
RFC 8805
A Format for Self-Published IP Geolocation Feeds

Abstract
This document records a format whereby a network operator can publish a mapping of IP
address prefixes to simplified geolocation information, colloquially termed a "geolocation feed".
Interested parties can poll and parse these feeds to update or merge with other geolocation data
sources and procedures. This format intentionally only allows specifying coarse-level location.

Some technical organizations operating networks that move from one conference location to the
next have already experimentally published small geolocation feeds.

This document describes a currently deployed format. At least one consumer (Google) has
incorporated these feeds into a geolocation data pipeline, and a significant number of ISPs are
using it to inform them where their prefixes should be geolocated.

Stream: Independent Submission
RFC: 8805
Category: Informational
Published: July 2020
ISSN: 2070-1721
Authors:

 E. Kline
Loon LLC

K. Duleba
Google

Z. Szamonek
Google Switzerland GmbH

S. Moser
Google Switzerland GmbH

W. Kumari
Google

Status of This Memo
This document is not an Internet Standards Track specification; it is published for informational
purposes.

This is a contribution to the RFC Series, independently of any other RFC stream. The RFC Editor
has chosen to publish this document at its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by the RFC Editor are not
candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8805

Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights
reserved.

Kline, et al. Informational Page 1

https://www.rfc-editor.org/rfc/rfc8805
https://www.rfc-editor.org/info/rfc8805

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document.

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Motivation

1.2. Requirements Notation

1.3. Assumptions about Publication

2. Self-Published IP Geolocation Feeds

2.1. Specification

2.1.1. Geolocation Feed Individual Entry Fields

2.1.1.1. IP Prefix

2.1.1.2. Alpha2code (Previously: 'country')

2.1.1.3. Region

2.1.1.4. City

2.1.1.5. Postal Code

2.1.2. Prefixes with No Geolocation Information

2.1.3. Additional Parsing Requirements

2.2. Examples

3. Consuming Self-Published IP Geolocation Feeds

3.1. Feed Integrity

3.2. Verification of Authority

3.3. Verification of Accuracy

3.4. Refreshing Feed Information

4. Privacy Considerations

5. Relation to Other Work

6. Security Considerations

7. Planned Future Work

RFC 8805 Self-Published IP Geofeeds July 2020

Kline, et al. Informational Page 2

https://trustee.ietf.org/license-info

1. Introduction

1.1. Motivation
Providers of services over the Internet have grown to depend on best-effort geolocation
information to improve the user experience. Locality information can aid in directing traffic to
the nearest serving location, inferring likely native language, and providing additional context
for services involving search queries.

When an ISP, for example, changes the location where an IP prefix is deployed, services that
make use of geolocation information may begin to suffer degraded performance. This can lead to
customer complaints, possibly to the ISP directly. Dissemination of correct geolocation data is
complicated by the lack of any centralized means to coordinate and communicate geolocation
information to all interested consumers of the data.

This document records a format whereby a network operator (an ISP, an enterprise, or any
organization that deems the geolocation of its IP prefixes to be of concern) can publish a
mapping of IP address prefixes to simplified geolocation information, colloquially termed a
"geolocation feed". Interested parties can poll and parse these feeds to update or merge with
other geolocation data sources and procedures.

This document describes a currently deployed format. At least one consumer (Google) has
incorporated these feeds into a geolocation data pipeline, and a significant number of ISPs are
using it to inform them where their prefixes should be geolocated.

8. Finding Self-Published IP Geolocation Feeds

8.1. Ad Hoc 'Well-Known' URIs

8.2. Other Mechanisms

9. IANA Considerations

10. References

10.1. Normative References

10.2. Informative References

Appendix A. Sample Python Validation Code

Acknowledgements

Authors' Addresses

RFC 8805 Self-Published IP Geofeeds July 2020

Kline, et al. Informational Page 3

1.2. Requirements Notation
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

As this is an informational document about a data format and set of operational practices
presently in use, requirements notation captures the design goals of the authors and
implementors.

1.3. Assumptions about Publication
This document describes both a format and a mechanism for publishing data, with the
assumption that the network operator to whom operational responsibility has been delegated for
any published data wishes it to be public. Any privacy risk is bounded by the format, and feed
publishers omit prefixes or any location field associated with a given prefix to further
protect privacy (see Section 2.1 for details about which fields exactly may be omitted). Feed
publishers assume the responsibility of determining which data should be made public.

This document does not incorporate a mechanism to communicate acceptable use policies for
self-published data. Publication itself is inferred as a desire by the publisher for the data to be
usefully consumed, similar to the publication of information like host names, cryptographic keys,
and Sender Policy Framework (SPF) records in the DNS.

2. Self-Published IP Geolocation Feeds
The format described here was developed to address the need of network operators to rapidly
and usefully share geolocation information changes. Originally, there arose a specific case where
regional operators found it desirable to publish location changes rather than wait for geolocation
algorithms to "learn" about them. Later, technical conferences that frequently use the same
network prefixes advertised from different conference locations experimented by publishing
geolocation feeds updated in advance of network location changes in order to better serve
conference attendees.

At its simplest, the mechanism consists of a network operator publishing a file (the "geolocation
feed") that contains several text entries, one per line. Each entry is keyed by a unique (within the
feed) IP prefix (or single IP address) followed by a sequence of network locality attributes to be
ascribed to the given prefix.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

MAY

[RFC7208]

2.1. Specification
For operational simplicity, every feed should contain data about all IP addresses the provider
wants to publish. Alternatives, like publishing only entries for IP addresses whose geolocation
data has changed or differ from current observed geolocation behavior "at large", are likely to be
too operationally complex.

RFC 8805 Self-Published IP Geofeeds July 2020

Kline, et al. Informational Page 4

Feeds use UTF-8 character encoding. Lines are delimited by a line break (CRLF)
(as specified in), and blank lines are ignored. Text from a '#' character to the end of the
current line is treated as a comment only and is similarly ignored (note that this does not strictly
follow , which has no support for comments).

Feed lines that are not comments be formatted as comma-separated values (CSV), as
described in . Each feed entry is a text line of the form:

The IP prefix field is , all others are (can be empty), though the requisite
minimum number of commas be present.

2.1.1. Geolocation Feed Individual Entry Fields

2.1.1.1. IP Prefix
: Each IP prefix field be either a single IP address or an IP prefix in Classless

Inter-Domain Routing (CIDR) notation in conformance with for IPv4 or
 for IPv6.

Examples include "192.0.2.1" and "192.0.2.0/24" for IPv4 and "2001:db8::1" and "2001:db8::/32" for
IPv6.

2.1.1.2. Alpha2code (Previously: 'country')
: The alpha2code field, if non-empty, be a 2-letter ISO country code conforming

to ISO 3166-1 alpha 2 . Parsers treat this field case-insensitively.

Earlier versions of this document called this field "country", and it may still be referred to as such
in existing tools/interfaces.

Parsers additionally support other 2-letter codes outside the ISO 3166-1 alpha 2 codes, such
as the 2-letter codes from the "Exceptionally reserved codes" set.

Examples include "US" for the United States, "JP" for Japan, and "PL" for Poland.

2.1.1.3. Region
: The region field, if non-empty, be an ISO region code conforming to ISO 3166-2

. Parsers treat this field case-insensitively.

Examples include "ID-RI" for the Riau province of Indonesia and "NG-RI" for the Rivers province
in Nigeria.

2.1.1.4. City
: The city field, if non-empty, be free UTF-8 text, excluding the comma (',')

character.

MUST [RFC3629]
[RFC4180]

[RFC4180]

MUST
[RFC4180]

ip_prefix,alpha2code,region,city,postal_code

REQUIRED OPTIONAL
SHOULD

REQUIRED MUST
Section 3.1 of [RFC4632]

Section 2.3 of [RFC4291]

OPTIONAL MUST
[ISO.3166.1alpha2] SHOULD

MAY
[ISO-GLOSSARY]

OPTIONAL MUST
[ISO.3166.2] SHOULD

OPTIONAL SHOULD

RFC 8805 Self-Published IP Geofeeds July 2020

Kline, et al. Informational Page 5

https://www.rfc-editor.org/rfc/rfc4632#section-3.1
https://www.rfc-editor.org/rfc/rfc4291#section-2.3

Examples include "Dublin", "New York", and "Sao Paulo" (specifically "S" followed by 0xc3, 0xa3,
and "o Paulo").

2.1.2. Prefixes with No Geolocation Information

Feed publishers may indicate that some IP prefixes should not have any associated geolocation
information. It may be that some prefixes under their administrative control are reserved, not
yet allocated or deployed, or in the process of being redeployed elsewhere and existing
geolocation information can, from the perspective of the publisher, safely be discarded.

This special case can be indicated by explicitly leaving blank all fields that specify any degree of
geolocation information. For example:

Historically, the user-assigned alpha2code identifier of "ZZ" has been used for this same purpose.
This is not necessarily preferred, and no specific interpretation of any of the other user-assigned
alpha2code codes is currently defined.

2.1.3. Additional Parsing Requirements

Feed entries that do not have an IP address or prefix field or have an IP address or prefix field
that fails to parse correctly be discarded.

While publishers follow for IPv6 prefix fields, consumers nevertheless
accept all valid string representations.

Duplicate IP address or prefix entries be considered an error, and consumer
implementations log the repeated entries for further administrative review. Publishers

 take measures to ensure there is one and only one entry per IP address and prefix.

Multiple entries that constitute nested prefixes are permitted. Consumers consider the
entry with the longest matching prefix (i.e., the "most specific") to be the best matching entry for
a given IP address.

Feed entries with non-empty optional fields that fail to parse, either in part or in full, be
discarded. It is that they also be logged for further administrative review.

2.1.1.5. Postal Code
, DEPRECATED: The postal code field, if non-empty, be free UTF-8 text,

excluding the comma (',') character. The use of this field is deprecated; consumers of feeds should
be able to parse feeds containing these fields, but new feeds include this field due to
the granularity of this information. See Section 4 for additional discussion.

Examples include "106-6126" (in Minato ward, Tokyo, Japan).

OPTIONAL SHOULD

SHOULD NOT

192.0.2.0/24,,,,
2001:db8:1::/48,,,,
2001:db8:2::/48,,,,

MUST

SHOULD [RFC5952] MUST

MUST
SHOULD

SHOULD

SHOULD

SHOULD
RECOMMENDED

RFC 8805 Self-Published IP Geofeeds July 2020

Kline, et al. Informational Page 6

2.2. Examples
Example entries using different IP address formats and describing locations at alpha2code
("country code"), region, and city granularity level, respectively:

The IETF network publishes geolocation information for the meeting prefixes, and generally just
comment out the last meeting information and append the new meeting information. The

, at the time of this writing, contains:

Experimentally, RIPE has published geolocation information for their conference network
prefixes, which change location in accordance with each new event. , at the time
of writing, contains:

Similarly, ICANN has published geolocation information for their portable conference network
prefixes. , at the time of writing, contains:

A longer example is the Google Corp Geofeed, which lists the geolocation
information for Google corporate offices.

At the time of writing, Google processes approximately 400 feeds comprising more than 750,000
IPv4 and IPv6 prefixes.

For compatibility with future additional fields, a parser ignore any fields beyond those it
expects. The data from fields that are expected and that parse successfully still be
considered valid. Per Section 7, no extensions to this format are in use nor are any anticipated.

MUST
MUST

192.0.2.0/25,US,US-AL,,
192.0.2.5,US,US-AL,Alabaster,
192.0.2.128/25,PL,PL-MZ,,
2001:db8::/32,PL,,,
2001:db8:cafe::/48,PL,PL-MZ,,

[GEO_IETF]

IETF106 (Singapore) - November 2019 - Singapore, SG
130.129.0.0/16,SG,SG-01,Singapore,
2001:df8::/32,SG,SG-01,Singapore,
31.133.128.0/18,SG,SG-01,Singapore,
31.130.224.0/20,SG,SG-01,Singapore,
2001:67c:1230::/46,SG,SG-01,Singapore,
2001:67c:370::/48,SG,SG-01,Singapore,

[GEO_RIPE_NCC]

193.0.24.0/21,NL,NL-ZH,Rotterdam,
2001:67c:64::/48,NL,NL-ZH,Rotterdam,

[GEO_ICANN]

199.91.192.0/21,MA,MA-07,Marrakech
2620:f:8000::/48,MA,MA-07,Marrakech

[GEO_Google]

RFC 8805 Self-Published IP Geofeeds July 2020

Kline, et al. Informational Page 7

3. Consuming Self-Published IP Geolocation Feeds
Consumers treat published feed data as a hint only and choose to prefer other sources
of geolocation information for any given IP prefix. Regardless of a consumer's stance with
respect to a given published feed, there are some points of note for sensibly and effectively
consuming published feeds.

3.4. Refreshing Feed Information
As a publisher can change geolocation data at any time and without notification, consumers

 implement mechanisms to periodically refresh local copies of feed data. In the absence
of any other refresh timing information, it is recommended that consumers refresh
feeds no less often than weekly and no more often than is likely to cause issues to the publisher.

MAY MAY

3.1. Feed Integrity
The integrity of published information be protected by securing the means of
publication, for example, by using HTTP over TLS . Whenever possible, consumers

 prefer retrieving geolocation feeds in a manner that guarantees integrity of the feed.

SHOULD
[RFC2818]

SHOULD

3.2. Verification of Authority
Consumers of self-published IP geolocation feeds perform some form of verification that
the publisher is in fact authoritative for the addresses in the feed. The actual means of
verification is likely dependent upon the way in which the feed is discovered. Ad hoc shared
URIs, for example, will likely require an ad hoc verification process. Future automated means of
feed discovery have an accompanying automated means of verification.

A consumer should only trust geolocation information for IP addresses or prefixes for which the
publisher has been verified as administratively authoritative. All other geolocation feed entries
should be ignored and logged for further administrative review.

SHOULD

SHOULD

3.3. Verification of Accuracy
Errors and inaccuracies may occur at many levels, and publication and consumption of
geolocation data are no exceptions. To the extent practical, consumers take steps to
verify the accuracy of published locality. Verification methodology, resolution of discrepancies,
and preference for alternative sources of data are left to the discretion of the feed consumer.

Consumers decide on discrepancy thresholds and flag, for administrative
review, feed entries that exceed set thresholds.

SHOULD

SHOULD SHOULD

SHOULD
SHOULD

RFC 8805 Self-Published IP Geofeeds July 2020

Kline, et al. Informational Page 8

5. Relation to Other Work
While not originally done in conjunction with the GEOPRIV Working Group , Richard
Barnes observed that this work is nevertheless consistent with that which the group has defined,
both for address format and for privacy. The data elements in geolocation feeds are equivalent to
the following XML structure ():

For feeds available via HTTPS (or HTTP), the publisher communicate refresh timing
information by means of the standard HTTP expiration model (). Specifically,
publishers can include either an Expires header () or a Cache-Control
header () specifying the max-age. Where practical, consumers
refresh feed information before the expiry time is reached.

MAY
[RFC7234]

Section 5.3 of [RFC7234]
Section 5.2 of [RFC7234] SHOULD

4. Privacy Considerations
Publishers of geolocation feeds are advised to have fully considered any and all privacy
implications of the disclosure of such information for the users of the described networks prior
to publication. A thorough comprehension of the security considerations (

) of a chosen geolocation policy is highly recommended, including an understanding of
some of the limitations of information obscurity () (see also).

As noted in Section 2.1, each location field in an entry is optional, in order to support expressing
only the level of specificity that the publisher has deemed acceptable. There is no requirement
that the level of specificity be consistent across all entries within a feed. In particular, the Postal
Code field (Section 2.1.1.5) can provide very specific geolocation, sometimes within a building.
Such specific Postal Code values be published in geofeeds without the express consent
of the parties being located.

Operators who publish geolocation information are strongly encouraged to inform affected
users/customers of this fact and of the potential privacy-related consequences and trade-offs.

Section 13 of
[RFC6772]

Section 13.5 of [RFC6772] [RFC6772]

MUST NOT

[GEOPRIV]

[RFC5139] [W3C.REC-xml-20081126]

<civicAddress>
 <country>country</country>
 <A1>region</A1>
 <A2>city</A2>
 <PC>postal_code</PC>
</civicAddress>

RFC 8805 Self-Published IP Geofeeds July 2020

Kline, et al. Informational Page 9

https://www.rfc-editor.org/rfc/rfc7234#section-5.3
https://www.rfc-editor.org/rfc/rfc7234#section-5.2
https://www.rfc-editor.org/rfc/rfc6772#section-13
https://www.rfc-editor.org/rfc/rfc6772#section-13.5

Providing geolocation information to this granularity is equivalent to the following privacy
policy (the definition of the 'building' level of disclosure):Section 6.5.1 of [RFC6772]

<ruleset>
 <rule>
 <conditions/>
 <actions/>
 <transformations>
 <provide-location profile="civic-transformation">
 <provide-civic>building</provide-civic>
 </provide-location>
 </transformations>
 </rule>
</ruleset>

6. Security Considerations
As there is no true security in the obscurity of the location of any given IP address, self-
publication of this data fundamentally opens no new attack vectors. For publishers, self-
published data may increase the ease with which such location data might be exploited (it can,
for example, make easy the discovery of prefixes populated with customers as distinct from
prefixes not generally in use).

For consumers, feed retrieval processes may receive input from potentially hostile sources (e.g.,
in the event of hijacked traffic). As such, proper input validation and defense measures be
taken (see the discussion in Section 3.1).

Similarly, consumers who do not perform sufficient verification of published data bear the same
risks as from other forms of geolocation configuration errors (see the discussion in Sections 3.2
and 3.3).

Validation of a feed's contents includes verifying that the publisher is authoritative for the IP
prefixes included in the feed. Failure to verify IP prefix authority would, for example, allow ISP
Bob to make geolocation statements about IP space held by ISP Alice. At this time, only out-of-
band verification methods are implemented (i.e., an ISP's feed may be verified against publicly
available IP allocation data).

MUST

7. Planned Future Work
In order to more flexibly support future extensions, use of a more expressive feed format has
been suggested. Use of JavaScript Object Notation (JSON) , specifically, has been
discussed. However, at the time of writing, no such specification nor implementation exists.
Nevertheless, work on extensions is deferred until a more suitable format has been selected.

[RFC8259]

RFC 8805 Self-Published IP Geofeeds July 2020

Kline, et al. Informational Page 10

https://www.rfc-editor.org/rfc/rfc6772#section-6.5.1

[ISO.3166.1alpha2]

8. Finding Self-Published IP Geolocation Feeds
The issue of finding, and later verifying, geolocation feeds is not formally specified in this
document. At this time, only ad hoc feed discovery and verification has a modicum of established
practice (see below); discussion of other mechanisms has been removed for clarity.

8.1. Ad Hoc 'Well-Known' URIs
To date, geolocation feeds have been shared informally in the form of HTTPS URIs exchanged in
email threads. Three example URIs (, , and) describe
networks that change locations periodically, the operators and operational practices of which are
well known within their respective technical communities.

The contents of the feeds are verified by a similarly ad hoc process, including:

personal knowledge of the parties involved in the exchange and
comparison of feed-advertised prefixes with the BGP-advertised prefixes of Autonomous
System Numbers known to be operated by the publishers.

Ad hoc mechanisms, while useful for early experimentation by producers and consumers, are
unlikely to be adequate for long-term, widespread use by multiple parties. Future versions of any
such self-published geolocation feed mechanism address scalability concerns by
defining a means for automated discovery and verification of operational authority of advertised
prefixes.

8.2. Other Mechanisms
Previous versions of this document referenced use of the WHOIS service operated by
Regional Internet Registries (RIRs), as well as possible DNS-based schemes to discover and
validate geofeeds. To the authors' knowledge, support for such mechanisms has never been
implemented, and this speculative text has been removed to avoid ambiguity.

9. IANA Considerations
This document has no IANA actions.

10. References

10.1. Normative References

The authors are planning on writing a document describing such a new format. This document
describes a currently deployed and used format. Given the extremely limited extensibility of the
present format no extensions to it are anticipated. Extensibility requirements are instead
expected to be integral to the development of a new format.

[GEO_IETF] [GEO_RIPE_NCC] [GEO_ICANN]

•
•

SHOULD

[RFC3912]

RFC 8805 Self-Published IP Geofeeds July 2020

Kline, et al. Informational Page 11

[ISO.3166.2]

[RFC2119]

[RFC3629]

[RFC4180]

[RFC4291]

[RFC4632]

[RFC5952]

[RFC7234]

[RFC8174]

[W3C.REC-xml-20081126]

[GEOPRIV]

[GEO_Google]

, ,
.

, ,
.

, , ,
, , March 1997,
.

, , , ,
, November 2003,

.

,
, , , October 2005,

.

, , ,
, February 2006, .

,
, , , ,

August 2006, .

,
, , , August 2010,

.

,
, , , June 2014,

.

, ,
, , , May 2017,

.

,
,

, November 2008,
.

10.2. Informative References

, , ,
.

, ,
.

ISO "ISO 3166-1 decoding table" <http://www.iso.org/iso/home/standards/
country_codes/iso-3166-1_decoding_table.htm>

ISO "ISO 3166-2:2007" <http://www.iso.org/iso/home/standards/
country_codes.htm#2012_iso3166-2>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Yergeau, F. "UTF-8, a transformation format of ISO 10646" STD 63 RFC 3629
DOI 10.17487/RFC3629 <https://www.rfc-editor.org/info/
rfc3629>

Shafranovich, Y. "Common Format and MIME Type for Comma-Separated
Values (CSV) Files" RFC 4180 DOI 10.17487/RFC4180 <https://
www.rfc-editor.org/info/rfc4180>

Hinden, R. and S. Deering "IP Version 6 Addressing Architecture" RFC 4291 DOI
10.17487/RFC4291 <https://www.rfc-editor.org/info/rfc4291>

Fuller, V. and T. Li "Classless Inter-domain Routing (CIDR): The Internet Address
Assignment and Aggregation Plan" BCP 122 RFC 4632 DOI 10.17487/RFC4632

<https://www.rfc-editor.org/info/rfc4632>

Kawamura, S. and M. Kawashima "A Recommendation for IPv6 Address Text
Representation" RFC 5952 DOI 10.17487/RFC5952 <https://
www.rfc-editor.org/info/rfc5952>

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke, Ed. "Hypertext Transfer
Protocol (HTTP/1.1): Caching" RFC 7234 DOI 10.17487/RFC7234
<https://www.rfc-editor.org/info/rfc7234>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Bray, T., Paoli, J., Sperberg-McQueen, M., Maler, E., and F. Yergeau
"Extensible Markup Language (XML) 1.0 (Fifth Edition)" World Wide Web
Consortium Recommendation REC-xml-20081126 <http://
www.w3.org/TR/2008/REC-xml-20081126>

IETF "Geographic Location/Privacy (geopriv)" <http://datatracker.ietf.org/wg/
geopriv/>

Google, LLC "Google Corp Geofeed" <https://www.gstatic.com/geofeed/
corp_external>

RFC 8805 Self-Published IP Geofeeds July 2020

Kline, et al. Informational Page 12

http://www.iso.org/iso/home/standards/country_codes/iso-3166-1_decoding_table.htm
http://www.iso.org/iso/home/standards/country_codes/iso-3166-1_decoding_table.htm
http://www.iso.org/iso/home/standards/country_codes.htm#2012_iso3166-2
http://www.iso.org/iso/home/standards/country_codes.htm#2012_iso3166-2
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc4180
https://www.rfc-editor.org/info/rfc4180
https://www.rfc-editor.org/info/rfc4291
https://www.rfc-editor.org/info/rfc4632
https://www.rfc-editor.org/info/rfc5952
https://www.rfc-editor.org/info/rfc5952
https://www.rfc-editor.org/info/rfc7234
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
http://www.w3.org/TR/2008/REC-xml-20081126
http://www.w3.org/TR/2008/REC-xml-20081126
http://datatracker.ietf.org/wg/geopriv/
http://datatracker.ietf.org/wg/geopriv/
https://www.gstatic.com/geofeed/corp_external
https://www.gstatic.com/geofeed/corp_external

[GEO_ICANN]

[GEO_IETF]

[GEO_RIPE_NCC]

[IPADDR_PY]

[ISO-GLOSSARY]

[RFC2818]

[RFC3912]

[RFC5139]

[RFC6772]

[RFC7208]

[RFC8259]

, ,
.

, ,
.

, ,
.

, , ,
.

, , ,
.

, , , , May 2000,
.

, , , ,
September 2004, .

,
, ,

, February 2008, .

,
, , ,

January 2013, .

,
, , , April 2014,

.

, ,
, , , December 2017,

.

Appendix A. Sample Python Validation Code
Included here is a simple format validator in Python for self-published ipgeo feeds. This tool
reads CSV data in the self-published ipgeo feed format from the standard input and performs
basic validation. It is intended for use by feed publishers before launching a feed. Note that this
validator does not verify the uniqueness of every IP prefix entry within the feed as a whole but
only verifies the syntax of each single line from within the feed. A complete validator also
ensure IP prefix uniqueness.

ICANN "ICANN Meeting Geolocation Data" <https://meeting-services.icann.org/
geo/google.csv>

Kumari, W. "IETF Meeting Network Geolocation Data" <https://noc.ietf.org/geo/
google.csv>

Schepers, M. "RIPE NCC Meeting Geolocation Data" <https://
meetings.ripe.net/geo/google.csv>

Shields, M. and P. Moody "Google's Python IP address manipulation library"
<http://code.google.com/p/ipaddr-py/>

ISO "Glossary for ISO 3166" <https://www.iso.org/glossary-for-
iso-3166.html>

Rescorla, E. "HTTP Over TLS" RFC 2818 DOI 10.17487/RFC2818
<https://www.rfc-editor.org/info/rfc2818>

Daigle, L. "WHOIS Protocol Specification" RFC 3912 DOI 10.17487/RFC3912
<https://www.rfc-editor.org/info/rfc3912>

Thomson, M. and J. Winterbottom "Revised Civic Location Format for Presence
Information Data Format Location Object (PIDF-LO)" RFC 5139 DOI 10.17487/
RFC5139 <https://www.rfc-editor.org/info/rfc5139>

Schulzrinne, H., Ed., Tschofenig, H., Ed., Cuellar, J., Polk, J., Morris, J., and M.
Thomson "Geolocation Policy: A Document Format for Expressing Privacy
Preferences for Location Information" RFC 6772 DOI 10.17487/RFC6772

<https://www.rfc-editor.org/info/rfc6772>

Kitterman, S. "Sender Policy Framework (SPF) for Authorizing Use of Domains
in Email, Version 1" RFC 7208 DOI 10.17487/RFC7208 <https://
www.rfc-editor.org/info/rfc7208>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"
STD 90 RFC 8259 DOI 10.17487/RFC8259 <https://www.rfc-
editor.org/info/rfc8259>

MUST

RFC 8805 Self-Published IP Geofeeds July 2020

Kline, et al. Informational Page 13

https://meeting-services.icann.org/geo/google.csv
https://meeting-services.icann.org/geo/google.csv
https://noc.ietf.org/geo/google.csv
https://noc.ietf.org/geo/google.csv
https://meetings.ripe.net/geo/google.csv
https://meetings.ripe.net/geo/google.csv
http://code.google.com/p/ipaddr-py/
https://www.iso.org/glossary-for-iso-3166.html
https://www.iso.org/glossary-for-iso-3166.html
https://www.rfc-editor.org/info/rfc2818
https://www.rfc-editor.org/info/rfc3912
https://www.rfc-editor.org/info/rfc5139
https://www.rfc-editor.org/info/rfc6772
https://www.rfc-editor.org/info/rfc7208
https://www.rfc-editor.org/info/rfc7208
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259

The main source file "ipgeo_feed_validator.py" follows. It requires use of the open source ipaddr
Python library for IP address and CIDR parsing and validation .[IPADDR_PY]

RFC 8805 Self-Published IP Geofeeds July 2020

Kline, et al. Informational Page 14

<CODE BEGINS>
#!/usr/bin/python
#
Copyright (c) 2012 IETF Trust and the persons identified as
authors of the code. All rights reserved. Redistribution and use
in source and binary forms, with or without modification, is
permitted pursuant to, and subject to the license terms contained
in, the Simplified BSD License set forth in Section 4.c of the
IETF Trust's Legal Provisions Relating to IETF
Documents (http://trustee.ietf.org/license-info).

"""Simple format validator for self-published ipgeo feeds.

This tool reads CSV data in the self-published ipgeo feed format
from the standard input and performs basic validation. It is
intended for use by feed publishers before launching a feed.
"""

import csv
import ipaddr
import re
import sys

class IPGeoFeedValidator(object):
 def __init__(self):
 self.prefixes = {}
 self.line_number = 0
 self.output_log = {}
 self.SetOutputStream(sys.stderr)

 def Validate(self, feed):
 """Check validity of an IPGeo feed.

 Args:
 feed: iterable with feed lines
 """

 for line in feed:
 self._ValidateLine(line)

 def SetOutputStream(self, logfile):
 """Controls where the output messages go do (STDERR by default).

 Use None to disable logging.

 Args:
 logfile: a file object (e.g., sys.stdout) or None.
 """
 self.output_stream = logfile

 def CountErrors(self, severity):
 """How many ERRORs or WARNINGs were generated."""
 return len(self.output_log.get(severity, []))

 ##
 def _ValidateLine(self, line):

RFC 8805 Self-Published IP Geofeeds July 2020

Kline, et al. Informational Page 15

 line = line.rstrip('\r\n')
 self.line_number += 1
 self.line = line.split('#')[0]
 self.is_correct_line = True

 if self._ShouldIgnoreLine(line):
 return

 fields = [field for field in csv.reader([line])][0]

 self._ValidateFields(fields)
 self._FlushOutputStream()

 def _ShouldIgnoreLine(self, line):
 line = line.strip()
 if line.startswith('#'):
 return True
 return len(line) == 0

 ##
 def _ValidateFields(self, fields):
 assert(len(fields) > 0)

 is_correct = self._IsIPAddressOrPrefixCorrect(fields[0])

 if len(fields) > 1:
 if not self._IsAlpha2CodeCorrect(fields[1]):
 is_correct = False

 if len(fields) > 2 and not self._IsRegionCodeCorrect(fields[2]):
 is_correct = False

 if len(fields) != 5:
 self._ReportWarning('5 fields were expected (got %d).'
 % len(fields))

 ##
 def _IsIPAddressOrPrefixCorrect(self, field):
 if '/' in field:
 return self._IsCIDRCorrect(field)
 return self._IsIPAddressCorrect(field)

 def _IsCIDRCorrect(self, cidr):
 try:
 ipprefix = ipaddr.IPNetwork(cidr)
 if ipprefix.network._ip != ipprefix._ip:
 self._ReportError('Incorrect IP Network.')
 return False
 if ipprefix.is_private:
 self._ReportError('IP Address must not be private.')
 return False
 except:
 self._ReportError('Incorrect IP Network.')
 return False
 return True

 def _IsIPAddressCorrect(self, ipaddress):
 try:

RFC 8805 Self-Published IP Geofeeds July 2020

Kline, et al. Informational Page 16

 ip = ipaddr.IPAddress(ipaddress)
 except:
 self._ReportError('Incorrect IP Address.')
 return False
 if ip.is_private:
 self._ReportError('IP Address must not be private.')
 return False
 return True

 ##
 def _IsAlpha2CodeCorrect(self, alpha2code):
 if len(alpha2code) == 0:
 return True
 if len(alpha2code) != 2 or not alpha2code.isalpha():
 self._ReportError(
 'Alpha 2 code must be in the ISO 3166-1 alpha 2 format.')
 return False
 return True

 def _IsRegionCodeCorrect(self, region_code):
 if len(region_code) == 0:
 return True
 if '-' not in region_code:
 self._ReportError('Region code must be in ISO 3166-2 format.')
 return False

 parts = region_code.split('-')
 if not self._IsAlpha2CodeCorrect(parts[0]):
 return False
 return True

 ##
 def _ReportError(self, message):
 self._ReportWithSeverity('ERROR', message)

 def _ReportWarning(self, message):
 self._ReportWithSeverity('WARNING', message)

 def _ReportWithSeverity(self, severity, message):
 self.is_correct_line = False
 output_line = '%s: %s\n' % (severity, message)

 if severity not in self.output_log:
 self.output_log[severity] = []
 self.output_log[severity].append(output_line)

 if self.output_stream is not None:
 self.output_stream.write(output_line)

 def _FlushOutputStream(self):
 if self.is_correct_line: return
 if self.output_stream is None: return

 self.output_stream.write('line %d: %s\n\n'
 % (self.line_number, self.line))

##

RFC 8805 Self-Published IP Geofeeds July 2020

Kline, et al. Informational Page 17

def main():
 feed_validator = IPGeoFeedValidator()
 feed_validator.Validate(sys.stdin)

 if feed_validator.CountErrors('ERROR'):
 sys.exit(1)

if __name__ == '__main__':
 main()

<CODE ENDS>

RFC 8805 Self-Published IP Geofeeds July 2020

Kline, et al. Informational Page 18

A unit test file, "ipgeo_feed_validator_test.py" is provided as well. It provides basic test coverage
of the code above, though does not test correct handling of non-ASCII UTF-8 strings.

RFC 8805 Self-Published IP Geofeeds July 2020

Kline, et al. Informational Page 19

<CODE BEGINS>
#!/usr/bin/python
#
Copyright (c) 2012 IETF Trust and the persons identified as
authors of the code. All rights reserved. Redistribution and use
in source and binary forms, with or without modification, is
permitted pursuant to, and subject to the license terms contained
in, the Simplified BSD License set forth in Section 4.c of the
IETF Trust's Legal Provisions Relating to IETF
Documents (http://trustee.ietf.org/license-info).

import sys
from ipgeo_feed_validator import IPGeoFeedValidator

class IPGeoFeedValidatorTest(object):
 def __init__(self):
 self.validator = IPGeoFeedValidator()
 self.validator.SetOutputStream(None)
 self.successes = 0
 self.failures = 0

 def Run(self):
 self.TestFeedLine('# asdf', 0, 0)
 self.TestFeedLine(' ', 0, 0)
 self.TestFeedLine('', 0, 0)

 self.TestFeedLine('asdf', 1, 1)
 self.TestFeedLine('asdf,US,,,', 1, 0)
 self.TestFeedLine('aaaa::,US,,,', 0, 0)
 self.TestFeedLine('zzzz::,US', 1, 1)
 self.TestFeedLine(',US,,,', 1, 0)
 self.TestFeedLine('55.66.77', 1, 1)
 self.TestFeedLine('55.66.77.888', 1, 1)
 self.TestFeedLine('55.66.77.asdf', 1, 1)

 self.TestFeedLine('2001:db8:cafe::/48,PL,PL-MZ,,02-784', 0, 0)
 self.TestFeedLine('2001:db8:cafe::/48', 0, 1)

 self.TestFeedLine('55.66.77.88,PL', 0, 1)
 self.TestFeedLine('55.66.77.88,PL,,,', 0, 0)
 self.TestFeedLine('55.66.77.88,,,,', 0, 0)
 self.TestFeedLine('55.66.77.88,ZZ,,,', 0, 0)
 self.TestFeedLine('55.66.77.88,US,,,', 0, 0)
 self.TestFeedLine('55.66.77.88,USA,,,', 1, 0)
 self.TestFeedLine('55.66.77.88,99,,,', 1, 0)

 self.TestFeedLine('55.66.77.88,US,US-CA,,', 0, 0)
 self.TestFeedLine('55.66.77.88,US,USA-CA,,', 1, 0)
 self.TestFeedLine('55.66.77.88,USA,USA-CA,,', 2, 0)

 self.TestFeedLine('55.66.77.88,US,US-CA,Mountain View,', 0, 0)
 self.TestFeedLine('55.66.77.88,US,US-CA,Mountain View,94043',
 0, 0)
 self.TestFeedLine('55.66.77.88,US,US-CA,Mountain View,94043,'
 '1600 Ampthitheatre Parkway', 0, 1)

 self.TestFeedLine('55.66.77.0/24,US,,,', 0, 0)

RFC 8805 Self-Published IP Geofeeds July 2020

Kline, et al. Informational Page 20

 self.TestFeedLine('55.66.77.88/24,US,,,', 1, 0)
 self.TestFeedLine('55.66.77.88/32,US,,,', 0, 0)
 self.TestFeedLine('55.66.77/24,US,,,', 1, 0)
 self.TestFeedLine('55.66.77.0/35,US,,,', 1, 0)

 self.TestFeedLine('172.15.30.1,US,,,', 0, 0)
 self.TestFeedLine('172.28.30.1,US,,,', 1, 0)
 self.TestFeedLine('192.167.100.1,US,,,', 0, 0)
 self.TestFeedLine('192.168.100.1,US,,,', 1, 0)
 self.TestFeedLine('10.0.5.9,US,,,', 1, 0)
 self.TestFeedLine('10.0.5.0/24,US,,,', 1, 0)
 self.TestFeedLine('fc00::/48,PL,,,', 1, 0)
 self.TestFeedLine('fe00::/48,PL,,,', 0, 0)

 print ('%d tests passed, %d failed'
 % (self.successes, self.failures))

 def IsOutputLogCorrectAtSeverity(self, severity,
 expected_msg_count):
 msg_count = self.validator.CountErrors(severity)

 if msg_count != expected_msg_count:
 print ('TEST FAILED: %s\nexpected %d %s[s], observed %d\n%s\n'
 % (self.validator.line, expected_msg_count, severity,
 msg_count,
 str(self.validator.output_log[severity])))
 return False
 return True

 def IsOutputLogCorrect(self, new_errors, new_warnings):
 retval = True

 if not self.IsOutputLogCorrectAtSeverity('ERROR', new_errors):
 retval = False
 if not self.IsOutputLogCorrectAtSeverity('WARNING',
 new_warnings):
 retval = False

 return retval

 def TestFeedLine(self, line, warning_count, error_count):
 self.validator.output_log['WARNING'] = []
 self.validator.output_log['ERROR'] = []
 self.validator._ValidateLine(line)

 if not self.IsOutputLogCorrect(warning_count, error_count):
 self.failures += 1
 return False

 self.successes += 1
 return True

if __name__ == '__main__':
 IPGeoFeedValidatorTest().Run()

<CODE ENDS>

RFC 8805 Self-Published IP Geofeeds July 2020

Kline, et al. Informational Page 21

Acknowledgements
The authors would like to express their gratitude to reviewers and early implementors, including
but not limited to , , , , ,

, , , , ,
, , , , and .

In particular, and contributed substantial review, text, and
advice.

Mikael Abrahamsson Andrew Alston Ray Bellis John Bond Alissa Cooper
Andras Erdei Stephen Farrell Marco Hogewoning Mike Joseph Maciej Kuzniar George
Michaelson Menno Schepers Justyna Sidorska Pim van Pelt Bjoern A. Zeeb

Richard L. Barnes Andy Newton

Authors' Addresses
Erik Kline
Loon LLC
1600 Amphitheatre Parkway

, Mountain View CA 94043
United States of America

 ek@loon.com Email:

Krzysztof Duleba
Google
1600 Amphitheatre Parkway

, Mountain View CA 94043
United States of America

 kduleba@google.com Email:

Zoltan Szamonek
Google Switzerland GmbH
Brandschenkestrasse 110
CH- 8002 Zürich
Switzerland

 zszami@google.com Email:

Stefan Moser
Google Switzerland GmbH
Brandschenkestrasse 110
CH- 8002 Zürich
Switzerland

 smoser@google.com Email:

RFC 8805 Self-Published IP Geofeeds July 2020

Kline, et al. Informational Page 22

mailto:ek@loon.com
mailto:kduleba@google.com
mailto:zszami@google.com
mailto:smoser@google.com

Warren Kumari
Google
1600 Amphitheatre Parkway

, Mountain View CA 94043
United States of America

 warren@kumari.net Email:

RFC 8805 Self-Published IP Geofeeds July 2020

Kline, et al. Informational Page 23

mailto:warren@kumari.net

	RFC 8805
	A Format for Self-Published IP Geolocation Feeds
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Motivation
	1.2. Requirements Notation
	1.3. Assumptions about Publication

	2. Self-Published IP Geolocation Feeds
	2.1. Specification
	2.1.1. Geolocation Feed Individual Entry Fields
	2.1.1.1. IP Prefix
	2.1.1.2. Alpha2code (Previously: 'country')
	2.1.1.3. Region
	2.1.1.4. City
	2.1.1.5. Postal Code

	2.1.2. Prefixes with No Geolocation Information
	2.1.3. Additional Parsing Requirements

	2.2. Examples

	3. Consuming Self-Published IP Geolocation Feeds
	3.1. Feed Integrity
	3.2. Verification of Authority
	3.3. Verification of Accuracy
	3.4. Refreshing Feed Information

	4. Privacy Considerations
	5. Relation to Other Work
	6. Security Considerations
	7. Planned Future Work
	8. Finding Self-Published IP Geolocation Feeds
	8.1. Ad Hoc 'Well-Known' URIs
	8.2. Other Mechanisms

	9. IANA Considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. Sample Python Validation Code
	Acknowledgements
	Authors' Addresses

