Package ‘yamlet’

January 10, 2026

Type Package
Title Versatile Curation of Table Metadata
Version 1.3.1

Maintainer Tim Bergsma <bergsmat@gmail .com>

BugReports https://github.com/bergsmat/yamlet/issues

Description A YAML-based
mechanism for working with table metadata. Supports
compact syntax for creating, modifying, viewing, exporting,
importing, displaying, and plotting metadata coded as column
attributes. The 'yamlet' dialect is valid "YAML' with
defaults and conventions chosen to improve readability.
See ?yamlet, ?decorate, Ymodify, ?io_csv, and ?ggplot.decorated.

License GPL-3
Encoding UTF-8

Imports yaml, csv (>= 0.6.2), encode, units, spork (>= 0.3.3), ggplot2
(>=4.0.1), scales, dplyr (>= 1.1.0), rlang, xtable, tidyr,
vcetrs, pillar, knitr

RoxygenNote 7.3.3
VignetteBuilder knitr

Suggests testthat (>= 2.1.0), magrittr, table1, rmarkdown, gridExtra,
haven, tablet (>= 0.6.8), kableExtra, metaplot

NeedsCompilation no

Author Tim Bergsma [aut, cre]

Repository CRAN

Date/Publication 2026-01-10 08:00:02 UTC

Contents

as.integer.classified . . . . . . . ...
as_categorical.decorated . . . . . . . ...


https://github.com/bergsmat/yamlet/issues

Index

as.integer.classified

as_dVEC.UNIES . . . . . . . e e e e e e 5
as_UnitS.dVeC . . . . . . e e e e e e e e e e e 5
canonical.decorated . . . . . . . . . ... 6
classified.default . . . . . . . . . . . .. . 7
classified.factor . . . . . . . . . . .. 9
decorate.character . . . . . . . . . . . . ... e e e 10
decorate.data.frame . . . . . . . . . ... e 11
decorate_groups.data.frame . . . . . . . .. ... o Lo 12
decorations.dataframe . . . . .. . . . . .. .. .. ... 13
decorations_groups.data.frame . . . . . .. ... ... oL oo 14
desolve.classified . . . . . . . . . . ... 15
desolve.decorated . . . . . . . . ... e e e 16
enscript.default . . . . . .. L 17
get_labs . . . . 19
ggplot.decorated . . . . . . . ... 19
SE MEW . o it e e e e e e e e e 22
group_by_decorations.data.frame . . . . . . .. ... ... L L 22
10 CSV o o o e e e e e 23
10 table . . . .. s 24
1S AVEC . . s 25
mimic.default . . . . . . ... e 26
modify.default . . . . . . .. 27
read_yamlet . . . . . . .. e e e e 29
resolve.decorated . . . . . . . . ... 30
undecorate.default . . . . . . . . . ... 31
write_yamlet . . . . ... 32
yamlet . . . . . e e 33
yamlet_options . . . . . . . L. e e e e e e e e 35

38

as.integer.classified Coerce Classified to Integer

Description

Coerces classified to integer. Result is like as. integer (as.numeric(x)) + of fset but has a guide
attribute: a list of integers whose names are the original levels of x. If you need a simple integer,
consider coercing first to numeric.

Usage

## S3 method for class 'classified'
as.integer(

)

X’

offset = oL,

0

persistence = getOption("yamlet_persistence”, TRUE)



as.integer.classified 3

Arguments
X classified, see classified
offset an integer value to add to intermediate result
passed to desolve
persistence whether to return ’dvec’ (is.integer(): TRUE) or just integer.
Value

integer (possibly of class dvec)

See Also

Other classified: [.classified(), [<-.classified(), [[.classified(), [[<-.classified(),

c.classified(), classified(), classified.classified(), classified.data.frame(), classified.default(),
classified.dvec(), classified.factor(), desolve.classified(),unclassified(),unclassified.classified(),
unclassified.data.frame()

Examples

library(magrittr)

# create factor with codelist attribute
classified(c('knife', 'fork', 'spoon'))

# give back a simple numeric
classified(c('knife', 'fork', 'spoon')) %>% as.numeric

# intentionally preserve levels as 'guide' attribute
classified(c('knife', 'fork', 'spoon')) %>% as.integer

# implement offset
classified(c('knife', 'fork', 'spoon')) %>% as.integer(-1)

# globally defeat the 'persistence' paradigm
options(yamlet_persistence = FALSE)
c('knife', 'fork', 'spoon') %>%

classified %>%

as.integer %>%

class # integer

# remove option to restore default persistence paradigm
options(yamlet_persistence = NULL)
c('knife', 'fork', 'spoon') %>%

classified %>%

as.integer %>%

class # dvec

# locally defeat persistence paradigm
c('knife', 'fork', 'spoon') %>%
classified %>%



4 as_categorical.decorated

as.integer(persistence = FALSE) %>%
class # integer

as_categorical.decorated
Coerce decorated to Categorical

Description

Coerces (elements of) ’decorated’ to categorical. See example(s). Briefly, a continuous variable
with units (and a small set of existing values) is converted to a factor-ready variable.

Usage

## S3 method for class 'decorated'
as_categorical(x, ...)

Arguments

X decorated

unquoted names of columns to be converted

Value

decorated

See Also

Other decorated: [ .decorated(), [<-.decorated(), [[.decorated(), [[<-.decorated(), as_categorical(),
merge.decorated(), names<-.decorated()

Examples

library(magrittr)
library(tablet)
library(kableExtra)
library(yamlet)
x <- data.frame(DOSE = c(12, 1.2, 2.4, 6, 12, 1.2)) %>% decorate('DOSE: [ Dose, mg 1')
X %>%
as_categorical (DOSE) %>%
resolve %>%
tablet %>%
as_kable %>%
kable_classic



as_dvec.units 5

as_dvec.units Coerce Units to Decorated Vector

Description

Coerces units to dvec.

Usage
## S3 method for class 'units'
as_dvec(x, ...)

Arguments
X units

passed arguments

Examples

library(magrittr)
library(dplyr)
a <- data.frame(id = 1:4, wt = c(70, 80, 70, 80), sex = c(0,1,0,1))

a %<>% decorate('wt: [ body weight, kg 1')

a %<>% decorate('sex: [ sex, [ female: @, male: 11]1')
a %<>% decorate('id: identifier')

a %<>% resolve

a %<>% mutate(wt = as_units(wt))

a %<>% mutate(wt = as_dvec(wt))

str(aswt)

as_units.dvec Coerce Decorated Vector to Units

Description

Coerces dvec to units. If x has a units attribute, it is used to create class ’units’. It is an error if x
has no units attribute.

Usage

## S3 method for class 'dvec'
as_units(x, ..., preserve = getOption("yamlet_as_units_preserve"”, "label”))



6 canonical.decorated

Arguments
X dvec
ignored
preserve attributes to preserve; just label by default (class and units are handled implic-
itly)
Examples
library(magrittr)

a <- data.frame(id = 1:4, wt = c(70, 80, 70, 80), sex = c(0,1,0,1))
a %<>% decorate('wt: [ body weight, kg 1')

a %<>% decorate('sex: [ sex, [ female: @, male: 11]")

a %<>% decorate('id: identifier')

a %<>% resolve

a$wt %>% as_units

canonical.decorated Sort Decorations

Description

Enforces canonical attribute order for class *decorated’. Set of default_keys will be augmented with
all observed attribute names and will be expanded or reduced as necessary for each data item.

Usage

## S3 method for class 'decorated'
canonical(
X,
default_keys = getOption("yamlet_default_keys”, list("label”, "guide")),

Arguments

X decorated
default_keys attribute names in preferred order

ignored

Value

decorated



classified.default 7

See Also

Other canonical: canonical (), canonical.yamlet()

Other interface: classified.data.frame(), decorate.character(), decorate.data.frame(),
desolve.decorated(), enscript.default(), ggplot.decorated(), io_csv.character(), io_csv.data.frame(),
io_res.character(), io_res.decorated(), io_table.character(), io_table.data.frame(),
io_yamlet.character(), io_yamlet.data.frame(), is_parseable.default(),mimic.default(),
modify.default(), promote.list(), read_yamlet(), resolve.decorated(), selected.default(),
write_yamlet()

Examples

# make some decorated data

library(magrittr)

X <- data.frame(x =1, y =1, z = factor('a'))
X %<>% decorate('

x: [ guide: mm, desc: this, label: foo ]

y": [ guide: bar, desc: other ]
D)

# retrieve decorations: label not first!
decorations(x)

# sort label first by default
decorations(canonical(x))

# equivalent invocation
canonical (decorations(x))

classified.default Create Classified by Default

Description

Creates a factor of subclass ’classified’, for which there are attribute-preserving methods. In par-
ticular, classified has a codelist attribute indicating the origin of its levels: it is constructed from
the codelist attribute of x if available, or from ’levels’ and ’labels’ by default. Unlike the case for
factor, length of labels cannot be one (i.e., different from length of levels).

Usage
## Default S3 method:
classified(
x = character(),
levels,
labels,
exclude = NA,

ordered = is.ordered(x),



8 classified.default

nmax = NA,
token = character(9),

)
Arguments
X see factor
levels see factor
labels see factor, must have same length as levels
exclude see factor
ordered see factor
nmax see factor
token informative label for messages
ignored
Value

*classified’ ’factor’

See Also

Other classified: [.classified(), [<-.classified(), [[.classified(), [[<-.classified(),
as.integer.classified(), c.classified(),classified(), classified.classified(), classified.data.frame(),
classified.dvec(),classified.factor(), desolve.classified(), unclassified(), unclassified.classified(),
unclassified.data.frame()

Examples

# classified creates a factor with a corresponding codelist attribute
classified(c('a','b','c"))

# codelist 'remembers' the origins of levels
classified(c('a','b','c"), labels = c('A','B','C"))

# classified is 'reversible'
library(magrittr)
c('a','b','c') %>%
classified(labels = c('A','B','C")) %>%
unclassified



classified.factor 9

classified.factor Create Classified from Factor

Description

Creates classified from factor. Uses classified.default, but supplies existing levels by default.

Usage
## S3 method for class 'factor'
classified(
x = character(),
levels,
labels,
exclude = NA,
ordered = is.ordered(x),
nmax = NA,

token = character(0),

Arguments
X see factor
levels passed to classified.default; defaults to levels(x)
labels passed to classified.default; must be same length as levels(after removing
values in exclude) and must not contain duplicates
exclude see factor
ordered see factor
nmax see factor
token informative label for messages
ignored
Value

*classified’ ’factor’

See Also

Other classified: [.classified(), [<-.classified(), [[.classified(), [[<-.classified()
as.integer.classified(),c.classified(), classified(), classified.classified(), classified.data.frame(),
classified.default(), classified.dvec(), desolve.classified(),unclassified(), unclassified.classified(
unclassified.data.frame()



10 decorate.character

Examples

a <- factor(c('c','b','a"))
levels(classified(a))
attr(classified(a), 'codelist')

decorate.character Decorate Character

Description

Treats x as a file path. By default, metadata is sought from a file with the same base but the *yaml’
extension.

Usage

## S3 method for class 'character'
decorate(

X!

meta = NULL,

read = getOption("yamlet_import"”, as.csv),

ext = getOption("yamlet_extension”, ".yaml")
)
Arguments
X file path for table data
meta file path for corresponding yamlet metadata, or a yamlet object
passed to read (if accepted) and to as_yamlet.character
read function or function name for reading x
ext file extension for metadata file, if relevant
Value

class ’decorated’ ’data.frame’

See Also

Other decorate: as_decorated(), as_decorated.default(), decorate(), decorate.data.frame(),
decorate.list(), decorate_groups(), decorate_groups.data.frame(), decorations(), decorations.data.framel

decorations_groups(), decorations_groups.data.frame(), group_by_decorations(), group_by_decorations.da
redecorate(), undecorate(), undecorate.default()

Other interface: canonical.decorated(), classified.data.frame(), decorate.data.frame(),
desolve.decorated(), enscript.default(), ggplot.decorated(), io_csv.character(), io_csv.data.frame(),
io_res.character(), io_res.decorated(), io_table.character(), io_table.data.frame(),
io_yamlet.character(), io_yamlet.data.frame(), is_parseable.default(),mimic.default(),

modify.default(), promote.list(), read_yamlet(), resolve.decorated(), selected.default(),
write_yamlet()



decorate.data.frame 11

Examples

# find data file
file <- system.file(package = 'yamlet', 'extdata', 'quinidine.csv')
file

# find metadata file
meta <- system.file(package = 'yamlet', 'extdata', 'quinidine.yaml')
meta

# decorate with explicit metadata reference
a <- decorate(file, meta)

# rely on default metadata path
b <- decorate(file)

# in this case: same
stopifnot(identical(a, b))

decorate.data.frame Decorate Data Frame

Description

Decorates a data.frame. Expects metadata in yamlet format, and loads it onto columns as attributes.

Usage

## S3 method for class 'data.frame'
decorate(

X,

meta = NULL,

persistence = getOption("yamlet_persistence”, TRUE)

)
Arguments
X data.frame
meta file path for corresponding yaml metadata, or a yamlet; an attempt will be made
to guess the file path if x has a ’source’ attribute
passed to decorate.list
persistence whether to coerce decorated columns to ’dvec’ where suitable method exists
Details

As of v0.8.8, the data.frame method for decorate() coerces affected columns using as_dvec if
persistence is true and a suitable method exists. ’vctrs’ methods are implemented for class dvec
to help attributes persist during tidyverse operations. Details are described in c. dvec. Disable this
functionality with options(yamlet_persistence = FALSE).



12 decorate_groups.data.frame

Value

class ’decorated’ ’data.frame’

See Also

decorate.list

Other interface: canonical.decorated(), classified.data.frame(), decorate.character(),
desolve.decorated(), enscript.default(), ggplot.decorated(), io_csv.character(), io_csv.data.frame(),
io_res.character(), io_res.decorated(), io_table.character(), io_table.data.frame(),
io_yamlet.character(), io_yamlet.data.frame(), is_parseable.default(),mimic.default(),
modify.default(), promote.list(), read_yamlet(), resolve.decorated(), selected.default(),
write_yamlet()

Other decorate: as_decorated(), as_decorated.default(), decorate(), decorate.character(),

decorate.list(), decorate_groups(), decorate_groups.data.frame(), decorations(),decorations.data.framel
decorations_groups(), decorations_groups.data.frame(), group_by_decorations(), group_by_decorations.da
redecorate(), undecorate(), undecorate.default()

Examples

# find data path

library(csv)
file <- system.file(package = 'yamlet', 'extdata', 'quinidine.csv')
file

dat <- as.csv(file) # dat now has 'source' attribute

# use source attribute to find metadata
a <- decorate(as.csv(file))

# supply metadata path (or something close) explicitly
b <- decorate(dat, meta = file)

# these are equivalent
stopifnot(identical(a, b))

decorate_groups.data.frame
Capture Groups as Decorations for Data Frame

Description

Captures groups as decorations for class "data.frame’. Creates a sequentially-valued integer attribute
with name ’groups’ for each corresponding column (after clearing all such existing designations).
It is an error if not all such columns are present. Defaults to groups(x). If no columns are specified
and x has no groups, x is returned with any existing column-level ’groups’ attributes removed.



decorations.data.frame 13

Usage

## S3 method for class 'data.frame'
decorate_groups(x, ...)

Arguments

X data.frame

unquoted names of columns to assign as groups; defaults to groups(x)

Value

same class as x

See Also

Other decorate: as_decorated(), as_decorated.default(), decorate(), decorate.character(),
decorate.data.frame(), decorate.list(), decorate_groups(), decorations(), decorations.data.frame(),
decorations_groups(), decorations_groups.data.frame(), group_by_decorations(), group_by_decorations.da
redecorate(), undecorate(), undecorate.default()

Examples

library(magrittr)

library(dplyr)

Theoph %>% decorate_groups(Subject, Time) %>% groups # nothing!

Theoph %>% decorate_groups(Subject, Time) %>% decorations # note well

Theoph %>% group_by(Subject, Time) %>% decorate_groups %>% decorations # same

decorations.data.frame
Retrieve Decorations for Data Frame

Description

Retrieve the decorations of a data.frame; i.e., the metadata used to decorate it. Returns a list with
same names as the data.frame. By default, ’class’ and ’level attributes are excluded from the result,
as you likely don’t want to manipulate these independently.

Usage

## S3 method for class 'data.frame'
decorations(
X’

D

exclude_attr = getOption("yamlet_exclude_attr”, c("class"”, "levels"))



14 decorations_groups.data.frame

Arguments

X data.frame
optional unquoted column names to limit output (passed to select)

exclude_attr attributes to remove from the result

Value

named list of class "yamlet’

See Also

Other decorate: as_decorated(), as_decorated.default(), decorate(), decorate.character(),
decorate.data.frame(), decorate.list(), decorate_groups(), decorate_groups.data.frame(),
decorations(), decorations_groups(), decorations_groups.data.frame(), group_by_decorations(),
group_by_decorations.data.frame(), redecorate(), undecorate(), undecorate.default()

Examples

# prepare a decorated data.frame
file <- system.file(package = 'yamlet', 'extdata', 'quinidine.csv')
x <- decorate(file)

# retrieve the decorations
decorations(x, Subject, time, conc)

decorations_groups.data. frame
Recover Groups Decorations for Data Frame

Description

Recovers groups decorations for class ’data.frame’. Seeks a sequentially-valued integer attribute
with name ’groups’ for each column, sorts these, and returns a character vector like group_vars(x).

Usage
## S3 method for class 'data.frame'
decorations_groups(x, ...)
Arguments
X data.frame
ignored
Value

character: names of groups columns



desolve.classified 15

See Also

Other decorate: as_decorated(), as_decorated.default(), decorate(), decorate.character(),
decorate.data.frame(), decorate.list(), decorate_groups(), decorate_groups.data.frame(),
decorations(), decorations.data.frame(), decorations_groups(), group_by_decorations(),
group_by_decorations.data.frame(), redecorate(), undecorate(), undecorate.default()

Examples

library(magrittr)

library(dplyr)

Theoph %<>% group_by(Subject, Time)
Theoph %>% group_vars

Theoph %>% decorations_groups # nothing!
Theoph %<>% decorate_groups

Theoph %>% decorations_groups # something!
Theoph %<>% ungroup

Theoph %>% group_vars # gone!

Theoph %<>% group_by(across(all_of(decorations_groups(.))))
Theoph %>% group_vars # recovered!

Theoph %<>% group_by_decorations

Theoph %>% group_vars # same

rm(Theoph)

desolve.classified Desolve Guide for Classified

Description

Un-resolves explicit usage of default key ’guide’ to implicit usage for class ’classified’. Calls
drop_title (a non-action by default), unclassified, followed by implicit_guide.

Usage
## S3 method for class 'classified'
desolve(x, ...)

Arguments
X classified

passed to drop_title, unclassified, and unclassified

Value

dvec



16 desolve.decorated

See Also

Other resolve: desolve(), desolve.data.frame(), desolve.decorated(), desolve.default(),
desolve.dvec(), resolve(), resolve.classified(), resolve.data.frame(), resolve.decorated(),
resolve.default(), resolve.dvec(), resolve.factor()

Other classified: [.classified(), [<-.classified(), [[.classified(), [[<-.classified(),
as.integer.classified(), c.classified(),classified(), classified.classified(), classified.data.frame(),
classified.default(), classified.dvec(),classified.factor(),unclassified(),unclassified.classified(),
unclassified.data.frame()

Examples

library(magrittr)
x <- as_dvec(
4:6,
guide = list(a = 4L, b = 5L, c = 6L)

# untouched
X %>% str

# resolved
X %>% resolve %>% str

# resolved and desolved
X %>% resolve %>% desolve %>% str

desolve.decorated Desolve Guide for Decorated

Description

Un-resolves explicit usage of default key "guide’ to implicit usage for ’decorated’ class. Simply
calls drop_title, unclassified, and implicit_guide.

Usage
## S3 method for class 'decorated'
desolve(x, ...)

Arguments
X decorated

passed to drop_title, unclassified, and implicit_guide

Value

decorated



enscript.default 17

See Also

Other resolve: desolve(), desolve.classified(), desolve.data.frame(), desolve.default(),
desolve.dvec(), resolve(), resolve.classified(), resolve.data.frame(), resolve.decorated(),
resolve.default(), resolve.dvec(), resolve.factor()

Other interface: canonical.decorated(), classified.data.frame(), decorate.character(),

decorate.data.frame(), enscript.default(), ggplot.decorated(), io_csv.character(),
io_csv.data.frame(), io_res.character(), io_res.decorated(), io_table.character(),

io_table.data.frame(), io_yamlet.character(), io_yamlet.data.frame(), is_parseable.default(),

mimic.default(), modify.default(), promote.list(), read_yamlet(), resolve.decorated(),
selected.default(), write_yamlet()

Examples
library(magrittr)
file <- system.file(package = 'yamlet', 'extdata', 'quinidine.csv')

x <- decorate(file)

# this is how Age, glyco, Race look when resolved
X %>% resolve %>% decorations(Age, glyco, Race)

# we can resolve two of them and then 'unresolve' all of them
x %>% resolve(glyco, Race) %>% desolve %>% decorations(Age, glyco, Race)

enscript.default Render Scripted Attributes of Indicated Components by Default

Description

Modifies specific attributes of each indicated element (all elements by default).

Usage

## Default S3 method:
enscript(
X,
open = getOption("yamlet_append_units_open”, " ("),
close = getOption("yamlet_append_units_close”, ")"),
format = getOption("yamlet_format”, ifelse(knitr::is_latex_output(), "latex”, "html"))

)

Arguments
X object
indicated columns, or name-value pairs; passed to resolve and selected
open character to precede units
close character to follow units

format one of ’latex’ or "html’



18 enscript.default

Details

The goal here is to render labels and units (where present) in a way that supports subscripts and
superscripts for both plots and tables in either html or latex contexts.

The current implementation writes an ’expression’ attribute to support figure labels and a ’title’
attribute to support tables. ggplot_build.decorated_ggplot will attempt to honor the expression
attribute if it exists. tablet.data.frame will attempt to honor the title attribute if it exists (see
Details there). An attempt is made to guess the output format (html or latex).

In addition to the ’title’ and ’expression’ attributes, enscript() writes a ’plotmath’ attribute to store
plotmath versions of factor levels, where present. By default, factor levels are converted to their
latex or html equivalents. However, ggplot_build.decorated_ggplot will use the plotmath ver-
sions of factor labels for legends and facet labels. If a ’plotmath’ attribute already exists, it is not
overwritten, preventing the same variable from being accidentally transformed twice.

To flexibly support latex, html, and plotmath, this function expects column labels and units to
be encoded in "spork" syntax. See as_spork for details and examples. Briefly, "_" precedes a
subscript, """ precedes a superscript, and "." is used to force the termination of either a superscript
or a subscript where necessary. For best results, units should be written using *, /, and *; e.g.
"kg*m”2/s"2" not "kg m2 s-2" (although both are valid: see is_parseable). A literal backslash

followed by "n" represents a newline. Greek letters are represented by their names, except where
names are enclosed in backticks.

enscript() always calls resolve() for the indicated columns, to make units present where appro-
priate.

Value

“enscript’, a superclass of x

See Also

Other enscript: enscript()

Other interface: canonical.decorated(), classified.data.frame(), decorate.character(),
decorate.data.frame(), desolve.decorated(), ggplot.decorated(), io_csv.character(),
io_csv.data.frame(), io_res.character(), io_res.decorated(), io_table.character(),
io_table.data.frame(), io_yamlet.character(), io_yamlet.data.frame(), is_parseable.default(),
mimic.default(),modify.default(), promote.list(), read_yamlet(), resolve.decorated(),
selected.default(), write_yamlet()

Examples

library(magrittr)
library(ggplot2)
x <- data.frame(time = 1:10, work = (1:10)*1.5)
X %<>% decorate(’
time: [ Time_elapsed, h ]
work: [ Work_total_observed, kg*m*2/s*2 ]
D)

X %>% decorations
x %>% ggplot(aes(time, work)) + geom_point()



get_labs 19

X %>% enscript %>% ggplot(aes(time, work)) + geom_point()
X %>% enscript(format = 'html') %$% work %>% attr('title')
testthat: :expect_equal(enscript(x), enscript(enscript(x)))

get_labs Get Labels

Description

Gets labels for a ggplot object. Not exported, to avoid confusion. Development version of gg-
plot2 implements new get_labs() interface. This function is an abstraction that supports new vs old
approaches, solely for yamlet’s interests. See https://github.com/tidyverse/ggplot2/pull/6078.

Usage
get_labs(plot)

Arguments
plot the ggplot
ggplot.decorated Create a New ggplot for a Decorated Data Frame
Description

Creates a new ggplot object for a decorated data.frame. This is the ggplot() method for class "dec-
orated’. It creates a ggplot object using the default method, but reclassifies it as ’decorated_ggplot’
so that a custom build method is invoked; see ggplot_build.decorated_ggplot.

Usage
## S3 method for class 'decorated'
ggplot(data, ...)

Arguments
data decorated, see decorate

passed to ggplot

Details

For fine control, you can switch between ’data.frame’ and ’decorated’ using as_decorated (sup-
plies null decorations) and as.data. frame (preserves decorations).



20 ggplot.decorated

Value

return value like ggplot but inheriting ’decorated_ggplot’

See Also

decorate resolve ggready

Other decorated_ggplot: data_context(), data_context.ggplot(), ggplot_build.decorated_ggplot(),
mapframe(), mapframe.default(), mapframe.ggplot()

Other interface: canonical.decorated(), classified.data.frame(), decorate.character(),
decorate.data.frame(), desolve.decorated(), enscript.default(), io_csv.character(),
io_csv.data.frame(), io_res.character(), io_res.decorated(), io_table.character(),
io_table.data.frame(), io_yamlet.character(), io_yamlet.data.frame(), is_parseable.default(),
mimic.default(), modify.default(), promote.list(), read_yamlet(), resolve.decorated(),
selected.default(), write_yamlet()

Examples

file <- system.file(package = 'yamlet', 'extdata', 'quinidine.csv')
library(ggplot2)

library(dplyr)

library(magrittr)

# par(ask = FALSE)

x <- decorate(file)
X %<>% filter(!is.na(conc))

# Manipulate class to switch among ggplot methods.
class(x)

class(data.frame(x))
class(as_decorated(data.frame(x)))

# The bare data.frame gives boring labels and un-ordered groups.

# (After ggplot2 v. 3.5.1 label attributes are honored as axis labels.)
map <- aes(x = time, y = conc, color = Heart)

data.frame(x) %>% ggplot(map) + geom_point()

# Decorated data.frame uses supplied labels.
# Notice CHF levels are still not ordered. (Moderate first.)
X %>% ggplot(map) + geom_point()

# If we resolve Heart, CHF levels are ordered.
X %>% resolve(Heart) %>% ggplot(map) + geom_point()

# We can map aesthetics as decorations.

X %>%
decorate('Heart: [ color: [gold, purple, greenll') %>%
ggplot(map) + geom_point()

# Colors are matched to particular levels. Purple drops out here:
X %>%
decorate('Heart: [ color: [gold, purple, greenl]') %>%



ggplot.decorated 21

filter(Heart != 'Moderate') %>%
ggplot(map) + geom_point()

# We can resolve other columns for a chance to enrich the output with units.
X %>%

resolve %>%

ggplot(map) + geom_point()

# Underscore and circumflex imply subscript and superscript:
X %>%
redecorate("conc: [ conc_serum, mg*xL*-1 1") %>%
ggplot(map) + geom_point()

# If we invoke enscript(), the subscripts and superscripts are rendered:
X %>%

redecorate(”conc: [ conc_serum, mg*xL*-1 1") %>%

redecorate("Heart: [ CHF*"\\x 1") %>%

enscript %>%

ggplot(map) + geom_point()

# Here we try a dataset with conditional labels and units.

file <- system.file(package = 'yamlet', 'extdata', 'phenobarb.csv')
x <- file %>% decorate %>% resolve

# Note that value has two elements for label, etc.

X %>% decorations(value)

# The print method defaults to the first, with warning.
map <- aes(x = time, y = value, color = event)

X %>% ggplot(map) + geom_point()
# If we subset appropriately, the relevant value is substituted.
x %>% filter(event == 'conc') %>% ggplot(map) + geom_point()

X %>% filter(event == 'conc') %>%
ggplot(aes(x = time, y = value, color

ApgarInd)) + geom_point()

X %>% filter(event == 'dose') %>%

ggplot(aes(x = time, y = value, color = Wt)) +
geom_point() +

scale_y_loglo() +
scale_color_gradientn(colours = rainbow(4))

ggplot_build.decorated_ggplot will attempt to honor coordinated aesthetics.

<- data.frame(x = c(1:6, 3:8), y = c(1:6,1:6), z = letters[c(1:6,1:6)1)

%<>% decorate('z: [color: ["red”, "blue", "green", "gold", "black”, "magenta”]]')
%<>% decorate('z: [fill: ["red"”, "blue", "green"”, "gold”, "black"”, "magenta”]]')
%<>% decorate('z: [shape: [20, 21, 22, 23, 24, 2511')

%<>% decorate('z: [linetype: [6, 5, 4, 3, 2, 111")

%<>% decorate('z: [alpha: [ .9, .8, .7, .6, .5, .411")

%<>% decorate('z: [size: [1, 1.5, 2, 2.5, 3, 3.5]11")

X X X X X X X H



22 group_by_decorations.data.frame

X %>% ggplot(aes(
X’ y!
color = z,
fill = z,
shape = z,
linetype = z,
alpha = z,
size = z,
)+
geom_point() +
geom_line(size = 1)

gg_new Detect Revised Label Strategy

Description
Detects the existence of qgplot’s updated label strategy after v. 3.5.1, e.g. ggplot2_3.5.1.9000. For
internal use to accommodate breaking changes.

Usage

gg_new()

group_by_decorations.data.frame
Groups by Decorations for Data Frame

Description

Invokes group_by using whatever groups are recovered by decorations_groups.

Usage
## S3 method for class 'data.frame'
group_by_decorations(x, ...)
Arguments
X grouped_df
ignored
Value

list of symbols



io_csv 23

See Also

Other decorate: as_decorated(), as_decorated.default(), decorate(), decorate.character(),
decorate.data.frame(), decorate.list(), decorate_groups(), decorate_groups.data.frame(),
decorations(), decorations.data.frame(), decorations_groups(), decorations_groups.data.frame(),
group_by_decorations(), redecorate(), undecorate(), undecorate.default()

Examples

library(magrittr)

library(dplyr)

Theoph %>% group_vars # nothing!

Theoph %<>% decorate_groups(Subject, Time)
Theoph %<>% group_by_decorations

Theoph %>% group_vars # something
rm(Theoph)

io_csv Import and Export Documented Tables as CSV

Description

Imports or exports documented tables as comma-separated variable. Generic, with methods that
extend as.csv.

Usage
io_csv(x, ...)
Arguments
X object
passed arguments
Value

See methods.

See Also

Otherio: io_csv.character(), io_csv.data.frame(), io_res(), io_res.character(), io_res.decorated(),
io_table(), io_table.character(),io_table.data.frame(), io_yamlet(), io_yamlet.character(),
io_yamlet.data.frame(), io_yamlet.yamlet()



24 i0_table

Examples

# generate some decorated data
file <- system.file(package = 'yamlet', 'extdata', 'quinidine.csv')
x <- decorate(file)

# get a temporary filepath
out <- file.path(tempdir(), 'out.csv')

# save file using io_csv (returns filepath)
foo <- io_csv(x, out)
stopifnot(identical (out, foo))

# read using this filepath
y <- io_csv(foo)

# lossless round-trip (ignoring source attribute)
attr(x, 'source') <- NULL
attr(y, 'source') <- NULL
stopifnot(identical(x, y))

io_table Import and Export Documented Tables

Description

Imports or exports documented tables. Generic, with methods that extend read. table andwrite. table.

Usage
io_table(x, ...)
Arguments
X object
passed arguments
Value

See methods.

See Also

Otherio: io_csv(), io_csv.character(),io_csv.data.frame(),io_res(), io_res.character(),
io_res.decorated(), io_table.character(), io_table.data.frame(), io_yamlet(), io_yamlet.character(),
io_yamlet.data.frame(), io_yamlet.yamlet ()



is_dvec

Examples

# generate some decorated data
file <- system.file(package = 'yamlet', 'extdata', 'quinidine.csv')
x <- decorate(file)

# get a temporary filepath
out <- file.path(tempdir(), 'out.tab')

# save file using io_table (returns filepath)
foo <- io_table(x, out)
stopifnot(identical(out, foo))

# read using this filepath
y <- io_table(foo, as.is = TRUE)

# lossless round-trip
attr(x, 'source') <- NULL
rownames(x) <- NULL
rownames(y) <- NULL
stopifnot(identical(x, y))

25

is_dvec Test if Class is dvec

Description

Tests whether x inherits *dvec’.

Usage

is_dvec(x)

Arguments

X object

Value

logical

Examples

is_dvec(1L)
is_dvec(as_dvec(1L))



26 mimic.default

mimic.default Try To Look Like Another Equal-length Variable

Description

Tries to mimic another vector or factor. If meaningful and possible, x acquires a guide attribute with
labels from corresponding values in y. Any codelist attribute is removed. No guide is created for
zero-length x. If x is a factor, unused levels are removed.

Usage
## Default S3 method:
mimic(x, y = X, ...)
Arguments
X vector-like
y vector-like, same length as x

passed to link{factor}

Value

same class as x

See Also

Other mimic: mimic(), mimic.classified()

Other interface: canonical.decorated(), classified.data.frame(), decorate.character(),
decorate.data.frame(), desolve.decorated(), enscript.default(), ggplot.decorated(),
io_csv.character(), io_csv.data.frame(), io_res.character(), io_res.decorated(), io_table.character(),
io_table.data.frame(), io_yamlet.character(), io_yamlet.data.frame(), is_parseable.default(),
modify.default(), promote.list(), read_yamlet(), resolve.decorated(), selected.default(),
write_yamlet()

Examples

library(magrittr)
library(dplyr)

let <- letters[1:5]
LET <- LETTERS[1:5]
int <- oL:4L

num <- as.numeric(int)
fac <- factor(let)

css <- classified(let)

# any of these can mimic any other
str(mimic(LET, let))
str(mimic(num, let))



modify.default 27

str(mimic(let, num))

# factors get a guide and classifieds get a named codelist
str(mimic(fac, int))
str(mimic(css, int))

# int can 'pick up' the factor levels as guide names
str(mimic(int, css))

if two variables mean essentially the same thing,
mimic lets you save space

<- data.frame(id = 1:2, ID = c('A','B"))

%<>% mutate(id = mimic(id, ID)) %>% select(-ID)

ID still available, in principle:
%>% as_decorated %>% resolve

X HF X X X X H H=

modify.default Modify Attributes of Indicated Components by Default

Description

Modifies the attributes of each indicated element (all elements by default). Tries to assign the value
of an expression to the supplied label, with existing attributes and the object itself (.) available as
arguments. Gives a warning if the supplied label is considered reserved. Intends to support anything
with one or more non-empty names.

Usage
## Default S3 method:
modify(
X’
.reserved = getOption("yamlet_modify_reserved”, c("class”, "levels"”, "labels”,
"names"))
)
Arguments
X object

indicated columns, or name-value pairs

.reserved reserved labels that warn on assignment



28 modify.default

Details

The name of the component itself is available during assignments as attribute 'name’ (any pre-
existing attribute 'name’ is temporarily masked). After all assignments are complete, the value of
’name’ is enforced at the object level. Thus, modify expressions can modify component names.

As currently implemented, the expression is evaluated by eval_tidy, with attributes supplied as
the data argument. Thus, names in the expression may be disambiguated, e.g. with .data. See
examples.

Value

same class as x

See Also
Other modify: modify(), named(), selected(), selected.default()

Other interface: canonical.decorated(), classified.data.frame(), decorate.character(),
decorate.data.frame(), desolve.decorated(), enscript.default(), ggplot.decorated(),
io_csv.character(), io_csv.data.frame(), io_res.character(), io_res.decorated(), io_table.character(),
io_table.data.frame(), io_yamlet.character(), io_yamlet.data.frame(), is_parseable.default(),
mimic.default(), promote.list(), read_yamlet(), resolve.decorated(), selected.default(),
write_yamlet()

Examples

library(magrittr)

library(dplyr)

file <- system.file(package = 'yamlet', 'extdata', 'quinidine.csv')
x <- decorate(file)

# modify selected columns
X %<>% modify(title = paste(label, '(', guide, ')'), time)
X %>% select(time, conc) %>% decorations

# modify (almost) all columns
X %<>% modify(title = paste(label, '(', guide, ')'), -Subject)
X %>% select(time, conc) %>% decorations

# use column itself
X %<>% modify( defined values™ = sum(!is.na(.)))
X %>% select(time) %>% decorations

# rename column
X %<>% modify(time, name = label)
names (x)

# warn if assignment fails

## Not run:

\donttest{

X %<>% modify(title = foo, time)
3



read_yamlet

## End(Not run)

# support lists
list(a =1, b =1:10, c = letters) %>%
modify(length = length(.), b:c)

X %<>% select(Subject) %>% modify(label = NULL, “defined values™ = NULL)

# distinguish data and environment
location <- 'environment'
x %>% modify(where = location) %>% decorations

29

x %>% modify(where = .env$location) %>% decorations
## Not run:
\donttest{
x%>% modify(where = .data$location) %>% decorations
}
## End(Not run)
x %>% modify(location = 'attributes', where = location) %>% decorations
x %>% modify(location = 'attributes', where = .data$location) %>% decorations
read_yamlet Read Yamlet
Description

Reads yamlet from file. Similar to io_yamlet.character but also reads text fragments.

Usage

read_yamlet(
X’

default_keys = getOption("yamlet_default_keys”, list("label”, "guide"))
)

Arguments

X file path for yamlet, or vector of yamlet in storage syntax

passed to as_yamlet

default_keys  character: default keys for the first n anonymous members of each element

Value

yamlet: a named list with default keys applied



30 resolve.decorated

See Also

decorate.data.frame

Other interface: canonical.decorated(), classified.data.frame(), decorate.character(),
decorate.data.frame(), desolve.decorated(), enscript.default(), ggplot.decorated(),
io_csv.character(), io_csv.data.frame(), io_res.character(), io_res.decorated(), io_table.character(),
io_table.data.frame(), io_yamlet.character(), io_yamlet.data.frame(), is_parseable.default(),
mimic.default(),modify.default(), promote.list(), resolve.decorated(), selected.default(),
write_yamlet()

Examples

library(csv)

file <- system.file(package = 'yamlet', 'extdata', 'quinidine.csv')
meta <- system.file(package 'yamlet', 'extdata', 'quinidine.yaml')
X <- as.csv(file)

y <- read_yamlet(meta)

x <- decorate(x, meta = y)

stopifnot(identical(x, decorate(file)))

resolve.decorated Resolve Guide for Decorated

Description

Resolves implicit usage of default key ’guide’ to explicit usage for decorated class. Calls explicit_guide,
classified, and make_title.

Usage
## S3 method for class 'decorated'
resolve(x, ...)

Arguments
X decorated

passed to explicit_guide, classified, and make_title

Value

decorated



undecorate.default 31

See Also

Other resolve: desolve(), desolve.classified(), desolve.data.frame(), desolve.decorated(),
desolve.default(), desolve.dvec(), resolve(), resolve.classified(), resolve.data.frame(),
resolve.default(), resolve.dvec(), resolve.factor()

Other interface: canonical.decorated(), classified.data.frame(), decorate.character(),
decorate.data.frame(), desolve.decorated(), enscript.default(), ggplot.decorated(),
io_csv.character(), io_csv.data.frame(), io_res.character(), io_res.decorated(), io_table.character(),
io_table.data.frame(), io_yamlet.character(), io_yamlet.data.frame(), is_parseable.default(),

mimic.default(),modify.default(), promote.list(), read_yamlet(), selected.default(),
write_yamlet()

Examples

# generate some decorated data

library(magrittr)

file <- system.file(package = 'yamlet', 'extdata', 'quinidine.csv')
x <- decorate(file)

x %>% decorations(Age, glyco)

# resolve everything, and show selected decorations
X %>% resolve %>% decorations(Age, glyco)

# resolve selectively, and show selected decorations
X %>% resolve(glyco) %>% decorations(Age, glyco)

undecorate.default Undecorate by Default

Description

Undecorates by default method. Calls type.convert to each element, with as.is = TRUE by de-

fault.
Usage

## Default S3 method:

undecorate(x, as.is = TRUE, ...)
Arguments

X object

as.is passed to type.convert

passed arguments

Value

a list-like object, typically data.frame



32 write_yamlet

See Also

Other decorate: as_decorated(), as_decorated.default(), decorate(), decorate.character(),
decorate.data.frame(), decorate.list(), decorate_groups(), decorate_groups.data.frame(),
decorations(), decorations.data.frame(), decorations_groups(), decorations_groups.data.frame(),
group_by_decorations(), group_by_decorations.data.frame(), redecorate(), undecorate()

Examples

file <- system.file(package = 'yamlet', 'extdata', 'xanomeline.csv.gz')
X <- io_csv(file)

head(decorations(x))

head(decorations(undecorate(x)))

write_yamlet Write Yamlet

Description

Writes yamlet to file. Similar to io_yamlet.yamlet but returns invisible storage format instead of
invisible storage location.

Usage
write_yamlet(
X,
con = stdout(),
eol = "\n",

useBytes = FALSE,

default_keys = getOption("yamlet_default_keys”, list("label”, "guide")),
fileEncoding = getOption("encoding”),

block = FALSE,

)
Arguments
X something that can be coerced to class ’yamlet’, like a yamlet object or a deco-
rated data.frame
con passed to writelLines
eol end-of-line; passed to writelLines as sep
useBytes passed to writelLines

default_keys  character: default keys for the first n anonymous members of each element
fileEncoding if con is character, passed to file as encoding
block whether to write block scalars

passed to as_yamlet and to as.character.yamlet



yamlet 33

Value

invisible character representation of yamlet (storage syntax)

See Also

decorate.list

Other interface: canonical.decorated(), classified.data.frame(), decorate.character(),
decorate.data.frame(), desolve.decorated(), enscript.default(), ggplot.decorated(),
io_csv.character(), io_csv.data.frame(), io_res.character(), io_res.decorated(), io_table.character(),
io_table.data.frame(), io_yamlet.character(), io_yamlet.data.frame(), is_parseable.default(),
mimic.default(), modify.default(), promote.list(), read_yamlet(), resolve.decorated(),
selected.default()

Examples
library(csv)
file <- system.file(package = 'yamlet', 'extdata', 'quinidine.csv')
meta <- system.file(package = 'yamlet', 'extdata', 'quinidine.yaml')

x <- as.csv(file)

y <- read_yamlet(meta)

x <- decorate(x, meta = y)

identical(x, decorate(file))

tmp <- tempfile()

write_yamlet(x, tmp)
stopifnot(identical(read_yamlet(meta), read_yamlet(tmp)))

yamlet yamlet: Versatile Curation of Table Metadata

Description

The yamlet package supports storage and retrieval of table metadata in yaml format. The most
important function is decorate.character: it lets you ’decorate’ your data by attaching attributes
retrieved from a file in yaml format. Typically your data will be of class ’data.frame’, but it could
be anything that is essentially a named list.

Storage Format

Storage format for *yamlet’ is a text file containing well-formed yaml. Technically, it is a map of
sequences. Though well formed, it need not be complete: attributes or their names may be missing.

In the simplest case, the data specification consists of a list of column (item) names, followed by
semicolons. Perhaps you only have one column:

mpg:

or maybe several:



34 yamlet

mpg:
cyl:
disp:

If you know descriptive labels for your columns, provide them (skip a space after the colon).

mpg: fuel economy
cyl: number of cylinders
disp: displacement

If you know units, create a sequence with square brackets.

mpg: [ fuel economy, miles/gallon ]
cyl: number of cylinders
disp: [ displacement , in*3 ]

If you are going to give units, you probably should give a key first, since the first anonymous element
is ’label’ by default, and the second is ’guide’. (A guide can be units for numeric variables, factor
levels/labels for categorical variables, or a format string for dates, times, and datetimes.) You could
give just the units but you would have to be specific:

mpg: [units: miles/gallon]

You can over-ride default keys by providing them in your data:

mpg: [units: miles/gallon]
_keys: [label, units]

Notice that stored yamlet can be informationally defective while syntactically correct. If you don’t
know an item key at the time of data authoring, you can omit it:

race: [race, [white: @, black: 1, 2, asian: 3 1]
Or perhaps you know the key but not the value:
race: [race, [white: @, black: 1, asian: 2, ? other 1]

Notice that race is factor-like; the factor sequence is nested within the attribute sequence. Equiva-
lently:

race: [label: race, guide: [white: @, black: 1, asian: 2, ? other 1]
If you have a codelist of length one, you should still enclose it in brackets:
sex: [Sex, [M1]]

To get started using yamlet, see ?as_yamlet.character and examples there. See also ?decorate
which adds yamlet values to corresponding items in your data. See also ?print.decorated which
uses label attributes, if present, as axis labels.

Note: the quinidine and phenobarb datasets in the examples are borrowed from nlme (?Quinidine,
?Phenobarb), with some reorganization.

Author(s)

Maintainer: Tim Bergsma <bergsmat@gmail.com>



yamlet_options 35

See Also

Useful links:

Report bugs at https://github.com/bergsmat/yamlet/issues

yamlet_options Display Global Yamlet Options

Description

Displays global yamlet options: those options whose names begin with “yamlet_’.

k)

yamlet_append_units_open: see append_units.default. Controls how labels are con-
structed for variables with ’units’ attributes. In brief, units are wrapped in parentheses, and
appended to the label.

yamlet_append_units_close: see append_units.default. Controls how labels are con-
structed for variables with 'units’ attributes. In brief, units are wrapped in parentheses, and
appended to the label.

yamlet_append_units_style: see append_units.default. Determines parsing as ’plot-
math’ or ’latex’, or ’plain’ for no parsing.

yamlet_append_units_target: see append_units.default. By default, append result is
assigned to attribute ’label’, but could be something else like ’title’.

yamlet_default_keys: see as_yamlet.character. The first two yaml attributes without
specified names are assumed to be ’label’ and "guide’.

yamlet_persistence: see decorate.list and as.integer.classified. By default, persis-
tence of column attributes is implemented by creating ’dvec’ objects (decorated vectors) using
vetrs methodology.

yamlet_cell_value: see as.data.frame.yamlet. Controls how cells are calculated when
converting yamlet (decorations) to a data.frame.

yamlet_import: see decorate.character. Controls how primary data is read from file (de-
fault: as.csv()).

yamlet_extension: see decorate.character. Controls what file extension is expected for
yaml metadata (default: *.yaml’)

yamlet_overwrite: see decorate.list. Controls whether existing decorations are overwrit-
ten.

yamlet_exclude_attr: see decorations.data.frame Controls what attributes are excluded
from display.

yamlet_with_title: see make_title.dvec and drop_title.dvec. For objects with (implied)
units attributes, titles are by default automatically created on resolve() and destroyed on des-
olve(). Interacts with yamlet_append_units_*.

yamlet_infer_guide: see explicit_guide.yamlet. Identifies the function that will be used
to reclassify “guide’ as something more explicit.


https://github.com/bergsmat/yamlet/issues

36 yamlet_options

* yamlet_explicit_guide_overwrite: see explicit_guide.data.frame and explicit_guide.dvec.
In the latter case, controls whether existing attributes are overwritten.

» yamlet_explicit_guide_simplify: explicit_guide.data.frame and explicit_guide.dvec.
Ordinarily, the *guide’ attribute is removed if something more useful can be inferred.

» yamlet_decorated_ggplot_search: see ggplot_build.decorated_ggplot. The build method
for decorated_ggplot populates axis labels by searching first for attributes named ’expression’,
’title’, and ’label’. Customizable.

« yamlet_decorated_ggplot_discrete: see ggplot_build.decorated_ggplot. Discrete aes-
thetics to map from data decorations where available.

« yamlet_decorated_ggplot_drop: see ggplot_build.decorated_ggplot. Should unused
factor levels be omitted from data-driven discrete scales?

» yamlet_ggready_parse: see ggready.data.frame, ggready.decorated. Whether to parse
axis labels. TRUE by default, but may be problematic if unintended.

* yamlet_modify_reserved: see modify.default. A list of reserved labels that warn on reas-
signment.

* yamlet_promote_reserved: see promote.list. Attributes to leave untouched when promot-
ing singularities.

* yamlet_promote: see filter.decorated. Whether to promote when filtering *decorated’.

» yamlet_as_units_preserve: as_units.dvec. What attributes to preserve when converting
dvec to units. Just ’label” by default. Assign options(yamlet_as_units_preserve = character(9))
to remove all.

» yamlet_print_simplify: print.yamlet. Whether to collapse interactively-displayed decora-
tions into a single line for lists that have no (nested) names and have the same length when
unlisted. True by default. Can be misleading for lists with fine detail, but in most cases fine
detail will likely have names.

* yamlet_format: enscript.default. Choice of "html’ or ’latex’, guessed if not supplied.

* yamlet_warn_conflicted: c.classified. Whether to warn when codelists for combined
classified factors have conflicting names (which will be dropped).

» yamlet_reconcile_attributes: c.classified. Whether to reconcile attribute lists when com-
bining classified. Set FALSE for old behavior (pre 1.3.1) of adopting attributes (other than
levels and codelists).

» yamlet_expand_codelist: explicit_guide.yamlet. If TRUE (default) an empty list as a
guide attribute is short-hand for sort(unique(x)).

» yamlet_collapse_codelist: implicit_guide.data.frame. An integer (default: Inf) giving
the maximum number of (un-named) codelist elements to store explicitly. Else, if sort (unique(x))
has exactly the same values as codelist, implicit_guide will substitute an empty list.
Usage

yamlet_options()

Value

list



yamlet_options

Examples

yamlet_options()

37



Index

* canonical
canonical.decorated, 6

x classified
as.integer.classified, 2
classified.default, 7
classified.factor, 9
desolve.classified, 15

x decorated_ggplot
ggplot.decorated, 19

+ decorated
as_categorical.decorated, 4

+ decorate
decorate.character, 10
decorate.data.frame, 11
decorate_groups.data.frame, 12
decorations.data.frame, 13
decorations_groups.data.frame, 14
group_by_decorations.data. frame,

22

undecorate.default, 31

* enscript
enscript.default, 17

* interface
canonical.decorated, 6
decorate.character, 10
decorate.data.frame, 11
desolve.decorated, 16
enscript.default, 17
ggplot.decorated, 19
mimic.default, 26
modify.default, 27
read_yamlet, 29
resolve.decorated, 30
write_yamlet, 32

* 1o
io_csv, 23
io_table, 24

* manip
as_categorical.decorated, 4

38

* mimic
mimic.default, 26
+ modify
modify.default, 27
* resolve

desolve.classified, 15

desolve.decorated, 16

resolve.decorated, 30
[.classified, 3,8, 9, 16
[.decorated, 4
[[.classified, 3,8, 9, 16
[[.decorated, 4

append_units.default, 35
as.character.yamlet, 32

as.csv, 23

as.data.frame, /19
as.data.frame.yamlet, 35
as.integer.classified, 2,8, 9, 16, 35
as_categorical, 4
as_categorical.decorated, 4
as_decorated, 10, 12-15, 19, 23, 32
as_decorated.default, 10, 12-15, 23, 32
as_dvec, 11

as_dvec.units, 5

as_spork, 18

as_units.dvec, 5, 36
as_yamlet, 29, 32
as_yamlet.character, 10, 35

c.classified, 3,8, 9, 16, 36

c.dvec, 11

canonical, 7

canonical.decorated, 6, 10, 12, 17, 18, 20,
26, 28, 30, 31, 33

canonical.yamlet, 7

classified, 3,8, 9, 16, 30

classified.classified, 3,8, 9, 16

classified.data.frame, 3, 7-10, 12, 1618,
20, 26, 28, 30, 31, 33



INDEX

classified.default, 3,7, 9, 16
classified.dvec, 3,8, 9, 16
classified.factor, 3,8, 9, 16

data_context, 20
data_context.ggplot, 20
decorate, 10, 12-15, 19, 23, 32
decorate.character, 7, 10, 12-15, 17, 18,
20, 23, 26, 28, 30-33, 35
decorate.data.frame, 7, 10, 11, 13-15, 17,
18, 20, 23, 26, 28, 30-33
decorate.list, 10-15, 23, 32, 33, 35
decorate_groups, 10, 12-15, 23, 32
decorate_groups.data.frame, 10, 12, 12,
14, 15,23, 32
decorations, 10, 12-15, 23, 32
decorations.data.frame, 10, 12, 13, 13, 15,
23,32,35
decorations_groups, 10, 12-15, 22, 23, 32
decorations_groups.data.frame, 10,
12-14, 14, 23, 32
desolve, 3, 16, 17, 31
desolve.classified, 3,8, 9, 15, 17, 31
desolve.data.frame, 16, 17, 31
desolve.decorated, 7, 10, 12, 16, 16, 18, 20,
26, 28, 30, 31, 33
desolve.default, 16, 17, 31
desolve.dvec, 16, 17, 31
drop_title, 15, 16
drop_title.dvec, 35

enscript, I8

enscript.default, 7, 10, 12, 17, 17, 20, 26,
28, 30, 31, 33, 36

eval_tidy, 28

explicit_guide, 30

explicit_guide.data.frame, 36

explicit_guide.dvec, 36

explicit_guide.yamlet, 35, 36

factor, 7-9
file, 32
filter.decorated, 36

get_labs, 19

gg_new, 22

ggplot, 19, 20

ggplot.decorated, 7, 10, 12, 17, 18, 19, 26,
28, 30, 31, 33

39

ggplot_build.decorated_ggplot, /18-20,
36

ggready.data.frame, 36

ggready.decorated, 36

group_by, 22

group_by_decorations, 10, 12-15, 23, 32

group_by_decorations.data.frame, 10,
12-15,22, 32

implicit_guide, 15, 16
implicit_guide.data.frame, 36
io_csv, 23, 24
io_csv.character, 7, 10, 12, 17, 18, 20, 23,
24, 26, 28, 30, 31, 33
io_csv.data.frame, 7, 10, 12, 17, 18, 20, 23
24, 26, 28, 30, 31, 33
io_res, 23, 24
io_res.character, 7, 10, 12, 17, 18, 20, 23,
24, 26, 28, 30, 31, 33
io_res.decorated, 7, 10, 12, 17, 18, 20, 23,
24, 26, 28, 30, 31, 33
io_table, 23,24
io_table.character, 7, 10, 12, 17, 18, 20,
23, 24, 26, 28, 30, 31, 33
io_table.data.frame, 7, 10, 12, 17, 18, 20,
23, 24, 26, 28, 30, 31, 33
io_yamlet, 23, 24
io_yamlet.character, 7, 10, 12, 17, 18, 20,
23, 24, 26, 28-31, 33
io_yamlet.data.frame, 7, 10, 12, 17, 18, 20,
23, 24, 26, 28, 30, 31, 33
io_yamlet.yamlet, 23, 24, 32
is_dvec, 25
is_parseable, I8
is_parseable.default, 7, 10, 12, 17, 18, 20,
26, 28, 30, 31, 33

make_title, 30
make_title.dvec, 35
mapframe, 20
mapframe.default, 20
mapframe.ggplot, 20
merge.decorated, 4
mimic, 26
mimic.classified, 26
mimic.default, 7, 10, 12, 17, 18, 20, 26, 28,

30, 31, 33
modify, 28



40

modify.default, 7, 10, 12, 17, 18, 20, 26, 27,
30, 31, 33, 36

named, 28

print.yamlet, 36
promote.list, 7, 10, 12, 17, 18, 20, 26, 28,
30, 31, 33, 36

read. table, 24
read_yamlet, 7, 10, 12, 17, 18, 20, 26, 28, 29,
31,33
redecorate, 10, 12-15, 23, 32
resolve, 16, 17, 31
resolve.classified, 16, 17, 31
resolve.data.frame, 16, 17, 31
resolve.decorated, 7, 10, 12, 16-18, 20, 26,
28, 30, 30, 33
resolve.default, 16, 17, 31
resolve.dvec, 16, 17, 31
resolve.factor, 16, 17, 31

select, 14

selected, 17, 28

selected.default, 7, 10, 12, 17, 18, 20, 26,
28, 30, 31, 33

tablet.data.frame, /8
type.convert, 31

unclassified, 3,8, 9, 15, 16
unclassified.classified, 3,8, 9, /
unclassified.data.frame, 3,8, 9, 1
undecorate, 10, 12-15, 23, 32
undecorate.default, 10, 12-15, 23, 31

6
6

write.table, 24

write_yamlet, 7, 10, 12, 17, 18, 20, 26, 28,
30, 31,32

writelLines, 32

yamlet, 33
yamlet-package (yamlet), 33
yamlet_options, 35

INDEX



	as.integer.classified
	as_categorical.decorated
	as_dvec.units
	as_units.dvec
	canonical.decorated
	classified.default
	classified.factor
	decorate.character
	decorate.data.frame
	decorate_groups.data.frame
	decorations.data.frame
	decorations_groups.data.frame
	desolve.classified
	desolve.decorated
	enscript.default
	get_labs
	ggplot.decorated
	gg_new
	group_by_decorations.data.frame
	io_csv
	io_table
	is_dvec
	mimic.default
	modify.default
	read_yamlet
	resolve.decorated
	undecorate.default
	write_yamlet
	yamlet
	yamlet_options
	Index

