
RFC 8941
Structured Field Values for HTTP

Abstract
This document describes a set of data types and associated algorithms that are intended to make
it easier and safer to define and handle HTTP header and trailer fields, known as "Structured
Fields", "Structured Headers", or "Structured Trailers". It is intended for use by specifications of
new HTTP fields that wish to use a common syntax that is more restrictive than traditional HTTP
field values.

Stream: Internet Engineering Task Force (IETF)
RFC: 8941
Category: Standards Track
Published: February 2021
ISSN: 2070-1721
Authors: M. Nottingham

Fastly
P-H. Kamp
The Varnish Cache Project

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8941

Copyright Notice
Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

https://trustee.ietf.org/license-info

Nottingham & Kamp Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc8941
https://www.rfc-editor.org/info/rfc8941
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Intentionally Strict Processing

1.2. Notational Conventions

2. Defining New Structured Fields

3. Structured Data Types

3.1. Lists

3.1.1. Inner Lists

3.1.2. Parameters

3.2. Dictionaries

3.3. Items

3.3.1. Integers

3.3.2. Decimals

3.3.3. Strings

3.3.4. Tokens

3.3.5. Byte Sequences

3.3.6. Booleans

4. Working with Structured Fields in HTTP

4.1. Serializing Structured Fields

4.1.1. Serializing a List

4.1.2. Serializing a Dictionary

4.1.3. Serializing an Item

4.1.4. Serializing an Integer

4.1.5. Serializing a Decimal

4.1.6. Serializing a String

4.1.7. Serializing a Token

4.1.8. Serializing a Byte Sequence

4.1.9. Serializing a Boolean

RFC 8941 Structured Field Values for HTTP February 2021

Nottingham & Kamp Standards Track Page 2

4.2. Parsing Structured Fields

4.2.1. Parsing a List

4.2.2. Parsing a Dictionary

4.2.3. Parsing an Item

4.2.4. Parsing an Integer or Decimal

4.2.5. Parsing a String

4.2.6. Parsing a Token

4.2.7. Parsing a Byte Sequence

4.2.8. Parsing a Boolean

5. IANA Considerations

6. Security Considerations

7. References

7.1. Normative References

7.2. Informative References

Appendix A. Frequently Asked Questions

A.1. Why Not JSON?

Appendix B. Implementation Notes

Acknowledgements

Authors' Addresses

1. Introduction
Specifying the syntax of new HTTP header (and trailer) fields is an onerous task; even with the
guidance in , there are many decisions -- and pitfalls -- for a prospective
HTTP field author.

Once a field is defined, bespoke parsers and serializers often need to be written, because each
field value has a slightly different handling of what looks like common syntax.

This document introduces a set of common data structures for use in definitions of new HTTP
field values to address these problems. In particular, it defines a generic, abstract model for
them, along with a concrete serialization for expressing that model in HTTP header
and trailer fields.

Section 8.3.1 of [RFC7231]

[RFC7230]

RFC 8941 Structured Field Values for HTTP February 2021

Nottingham & Kamp Standards Track Page 3

https://www.rfc-editor.org/rfc/rfc7231#section-8.3.1

An HTTP field that is defined as a "Structured Header" or "Structured Trailer" (if the field can be
either, it is a "Structured Field") uses the types defined in this specification to define its syntax
and basic handling rules, thereby simplifying both its definition by specification writers and
handling by implementations.

Additionally, future versions of HTTP can define alternative serializations of the abstract model
of these structures, allowing fields that use that model to be transmitted more efficiently without
being redefined.

Note that it is not a goal of this document to redefine the syntax of existing HTTP fields; the
mechanisms described herein are only intended to be used with fields that explicitly opt into
them.

Section 2 describes how to specify a Structured Field.

Section 3 defines a number of abstract data types that can be used in Structured Fields.

Those abstract types can be serialized into and parsed from HTTP field values using the
algorithms described in Section 4.

1.1. Intentionally Strict Processing
This specification intentionally defines strict parsing and serialization behaviors using step-by-
step algorithms; the only error handling defined is to fail the operation altogether.

It is designed to encourage faithful implementation and good interoperability. Therefore, an
implementation that tried to be helpful by being more tolerant of input would make
interoperability worse, since that would create pressure on other implementations to implement
similar (but likely subtly different) workarounds.

In other words, strict processing is an intentional feature of this specification; it allows non-
conformant input to be discovered and corrected by the producer early and avoids both
interoperability and security issues that might otherwise result.

Note that as a result of this strictness, if a field is appended to by multiple parties (e.g.,
intermediaries or different components in the sender), an error in one party's value is likely to
cause the entire field value to fail parsing.

1.2. Notational Conventions
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

This document uses algorithms to specify parsing and serialization behaviors and the
Augmented Backus-Naur Form (ABNF) notation of to illustrate expected syntax in
HTTP header fields. In doing so, it uses the VCHAR, SP, DIGIT, ALPHA, and DQUOTE rules from

. It also includes the tchar and OWS rules from .

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC5234]

[RFC5234] [RFC7230]

RFC 8941 Structured Field Values for HTTP February 2021

Nottingham & Kamp Standards Track Page 4

When parsing from HTTP fields, implementations have behavior that is indistinguishable
from following the algorithms. If there is disagreement between the parsing algorithms and
ABNF, the specified algorithms take precedence.

For serialization to HTTP fields, the ABNF illustrates their expected wire representations, and the
algorithms define the recommended way to produce them. Implementations vary from the
specified behavior so long as the output is still correctly handled by the parsing algorithm
described in Section 4.2.

MUST

MAY

2. Defining New Structured Fields
To specify an HTTP field as a Structured Field, its authors need to:

Normatively reference this specification. Recipients and generators of the field need to know
that the requirements of this document are in effect.
Identify whether the field is a Structured Header (i.e., it can only be used in the header
section -- the common case), a Structured Trailer (only in the trailer section), or a Structured
Field (both).
Specify the type of the field value; either List (Section 3.1), Dictionary (Section 3.2), or Item
(Section 3.3).
Define the semantics of the field value.
Specify any additional constraints upon the field value, as well as the consequences when
those constraints are violated.

Typically, this means that a field definition will specify the top-level type -- List, Dictionary, or
Item -- and then define its allowable types and constraints upon them. For example, a header
defined as a List might have all Integer members, or a mix of types; a header defined as an Item
might allow only Strings, and additionally only strings beginning with the letter "Q", or strings in
lowercase. Likewise, Inner Lists (Section 3.1.1) are only valid when a field definition explicitly
allows them.

When parsing fails, the entire field is ignored (see Section 4.2); in most situations, violating field-
specific constraints should have the same effect. Thus, if a header is defined as an Item and
required to be an Integer, but a String is received, the field will by default be ignored. If the field
requires different error handling, this should be explicitly specified.

Both Items and Inner Lists allow parameters as an extensibility mechanism; this means that
values can later be extended to accommodate more information, if need be. To preserve forward
compatibility, field specifications are discouraged from defining the presence of an unrecognized
parameter as an error condition.

To further assure that this extensibility is available in the future, and to encourage consumers to
use a complete parser implementation, a field definition can specify that "grease" parameters be
added by senders. A specification could stipulate that all parameters that fit a defined pattern are
reserved for this use and then encourage them to be sent on some portion of requests. This helps
to discourage recipients from writing a parser that does not account for Parameters.

•

•

•

•
•

RFC 8941 Structured Field Values for HTTP February 2021

Nottingham & Kamp Standards Track Page 5

Specifications that use Dictionaries can also allow for forward compatibility by requiring that the
presence of -- as well as value and type associated with -- unknown members be ignored.
Subsequent specifications can then add additional members, specifying constraints on them as
appropriate.

An extension to a Structured Field can then require that an entire field value be ignored by a
recipient that understands the extension if constraints on the value it defines are not met.

A field definition cannot relax the requirements of this specification because doing so would
preclude handling by generic software; they can only add additional constraints (for example, on
the numeric range of Integers and Decimals, the format of Strings and Tokens, the types allowed
in a Dictionary's values, or the number of Items in a List). Likewise, field definitions can only use
this specification for the entire field value, not a portion thereof.

This specification defines minimums for the length or number of various structures supported by
implementations. It does not specify maximum sizes in most cases, but authors should be aware
that HTTP implementations do impose various limits on the size of individual fields, the total
number of fields, and/or the size of the entire header or trailer section.

Specifications can refer to a field name as a "structured header name", "structured trailer name",
or "structured field name" as appropriate. Likewise, they can refer its field value as a "structured
header value", "structured trailer value", or "structured field value" as necessary. Field
definitions are encouraged to use the ABNF rules beginning with "sf-" defined in this
specification; other rules in this specification are not intended to be used in field definitions.

For example, a fictitious Foo-Example header field might be specified as:

42. Foo-Example Header

The Foo-Example HTTP header field conveys information about how much Foo the
message has.

Foo-Example is an Item Structured Header [RFC8941]. Its value MUST be an Integer
(Section 3.3.1 of [RFC8941]). Its ABNF is:

Its value indicates the amount of Foo in the message, and it MUST be between 0 and 10,
inclusive; other values MUST cause the entire header field to be ignored.

The following parameter is defined:

A parameter whose key is "foourl", and whose value is a String (Section 3.3.3 of
[RFC8941]), conveying the Foo URL for the message. See below for processing
requirements.

 Foo-Example = sf-integer

•

RFC 8941 Structured Field Values for HTTP February 2021

Nottingham & Kamp Standards Track Page 6

"foourl" contains a URI-reference (Section 4.1 of [RFC3986]). If its value is not a valid
URI-reference, the entire header field MUST be ignored. If its value is a relative
reference (Section 4.2 of [RFC3986]), it MUST be resolved (Section 5 of [RFC3986]) before
being used.

For example:

 Foo-Example: 2; foourl="https://foo.example.com/"

3. Structured Data Types
This section defines the abstract types for Structured Fields. The ABNF provided represents the
on-wire format in HTTP field values.

In summary:

There are three top-level types that an HTTP field can be defined as: Lists, Dictionaries, and
Items.
Lists and Dictionaries are containers; their members can be Items or Inner Lists (which are
themselves arrays of Items).
Both Items and Inner Lists can be Parameterized with key/value pairs.

•

•

•

3.1. Lists
Lists are arrays of zero or more members, each of which can be an Item (Section 3.3) or an Inner
List (Section 3.1.1), both of which can be Parameterized (Section 3.1.2).

The ABNF for Lists in HTTP fields is:

Each member is separated by a comma and optional whitespace. For example, a field whose
value is defined as a List of Tokens could look like:

An empty List is denoted by not serializing the field at all. This implies that fields defined as Lists
have a default empty value.

sf-list = list-member *(OWS "," OWS list-member)
list-member = sf-item / inner-list

Example-List: sugar, tea, rum

RFC 8941 Structured Field Values for HTTP February 2021

Nottingham & Kamp Standards Track Page 7

Note that Lists can have their members split across multiple lines of the same header or trailer
section, as per ; for example, the following are equivalent:

and

However, individual members of a List cannot be safely split between lines; see Section 4.2 for
details.

Parsers support Lists containing at least 1024 members. Field specifications can constrain
the types and cardinality of individual List values as they require.

Section 3.2.2 of [RFC7230]

Example-List: sugar, tea, rum

Example-List: sugar, tea
Example-List: rum

MUST

3.1.1. Inner Lists

An Inner List is an array of zero or more Items (Section 3.3). Both the individual Items and the
Inner List itself can be Parameterized (Section 3.1.2).

The ABNF for Inner Lists is:

Inner Lists are denoted by surrounding parenthesis, and their values are delimited by one or
more spaces. A field whose value is defined as a List of Inner Lists of Strings could look like:

Note that the last member in this example is an empty Inner List.

A header field whose value is defined as a List of Inner Lists with Parameters at both levels could
look like:

Parsers support Inner Lists containing at least 256 members. Field specifications can
constrain the types and cardinality of individual Inner List members as they require.

inner-list = "(" *SP [sf-item *(1*SP sf-item) *SP] ")"
 parameters

Example-List: ("foo" "bar"), ("baz"), ("bat" "one"), ()

Example-List: ("foo"; a=1;b=2);lvl=5, ("bar" "baz");lvl=1

MUST

RFC 8941 Structured Field Values for HTTP February 2021

Nottingham & Kamp Standards Track Page 8

https://www.rfc-editor.org/rfc/rfc7230#section-3.2.2

3.1.2. Parameters

Parameters are an ordered map of key-value pairs that are associated with an Item (Section 3.3)
or Inner List (Section 3.1.1). The keys are unique within the scope of the Parameters they occur
within, and the values are bare items (i.e., they themselves cannot be parameterized; see Section
3.3).

Implementations provide access to Parameters both by index and by key. Specifications
 use either means of accessing them.

The ABNF for Parameters is:

Note that parameters are ordered as serialized, and parameter keys cannot contain uppercase
letters. A parameter is separated from its Item or Inner List and other parameters by a
semicolon. For example:

Parameters whose value is Boolean (see Section 3.3.6) true omit that value when serialized.
For example, the "a" parameter here is true, while the "b" parameter is false:

Note that this requirement is only on serialization; parsers are still required to correctly handle
the true value when it appears in a parameter.

Parsers support at least 256 parameters on an Item or Inner List, and support parameter
keys with at least 64 characters. Field specifications can constrain the order of individual
parameters, as well as their values' types as required.

MUST
MAY

parameters = *(";" *SP parameter)
parameter = param-key ["=" param-value]
param-key = key
key = (lcalpha / "*")
 (lcalpha / DIGIT / "_" / "-" / "." / "")
lcalpha = %x61-7A ; a-z
param-value = bare-item

Example-List: abc;a=1;b=2; cde_456, (ghi;jk=4 l);q="9";r=w

MUST

Example-Integer: 1; a; b=?0

MUST

3.2. Dictionaries
Dictionaries are ordered maps of key-value pairs, where the keys are short textual strings and
the values are Items (Section 3.3) or arrays of Items, both of which can be Parameterized (Section
3.1.2). There can be zero or more members, and their keys are unique in the scope of the
Dictionary they occur within.

RFC 8941 Structured Field Values for HTTP February 2021

Nottingham & Kamp Standards Track Page 9

Implementations provide access to Dictionaries both by index and by key. Specifications
 use either means of accessing the members.

The ABNF for Dictionaries is:

Members are ordered as serialized and separated by a comma with optional whitespace.
Member keys cannot contain uppercase characters. Keys and values are separated by "="
(without whitespace). For example:

Note that in this example, the final "=" is due to the inclusion of a Byte Sequence; see Section
3.3.5.

Members whose value is Boolean (see Section 3.3.6) true omit that value when serialized.
For example, here both "b" and "c" are true:

Note that this requirement is only on serialization; parsers are still required to correctly handle
the true Boolean value when it appears in Dictionary values.

A Dictionary with a member whose value is an Inner List of Tokens:

A Dictionary with a mix of Items and Inner Lists, some with parameters:

As with Lists, an empty Dictionary is represented by omitting the entire field. This implies that
fields defined as Dictionaries have a default empty value.

Typically, a field specification will define the semantics of Dictionaries by specifying the allowed
type(s) for individual members by their keys, as well as whether their presence is required or
optional. Recipients ignore members whose keys that are undefined or unknown, unless
the field's specification specifically disallows them.

MUST
MAY

sf-dictionary = dict-member *(OWS "," OWS dict-member)
dict-member = member-key (parameters / ("=" member-value))
member-key = key
member-value = sf-item / inner-list

Example-Dict: en="Applepie", da=:w4ZibGV0w6ZydGU=:

MUST

Example-Dict: a=?0, b, c; foo=bar

Example-Dict: rating=1.5, feelings=(joy sadness)

Example-Dict: a=(1 2), b=3, c=4;aa=bb, d=(5 6);valid

MUST

RFC 8941 Structured Field Values for HTTP February 2021

Nottingham & Kamp Standards Track Page 10

Note that Dictionaries can have their members split across multiple lines of the same header or
trailer section; for example, the following are equivalent:

and

However, individual members of a Dictionary cannot be safely split between lines; see Section
4.2 for details.

Parsers support Dictionaries containing at least 1024 key/value pairs and keys with at least
64 characters. Field specifications can constrain the order of individual Dictionary members, as
well as their values' types as required.

Example-Dict: foo=1, bar=2

Example-Dict: foo=1
Example-Dict: bar=2

MUST

3.3. Items
An Item can be an Integer (Section 3.3.1), a Decimal (Section 3.3.2), a String (Section 3.3.3), a
Token (Section 3.3.4), a Byte Sequence (Section 3.3.5), or a Boolean (Section 3.3.6). It can have
associated parameters (Section 3.1.2).

The ABNF for Items is:

For example, a header field that is defined to be an Item that is an Integer might look like:

or with parameters:

sf-item = bare-item parameters
bare-item = sf-integer / sf-decimal / sf-string / sf-token
 / sf-binary / sf-boolean

Example-Integer: 5

Example-Integer: 5; foo=bar

3.3.1. Integers

Integers have a range of -999,999,999,999,999 to 999,999,999,999,999 inclusive (i.e., up to fifteen
digits, signed), for IEEE 754 compatibility .[IEEE754]

RFC 8941 Structured Field Values for HTTP February 2021

Nottingham & Kamp Standards Track Page 11

The ABNF for Integers is:

For example:

Integers larger than 15 digits can be supported in a variety of ways; for example, by using a
String (Section 3.3.3), a Byte Sequence (Section 3.3.5), or a parameter on an Integer that acts as a
scaling factor.

While it is possible to serialize Integers with leading zeros (e.g., "0002", "-01") and signed zero
("-0"), these distinctions may not be preserved by implementations.

Note that commas in Integers are used in this section's prose only for readability; they are not
valid in the wire format.

sf-integer = ["-"] 1*15DIGIT

Example-Integer: 42

3.3.2. Decimals

Decimals are numbers with an integer and a fractional component. The integer component has
at most 12 digits; the fractional component has at most three digits.

The ABNF for decimals is:

For example, a header whose value is defined as a Decimal could look like:

While it is possible to serialize Decimals with leading zeros (e.g., "0002.5", "-01.334"), trailing
zeros (e.g., "5.230", "-0.40"), and signed zero (e.g., "-0.0"), these distinctions may not be preserved
by implementations.

Note that the serialization algorithm (Section 4.1.5) rounds input with more than three digits of
precision in the fractional component. If an alternative rounding strategy is desired, this should
be specified by the header definition to occur before serialization.

sf-decimal = ["-"] 1*12DIGIT "." 1*3DIGIT

Example-Decimal: 4.5

3.3.3. Strings

Strings are zero or more printable ASCII characters (i.e., the range %x20 to %x7E).
Note that this excludes tabs, newlines, carriage returns, etc.

[RFC0020]

RFC 8941 Structured Field Values for HTTP February 2021

Nottingham & Kamp Standards Track Page 12

The ABNF for Strings is:

Strings are delimited with double quotes, using a backslash ("\") to escape double quotes and
backslashes. For example:

Note that Strings only use DQUOTE as a delimiter; single quotes do not delimit Strings.
Furthermore, only DQUOTE and "\" can be escaped; other characters after "\" cause parsing
to fail.

Unicode is not directly supported in Strings, because it causes a number of interoperability
issues, and -- with few exceptions -- field values do not require it.

When it is necessary for a field value to convey non-ASCII content, a Byte Sequence (Section
3.3.5) can be specified, along with a character encoding (preferably UTF-8).

Parsers support Strings (after any decoding) with at least 1024 characters.

sf-string = DQUOTE *chr DQUOTE
chr = unescaped / escaped
unescaped = %x20-21 / %x23-5B / %x5D-7E
escaped = "\" (DQUOTE / "\")

Example-String: "hello world"

MUST

[STD63]

MUST

3.3.4. Tokens

Tokens are short textual words; their abstract model is identical to their expression in the HTTP
field value serialization.

The ABNF for Tokens is:

For example:

Parsers support Tokens with at least 512 characters.

Note that Token allows the same characters as the "token" ABNF rule defined in , with
the exceptions that the first character is required to be either ALPHA or "*", and ":" and "/" are
also allowed in subsequent characters.

sf-token = (ALPHA / "*") *(tchar / ":" / "/")

Example-Token: foo123/456

MUST

[RFC7230]

3.3.5. Byte Sequences

Byte Sequences can be conveyed in Structured Fields.

RFC 8941 Structured Field Values for HTTP February 2021

Nottingham & Kamp Standards Track Page 13

The ABNF for a Byte Sequence is:

A Byte Sequence is delimited with colons and encoded using base64 (). For
example:

Parsers support Byte Sequences with at least 16384 octets after decoding.

sf-binary = ":" *(base64) ":"
base64 = ALPHA / DIGIT / "+" / "/" / "="

[RFC4648], Section 4

Example-ByteSequence: :cHJldGVuZCB0aGlzIGlzIGJpbmFyeSBjb250ZW50Lg==:

MUST

3.3.6. Booleans

Boolean values can be conveyed in Structured Fields.

The ABNF for a Boolean is:

A Boolean is indicated with a leading "?" character followed by a "1" for a true value or "0" for
false. For example:

Note that in Dictionary (Section 3.2) and Parameter (Section 3.1.2) values, Boolean true is
indicated by omitting the value.

sf-boolean = "?" boolean
boolean = "0" / "1"

Example-Boolean: ?1

4. Working with Structured Fields in HTTP
This section defines how to serialize and parse Structured Fields in textual HTTP field values and
other encodings compatible with them (e.g., in HTTP/2 before compression with
HPACK).

[RFC7540]
[RFC7541]

4.1. Serializing Structured Fields
Given a structure defined in this specification, return an ASCII string suitable for use in an HTTP
field value.

If the structure is a Dictionary or List and its value is empty (i.e., it has no members), do not
serialize the field at all (i.e., omit both the field-name and field-value).
If the structure is a List, let output_string be the result of running Serializing a List (Section
4.1.1) with the structure.

1.

2.

RFC 8941 Structured Field Values for HTTP February 2021

Nottingham & Kamp Standards Track Page 14

https://www.rfc-editor.org/rfc/rfc4648#section-4

Else, if the structure is a Dictionary, let output_string be the result of running Serializing a
Dictionary (Section 4.1.2) with the structure.
Else, if the structure is an Item, let output_string be the result of running Serializing an Item
(Section 4.1.3) with the structure.
Else, fail serialization.
Return output_string converted into an array of bytes, using ASCII encoding .

3.

4.

5.
6. [RFC0020]

4.1.1. Serializing a List

Given an array of (member_value, parameters) tuples as input_list, return an ASCII string
suitable for use in an HTTP field value.

Let output be an empty string.
For each (member_value, parameters) of input_list:

If member_value is an array, append the result of running Serializing an Inner List
(Section 4.1.1.1) with (member_value, parameters) to output.
Otherwise, append the result of running Serializing an Item (Section 4.1.3) with
(member_value, parameters) to output.
If more member_values remain in input_list:

Append "," to output.
Append a single SP to output.

Return output.

1.
2.

1.

2.

3.

1.
2.

3.

4.1.1.1. Serializing an Inner List
Given an array of (member_value, parameters) tuples as inner_list, and parameters as
list_parameters, return an ASCII string suitable for use in an HTTP field value.

Let output be the string "(".
For each (member_value, parameters) of inner_list:

Append the result of running Serializing an Item (Section 4.1.3) with (member_value,
parameters) to output.
If more values remain in inner_list, append a single SP to output.

Append ")" to output.
Append the result of running Serializing Parameters (Section 4.1.1.2) with list_parameters to
output.
Return output.

1.
2.

1.

2.

3.
4.

5.

RFC 8941 Structured Field Values for HTTP February 2021

Nottingham & Kamp Standards Track Page 15

4.1.1.2. Serializing Parameters
Given an ordered Dictionary as input_parameters (each member having a param_key and a
param_value), return an ASCII string suitable for use in an HTTP field value.

Let output be an empty string.
For each param_key with a value of param_value in input_parameters:

Append ";" to output.
Append the result of running Serializing a Key (Section 4.1.1.3) with param_key to output.
If param_value is not Boolean true:

Append "=" to output.
Append the result of running Serializing a bare Item (Section 4.1.3.1) with param_value
to output.

Return output.

1.
2.

1.
2.
3.

1.
2.

3.

4.1.1.3. Serializing a Key
Given a key as input_key, return an ASCII string suitable for use in an HTTP field value.

Convert input_key into a sequence of ASCII characters; if conversion fails, fail serialization.
If input_key contains characters not in lcalpha, DIGIT, "_", "-", ".", or "*", fail serialization.
If the first character of input_key is not lcalpha or "*", fail serialization.
Let output be an empty string.
Append input_key to output.
Return output.

1.
2.
3.
4.
5.
6.

4.1.2. Serializing a Dictionary

Given an ordered Dictionary as input_dictionary (each member having a member_key and a
tuple value of (member_value, parameters)), return an ASCII string suitable for use in an HTTP
field value.

Let output be an empty string.
For each member_key with a value of (member_value, parameters) in input_dictionary:

Append the result of running Serializing a Key (Section 4.1.1.3) with member's
member_key to output.
If member_value is Boolean true:

Append the result of running Serializing Parameters (Section 4.1.1.2) with parameters to
output.

Otherwise:

Append "=" to output.

1.
2.

1.

2.

1.

3.

1.

RFC 8941 Structured Field Values for HTTP February 2021

Nottingham & Kamp Standards Track Page 16

If member_value is an array, append the result of running Serializing an Inner List
(Section 4.1.1.1) with (member_value, parameters) to output.
Otherwise, append the result of running Serializing an Item (Section 4.1.3) with
(member_value, parameters) to output.

If more members remain in input_dictionary:

Append "," to output.
Append a single SP to output.

Return output.

2.

3.

4.

1.
2.

3.

4.1.3. Serializing an Item

Given an Item as bare_item and Parameters as item_parameters, return an ASCII string suitable
for use in an HTTP field value.

Let output be an empty string.
Append the result of running Serializing a Bare Item (Section 4.1.3.1) with bare_item to
output.
Append the result of running Serializing Parameters (Section 4.1.1.2) with item_parameters
to output.
Return output.

1.
2.

3.

4.

4.1.3.1. Serializing a Bare Item
Given an Item as input_item, return an ASCII string suitable for use in an HTTP field value.

If input_item is an Integer, return the result of running Serializing an Integer (Section 4.1.4)
with input_item.
If input_item is a Decimal, return the result of running Serializing a Decimal (Section 4.1.5)
with input_item.
If input_item is a String, return the result of running Serializing a String (Section 4.1.6) with
input_item.
If input_item is a Token, return the result of running Serializing a Token (Section 4.1.7) with
input_item.
If input_item is a Byte Sequence, return the result of running Serializing a Byte Sequence
(Section 4.1.8) with input_item.
If input_item is a Boolean, return the result of running Serializing a Boolean (Section 4.1.9)
with input_item.
Otherwise, fail serialization.

1.

2.

3.

4.

5.

6.

7.

RFC 8941 Structured Field Values for HTTP February 2021

Nottingham & Kamp Standards Track Page 17

4.1.4. Serializing an Integer

Given an Integer as input_integer, return an ASCII string suitable for use in an HTTP field value.

If input_integer is not an integer in the range of -999,999,999,999,999 to 999,999,999,999,999
inclusive, fail serialization.
Let output be an empty string.
If input_integer is less than (but not equal to) 0, append "-" to output.
Append input_integer's numeric value represented in base 10 using only decimal digits to
output.
Return output.

1.

2.
3.
4.

5.

4.1.5. Serializing a Decimal

Given a decimal number as input_decimal, return an ASCII string suitable for use in an HTTP
field value.

If input_decimal is not a decimal number, fail serialization.
If input_decimal has more than three significant digits to the right of the decimal point,
round it to three decimal places, rounding the final digit to the nearest value, or to the even
value if it is equidistant.
If input_decimal has more than 12 significant digits to the left of the decimal point after
rounding, fail serialization.
Let output be an empty string.
If input_decimal is less than (but not equal to) 0, append "-" to output.
Append input_decimal's integer component represented in base 10 (using only decimal
digits) to output; if it is zero, append "0".
Append "." to output.
If input_decimal's fractional component is zero, append "0" to output.
Otherwise, append the significant digits of input_decimal's fractional component
represented in base 10 (using only decimal digits) to output.
Return output.

1.
2.

3.

4.
5.
6.

7.
8.
9.

10.

4.1.6. Serializing a String

Given a String as input_string, return an ASCII string suitable for use in an HTTP field value.

Convert input_string into a sequence of ASCII characters; if conversion fails, fail
serialization.
If input_string contains characters in the range %x00-1f or %x7f-ff (i.e., not in VCHAR or SP),
fail serialization.
Let output be the string DQUOTE.

1.

2.

3.

RFC 8941 Structured Field Values for HTTP February 2021

Nottingham & Kamp Standards Track Page 18

For each character char in input_string:

If char is "\" or DQUOTE:

Append "\" to output.

Append char to output.

Append DQUOTE to output.
Return output.

4.

1.

1.

2.

5.
6.

4.1.7. Serializing a Token

Given a Token as input_token, return an ASCII string suitable for use in an HTTP field value.

Convert input_token into a sequence of ASCII characters; if conversion fails, fail serialization.
If the first character of input_token is not ALPHA or "*", or the remaining portion contains a
character not in tchar, ":", or "/", fail serialization.
Let output be an empty string.
Append input_token to output.
Return output.

1.
2.

3.
4.
5.

4.1.8. Serializing a Byte Sequence

Given a Byte Sequence as input_bytes, return an ASCII string suitable for use in an HTTP field
value.

If input_bytes is not a sequence of bytes, fail serialization.
Let output be an empty string.
Append ":" to output.
Append the result of base64-encoding input_bytes as per , taking account
of the requirements below.
Append ":" to output.
Return output.

The encoded data is required to be padded with "=", as per .

Likewise, encoded data have pad bits set to zero, as per , unless it
is not possible to do so due to implementation constraints.

1.
2.
3.
4. [RFC4648], Section 4

5.
6.

[RFC4648], Section 3.2

SHOULD [RFC4648], Section 3.5

4.1.9. Serializing a Boolean

Given a Boolean as input_boolean, return an ASCII string suitable for use in an HTTP field value.

If input_boolean is not a boolean, fail serialization.
Let output be an empty string.
Append "?" to output.
If input_boolean is true, append "1" to output.

1.
2.
3.
4.

RFC 8941 Structured Field Values for HTTP February 2021

Nottingham & Kamp Standards Track Page 19

https://www.rfc-editor.org/rfc/rfc4648#section-4
https://www.rfc-editor.org/rfc/rfc4648#section-3.2
https://www.rfc-editor.org/rfc/rfc4648#section-3.5

If input_boolean is false, append "0" to output.
Return output.

5.
6.

4.2. Parsing Structured Fields
When a receiving implementation parses HTTP fields that are known to be Structured Fields, it is
important that care be taken, as there are a number of edge cases that can cause interoperability
or even security problems. This section specifies the algorithm for doing so.

Given an array of bytes as input_bytes that represent the chosen field's field-value (which is
empty if that field is not present) and field_type (one of "dictionary", "list", or "item"), return the
parsed header value.

Convert input_bytes into an ASCII string input_string; if conversion fails, fail parsing.
Discard any leading SP characters from input_string.
If field_type is "list", let output be the result of running Parsing a List (Section 4.2.1) with
input_string.
If field_type is "dictionary", let output be the result of running Parsing a Dictionary (Section
4.2.2) with input_string.
If field_type is "item", let output be the result of running Parsing an Item (Section 4.2.3) with
input_string.
Discard any leading SP characters from input_string.
If input_string is not empty, fail parsing.
Otherwise, return output.

When generating input_bytes, parsers combine all field lines in the same section (header
or trailer) that case-insensitively match the field name into one comma-separated field-value, as
per ; this assures that the entire field value is processed correctly.

For Lists and Dictionaries, this has the effect of correctly concatenating all of the field's lines, as
long as individual members of the top-level data structure are not split across multiple header
instances. The parsing algorithms for both types allow tab characters, since these might be used
to combine field lines by some implementations.

Strings split across multiple field lines will have unpredictable results, because one or more
commas (with optional whitespace) will become part of the string output by the parser. Since
concatenation might be done by an upstream intermediary, the results are not under the control
of the serializer or the parser, even when they are both under the control of the same party.

Tokens, Integers, Decimals, and Byte Sequences cannot be split across multiple field lines because
the inserted commas will cause parsing to fail.

1.
2.
3.

4.

5.

6.
7.
8.

MUST

[RFC7230], Section 3.2.2

RFC 8941 Structured Field Values for HTTP February 2021

Nottingham & Kamp Standards Track Page 20

https://www.rfc-editor.org/rfc/rfc7230#section-3.2.2

Parsers fail when processing a field value spread across multiple field lines, when one of
those lines does not parse as that field. For example, a parsing handling an Example-String field
that's defined as an sf-string is allowed to fail when processing this field section:

If parsing fails -- including when calling another algorithm -- the entire field value be
ignored (i.e., treated as if the field were not present in the section). This is intentionally strict, to
improve interoperability and safety, and specifications referencing this document are not
allowed to loosen this requirement.

Note that this requirement does not apply to an implementation that is not parsing the field; for
example, an intermediary is not required to strip a failing field from a message before
forwarding it.

MAY

Example-String: "foo
Example-String: bar"

MUST

4.2.1. Parsing a List

Given an ASCII string as input_string, return an array of (item_or_inner_list, parameters) tuples.
input_string is modified to remove the parsed value.

Let members be an empty array.
While input_string is not empty:

Append the result of running Parsing an Item or Inner List (Section 4.2.1.1) with
input_string to members.
Discard any leading OWS characters from input_string.
If input_string is empty, return members.
Consume the first character of input_string; if it is not ",", fail parsing.
Discard any leading OWS characters from input_string.
If input_string is empty, there is a trailing comma; fail parsing.

No structured data has been found; return members (which is empty).

1.
2.

1.

2.
3.
4.
5.
6.

3.

4.2.1.1. Parsing an Item or Inner List
Given an ASCII string as input_string, return the tuple (item_or_inner_list, parameters), where
item_or_inner_list can be either a single bare item or an array of (bare_item, parameters) tuples.
input_string is modified to remove the parsed value.

If the first character of input_string is "(", return the result of running Parsing an Inner List
(Section 4.2.1.2) with input_string.
Return the result of running Parsing an Item (Section 4.2.3) with input_string.

1.

2.

RFC 8941 Structured Field Values for HTTP February 2021

Nottingham & Kamp Standards Track Page 21

4.2.1.2. Parsing an Inner List
Given an ASCII string as input_string, return the tuple (inner_list, parameters), where inner_list
is an array of (bare_item, parameters) tuples. input_string is modified to remove the parsed
value.

Consume the first character of input_string; if it is not "(", fail parsing.
Let inner_list be an empty array.
While input_string is not empty:

Discard any leading SP characters from input_string.
If the first character of input_string is ")":

Consume the first character of input_string.
Let parameters be the result of running Parsing Parameters (Section 4.2.3.2) with
input_string.
Return the tuple (inner_list, parameters).

Let item be the result of running Parsing an Item (Section 4.2.3) with input_string.
Append item to inner_list.
If the first character of input_string is not SP or ")", fail parsing.

The end of the Inner List was not found; fail parsing.

1.
2.
3.

1.
2.

1.
2.

3.

3.
4.
5.

4.

4.2.2. Parsing a Dictionary

Given an ASCII string as input_string, return an ordered map whose values are
(item_or_inner_list, parameters) tuples. input_string is modified to remove the parsed value.

Let dictionary be an empty, ordered map.
While input_string is not empty:

Let this_key be the result of running Parsing a Key (Section 4.2.3.3) with input_string.
If the first character of input_string is "=":

Consume the first character of input_string.
Let member be the result of running Parsing an Item or Inner List (Section 4.2.1.1) with
input_string.

Otherwise:

Let value be Boolean true.
Let parameters be the result of running Parsing Parameters (Section 4.2.3.2) with
input_string.
Let member be the tuple (value, parameters).

1.
2.

1.
2.

1.
2.

3.

1.
2.

3.

RFC 8941 Structured Field Values for HTTP February 2021

Nottingham & Kamp Standards Track Page 22

If dictionary already contains a key this_key (comparing character for character),
overwrite its value with member.
Otherwise, append key this_key with value member to dictionary.
Discard any leading OWS characters from input_string.
If input_string is empty, return dictionary.
Consume the first character of input_string; if it is not ",", fail parsing.
Discard any leading OWS characters from input_string.
If input_string is empty, there is a trailing comma; fail parsing.

No structured data has been found; return dictionary (which is empty).

Note that when duplicate Dictionary keys are encountered, all but the last instance are ignored.

4.

5.
6.
7.
8.
9.

10.

3.

4.2.3. Parsing an Item

Given an ASCII string as input_string, return a (bare_item, parameters) tuple. input_string is
modified to remove the parsed value.

Let bare_item be the result of running Parsing a Bare Item (Section 4.2.3.1) with input_string.
Let parameters be the result of running Parsing Parameters (Section 4.2.3.2) with
input_string.
Return the tuple (bare_item, parameters).

1.
2.

3.

4.2.3.1. Parsing a Bare Item
Given an ASCII string as input_string, return a bare Item. input_string is modified to remove the
parsed value.

If the first character of input_string is a "-" or a DIGIT, return the result of running Parsing an
Integer or Decimal (Section 4.2.4) with input_string.
If the first character of input_string is a DQUOTE, return the result of running Parsing a
String (Section 4.2.5) with input_string.
If the first character of input_string is an ALPHA or "*", return the result of running Parsing a
Token (Section 4.2.6) with input_string.
If the first character of input_string is ":", return the result of running Parsing a Byte
Sequence (Section 4.2.7) with input_string.
If the first character of input_string is "?", return the result of running Parsing a Boolean
(Section 4.2.8) with input_string.
Otherwise, the item type is unrecognized; fail parsing.

1.

2.

3.

4.

5.

6.

4.2.3.2. Parsing Parameters
Given an ASCII string as input_string, return an ordered map whose values are bare Items.
input_string is modified to remove the parsed value.

Let parameters be an empty, ordered map. 1.

RFC 8941 Structured Field Values for HTTP February 2021

Nottingham & Kamp Standards Track Page 23

While input_string is not empty:

If the first character of input_string is not ";", exit the loop.
Consume the ";" character from the beginning of input_string.
Discard any leading SP characters from input_string.
Let param_key be the result of running Parsing a Key (Section 4.2.3.3) with input_string.
Let param_value be Boolean true.
If the first character of input_string is "=":

Consume the "=" character at the beginning of input_string.
Let param_value be the result of running Parsing a Bare Item (Section 4.2.3.1) with
input_string.

If parameters already contains a key param_key (comparing character for character),
overwrite its value with param_value.
Otherwise, append key param_key with value param_value to parameters.

Return parameters.

Note that when duplicate parameter keys are encountered, all but the last instance are ignored.

2.

1.
2.
3.
4.
5.
6.

1.
2.

7.

8.

3.

4.2.3.3. Parsing a Key
Given an ASCII string as input_string, return a key. input_string is modified to remove the parsed
value.

If the first character of input_string is not lcalpha or "*", fail parsing.
Let output_string be an empty string.
While input_string is not empty:

If the first character of input_string is not one of lcalpha, DIGIT, "_", "-", ".", or "*", return
output_string.
Let char be the result of consuming the first character of input_string.
Append char to output_string.

Return output_string.

1.
2.
3.

1.

2.
3.

4.

4.2.4. Parsing an Integer or Decimal

Given an ASCII string as input_string, return an Integer or Decimal. input_string is modified to
remove the parsed value.

NOTE: This algorithm parses both Integers (Section 3.3.1) and Decimals (Section 3.3.2), and
returns the corresponding structure.

Let type be "integer".
Let sign be 1.

1.
2.

RFC 8941 Structured Field Values for HTTP February 2021

Nottingham & Kamp Standards Track Page 24

Let input_number be an empty string.
If the first character of input_string is "-", consume it and set sign to -1.
If input_string is empty, there is an empty integer; fail parsing.
If the first character of input_string is not a DIGIT, fail parsing.
While input_string is not empty:

Let char be the result of consuming the first character of input_string.
If char is a DIGIT, append it to input_number.
Else, if type is "integer" and char is ".":

If input_number contains more than 12 characters, fail parsing.
Otherwise, append char to input_number and set type to "decimal".

Otherwise, prepend char to input_string, and exit the loop.
If type is "integer" and input_number contains more than 15 characters, fail parsing.
If type is "decimal" and input_number contains more than 16 characters, fail parsing.

If type is "integer":

Parse input_number as an integer and let output_number be the product of the result and
sign.

Otherwise:

If the final character of input_number is ".", fail parsing.
If the number of characters after "." in input_number is greater than three, fail parsing.
Parse input_number as a decimal number and let output_number be the product of the
result and sign.

Return output_number.

3.
4.
5.
6.
7.

1.
2.
3.

1.
2.

4.
5.
6.

8.

1.

9.

1.
2.
3.

10.

4.2.5. Parsing a String

Given an ASCII string as input_string, return an unquoted String. input_string is modified to
remove the parsed value.

Let output_string be an empty string.
If the first character of input_string is not DQUOTE, fail parsing.
Discard the first character of input_string.
While input_string is not empty:

Let char be the result of consuming the first character of input_string.
If char is a backslash ("\"):

If input_string is now empty, fail parsing.
Let next_char be the result of consuming the first character of input_string.

1.
2.
3.
4.

1.
2.

1.
2.

RFC 8941 Structured Field Values for HTTP February 2021

Nottingham & Kamp Standards Track Page 25

If next_char is not DQUOTE or "\", fail parsing.
Append next_char to output_string.

Else, if char is DQUOTE, return output_string.
Else, if char is in the range %x00-1f or %x7f-ff (i.e., it is not in VCHAR or SP), fail parsing.
Else, append char to output_string.

Reached the end of input_string without finding a closing DQUOTE; fail parsing.

3.
4.

3.
4.
5.

5.

4.2.6. Parsing a Token

Given an ASCII string as input_string, return a Token. input_string is modified to remove the
parsed value.

If the first character of input_string is not ALPHA or "*", fail parsing.
Let output_string be an empty string.
While input_string is not empty:

If the first character of input_string is not in tchar, ":", or "/", return output_string.
Let char be the result of consuming the first character of input_string.
Append char to output_string.

Return output_string.

1.
2.
3.

1.
2.
3.

4.

4.2.7. Parsing a Byte Sequence

Given an ASCII string as input_string, return a Byte Sequence. input_string is modified to remove
the parsed value.

If the first character of input_string is not ":", fail parsing.
Discard the first character of input_string.
If there is not a ":" character before the end of input_string, fail parsing.
Let b64_content be the result of consuming content of input_string up to but not including
the first instance of the character ":".
Consume the ":" character at the beginning of input_string.
If b64_content contains a character not included in ALPHA, DIGIT, "+", "/", and "=", fail
parsing.
Let binary_content be the result of base64-decoding b64_content, synthesizing
padding if necessary (note the requirements about recipient behavior below). If base64
decoding fails, parsing fails.
Return binary_content.

Because some implementations of base64 do not allow rejection of encoded data that is not
properly "=" padded (see), parsers fail when "=" padding is
not present, unless they cannot be configured to do so.

1.
2.
3.
4.

5.
6.

7. [RFC4648]

8.

[RFC4648], Section 3.2 SHOULD NOT

RFC 8941 Structured Field Values for HTTP February 2021

Nottingham & Kamp Standards Track Page 26

https://www.rfc-editor.org/rfc/rfc4648#section-3.2

[RFC0020]

[RFC2119]

[RFC4648]

7. References

7.1. Normative References

, , , ,
, October 1969, .

, , ,
, , March 1997,
.

, , ,
, October 2006, .

Because some implementations of base64 do not allow rejection of encoded data that has non-
zero pad bits (see), parsers fail when non-zero pad bits are
present, unless they cannot be configured to do so.

This specification does not relax the requirements in , Sections 3.1 and 3.3; therefore,
parsers fail on characters outside the base64 alphabet and on line feeds in encoded data.

[RFC4648], Section 3.5 SHOULD NOT

[RFC4648]
MUST

4.2.8. Parsing a Boolean

Given an ASCII string as input_string, return a Boolean. input_string is modified to remove the
parsed value.

If the first character of input_string is not "?", fail parsing.
Discard the first character of input_string.
If the first character of input_string matches "1", discard the first character, and return true.
If the first character of input_string matches "0", discard the first character, and return false.
No value has matched; fail parsing.

1.
2.
3.
4.
5.

5. IANA Considerations
This document has no IANA actions.

6. Security Considerations
The size of most types defined by Structured Fields is not limited; as a result, extremely large
fields could be an attack vector (e.g., for resource consumption). Most HTTP implementations
limit the sizes of individual fields as well as the overall header or trailer section size to mitigate
such attacks.

It is possible for parties with the ability to inject new HTTP fields to change the meaning of a
Structured Field. In some circumstances, this will cause parsing to fail, but it is not possible to
reliably fail in all such circumstances.

Cerf, V. "ASCII format for network interchange" STD 80 RFC 20 DOI 10.17487/
RFC0020 <https://www.rfc-editor.org/info/rfc20>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Josefsson, S. "The Base16, Base32, and Base64 Data Encodings" RFC 4648 DOI
10.17487/RFC4648 <https://www.rfc-editor.org/info/rfc4648>

RFC 8941 Structured Field Values for HTTP February 2021

Nottingham & Kamp Standards Track Page 27

https://www.rfc-editor.org/rfc/rfc4648#section-3.5
https://www.rfc-editor.org/rfc/rfc4648#section-3.1
https://www.rfc-editor.org/rfc/rfc4648#section-3.3
https://www.rfc-editor.org/info/rfc20
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4648

[RFC5234]

[RFC7230]

[RFC8174]

[IEEE754]

[RFC7231]

[RFC7493]

[RFC7540]

[RFC7541]

[RFC8259]

[STD63]

,
, , , , January 2008,

.

,
, , , June 2014,

.

, ,
, , , May 2017,

.

7.2. Informative References

, ,
, , July 2019,

.

,
, , , June 2014,

.

, , , ,
March 2015, .

,
, , , May 2015,

.

, , ,
, May 2015, .

, ,
, , , December 2017,

.

, , , ,
November 2003, .

Crocker, D., Ed. and P. Overell "Augmented BNF for Syntax Specifications:
ABNF" STD 68 RFC 5234 DOI 10.17487/RFC5234 <https://
www.rfc-editor.org/info/rfc5234>

Fielding, R., Ed. and J. Reschke, Ed. "Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing" RFC 7230 DOI 10.17487/RFC7230
<https://www.rfc-editor.org/info/rfc7230>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

IEEE "IEEE Standard for Floating-Point Arithmetic" DOI 10.1109/
IEEESTD.2019.8766229 IEEE 754-2019 <https://ieeexplore.ieee.org/
document/8766229>

Fielding, R., Ed. and J. Reschke, Ed. "Hypertext Transfer Protocol (HTTP/1.1):
Semantics and Content" RFC 7231 DOI 10.17487/RFC7231 <https://
www.rfc-editor.org/info/rfc7231>

Bray, T., Ed. "The I-JSON Message Format" RFC 7493 DOI 10.17487/RFC7493
<https://www.rfc-editor.org/info/rfc7493>

Belshe, M., Peon, R., and M. Thomson, Ed. "Hypertext Transfer Protocol Version
2 (HTTP/2)" RFC 7540 DOI 10.17487/RFC7540 <https://www.rfc-
editor.org/info/rfc7540>

Peon, R. and H. Ruellan "HPACK: Header Compression for HTTP/2" RFC 7541
DOI 10.17487/RFC7541 <https://www.rfc-editor.org/info/rfc7541>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"
STD 90 RFC 8259 DOI 10.17487/RFC8259 <https://www.rfc-
editor.org/info/rfc8259>

Yergeau, F. "UTF-8, a transformation format of ISO 10646" STD 63 RFC 3629
<https://www.rfc-editor.org/info/std63>

Appendix A. Frequently Asked Questions

A.1. Why Not JSON?
Earlier proposals for Structured Fields were based upon JSON . However, constraining
its use to make it suitable for HTTP header fields required senders and recipients to implement
specific additional handling.

[RFC8259]

RFC 8941 Structured Field Values for HTTP February 2021

Nottingham & Kamp Standards Track Page 28

https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc7230
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://ieeexplore.ieee.org/document/8766229
https://ieeexplore.ieee.org/document/8766229
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7493
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7541
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/std63

For example, JSON has specification issues around large numbers and objects with duplicate
members. Although advice for avoiding these issues is available (e.g.,), it cannot be
relied upon.

Likewise, JSON strings are by default Unicode strings, which have a number of potential
interoperability issues (e.g., in comparison). Although implementers can be advised to avoid non-
ASCII content where unnecessary, this is difficult to enforce.

Another example is JSON's ability to nest content to arbitrary depths. Since the resulting memory
commitment might be unsuitable (e.g., in embedded and other limited server deployments), it's
necessary to limit it in some fashion; however, existing JSON implementations have no such
limits, and even if a limit is specified, it's likely that some field definition will find a need to
violate it.

Because of JSON's broad adoption and implementation, it is difficult to impose such additional
constraints across all implementations; some deployments would fail to enforce them, thereby
harming interoperability. In short, if it looks like JSON, people will be tempted to use a JSON
parser/serializer on field values.

Since a major goal for Structured Fields is to improve interoperability and simplify
implementation, these concerns led to a format that requires a dedicated parser and serializer.

Additionally, there were widely shared feelings that JSON doesn't "look right" in HTTP fields.

[RFC7493]

Appendix B. Implementation Notes
A generic implementation of this specification should expose the top-level serialize (Section 4.1)
and parse (Section 4.2) functions. They need not be functions; for example, it could be
implemented as an object, with methods for each of the different top-level types.

For interoperability, it's important that generic implementations be complete and follow the
algorithms closely; see Section 1.1. To aid this, a common test suite is being maintained by the
community at .

Implementers should note that Dictionaries and Parameters are order-preserving maps. Some
fields may not convey meaning in the ordering of these data types, but it should still be exposed
so that it will be available to applications that need to use it.

Likewise, implementations should note that it's important to preserve the distinction between
Tokens and Strings. While most programming languages have native types that map to the other
types well, it may be necessary to create a wrapper "token" object or use a parameter on
functions to assure that these types remain separate.

The serialization algorithm is defined in a way that it is not strictly limited to the data types
defined in Section 3 in every case. For example, Decimals are designed to take broader input and
round to allowed values.

<https://github.com/httpwg/structured-field-tests>

RFC 8941 Structured Field Values for HTTP February 2021

Nottingham & Kamp Standards Track Page 29

https://github.com/httpwg/structured-field-tests

Implementations are allowed to limit the size of different structures, subject to the minimums
defined for each type. When a structure exceeds an implementation limit, that structure fails
parsing or serialization.

Acknowledgements
Many thanks to for his detailed feedback and careful consideration during the
development of this specification.

Thanks also to , , , , ,
, , , and for their contributions.

Matthew Kerwin

Ian Clelland Roy Fielding Anne van Kesteren Kazuho Oku Evert Pot Julian
Reschke Martin Thomson Mike West Jeffrey Yasskin

Authors' Addresses
Mark Nottingham
Fastly

 Prahran VIC
Australia

 mnot@mnot.net Email:
 https://www.mnot.net/ URI:

Poul-Henning Kamp
The Varnish Cache Project

 phk@varnish-cache.org Email:

RFC 8941 Structured Field Values for HTTP February 2021

Nottingham & Kamp Standards Track Page 30

mailto:mnot@mnot.net
https://www.mnot.net/
mailto:phk@varnish-cache.org

	RFC 8941
	Structured Field Values for HTTP
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Intentionally Strict Processing
	1.2. Notational Conventions

	2. Defining New Structured Fields
	3. Structured Data Types
	3.1. Lists
	3.1.1. Inner Lists
	3.1.2. Parameters

	3.2. Dictionaries
	3.3. Items
	3.3.1. Integers
	3.3.2. Decimals
	3.3.3. Strings
	3.3.4. Tokens
	3.3.5. Byte Sequences
	3.3.6. Booleans

	4. Working with Structured Fields in HTTP
	4.1. Serializing Structured Fields
	4.1.1. Serializing a List
	4.1.1.1. Serializing an Inner List
	4.1.1.2. Serializing Parameters
	4.1.1.3. Serializing a Key

	4.1.2. Serializing a Dictionary
	4.1.3. Serializing an Item
	4.1.3.1. Serializing a Bare Item

	4.1.4. Serializing an Integer
	4.1.5. Serializing a Decimal
	4.1.6. Serializing a String
	4.1.7. Serializing a Token
	4.1.8. Serializing a Byte Sequence
	4.1.9. Serializing a Boolean

	4.2. Parsing Structured Fields
	4.2.1. Parsing a List
	4.2.1.1. Parsing an Item or Inner List
	4.2.1.2. Parsing an Inner List

	4.2.2. Parsing a Dictionary
	4.2.3. Parsing an Item
	4.2.3.1. Parsing a Bare Item
	4.2.3.2. Parsing Parameters
	4.2.3.3. Parsing a Key

	4.2.4. Parsing an Integer or Decimal
	4.2.5. Parsing a String
	4.2.6. Parsing a Token
	4.2.7. Parsing a Byte Sequence
	4.2.8. Parsing a Boolean

	5. IANA Considerations
	6. Security Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Appendix A. Frequently Asked Questions
	A.1. Why Not JSON?
	Appendix B. Implementation Notes
	Acknowledgements
	Authors' Addresses

