.

Rosenbaum, P. R. (2024) <doi:10.1080/01621459.2023.2221402> Bahadur efficiency of observational block designs. *Journal of the American Statistical Association*, 119, 1871-1881.

Rosenbaum, P. R. (2025a) <doi:10.1093/jrsssb/qkaf007> A conditioning tactic that increases design sensitivity in observational block designs. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 85, 1085-1099.

Rosenbaum, P. R. (2025b) <doi:10.1007/978-3-031-90494-3> An Introduction to the Theory of Observational Studies. Switzerland: Springer.

Tardif, S. (1987) <doi:10.2307/2289476> Efficiency and optimality results for tests based on weighted rankings. *Journal of the American Statistical Association*, 82, 637-644.

Examples

```
data(aHDLe)
y<-t(matrix(aHDLe$hdl,4,722))
colnames(y)<-c("D", "R", "N", "B")
y<-y[,c(1,3,2,4)]
boxplot(y,ylab="HDL Cholesterol",las=1,xlab="Group")
wgtRankC(y,gamma=6.65,phi="u878")
wgtRankC(y,gamma=6.24,phi="u868")
wgtRankC(y,phi="quade",gamma=5.28)
wgtRankC(y,phi="wilc",gamma=4.9)
#
# Examples with a user-defined phi-function
# Rank scores of Brown (1981) and Noether (1973)
brown<-function(v){(v>=(1/3))+(v>=(2/3))}
wgtRankC(y,phifunc=brown,gamma=5.5)
noether<-function(v){v>=(2/3)}
wgtRankC(y,phifunc=noether,gamma=6.5)
```

wgtRankCI

Sensitivity Analysis for Confidence Intervals and Point Estimates from Weighted Rank Statistics in Block Designs

Description

Uses a weighted rank statistic to perform a sensitivity analysis for an I x J observational block design in which each of I blocks contains one treated individual and J-1 controls. Inverts the test to obtain an estimate and a confidence interval for an additive treatment effect, tau; see Rosenbaum (1993, 2002, 2007).

Usage

```
wgtRankCI(y, phi = "u868", phifunc = NULL, gamma = 1,
           alternative="greater", alpha=0.05, eps = 0.00001)
```

Arguments

y A matrix or data frame with I rows and J columns. Column 1 contains the response of the treated individuals and columns 2 through J contain the responses of controls in the same block. An error will result if y contains NAs.

phi	The weight function to be applied to the ranks of the within block ranges. The options are: (i) "wilc" for the stratified Wilcoxon test, which gives every block the same weight, (ii) "quade" which ranks the within block ranges from 1 to I, and is closely related to Quade's (1979) statistic; see also Tardif (1987), (iii) "u868" based on Rosenbaum (2011), (iv) u878 based on Rosenbaum (2011). Note that phi is ignored if phifunc is not NULL.
phifunc	If not NULL, a user specified weight function for the ranks of the within block ranges. The function should map [0,1] into [0,1]. The function is applied to the ranks divided by the sample size.
gamma	A single number greater than or equal to 1. gamma is the sensitivity parameter. Two individuals with the same observed covariates may differ in their odds of treatment by at most a factor of gamma; see Rosenbaum (2002, Chapter 4; 2017, Chapter 9).
alternative	Must equal "greater", "less", or "twosided". This determines whether the confidence interval is one-sided or two-sided.
alpha	Coverage of the confidence interval is 1-alpha.
eps	A small number. In searching for a root, a difference of eps will be regarded as negligible. A larger eps will produce an answer more quickly, while a smaller eps will produce a more accurate answer.

Details

This test is developed and evaluated in Rosenbaum (2024), and it is inverted for point estimates and confidence intervals in the usual way. Understand the test first.

The two-sided interval is the intersection of two one-sided intervals, each with coverage 1-alpha/2; see Cox (1977, Section 4.2).

Value

estimate	The interval of point estimates, reducing to a single number when gamma=1.
confidence	The one-sided or two-sided confidence interval.

Note

The computations use the separable approximation discussed in Gastwirth et al. (2000) and Rosenbaum (2018). Compare with the method in Rosenbaum (2014) and the R package sensitivitymw.

Author(s)

Paul R. Rosenbaum

References

Brown, B. M. (1981). <doi:10.1093/biomet/68.1.235> Symmetric quantile averages and related estimators. *Biometrika*, 68(1), 235-242.

Cox, D. R. (1977). The role of significance tests [with discussion and reply]. *Scandinavian Journal of Statistics*, 4, 49-70.

Gastwirth, J. L., Krieger, A. M., and Rosenbaum, P. R. (2000). <doi:10.1111/1467-9868.00249> Asymptotic separability in sensitivity analysis. *Journal of the Royal Statistical Society B* 2000, 62, 545-556.

Hodges, J. L. and Lehmann, E. L. (1963). <doi:10.1214/aoms/1177704172> Estimates of Location Based on Rank Tests. *The Annals of Mathematical Statistics*, 34(2), 598-611.

Lehmann, E. L. (1975). *Nonparametrics: Statistical Methods Based on Ranks*. San Francisco: Holden-Day.

Quade, D. (1979). <doi:10.2307/2286991> Using weighted rankings in the analysis of complete blocks with additive block effects. *Journal of the American Statistical Association*, 74, 680-683.

Rosenbaum, P. R. (1993). <doi:10.2307/2291264> Hodges-Lehmann point estimates of treatment effect in observational studies. *Journal of the American Statistical Association*, 88(424), 1250-1253.

Rosenbaum, P. R. (2002). <doi:10.1007/978-1-4757-3692-2> *Observational Studies* (2nd Edition). New York: Springer.

Rosenbaum, P. R. (2007). <doi:10.1111/j.1541-0420.2006.00717.x> Sensitivity analysis for M-estimates, tests, and confidence intervals in matched observational studies. *Biometrics*, 63(2), 456-464.

Rosenbaum, P. R. (2011). <doi:10.1111/j.1541-0420.2010.01535.x> A new U-Statistic with superior design sensitivity in matched observational studies. *Biometrics*, 67(3), 1017-1027.

Rosenbaum, P. R. (2014) <doi:10.1080/01621459.2013.879261> Weighted M-statistics with superior design sensitivity in matched observational studies with multiple controls. *Journal of the American Statistical Association*, 109(507), 1145-1158.

Rosenbaum, P. R. (2015). <doi:10.1080/01621459.2014.960968> Bahadur efficiency of sensitivity analyses in observational studies. *Journal of the American Statistical Association*, 110(509), 205-217.

Rosenbaum, P. R. (2017). <doi:10.4159/9780674982697> *Observation and Experiment: An Introduction to Causal Inference*. Cambridge, MA: Harvard University Press.

Rosenbaum, P. R. (2018). <doi:10.1214/18-AOAS1153> Sensitivity analysis for stratified comparisons in an observational study of the effect of smoking on homocysteine levels. *The Annals of Applied Statistics*, 12(4), 2312-2334.

Rosenbaum, P. R. (2024) <doi:10.1080/01621459.2023.2221402> Bahadur efficiency of observational block designs. *Journal of the American Statistical Association*. 119, 1871-1881.

Rosenbaum, P. R. (2025) <doi:10.1007/978-3-031-90494-3> *An Introduction to the Theory of Observational Studies*. Switzerland: Springer.

Tardif, S. (1987). <doi:10.2307/2289476> Efficiency and optimality results for tests based on weighted rankings. *Journal of the American Statistical Association*, 82(398), 637-644.

See Also

An alternative approach avoids rank tests and uses weighted M-statistics instead, as in the sensitivity package and Rosenbaum (2014). However, Bahadur efficiency calculations are available for weighted rank statistics; see Rosenbaum (2024).

Examples

```

data(aHDL)
y<-t(matrix(aHDL$hd1,4,406))

# Without sensitivity analysis
wgtRankCI(y,phi="wilc",gamma=1) # Stratified Wilcoxon rank sum test

# With sensitivity analysis

# The CI excludes 0 if the test rejects 0.
wgtRank(y,phi="wilc",gamma=3.7) # Stratified Wilcoxon rank sum test
wgtRankCI(y,phi="wilc",gamma=3.7)

wgtRank(y,phi="u878",gamma=3.7) # U-statistic with weights (8,7,8)
wgtRankCI(y,phi="u878",gamma=3.7)

# A user defined weight function, brown, analogous to Brown (1981).
brown<-function(v){((v>=.333)+(v>=.667))/2}
wgtRankCI(y,phifunc=brown,gamma=3.7)

#
# COMPARISONS WITH STANDARD METHODS
#
y2<-c(-17, -3, -1, 2, 8, 9, 10, 11, 12, 16, 20)
y2a<-cbind(y2,-y2)/2
#
# Compare with the usual Hodges-Lehmann estimate,
# namely the median of the Walsh averages (yi+yj)/2
#
hl<-function(y){
  w<-NULL
  I<-length(y)
  for (i in 1:I) for (j in i:I) w<-c(w,(y[i]+y[j])/2)
  median(w)
}
hl(y2)
wgtRankCI(y2a,phi="quade")$estimate
#
# Compare with wilcox.test confidence interval in the stats package
#
stats::wilcox.test(y2,conf.int=TRUE,correct=FALSE,exact=FALSE,
  alternative = "greater")$conf.int
wgtRankCI(y2a,phi="quade",alternative="greater")$confidence
stats::wilcox.test(y2,conf.int=TRUE,correct=FALSE,exact=FALSE,
  alternative = "less")$conf.int
wgtRankCI(y2a,phi="quade",alternative="less")$confidence
stats::wilcox.test(y2,conf.int=TRUE,correct=FALSE,exact=FALSE,
  alternative = "two.sided")$conf.int
wgtRankCI(y2a,phi="quade",alternative="twosided")$confidence
#
# Compare with senWilcox in the DOS2 package

```

```

#
# Note: senWilcox reports only one-sided estimates with 1-sided tests
#
DOS2::senWilcox(y2,conf.int=TRUE,alternative="greater",gamma=1.25)
wgtRankCI(y2a,phi="quade",gamma=1.25,alternative = "greater")
DOS2::senWilcox(y2,conf.int=TRUE,alternative="less",gamma=1.25)
wgtRankCI(y2a,phi="quade",gamma=1.25,alternative = "less")
DOS2::senWilcox(y2,conf.int=TRUE,alternative="twosided",gamma=1.25)
wgtRankCI(y2a,phi="quade",gamma=1.25,alternative = "twosided")
#
# Compare with senU in the DOS2 package
#
# Note: senU reports only one-sided estimates with 1-sided tests
#
DOS2::senU(y2, gamma=1.25, m=8, m1=6, m2=8, alternative = "greater",
            exact=FALSE, conf.int = TRUE)
wgtRankCI(y2a,phi="u868",gamma=1.25,alternative = "greater")
DOS2::senU(y2, gamma=1.25, m=8, m1=6, m2=8, alternative = "less",
            exact=FALSE, conf.int = TRUE)
wgtRankCI(y2a,phi="u868",gamma=1.25,alternative = "less")
DOS2::senU(y2, gamma=1.25, m=8, m1=6, m2=8, alternative = "twosided",
            exact=FALSE, conf.int = TRUE)
wgtRankCI(y2a,phi="u868",gamma=1.25,alternative = "twosided")

```

Description

Tests twice, using the better of two test statistics; see Rosenbaum (2012; 2024, section 5; 2025a, section 9.5).

Usage

```
wgtRanktt(y, phi1 = "u868", phi2 = "u878", phifunc1 = NULL, phifunc2 = NULL, gamma = 1)
```

Arguments

y	A matrix or data frame with I rows and J columns. Column 1 contains the response of the treated individuals and columns 2 through J contain the responses of controls in the same block. An error will result if y contains NAs.
phi1	The weight function to be applied to the ranks of the within block ranges. The options are: (i) "wilc" for the stratified Wilcoxon test, which gives every block the same weight, (ii) "quade" which ranks the within block ranges from 1 to I, and is closely related to Quade's (1979) statistic; see also Tardif (1987), (iii) "u868" based on Rosenbaum (2011), (iv) "u878" based on Rosenbaum (2011) and (v) "mixed" based on Rosenbaum (2025b). Note carefully that phi is ignored if phifunc is not NULL.

phi2	See phi1.
phifunc1	If not NULL, a user specified weight function for the ranks of the within block ranges. The function should map [0,1] into [0,1]. The function is applied to the ranks divided by the sample size. See the example.
phifunc2	See phifunc1.
gamma	A single number greater than or equal to 1. gamma is the sensitivity parameter. Two individuals with the same observed covariates may differ in their odds of treatment by at most a factor of gamma; see Rosenbaum (1987; 2017, Chapter 9).

Value

jointP	Upper bound on the one-sided joint P-value obtained from two test statistics in the presence of a bias of at most gamma.
cor12	Correlation of the two test statistics at the treatment assignment distribution that provides the joint upper bound. Often, this correlation is high, so the joint distribution that is used here is much less conservative than use of the Bonferroni inequality when testing twice.
detail	Details about the two statistics separately. Equivalent to the result from wgtRank() run twice with different test statistics.

Note

For discussion of testing twice in matched pairs, see Rosenbaum (2012).

Testing twice is also possible in block designs using weighted rank statistics because the same value of the unobserved covariate provides the upper bound for both statistics when using the separable approximation in Gastwirth et al. (2000) and Rosenbaum (2018, Remarks 4 and 5). See also Rosenbaum (2024) where the Bahadur efficiency of such tests is computed. For a textbook discussion, see Rosenbaum (2025a, section 9.5).

Other packages that use testing twice in a different way are "sensitivity2x2xk"" and "testtwice". The "testtwice" package is restricted to matched pairs, and "sensitivity2x2xk"" is for binary outcomes. With some attention to detail (e.g., the handling of zero pair differences), in the case of matched pairs, the "testtwice" package and the wgtRanktt() function will yield identical results. In that sense, wgtRanktt() extends the method to blocks designs.

Testing twice achieves the larger Bahadur efficiency of the two component statistics; see Berk and Jones (1978).

The "mixed" option for phi1 and phi2 is a partially redescending phi-function, as depicted in Rosenbaum (2025a, Figure 9.1), unlike U877 in that same figure which redescends to zero. The "mixed" option is from Rosenbaum (2025b) and it is a U-statistic that is the sum of two U-statistics, namely (20,19,20) and (20,19,19) where the former is monotone increasing and the latter redescents to zero. This "mixed" phi-function is a continuous function that resembles the winning "tailored" step function in Rosenbaum (2015).

Author(s)

Paul R. Rosenbaum

References

Berk, R. H. and Jones, D. H. (1978) <<https://www.jstor.org/stable/4615706>> Relatively optimal combinations of test statistics. *Scandinavian Journal of Statistics*, 5, 158-162.

Brown, B. M. (1981) <[doi:10.1093/biomet/68.1.235](https://doi.org/10.1093/biomet/68.1.235)> Symmetric quantile averages and related estimators. *Biometrika*, 68(1), 235-242.

Gastwirth, J. L., Krieger, A. M., and Rosenbaum, P. R. (2000) <[doi:10.1111/1467-9868.00249](https://doi.org/10.1111/1467-9868.00249)> Asymptotic separability in sensitivity analysis. *Journal of the Royal Statistical Society B* 2000, 62, 545-556.

Lehmann, E. L. (1975) *Nonparametrics: Statistical Methods Based on Ranks*. San Francisco: Holden-Day.

Quade, D. (1979) <[doi:10.2307/2286991](https://doi.org/10.2307/2286991)> Using weighted rankings in the analysis of complete blocks with additive block effects. *Journal of the American Statistical Association*, 74, 680-683.

Rosenbaum, P. R. (1987) <[doi:10.2307/2336017](https://doi.org/10.2307/2336017)> Sensitivity analysis for certain permutation inferences in matched observational studies. *Biometrika*, 74(1), 13-26.

Rosenbaum, P. R. (2011) <[doi:10.1111/j.1541-0420.2010.01535.x](https://doi.org/10.1111/j.1541-0420.2010.01535.x)> A new U-Statistic with superior design sensitivity in matched observational studies. *Biometrics*, 67(3), 1017-1027.

Rosenbaum, P. R. (2012) <[doi:10.1093/biomet/ass032](https://doi.org/10.1093/biomet/ass032)> Testing one hypothesis twice in observational studies. *Biometrika*, 99(4), 763-774.

Rosenbaum, P. R. (2014) <[doi:10.1080/01621459.2013.879261](https://doi.org/10.1080/01621459.2013.879261)> Weighted M-statistics with superior design sensitivity in matched observational studies with multiple controls. *Journal of the American Statistical Association*, 109(507), 1145-1158.

Rosenbaum, P. R. (2015) <[doi:10.1080/01621459.2014.960968](https://doi.org/10.1080/01621459.2014.960968)> Bahadur efficiency of sensitivity analyses in observational studies. *Journal of the American Statistical Association*, 110(509), 205-217.

Rosenbaum, P. (2017) <[doi:10.4159/9780674982697](https://doi.org/10.4159/9780674982697)> *Observation and Experiment: An Introduction to Causal Inference*. Cambridge, MA: Harvard University Press.

Rosenbaum, P. R. (2018) <[doi:10.1214/18-AOAS1153](https://doi.org/10.1214/18-AOAS1153)> Sensitivity analysis for stratified comparisons in an observational study of the effect of smoking on homocysteine levels. *The Annals of Applied Statistics*, 12(4), 2312-2334.

Rosenbaum, P. R. (2024) <[doi:10.1080/01621459.2023.2221402](https://doi.org/10.1080/01621459.2023.2221402)> Bahadur efficiency of observational block designs. *Journal of the American Statistical Association*, 119, 1871-1881.

Rosenbaum, P. R. (2025a) <[doi:10.1007/978-3-031-90494-3](https://doi.org/10.1007/978-3-031-90494-3)> *An Introduction to the Theory of Observational Studies*. Switzerland: Springer.

Rosenbaum, P. R. (2025b) A jackknife estimate of the power of a sensitivity analysis in an observational study. Manuscript.

Tardif, S. (1987) <[doi:10.2307/2289476](https://doi.org/10.2307/2289476)> Efficiency and optimality results for tests based on weighted rankings. *Journal of the American Statistical Association*, 82(398), 637-644.

Examples

```
data(aHDL)
y<-t(matrix(aHDL$hd1,4,406))

# This is the simplest example of a general property. The
```

```

# example simply illustrates, but does not fully exploit
# the property. In this case, use of the stratified
# Wilcoxon statistic is a mistake, because Quade's
# statistic correctly reports insensitivity to a bias
# of gamma=4.5, but the stratified Wilcoxon statistic
# is sensitive at gamma=3.5. The adaptive procedure
# that does both tests and corrects for multiple testing
# is insensitive to gamma=4.4; so, it is almost as good
# as knowing what you cannot know, namely that Quade's
# statistic is the better choice in this one example.
# The price paid for testing twice is very small;
# see Berk and Jones (1978) and Rosenbaum (2012, 2022).
wgtRank(y,phi="wilc",gamma=3.5)
wgtRank(y,phi="quade",gamma=3.5)
wgtRank(y,phi="wilc",gamma=4.5)
wgtRank(y,phi="quade",gamma=4.5)
wgtRanktt(y,phi1="wilc",phi2="quade",gamma=4.4)

# Sensitivity to gamma=3.5 is very different from
# sensitivity to gamma=4.4; see documentation for amplify.
amplify(3.5,8)
amplify(4.4,8)

# In this example, u878 exhibits greater insensitivity to bias
# than u868. However, adaptive inference using both is almost
# as good as the better statistic, yet it strongly controls the
# family-wise error rate despite testing twice;
# see Rosenbaum (2012,2022).
wgtRank(y,phi="u868",gamma=6) # New U-statistic weights (8,6,8)
wgtRank(y,phi="u878",gamma=6) # New U-statistic weights (8,7,8)
wgtRanktt(y,phi1="u868",phi2="u878",gamma=5.9)

# A user defined weight function, brown, analogous to Brown (1981).
brown<-function(v){((v>=.333)+(v>=.667))/2}
# In this example, the joint test rejects based on u878
wgtRanktt(y,phi1="u878",phifunc2=brown,gamma=5.8)

# The following example reproduces Table 1 in Rosenbaum (2025b).
hdl0<-y
gammas<-c(1:6,6.25,6.5,6.75,6.875,7)
o<-matrix(NA,length(gammas),7)
rownames(o)<-gammas
colnames(o)<-c("Wilcoxon", "Quade", "U868", "U878", "U888", "Mixed", "U878aMixed")
for (i in 1:length(gammas)){
  o[i,1]<-wgtRank(hdl0,phi="wilc",gamma=gammas[i])$pval
  o[i,2]<-wgtRank(hdl0,phi="quade",gamma=gammas[i])$pval
  o[i,3]<-wgtRank(hdl0,phi="u868",gamma=gammas[i])$pval
  o[i,4]<-wgtRank(hdl0,phi="u878",gamma=gammas[i])$pval
  o[i,5]<-wgtRank(hdl0,phi="u888",gamma=gammas[i])$pval
  o[i,6]<-wgtRank(hdl0,phi="mixed",gamma=gammas[i])$pval
  o[i,7]<-wgtRanktt(hdl0,phi1="u878",phi2="mixed",gamma=gammas[i])$jointP
}

```

```
    }  
    round(o,3)
```

Index

- * **Adaptive inference**
 - weightedRank-package, 2
 - wgtRanktt, 58
- * **Amplification**
 - amplify, 12
- * **Amplify**
 - amplify, 12
- * **Binary search**
 - stepSolve, 48
- * **Block design**
 - weightedRank-package, 2
- * **Causal inference**
 - aBP, 4
 - aHDL, 7
 - amplify, 12
 - dwgtRank, 14
 - ef2C, 20
 - estPower, 24
 - gwgtRank, 31
 - gwgtRankC, 33
 - weightedRank-package, 2
 - wgtRank, 49
 - wgtRankC, 52
 - wgtRankCI, 54
 - wgtRanktt, 58
- * **Conditional weighted rank test**
 - gwgtRankC, 33
 - wgtRankC, 52
- * **Conditioning tactic**
 - gwgtRankC, 33
 - wgtRankC, 52
- * **Control outcome**
 - aHDL, 7
- * **Evidence factors**
 - aBP, 4
 - dwgtRank, 14
 - ef2C, 20
- * **Interpretation of sensitivity analyses**
 - amplify, 12
- * **Jackknife**
 - estPower, 24
- * **Multiple control groups**
 - aBP, 4
 - aHDL, 7
 - dwgtRank, 14
 - ef2C, 20
- * **Negative control**
 - aHDL, 7
- * **Observational study**
 - aBP, 4
 - aHDL, 7
 - amplify, 12
 - dwgtRank, 14
 - ef2C, 20
 - estPower, 24
 - gwgtRank, 31
 - gwgtRankC, 33
 - weightedRank-package, 2
 - wgtRank, 49
 - wgtRankC, 52
 - wgtRankCI, 54
 - wgtRanktt, 58
- * **Optimization**
 - stepSolve, 48
- * **Placebo outcome**
 - aHDL, 7
- * **Quade's test**
 - estPower, 24
 - gwgtRank, 31
 - gwgtRankC, 33
 - wgtRank, 49
 - wgtRankC, 52
 - wgtRankCI, 54
- * **Second control group**
 - aBP, 4
- * **Sensitivity analysis for confidence intervals**
 - wgtRankCI, 54

- * **Sensitivity analysis for point estimates**
 - wgtRankCI, 54
- * **Sensitivity analysis**
 - amplify, 12
 - dwgtRank, 14
 - ef2C, 20
 - estPower, 24
 - gwgtRank, 31
 - gwgtRankC, 33
 - weightedRank-package, 2
 - wgtRank, 49
 - wgtRankC, 52
 - wgtRanktt, 58
- * **Testing twice**
 - weightedRank-package, 2
 - wgtRanktt, 58
- * **Unaffected outcome**
 - aHDL, 7
- * **datasets**
 - abP, 4
 - aHDL, 7
 - aHDLLe, 9
 - Peri24and15, 40
 - PeriND, 44
- * **htest**
 - dwgtRank, 14
 - ef2C, 20
 - estPower, 24
 - gwgtRank, 31
 - gwgtRankC, 33
 - stepSolve, 48
 - wgtRank, 49
 - wgtRankC, 52
 - wgtRankCI, 54
 - wgtRanktt, 58
- * **nonparametric**
 - dwgtRank, 14
 - ef2C, 20
- * **package**
 - weightedRank-package, 2
- * **rbounds**
 - amplify, 12
 - dwgtRank, 14
 - ef2C, 20
 - estPower, 24
 - gwgtRank, 31
 - gwgtRankC, 33
 - wgtRank, 49