
RFC 9197
Data Fields for In Situ Operations, Administration,
and Maintenance (IOAM)

Abstract
In situ Operations, Administration, and Maintenance (IOAM) collects operational and telemetry
information in the packet while the packet traverses a path between two points in the network.
This document discusses the data fields and associated data types for IOAM. IOAM-Data-Fields
can be encapsulated into a variety of protocols, such as Network Service Header (NSH), Segment
Routing, Generic Network Virtualization Encapsulation (Geneve), or IPv6. IOAM can be used to
complement OAM mechanisms based on, e.g., ICMP or other types of probe packets.

Stream:
RFC:
Category:
Published:
ISSN:
Authors:

Internet Engineering Task Force (IETF)
9197
Standards Track
May 2022
2070-1721

 F. Brockners, Ed.
Cisco

S. Bhandari, Ed.
Thoughtspot

T. Mizrahi, Ed.
Huawei

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9197

Copyright Notice
Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Brockners, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9197
https://www.rfc-editor.org/info/rfc9197
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents
1. Introduction

2. Conventions

3. Scope, Applicability, and Assumptions

4. IOAM Data-Fields, Types, and Nodes

4.1. IOAM Data-Fields and Option-Types

4.2. IOAM-Domains and Types of IOAM Nodes

4.3. IOAM-Namespaces

4.4. IOAM Trace Option-Types

4.4.1. Pre-allocated and Incremental Trace Option-Types

4.4.2. IOAM Node Data Fields and Associated Formats

4.4.2.1. Hop_Lim and node_id Short

4.4.2.2. ingress_if_id and egress_if_id Short

4.4.2.3. Timestamp Seconds

4.4.2.4. Timestamp Fraction

4.4.2.5. Transit Delay

4.4.2.6. Namespace-Specific Data

4.4.2.7. Queue Depth

4.4.2.8. Checksum Complement

4.4.2.9. Hop_Lim and node_id Wide

4.4.2.10. ingress_if_id and egress_if_id Wide

4.4.2.11. Namespace-Specific Data Wide

4.4.2.12. Buffer Occupancy

4.4.2.13. Opaque State Snapshot

4.4.3. Examples of IOAM Node Data

4.5. IOAM Proof of Transit Option-Type

4.5.1. IOAM Proof of Transit Type 0

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 2

1. Introduction
This document defines data fields for In situ Operations, Administration, and Maintenance
(IOAM). IOAM records OAM information within the packet while the packet traverses a particular
network domain. The term "in situ" refers to the fact that the OAM data is added to the data
packets rather than being sent within packets specifically dedicated to OAM. IOAM is used to
complement mechanisms, such as Ping or Traceroute. In terms of "active" or "passive" OAM,
IOAM can be considered a hybrid OAM type. "In situ" mechanisms do not require extra packets to
be sent. IOAM adds information to the already available data packets and therefore cannot be

4.6. IOAM Edge-to-Edge Option-Type

5. Timestamp Formats

5.1. PTP Truncated Timestamp Format

5.2. NTP 64-Bit Timestamp Format

5.3. POSIX-Based Timestamp Format

6. IOAM Data Export

7. IANA Considerations

7.1. IOAM Option-Type Registry

7.2. IOAM Trace-Type Registry

7.3. IOAM Trace-Flags Registry

7.4. IOAM POT-Type Registry

7.5. IOAM POT-Flags Registry

7.6. IOAM E2E-Type Registry

7.7. IOAM Namespace-ID Registry

8. Management and Deployment Considerations

9. Security Considerations

10. References

10.1. Normative References

10.2. Informative References

Acknowledgements

Contributors

Authors' Addresses

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 3

considered passive. In terms of the classification given in , IOAM could be portrayed as
Hybrid Type I. IOAM mechanisms can be leveraged where mechanisms using, e.g., ICMP do not
apply or do not offer the desired results, such as proving that a certain traffic flow takes a
predefined path, Service Level Agreement (SLA) verification for the data traffic, detailed statistics
on traffic distribution paths in networks that distribute traffic across multiple paths, or scenarios
in which probe traffic is potentially handled differently from regular data traffic by the network
devices.

The term "in situ OAM" was originally motivated by the use of OAM-related mechanisms that add
information into a packet. This document uses IOAM as a term defining the IOAM technology.
IOAM includes "in situ" mechanisms but also mechanisms that could trigger the creation of
additional packets dedicated to OAM.

[RFC7799]

E2E:

Geneve:

IOAM:

MTU:

NSH:

OAM:

PMTU:

POT:

Short format:

SID:

SR:

VXLAN-GPE:

Wide format:

2. Conventions
The key words " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", and " " in this document are to be
interpreted as described in BCP 14 when, and only when, they appear in all
capitals, as shown here.

Abbreviations and definitions used in this document:

Edge to Edge

Generic Network Virtualization Encapsulation

In situ Operations, Administration, and Maintenance

Maximum Transmission Unit

Network Service Header

Operations, Administration, and Maintenance

Path MTU

Proof of Transit

refers to an IOAM-Data-Field that comprises 4 octets

Segment Identifier

Segment Routing

Virtual eXtensible Local Area Network, Generic Protocol Extension

refers to an IOAM-Data-Field that comprises 8 octets

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD NOT
RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC8926]

[RFC8300]

[NVO3-
VXLAN-GPE]

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 4

3. Scope, Applicability, and Assumptions
IOAM assumes a set of constraints as well as guiding principles and concepts that go hand in
hand with the definition of the IOAM-Data-Fields. These constraints, guiding principles, and
concepts are described in this section. A discussion of how IOAM-Data-Fields and the associated
concepts are applied to an IOAM deployment are out of scope for this document. Please refer to

 for IOAM deployment considerations.

Scope:
This document defines the data fields and associated data types for IOAM. The IOAM-Data-
Fields can be encapsulated in a variety of protocols, including NSH, Segment Routing, Geneve,
and IPv6. Specification details for these different protocols are outside the scope of this
document. It is expected that each such encapsulation would be specified by an RFC and
jointly designed by the working group that develops or maintains the encapsulation protocol
and the IETF IP Performance Measurement (IPPM) Working Group.

Domain (or scope) of in situ OAM deployment:
IOAM is focused on "limited domains", as defined in . For IOAM, a limited domain
could, for example, be an enterprise campus using physical connections between devices or
an overlay network using virtual connections/tunnels for connectivity between said devices.
A limited domain that uses IOAM may constitute one or multiple "IOAM-Domains", each
disambiguated through separate namespace identifiers. An IOAM-Domain is bounded by its
perimeter or edge. IOAM-Domains may overlap inside the limited domain. Designers of
protocol encapsulations for IOAM specify mechanisms to ensure that IOAM data stays within
an IOAM-Domain. In addition, the operator of such a domain is expected to put provisions in
place to ensure that IOAM data does not leak beyond the edge of an IOAM-Domain using, for
example, packet filtering methods. The operator consider the potential operational
impact of IOAM to mechanisms, such as ECMP processing (e.g., load-balancing schemes based
on packet length could be impacted by the increased packet size due to IOAM), PMTU (i.e.,
ensure that the MTU of all links within a domain is sufficiently large to support the increased
packet size due to IOAM), and ICMP message handling (i.e., in case of IPv6, IOAM support for
ICMPv6 echo request/reply is desired, which would translate into ICMPv6 extensions to enable
IOAM-Data-Fields to be copied from an echo request message to an echo reply message).

IOAM control points:
IOAM-Data-Fields are added to or removed from the user traffic by the devices that form the
edge of a domain. Devices that form an IOAM-Domain can add, update, or remove IOAM-
Data-Fields. Edge devices of an IOAM-Domain can be hosts or network devices.

[IPPM-IOAM-DEPLOYMENT]

[RFC8799]

SHOULD

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 5

Traffic sets that IOAM is applied to:
IOAM can be deployed on all or only on subsets of the user traffic. Using IOAM on a selected
set of traffic (e.g., per interface, based on an access control list or flow specification defining a
specific set of traffic, etc.) could be useful in deployments where the cost of processing IOAM-
Data-Fields by encapsulating, transit, or decapsulating nodes might be a concern from a
performance or operational perspective. Thus, limiting the amount of traffic IOAM is applied
to could be beneficial in some deployments.

Encapsulation independence:
The definition of IOAM-Data-Fields is independent from the protocols the IOAM-Data-Fields
are encapsulated into. IOAM-Data-Fields can be encapsulated into several encapsulating
protocols.

Layering:
If several encapsulation protocols (e.g., in case of tunneling) are stacked on top of each other,
IOAM-Data-Fields could be present at multiple layers. The behavior follows the "ships-in-the-
night" model, i.e., IOAM-Data-Fields in one layer are independent from IOAM-Data-Fields in
another layer. Layering allows operators to instrument the protocol layer they want to
measure. The different layers could, but do not have to, share the same IOAM encapsulation
mechanisms.

IOAM implementation:
The definition of the IOAM-Data-Fields takes the specifics of devices with hardware data
planes and software data planes into account.

4. IOAM Data-Fields, Types, and Nodes
This section details IOAM-related nomenclature and describes data types, such as IOAM-Data-
Fields, IOAM-Types, IOAM-Namespaces, as well as the different types of IOAM nodes.

4.1. IOAM Data-Fields and Option-Types
An IOAM-Data-Field is a set of bits with a defined format and meaning, which can be stored at a
certain place in a packet for the purpose of IOAM.

To accommodate the different uses of IOAM, IOAM-Data-Fields fall into different categories. In
IOAM, these categories are referred to as "IOAM-Option-Types". A common registry is maintained
for IOAM-Option-Types (see Section 7.1 for details). Corresponding to these IOAM-Option-Types,
different IOAM-Data-Fields are defined.

This document defines four IOAM-Option-Types:

Pre-allocated Trace Option-Type
Incremental Trace Option-Type
POT Option-Type
E2E Option-Type

•
•
•
•

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 6

Future IOAM-Option-Types can be allocated by IANA, as described in Section 7.1.

4.2. IOAM-Domains and Types of IOAM Nodes
Section 3 already mentioned that IOAM is expected to be deployed in a limited domain .
One or more IOAM-Option-Types are added to a packet upon entering an IOAM-Domain and are
removed from the packet when exiting the domain. Within the IOAM-Domain, the IOAM-Data-
Fields be updated by network nodes that the packet traverses. An IOAM-Domain consists of
"IOAM encapsulating nodes", "IOAM decapsulating nodes", and "IOAM transit nodes". The role of
a node (i.e., encapsulating, transit, and decapsulating) is defined within an IOAM-Namespace (see
below). A node can have different roles in different IOAM-Namespaces.

A device that adds at least one IOAM-Option-Type to the packet is called an "IOAM encapsulating
node", whereas a device that removes an IOAM-Option-Type is referred to as an "IOAM
decapsulating node". Nodes within the domain that are aware of IOAM data and read, write, and/
or process IOAM data are called "IOAM transit nodes". IOAM nodes that add or remove the IOAM-
Data-Fields can also update the IOAM-Data-Fields at the same time. Or, in other words, IOAM
encapsulating or decapsulating nodes can also serve as IOAM transit nodes at the same time.
Note that not every node in an IOAM-Domain needs to be an IOAM transit node. For example, a
deployment might require that packets traverse a set of firewalls that support IOAM. In that case,
only the set of firewall nodes would be IOAM transit nodes, rather than all nodes.

An IOAM encapsulating node incorporates one or more IOAM-Option-Types (from the list of
IOAM-Types, see Section 7.1) into packets that IOAM is enabled for. If IOAM is enabled for a
selected subset of the traffic, the IOAM encapsulating node is responsible for applying the IOAM
functionality to the selected subset.

An IOAM transit node reads, writes, and/or processes one or more of the IOAM-Data-Fields. If
both the Pre-allocated and the Incremental Trace Option-Types are present in the packet, each
IOAM transit node, based on configuration and available implementation of IOAM, might
populate IOAM trace data in either a Pre-allocated or Incremental Trace Option-Type but not
both. Note that not populating any of the Trace Option-Types is also valid behavior for an IOAM
transit node. A transit node ignore IOAM-Option-Types that it does not understand. A
transit node add new IOAM-Option-Types to a packet, remove IOAM-
Option-Types from a packet, and change the IOAM-Data-Fields of an IOAM Edge-to-
Edge Option-Type.

An IOAM decapsulating node removes IOAM-Option-Type(s) from packets.

The role of an IOAM encapsulating, IOAM transit, or IOAM decapsulating node is always
performed within a specific IOAM-Namespace. This means that an IOAM node that is, e.g., an
IOAM decapsulating node for IOAM-Namespace "A" but not for IOAM-Namespace "B" will only
remove the IOAM-Option-Types for IOAM-Namespace "A" from the packet. Note that this applies
even for IOAM-Option-Types that the node does not understand, for example, an IOAM-Option-
Type other than the four described above, which is added in a future revision.

[RFC8799]

MAY

MUST
MUST NOT MUST NOT

MUST NOT

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 7

IOAM-Namespaces allow for a namespace-specific definition and interpretation of IOAM-Data-
Fields. An interface identifier could, for example, point to a physical interface (e.g., to understand
which physical interface of an aggregated link is used when receiving or transmitting a packet),
whereas, in another case, it could refer to a logical interface (e.g., in case of tunnels). Please refer
to Section 4.3 for details on IOAM-Namespaces.

4.3. IOAM-Namespaces
IOAM-Namespaces add further context to IOAM-Option-Types and associated IOAM-Data-Fields.
The IOAM-Option-Types and associated IOAM-Data-Fields are interpreted as defined in this
document, regardless of the value of the IOAM-Namespace. However, IOAM-Namespaces provide
a way to group nodes to support different deployment approaches of IOAM (see a few example
use cases below). IOAM-Namespaces also help to resolve potential issues that can occur due to
IOAM-Data-Fields not being globally unique (e.g., IOAM node identifiers do not have to be globally
unique). The significance of IOAM-Data-Fields is always within a particular IOAM-Namespace.
Given that IOAM-Data-Fields are always interpreted as the context of a specific namespace, the
Namespace-ID field always needs to be carried along with the IOAM data-fields themselves.

An IOAM-Namespace is identified by a 16-bit namespace identifier (Namespace-ID). The IOAM-
Namespace field is included in all the IOAM-Option-Types defined in this document and be
included in all future IOAM-Option-Types. The Namespace-ID value is divided into two subranges:

an operator-assigned range from 0x0001 to 0x7FFF and
an IANA-assigned range from 0x8000 to 0xFFFF.

The IANA-assigned range is intended to allow future extensions to have new and interoperable
IOAM functionality, while the operator-assigned range is intended to be domain specific and
managed by the network operator. The Namespace-ID value of 0x0000 is the "Default-Namespace-
ID". The Default-Namespace-ID indicates that no specific namespace is associated with the IOAM-
Data-Fields in the packet. The Default-Namespace-ID be supported by all nodes
implementing IOAM. A use case for the Default-Namespace-ID are deployments that do not
leverage specific namespaces for some or all of their packets that carry IOAM-Data-Fields.

Namespace identifiers allow devices that are IOAM capable to determine:

whether one or more IOAM-Option-Types need to be processed by a device. If the Namespace-
ID contained in a packet does not match any Namespace-ID the node is configured to operate
on, then the node change the contents of the IOAM-Data-Fields.
which IOAM-Option-Type needs to be processed/updated in case there are multiple IOAM-
Option-Types present in the packet. Multiple IOAM-Option-Types can be present in a packet
in case of overlapping IOAM-Domains or in case of a layered IOAM deployment.
whether one or more IOAM-Option-Types have to be removed from the packet, e.g., at a
domain edge or domain boundary.

MUST

•
•

MUST

•

MUST NOT
•

•

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 8

IOAM-Namespaces support several different uses:

IOAM-Namespaces can be used by an operator to distinguish different IOAM-Domains.
Devices at edges of an IOAM-Domain can filter on Namespace-IDs to provide for proper
IOAM-Domain isolation.
IOAM-Namespaces provide additional context for IOAM-Data-Fields and, thus, can be used to
ensure that IOAM-Data-Fields are unique and are interpreted properly by management
stations or network controllers. The node identifier field (node_id, see below) does not need
to be unique in a deployment. This could be the case if an operator wishes to use different
node identifiers for different IOAM layers, even within the same device, or node identifiers
might not be unique for other organizational reasons, such as after a merger of two formerly
separated organizations. The Namespace-ID can be used as a context identifier, such that the
combination of node_id and Namespace-ID will always be unique.
Similarly, IOAM-Namespaces can be used to define how certain IOAM-Data-Fields are
interpreted; IOAM offers three different timestamp format options. The Namespace-ID can be
used to determine the timestamp format. IOAM-Data-Fields (e.g., buffer occupancy) that do
not have a unit associated are to be interpreted within the context of an IOAM-Namespace.
IOAM-Namespaces can be used to identify different sets of devices (e.g., different types of
devices) in a deployment; if an operator wants to insert different IOAM-Data-Fields based on
the device, the devices could be grouped into multiple IOAM-Namespaces. This could be due to
the fact that the IOAM feature set differs between different sets of devices, or it could be for
reasons of optimized space usage in the packet header. It could also stem from hardware or
operational limitations on the size of the trace data that can be added and processed,
preventing collection of a full trace for a flow.
By assigning different IOAM Namespace-IDs to different sets of nodes or network partitions
and using a separate instance of an IOAM-Option-Type for each Namespace-ID, a full trace
for a flow could be collected and constructed via partial traces from each IOAM-Option-Type
in each of the packets in the flow. For example, an operator could choose to group the devices
of a domain into two IOAM-Namespaces in a way that each IOAM-Namespace is represented
by one of two IOAM-Option-Types in the packet. Each node would record data only for the
IOAM-Namespace that it belongs to, ignoring the other IOAM-Option-Type with an IOAM-
Namespace to which it doesn't belong. To retrieve a full view of the deployment, the captured
IOAM-Data-Fields of the two IOAM-Namespaces need to be correlated.

•

•

•

•

•

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 9

4.4. IOAM Trace Option-Types
In a typical deployment, all nodes in an IOAM-Domain would participate in IOAM; thus, they
would be IOAM transit nodes, IOAM encapsulating nodes, or IOAM decapsulating nodes. If not all
nodes within a domain support IOAM functionality as defined in this document, IOAM tracing
information (i.e., node data, see below) can only be collected on those nodes that support IOAM
functionality as defined in this document. Nodes that do not support IOAM functionality as
defined in this document will forward the packet without any changes to the IOAM-Data-Fields.
The maximum number of hops and the minimum PMTU of the IOAM-Domain is assumed to be
known. An overflow indicator (O-bit) is defined as one of the ways to deal with situations where
the PMTU was underestimated, i.e., where the number of hops that are IOAM capable exceeds the
available space in the packet.

To optimize hardware and software implementations, IOAM tracing is defined as two separate
options. A deployment can choose to configure and support one or both of the following options.

Pre-allocated Trace-Option:
This trace option is defined as a container of node data fields (see below) with pre-allocated
space for each node to populate its information. This option is useful for implementations
where it is efficient to allocate the space once and index into the array to populate the data
during transit (e.g., software forwarders often fall into this class). The IOAM encapsulating
node allocates space for the Pre-allocated Trace Option-Type in the packet and sets
corresponding fields in this IOAM-Option-Type. The IOAM encapsulating node allocates an
array that is used to store operational data retrieved from every node while the packet
traverses the domain. IOAM transit nodes update the content of the array and possibly update
the checksums of outer headers. A pointer that is part of the IOAM trace data points to the next
empty slot in the array. An IOAM transit node that updates the content of the Pre-allocated
Trace-Option also updates the value of the pointer, which specifies where the next IOAM
transit node fills in its data. The "node data list" array (see below) in the packet is populated
iteratively as the packet traverses the network, starting with the last entry of the array, i.e.,
"node data list [n]" is the first entry to be populated, "node data list [n-1]" is the second one, etc.

Incremental Trace-Option:
This trace option is defined as a container of node data fields, where each node allocates and
pushes its node data immediately following the option header. This type of trace recording is
useful for some of the hardware implementations, as it eliminates the need for the transit
network elements to read the full array in the option and allows for as arbitrarily long packets
as the MTU allows. The IOAM encapsulating node allocates space for the Incremental Trace
Option-Type. Based on the operational state and configuration, the IOAM encapsulating node
sets the fields in the Option-Type that control what IOAM-Data-Fields have to be collected and
how large the node data list can grow. IOAM transit nodes push their node data to the node
data list subject to any protocol constraints of the encapsulating layer. They then decrease the
remaining length available to subsequent nodes and adjust the lengths and possibly
checksums in outer headers.

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 10

IOAM encapsulating nodes and IOAM decapsulating nodes that support tracing support
both Trace Option-Types. For IOAM transit nodes, it is sufficient to support one of the Trace
Option-Types. In the event that both options are utilized in a deployment at the same time, the
Incremental Trace-Option be placed before the Pre-allocated Trace-Option. Deployments
that mix devices with either the Incremental Trace-Option or the Pre-allocated Trace-Option
could result in both Option-Types being present in a packet. Given that the operator knows which
equipment is deployed in a particular IOAM-Domain, the operator will decide by means of
configuration which type(s) of trace options will be used for a particular domain.

Every node data entry holds information for a particular IOAM transit node that is traversed by
a packet. The IOAM decapsulating node removes the IOAM-Option-Types and processes and/or
exports the associated data. Like all IOAM-Data-Fields, the IOAM-Data-Fields of the IOAM Trace
Option-Types are defined in the context of an IOAM-Namespace.

IOAM tracing can collect the following types of information:

Identification of the IOAM node. An IOAM node identifier can match to a device identifier or
a particular control point or subsystem within a device.
Identification of the interface that a packet was received on, i.e., ingress interface.
Identification of the interface that a packet was sent out on, i.e., egress interface.
Time of day when the packet was processed by the node, as well as the transit delay. Different
definitions of processing time are feasible and expected, though it is important that all
devices of an IOAM-Domain follow the same definition.
Generic data, i.e., format-free information where syntax and semantics of the information is
defined by the operator in a specific deployment. For a specific IOAM-Namespace, all IOAM
nodes have to interpret the generic data the same way. Examples for generic IOAM data
include geolocation information (location of the node at the time the packet was processed),
buffer queue fill level or cache fill level at the time the packet was processed, or even a
battery-charge level.
Information to detect whether IOAM trace data was added at every hop or whether certain
hops in the domain weren't IOAM transit nodes.

It should be noted that the semantics of some of the node data fields that are defined below, such
as the queue depth and buffer occupancy, are implementation specific. This approach is intended
to allow IOAM nodes with various different architectures.

MUST

MUST

•

•
•
•

•

•

4.4.1. Pre-allocated and Incremental Trace Option-Types

The IOAM Pre-allocated Trace-Option and the IOAM Incremental Trace-Option have similar
formats. Except where noted below, the internal formats and fields of the two trace options are
identical. Both trace options consist of a fixed-size "trace option header" and a variable data
space to store gathered data, i.e., the "node data list". An IOAM transit node (that is, not an IOAM
encapsulating node or IOAM decapsulating node) modify any of the fields in the fixed-
size "trace option header", other than Flags" and "RemainingLen", i.e., an IOAM transit node

 modify the Namespace-ID, NodeLen, IOAM Trace-Type, or Reserved fields.

The Pre-allocated and Incremental Trace-Option headers:

MUST NOT
MUST

NOT

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 11

The trace option data be alligned by 4 octets:

Namespace-ID:
16-bit identifier of an IOAM-Namespace. The Namespace-ID value of 0x0000 is defined as the
"Default-Namespace-ID" (see Section 4.3) and be known to all the nodes implementing
IOAM. For any other Namespace-ID value that does not match any Namespace-ID the node is
configured to operate on, the node change the contents of the IOAM-Data-Fields.

NodeLen:
5-bit unsigned integer. This field specifies the length of data added by each node in multiples of
4 octets, excluding the length of the "Opaque State Snapshot" field.

If IOAM Trace-Type Bit 22 is not set, then NodeLen specifies the actual length added by each
node. If IOAM Trace-Type Bit 22 is set, then the actual length added by a node would be
(NodeLen + length of the "Opaque State Snapshot" field) in 4-octet units.

For example, if 3 IOAM Trace-Type bits are set and none of them are in wide format, then
NodeLen would be 3. If 3 IOAM Trace-Type bits are set and 2 of them are wide, then NodeLen
would be 5.

An IOAM encapsulating node set NodeLen.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Namespace-ID |NodeLen | Flags | RemainingLen|
+-+
| IOAM Trace-Type | Reserved |
+-+

MUST

+-+<-+
node data list [0]	
+-+ D	
	a
node data list [1]	t
	a
+-+	
~ ... ~ S	
+-+ p	
	a
node data list [n-1]	c
	e
+-+	
node data list [n]	
+-+<-+

MUST

MUST NOT

MUST

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 12

A node receiving an IOAM Pre-allocated or Incremental Trace-Option relies on the NodeLen
value.

Flags:

RemainingLen:
7-bit unsigned integer. This field specifies the data space in multiples of 4 octets remaining for
recording the node data before the node data list is considered to have overflowed. The sender

 assign the initial value of the RemainingLen field. The sender calculate the value of
the RemainingLen field by computing the number of node data bytes allowed before
exceeding the PMTU, given that the PMTU is known to the sender. Subsequent nodes can carry
out a simple comparison between RemainingLen and NodeLen, along with the length of the
"Opaque State Snapshot", if applicable, to determine whether or not data can be added by this
node. When node data is added, the node decrease RemainingLen by the amount of data
added. In the Pre-allocated Trace-Option, RemainingLen is used to derive the offset in data
space to record the node data element. Specifically, the recording of the node data element
would start from RemainingLen - NodeLen - size of (opaque snapshot) in 4-octet units. If
RemainingLen in a Pre-allocated Trace-Option exceeds the length of the option, as specified in
the lower-layer header (which is not within the scope of this document), then the node

 add any fields.

IOAM Trace-Type:

4-bit field. Flags are allocated by IANA, as specified in Section 7.3. This document allocates a
single flag as follows:

Bit 0:
"Overflow" (O-bit) (most significant bit). In case a network element is supposed to add node
data to a packet but detects that there are not enough octets left to record the node data,
the network element add any fields and set the overflow "O-bit" to "1" in
the IOAM Trace-Option header. This is useful for transit nodes to ignore further processing
of the option.

MUST NOT MUST

MUST MAY

MUST

MUST
NOT

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

24-bit identifier that specifies which data types are used in this node data list.

The IOAM Trace-Type value is a bit field. The following bits are defined in this document, with
details on each bit described in Section 4.4.2. The order of packing the data fields in each node
data element follows the bit order of the IOAM Trace-Type field as follows:

Most significant bit. When set, indicates the presence of Hop_Lim and node_id
(short format) in the node data.

When set, indicates the presence of ingress_if_id and egress_if_id (short format) in
the node data.

When set, indicates the presence of timestamp seconds in the node data.

When set, indicates the presence of timestamp fraction in the node data.

When set, indicates the presence of transit delay in the node data.

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 13

Reserved:
8 bits. An IOAM encapsulating node set the value to zero upon transmission. IOAM
transit nodes ignore the received value.

Node data List [n]:
Variable-length field. This is a list of node data elements where the content of each node data
element is determined by the IOAM Trace-Type. The order of packing the data fields in each
node data element follows the bit order of the IOAM Trace-Type field. Each node
prepend its node data element in front of the node data elements that it received, such that the
transmitted node data list begins with this node's data element as the first populated element
in the list. The last node data element in this list is the node data of the first IOAM-capable

Bit 5

Bit 6

Bit 7

Bit 8

Bit 9

Bit 10

Bit 11

Bits 12-21

Bit 22

Bit 23

When set, indicates the presence of IOAM-Namespace-specific data in short format
in the node data.

When set, indicates the presence of queue depth in the node data.

When set, indicates the presence of the Checksum Complement node data.

When set, indicates the presence of Hop_Lim and node_id in wide format in the
node data.

When set, indicates the presence of ingress_if_id and egress_if_id in wide format in
the node data.

When set, indicates the presence of IOAM-Namespace-specific data in wide format
in the node data.

When set, indicates the presence of buffer occupancy in the node data.

Undefined. These values are available for future assignment in the IOAM Trace-
Type Registry (Section 7.2). Every future node data field corresponding to one of
these bits be 4 octets long. An IOAM encapsulating node set the value of
each undefined bit to 0. If an IOAM transit node receives a packet with one or more
of these bits set to 1, it either:

add corresponding node data filled with the reserved value 0xFFFFFFFF after
the node data fields for the IOAM Trace-Type bits defined above, such that the
total node data added by this node in units of 4 octets is equal to NodeLen or
not add any node data fields to the packet, even for the IOAM Trace-Type bits
defined above.

When set, indicates the presence of the variable-length Opaque State Snapshot field.

Reserved; be set to zero upon transmission and be ignored upon receipt. This
bit is reserved to allow for future extensions of the IOAM Trace-Type bit field.

Section 4.4.2 describes the IOAM-Data-Types and their formats. Within an IOAM-Domain,
possible combinations of these bits making the IOAM Trace-Type can be restricted by
configuration knobs.

MUST MUST

MUST

1.

2.

MUST

MUST
MUST

MUST

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 14

node in the path. Populating the node data list in this way ensures that the order of the node
data list is the same for Incremental and Pre-allocated Trace-Options. In the Pre-allocated
Trace-Option, the index contained in RemainingLen identifies the offset for current active
node data to be populated.

4.4.2. IOAM Node Data Fields and Associated Formats

All the IOAM-Data-Fields be aligned by 4 octets. If a node that is supposed to update an
IOAM-Data-Field is not capable of populating the value of a field set in the IOAM Trace-Type, the
field value be set to 0xFFFFFFFF for 4-octet fields or 0xFFFFFFFFFFFFFFFF for 8-octet fields,
indicating that the value is not populated, except when explicitly specified in the field description
below.

Some IOAM-Data-Fields defined below, such as interface identifiers or IOAM-Namespace-specific
data, are defined in both "short format" and "wide format". The use of "short format" or "wide
format" is not mutually exclusive. A deployment could choose to leverage both. For example,
ingress_if_id_(short format) could be an identifier for the physical interface, whereas
ingress_if_id_(wide format) could be an identifier for a logical sub-interface of that physical
interface.

Data fields and associated data types for each of the IOAM-Data-Fields are specified in the
following sections. The definition of IOAM-Data-Fields focuses on the syntax of the data fields
and avoids specifying the semantics where feasible. This is why no units are defined for data
fields, e.g., like "buffer occupancy" or "queue depth". With this approach, nodes can supply the
information in their original format and are not required to perform unit or format conversions.
Systems that further process IOAM information, e.g., like a network management system, are
assumed to also handle unit conversions as part of their IOAM-Data-Fields processing. The
combination of a particular data field and the Namespace-ID provides for the context to
interpret the provided data appropriately.

MUST

MUST

4.4.2.1. Hop_Lim and node_id Short
The "Hop_Lim and node_id short" field is a 4-octet field that is defined as follows:

Hop_Lim:
1-octet unsigned integer. It is set to the Hop Limit value in the packet at egress from the node
that records this data. Hop Limit information is used to identify the location of the node in the
communication path. This is copied from the lower layer, e.g., TTL value in IPv4 header or Hop
Limit field from IPv6 header of the packet when the packet is ready for transmission. The
semantics of the Hop_Lim field depend on the lower-layer protocol that IOAM is encapsulated
into; therefore, its specific semantics are outside the scope of this memo. The value of this field

 be set to 0xff when the lower level does not have a field equivalent to TTL / Hop Limit.

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Hop_Lim | node_id |
+-+

MUST

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 15

4.4.2.2. ingress_if_id and egress_if_id Short
The "ingress_if_id and egress_if_id" field is a 4-octet field that is defined as follows:

ingress_if_id:
2-octet unsigned integer. An interface identifier to record the ingress interface the packet was
received on.

egress_if_id:
2-octet unsigned integer. An interface identifier to record the egress interface the packet is
forwarded out of.

Note that due to the fact that IOAM uses its own IOAM-Namespaces for IOAM-Data-Fields, data
fields, like interface identifiers, can be used in a flexible way to represent system resources that
are associated with ingressing or egressing packets, i.e., ingress_if_id could represent a physical
interface, a virtual or logical interface, or even a queue.

4.4.2.3. Timestamp Seconds
The "timestamp seconds" field is a 4-octet unsigned integer field. It contains the absolute
timestamp in seconds that specifies the time at which the packet was received by the node. This
field has three possible formats, based on either the Precision Time Protocol (PTP) (see e.g.,

), NTP , or POSIX . The three timestamp formats are specified in
Section 5. In all three cases, the timestamp seconds field contains the 32 most significant bits of
the timestamp format that is specified in Section 5. If a node is not capable of populating this
field, it assigns the value 0xFFFFFFFF. Note that this is a legitimate value that is valid for 1 second
in approximately 136 years; the analyzer has to correlate several packets or compare the
timestamp value to its own time of day in order to detect the error indication.

4.4.2.4. Timestamp Fraction
The "timestamp fraction" field is a 4-octet unsigned integer field. Fraction specifies the fractional
portion of the number of seconds since the NTP epoch . The field specifies the time at
which the packet was received by the node. This field has three possible formats, based on either
PTP (see e.g.,), NTP , or POSIX . The three timestamp formats are
specified in Section 5. In all three cases, the timestamp fraction field contains the 32 least
significant bits of the timestamp format that is specified in Section 5. If a node is not capable of

node_id:
3-octet unsigned integer. A node identifier field to uniquely identify a node within the IOAM-
Namespace and associated IOAM-Domain. The procedure to allocate, manage, and map the
node_ids is beyond the scope of this document. See for a
discussion of deployment-related aspects of the node_id.

[IPPM-IOAM-DEPLOYMENT]

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| ingress_if_id | egress_if_id |
+-+

[RFC8877] [RFC5905] [POSIX]

[RFC8877]

[RFC8877] [RFC5905] [POSIX]

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 16

populating this field, it assigns the value 0xFFFFFFFF. Note that this is a legitimate value in the
NTP format, valid for approximately 233 picoseconds in every second. If the NTP format is used,
the analyzer has to correlate several packets in order to detect the error indication.

4.4.2.5. Transit Delay

The "transit delay" field is a 4-octet unsigned integer in the range 0 to 231-1. It is the time in
nanoseconds the packet spent in the transit node. This can serve as an indication of the queuing
delay at the node. If the transit delay exceeds 231-1 nanoseconds, then the top bit 'O' is set to
indicate overflow and value set to 0x80000000. When this field is part of the data field but a node
populating the field is not able to fill it, the field position in the field be filled with value
0xFFFFFFFF to mean not populated.

4.4.2.6. Namespace-Specific Data
The "namespace-specific data" field is a 4-octet field that can be used by the node to add IOAM-
Namespace-specific data. This represents a "free-format" 4-octet bit field with its semantics
defined in the context of a specific IOAM-Namespace.

4.4.2.7. Queue Depth
The "queue depth" field is a 4-octet unsigned integer field. This field indicates the current length of
the egress interface queue of the interface from where the packet is forwarded out. The queue
depth is expressed as the current amount of memory buffers used by the queue (a packet could
consume one or more memory buffers, depending on its size).

4.4.2.8. Checksum Complement
The "Checksum Complement" field is a 4-octet node data that contains the Checksum
Complement value. The Checksum Complement is useful when IOAM is transported over
encapsulations that make use of a UDP transport, such as VXLAN-GPE or Geneve. Without the
Checksum Complement, nodes adding IOAM node data update the UDP Checksum field following
the recommendation of the encapsulation protocols. When the Checksum Complement is

MUST

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|O| transit delay |
+-+

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| namespace-specific data |
+-+

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| queue depth |
+-+

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 17

present, an IOAM encapsulating node or IOAM transit node adding node data carry out
one of the following two alternatives in order to maintain the correctness of the UDP Checksum
value:

recompute the UDP Checksum field or
use the Checksum Complement to make a checksum-neutral update in the UDP payload; the
Checksum Complement is assigned a value that complements the rest of the node data fields
that were added by the current node, causing the existing UDP Checksum field to remain
correct.

IOAM decapsulating nodes recompute the UDP Checksum field, since they do not know
whether previous hops modified the UDP Checksum field or the Checksum Complement field.

Checksum Complement fields are used in a similar manner in and .

4.4.2.9. Hop_Lim and node_id Wide
The "Hop_Lim and node_id wide" field is an 8-octet field defined as follows:

Hop_Lim:
1-octet unsigned integer. See Section 4.4.2.1 for the definition of the field.

node_id:
7-octet unsigned integer. It is a node identifier field to uniquely identify a node within the
IOAM-Namespace and associated IOAM-Domain. The procedure to allocate, manage, and map
the node_ids is beyond the scope of this document.

4.4.2.10. ingress_if_id and egress_if_id Wide
The "ingress_if_id and egress_if_id wide" field is an 8-octet field, which is defined as follows:

MUST

1.
2.

MUST

[RFC7820] [RFC7821]

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Checksum Complement |
+-+

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Hop_Lim | node_id ~
+-+
~ node_id (contd) |
+-+

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| ingress_if_id |
+-+
| egress_if_id |
+-+

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 18

ingress_if_id:
4-octet unsigned integer. It is an interface identifier to record the ingress interface the packet
was received on.

egress_if_id:
4-octet unsigned integer. It is an interface identifier to record the egress interface the packet is
forwarded out of.

4.4.2.11. Namespace-Specific Data Wide
The "namespace-specific data wide" field is an 8-octet field that can be used by the node to add
IOAM-Namespace-specific data. This represents a "free-format" 8-octet bit field with its semantics
defined in the context of a specific IOAM-Namespace.

4.4.2.12. Buffer Occupancy
The "buffer occupancy" field is a 4-octet unsigned integer field. This field indicates the current
status of the occupancy of the common buffer pool used by a set of queues. The units of this field
are implementation specific. Hence, the units are interpreted within the context of an IOAM-
Namespace and/or node identifier if used. The authors acknowledge that, in some operational
cases, there is a need for the units to be consistent across a packet path through the network;
hence, it is recommended for implementations to use standard units, such as bytes.

4.4.2.13. Opaque State Snapshot
The "Opaque State Snapshot" field is a variable-length field and follows the fixed-length IOAM-
Data-Fields defined above. It allows the network element to store an arbitrary state in the node
data field without a predefined schema. The schema is to be defined within the context of an
IOAM-Namespace. The schema needs to be made known to the analyzer by some out-of-band
mechanism. The specification of this mechanism is beyond the scope of this document. A 24-bit
"Schema ID" field, interpreted within the context of an IOAM-Namespace, indicates which
particular schema is used and has to be configured on the network element by the operator.

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| namespace-specific data ~
+-+
~ namespace-specific data (contd) |
+-+

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| buffer occupancy |
+-+

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 19

Length:
1-octet unsigned integer. It is the length in multiples of 4 octets of the Opaque data field that
follows Schema ID.

Schema ID:
3-octet unsigned integer identifying the schema of Opaque data.

Opaque data:
Variable-length field. This field is interpreted as specified by the schema identified by the
Schema ID.

When this field is part of the data field, but a node populating the field has no opaque state data to
report, the Length be set to 0 and the Schema ID be set to 0xFFFFFF to mean no
schema.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Length | Schema ID |
+-+
| |
| |
| Opaque data |
~ ~
. .
. .
+-+

MUST MUST

0xD40000:

0xC00000:

4.4.3. Examples of IOAM Node Data

The format used for the entries in a packet's "node data list" array can vary from packet to packet
and deployment to deployment. Some deployments might only be interested in recording the
node identifiers, whereas others might be interested in recording node identifiers and
timestamps. This section provides example entries of the "node data list" array.

If the IOAM Trace-Type is 0xD40000 (0b110101000000000000000000), then the format
of node data is:

If the IOAM Trace-Type is 0xC00000 (0b110000000000000000000000), then the format is:

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Hop_Lim | node_id |
+-+
| ingress_if_id | egress_if_id |
+-+
| timestamp fraction |
+-+
| namespace-specific data |
+-+

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 20

0x900000:

0x840000:

0x940000:

0x308002:

If the IOAM Trace-Type is 0x900000 (0b100100000000000000000000), then the format is:

If the IOAM Trace-Type is 0x840000 (0b100001000000000000000000), then the format is:

If the IOAM Trace-Type is 0x940000 (0b100101000000000000000000), then the format is:

If the IOAM Trace-Type is 0x308002 (0b001100001000000000000010), then the format is:

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Hop_Lim | node_id |
+-+
| ingress_if_id | egress_if_id |
+-+

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Hop_Lim | node_id |
+-+
| timestamp fraction |
+-+

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Hop_Lim | node_id |
+-+
| namespace-specific data |
+-+

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Hop_Lim | node_id |
+-+
| timestamp fraction |
+-+
| namespace-specific data |
+-+

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 21

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| timestamp seconds |
+-+
| timestamp fraction |
+-+
| Hop_Lim | node_id |
+-+
| node_id(contd) |
+-+
| Length | Schema ID |
+-+
| |
| |
| Opaque data |
~ ~
. .
. .
+-+

4.5. IOAM Proof of Transit Option-Type
The IOAM Proof of Transit Option-Type is used to support path or service function chain

 verification use cases, i.e., prove that traffic transited a defined path. While the details
on how the IOAM data for the Proof of Transit Option-Type is processed at IOAM encapsulating,
decapsulating, and transit nodes are outside the scope of the document, Proof of Transit
approaches share the need to uniquely identify a packet, as well as iteratively operate on a set of
information that is handed from node to node. Correspondingly, two pieces of information are
added as IOAM-Data-Fields to the packet:

PktID:
unique identifier for the packet

Cumulative:
information that is handed from node to node and updated by every node according to a
verification algorithm

The IOAM Proof of Transit Option-Type consist of a fixed-size "IOAM Proof of Transit Option
header" and "IOAM Proof of Transit Option data fields":

IOAM Proof of Transit Option header:

IOAM Proof of Transit Option-Type IOAM-Data-Fields be aligned by 4 octets:

[RFC7665]

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Namespace-ID |IOAM POT-Type | IOAM POT flags|
+-+

MUST

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 22

0:

Namespace-ID:
16-bit identifier of an IOAM-Namespace. The Namespace-ID value of 0x0000 is defined as the
"Default-Namespace-ID" (see Section 4.3) and be known to all the nodes implementing
IOAM. For any other Namespace-ID value that does not match any Namespace-ID the node is
configured to operate on, the node change the contents of the IOAM-Data-Fields.

IOAM POT-Type:
8-bit identifier of a particular POT variant that specifies the POT data that is included. This
document defines IOAM POT-Type 0:

POT data is a 16-octet field to carry data associated to POT procedures.

If a node receives an IOAM POT-Type value that it does not understand, the node
change, add to, or remove the contents of the IOAM-Data-Fields.

IOAM POT flags:
8 bits. This document does not define any flags. Bits 0-7 are available for assignment (see
Section 7.5). Bits that have not been assigned be set to zero upon transmission and be
ignored upon receipt.

POT Option data:
Variable-length field. The type of which is determined by the IOAM POT-Type.

4.5.1. IOAM Proof of Transit Type 0

IOAM Proof of Transit Option of IOAM POT-Type 0:

Namespace-ID:
16-bit identifier of an IOAM-Namespace (see Section 4.3 above).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| POT Option data field determined by IOAM POT-Type |
+-+

MUST

MUST NOT

MUST NOT

MUST

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Namespace-ID |IOAM POT-Type=0|R R R R R R R R|
+-+<-+
| PktID | |
+-+ P
| PktID (contd) | O
+-+ T
| Cumulative | |
+-+ |
| Cumulative (contd) | |
+-+<-+

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 23

IOAM POT-Type:
8-bit identifier of a particular POT variant that specifies the POT data that is included (see
Section 4.5 above). For this case here, IOAM POT-Type is set to the value 0.

Bit 0-7:
Undefined (see Section 4.5 above).

PktID:
64-bit packet identifier.

Cumulative:
64-bit Cumulative that is updated at specific nodes by processing per packet PktID field and
configured parameters.

Note: Larger or smaller sizes of "PktID" and "Cumulative" data are feasible and could
be required for certain deployments, e.g., in case of space constraints in the
encapsulation protocols used. Future documents could introduce different sizes of
data for "Proof of Transit".

4.6. IOAM Edge-to-Edge Option-Type
The IOAM Edge-to-Edge Option-Type carries data that is added by the IOAM encapsulating node
and interpreted by the IOAM decapsulating node. The IOAM transit nodes process the data
but modify it.

The IOAM Edge-to-Edge Option-Type consist of a fixed-size "IOAM Edge-to-Edge Option-Type
header" and "IOAM Edge-to-Edge Option-Type data fields":

IOAM Edge-to-Edge Option-Type header:

The IOAM Edge-to-Edge Option-Type IOAM-Data-Fields be aligned by 4 octets:

MAY
MUST NOT

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Namespace-ID | IOAM E2E-Type |
+-+

MUST

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| E2E Option data field determined by IOAM-E2E-Type |
+-+

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 24

Bit 0

Bit 1

Bit 2

Bit 3

Namespace-ID:
16-bit identifier of an IOAM-Namespace. The Namespace-ID value of 0x0000 is defined as the
"Default-Namespace-ID" (see Section 4.3) and be known to all the nodes implementing
IOAM. For any other Namespace-ID value that does not match any Namespace-ID the node is
configured to operate on, the node change the contents of the IOAM-Data-Fields.

IOAM-E2E-Type:
16-bit identifier that specifies which data types are used in the E2E Option data. The IOAM-E2E-
Type value is a bit field. The order of packing the E2E Option data field elements follows the bit
order of the IOAM E2E-Type field as follows:

Most significant bit. When set, it indicates the presence of a 64-bit sequence number
added to a specific "packet group" that is used to detect packet loss, packet
reordering, or packet duplication within the group. The "packet group" is deployment
dependent and defined at the IOAM encapsulating node, e.g., by n-tuple-based
classification of packets. When this bit is set, "Bit 1" (for a 32-bit sequence number,
see below) be zero.

When set, it indicates the presence of a 32-bit sequence number added to a specific
"packet group" that is used to detect packet loss, packet reordering, or packet
duplication within that group. The "packet group" is deployment dependent and
defined at the IOAM encapsulating node, e.g., by n-tuple-based classification of
packets. When this bit is set, "Bit 0" (for a 64-bit sequence number, see above)
be zero.

When set, it indicates the presence of timestamp seconds, representing the time at
which the packet entered the IOAM-Domain. Within the IOAM encapsulating node,
the time that the timestamp is retrieved can depend on the implementation. Some
possibilities are 1) the time at which the packet was received by the node, 2) the time
at which the packet was transmitted by the node, or 3) when a tunnel encapsulation
is used, the point at which the packet is encapsulated into the tunnel. Each
implementation has to document when the E2E timestamp that is going to be put in
the packet is retrieved. This 4-octet field has three possible formats, based on either
PTP (see e.g.,), NTP , or POSIX . The three timestamp
formats are specified in Section 5. In all three cases, the timestamp seconds field
contains the 32 most significant bits of the timestamp format that is specified in
Section 5. If a node is not capable of populating this field, it assigns the value
0xFFFFFFFF. Note that this is a legitimate value that is valid for 1 second in
approximately 136 years; the analyzer has to correlate several packets or compare
the timestamp value to its own time of day in order to detect the error indication.

When set, it indicates the presence of timestamp fraction, representing the time at
which the packet entered the IOAM-Domain. This 4-octet field has three possible
formats, based on either PTP (see e.g.,), NTP , or POSIX .
The three timestamp formats are specified in Section 5. In all three cases, the
timestamp fraction field contains the 32 least significant bits of the timestamp
format that is specified in Section 5. If a node is not capable of populating this field, it

MUST

MUST NOT

MUST

MUST

[RFC8877] [RFC5905] [POSIX]

[RFC8877] [RFC5905] [POSIX]

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 25

Bit 4-15

assigns the value 0xFFFFFFFF. Note that this is a legitimate value in the NTP format,
valid for approximately 233 picoseconds in every second. If the NTP format is used,
the analyzer has to correlate several packets in order to detect the error indication.

Undefined. An IOAM encapsulating node set the value of these bits to zero
upon transmission and ignore them upon receipt.

E2E Option data:
Variable-length field. The type of which is determined by the IOAM E2E-Type.

MUST

5. Timestamp Formats
The IOAM-Data-Fields include a timestamp field that is represented in one of three possible
timestamp formats. It is assumed that the management plane is responsible for determining
which timestamp format is used.

Seconds:

Size:

Units:

Nanoseconds:

Size:

Units:

5.1. PTP Truncated Timestamp Format
The Precision Time Protocol (PTP) uses an 80-bit timestamp format. The truncated timestamp
format is a 64-bit field, which is the 64 least significant bits of the 80-bit PTP timestamp. The PTP
truncated format is specified in , and the details are presented below for
the sake of completeness.

Timestamp field format:
Specifies the integer portion of the number of seconds since the PTP epoch

32 bits

seconds

Specifies the fractional portion of the number of seconds since the PTP epoch

32 bits

nanoseconds. The value of this field is in the range 0 to (109)-1.

Epoch:
PTP epoch. For details, see e.g., .

Resolution:
The resolution is 1 nanosecond.

Section 4.3 of [RFC8877]

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Seconds |
+-+
| Nanoseconds |
+-+

[RFC8877]

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 26

https://www.rfc-editor.org/rfc/rfc8877#section-4.3

Wraparound:
This time format wraps around every 232 seconds, which is roughly 136 years. The next
wraparound will occur in the year 2106.

Synchronization Aspects:
It is assumed that the nodes that run this protocol are synchronized among themselves. Nodes

 be synchronized to a global reference time. Note that if PTP is used for synchronization,
the timestamp be derived from the PTP-synchronized clock, allowing the timestamp to be
measured with respect to the clock of a PTP Grandmaster clock.

MAY
MAY

Seconds:

Size:

Units:

Fraction:

Size:

Units:

5.2. NTP 64-Bit Timestamp Format
The Network Time Protocol (NTP) timestamp format is 64 bits long. This specification
uses the NTP timestamp format that is specified in , and the details are
presented below for the sake of completeness.

Timestamp field format:
specifies the integer portion of the number of seconds since the NTP epoch

32 bits

seconds

specifies the fractional portion of the number of seconds since the NTP epoch

32 bits

the unit is 2(-32) seconds, which is roughly equal to 233 picoseconds.

Epoch:
NTP epoch. For details, see .

Resolution:
The resolution is 2(-32) seconds.

Wraparound:
This time format wraps around every 232 seconds, which is roughly 136 years. The next
wraparound will occur in the year 2036.

[RFC5905]
Section 4.2.1 of [RFC8877]

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Seconds |
+-+
| Fraction |
+-+

[RFC5905]

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 27

https://www.rfc-editor.org/rfc/rfc8877#section-4.2.1

Synchronization Aspects:
Nodes that use this timestamp format will typically be synchronized to UTC using NTP

. Thus, the timestamp be derived from the NTP-synchronized clock, allowing the
timestamp to be measured with respect to the clock of an NTP server.
[RFC5905] MAY

Seconds:

Size:

Units:

Microseconds:

Size:

Units:

5.3. POSIX-Based Timestamp Format
This timestamp format is based on the POSIX time format . The detailed specification of
the timestamp format used in this document is presented below.

Timestamp field format:
specifies the integer portion of the number of seconds since the POSIX epoch

32 bits

seconds

specifies the fractional portion of the number of seconds since the POSIX
epoch

32 bits

the unit is microseconds. The value of this field is in the range 0 to (106)-1.

Epoch:
POSIX epoch. For details, see , Appendix A.4.16.

Resolution:
The resolution is 1 microsecond.

Wraparound:
This time format wraps around every 232 seconds, which is roughly 136 years. The next
wraparound will occur in the year 2106.

Synchronization Aspects:
It is assumed that nodes that use this timestamp format run the Linux operating system and
hence use the POSIX time. In some cases, nodes be synchronized to UTC using a
synchronization mechanism that is outside the scope of this document, such as NTP .
Thus, the timestamp be derived from the NTP-synchronized clock, allowing the
timestamp to be measured with respect to the clock of an NTP server.

[POSIX]

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Seconds |
+-+
| Microseconds |
+-+

[POSIX]

MAY
[RFC5905]

MAY

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 28

6. IOAM Data Export
IOAM nodes collect information for packets traversing a domain that supports IOAM. IOAM
decapsulating nodes, as well as IOAM transit nodes, can choose to retrieve IOAM information
from the packet, process the information further, and export the information using e.g., IP Flow
Information Export (IPFIX). The mechanisms and associated data formats for exporting IOAM
data are outside the scope of this document.

A way to perform raw data export of IOAM data using IPFIX is discussed in
.

[IPPM-IOAM-
RAWEXPORT]

7. IANA Considerations
IANA has defined a registry group named "In Situ OAM (IOAM)".

This group includes the following registries:

IOAM Option-Type

IOAM Trace-Type

IOAM Trace-Flags

IOAM POT-Type

IOAM POT-Flags

IOAM E2E-Type

IOAM Namespace-ID

The subsequent subsections detail the registries therein contained.

0:

1:

2:

3:

7.1. IOAM Option-Type Registry
This registry defines 128 code points for the IOAM Option-Type field for identifying IOAM-Option-
Types, as explained in Section 4. The following code points are defined in this document:

IOAM Pre-allocated Trace Option-Type

IOAM Incremental Trace Option-Type

IOAM POT Option-Type

IOAM E2E Option-Type

Code points 4-127 are available for assignment via the "IETF Review" process, as per .

New registration requests use the following template:

[RFC8126]

MUST

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 29

Name:

Code point:

Description:

Reference:

name of the newly registered Option-Type

desired value of the requested code point

brief description of the newly registered Option-Type

reference to the document that defines the new Option-Type

The evaluation of a new registration request also include checking whether the new IOAM-
Option-Type includes an IOAM-Namespace field and that the IOAM-Namespace field is the first
field in the newly defined header of the new Option-Type.

MUST

Bit 0:

Bit 1:

Bit 2:

Bit 3:

Bit 4:

Bit 5:

Bit 6:

Bit 7:

Bit 8:

Bit 9:

Bit 10:

Bit 11:

Bit 22:

Bit 23:

Bit:

7.2. IOAM Trace-Type Registry
This registry defines code points for each bit in the 24-bit IOAM Trace-Type field for the Pre-
allocated Trace Option-Type and Incremental Trace Option-Type defined in Section 4.4. Bits 0-11
are defined in this document in Paragraph 5 of Section 4.4.1:

hop_Lim and node_id in short format

ingress_if_id and egress_if_id in short format

timestamp seconds

timestamp fraction

transit delay

namespace-specific data in short format

queue depth

checksum complement

hop_Lim and node_id in wide format

ingress_if_id and egress_if_id in wide format

namespace-specific data in wide format

buffer occupancy

variable-length Opaque State Snapshot

reserved

Bits 12-21 are available for assignment via the "IETF Review" process, as per .

New registration requests use the following template:

desired bit to be allocated in the 24-bit IOAM Trace Option-Type field for the Pre-allocated
Trace Option-Type and Incremental Trace Option-Type

[RFC8126]

MUST

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 30

0:

Name:

Code point:

Description:

Reference:

7.4. IOAM POT-Type Registry
This registry defines 256 code points to define the IOAM POT-Type for the IOAM Proof of Transit
Option (Section 4.5). The code point value 0 is defined in this document:

16-Octet POT data

Code points 1-255 are available for assignment via the "IETF Review" process, as per .

New registration requests use the following template:

name of the newly registered POT-Type

desired value of the requested code point

brief description of the newly registered POT-Type

reference to the document that defines the new POT-Type

Description:

Reference:

brief description of the newly registered bit

reference to the document that defines the new bit

Bit 0:

Bit:

Description:

Reference:

7.3. IOAM Trace-Flags Registry
This registry defines code points for each bit in the 4-bit flags for the Pre-allocated Trace-Option
and Incremental Trace-Option defined in Section 4.4. The meaning of Bit 0 (the most significant
bit) for trace flags is defined in this document in Paragraph 3 of Section 4.4.1:

"Overflow" (O-bit)

Bits 1-3 are available for assignment via the "IETF Review" process, as per .

New registration requests use the following template:

desired bit to be allocated in the 8-bit flags field of the Pre-allocated Trace Option-Type and
Incremental Trace Option-Type

brief description of the newly registered bit

reference to the document that defines the new bit

[RFC8126]

MUST

[RFC8126]

MUST

7.5. IOAM POT-Flags Registry
This registry defines code points for each bit in the 8-bit flags for the IOAM POT Option-Type
defined in Section 4.5.

Bits 0-7 are available for assignment via the "IETF Review" process, as per .[RFC8126]

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 31

Bit 0:

Bit 1:

Bit 2:

Bit 3:

Bit:

Description:

Reference:

7.6. IOAM E2E-Type Registry
This registry defines code points for each bit in the 16-bit IOAM E2E-Type field for the IOAM E2E
Option (Section 4.6). Bits 0-3 are defined in this document:

64-bit sequence number

32-bit sequence number

timestamp seconds

timestamp fraction

Bits 4-15 are available for assignment via the "IETF Review" process, as per .

New registration requests use the following template:

desired bit to be allocated in the 16-bit IOAM E2E-Type field

brief description of the newly registered bit

reference to the document that defines the new bit

7.7. IOAM Namespace-ID Registry
IANA has set up the "IOAM Namespace-ID" registry that contains 16-bit values and follows the
template for requests shown below. The meaning of 0x0000 is defined in this document. IANA has
reserved the values 0x0001 to 0x7FFF for private use (managed by operators), as specified in
Section 4.3 of this document. Registry entries for the values 0x8000 to 0xFFFF are to be assigned
via the "Expert Review" policy, as per .

Upon receiving a new allocation request, a designated expert will perform the following:

Review whether the request is complete, i.e., the registration template has been filled in. The
expert will send incomplete requests back to the requester.
Check whether the request is neither a duplicate of nor conflicting with either an already
existing allocation or a pending allocation. In case of duplicates or conflicts, the expert will
ask the requester to update the allocation request accordingly.
Solicit feedback from relevant working groups and communities to ensure that the new
allocation request has been properly reviewed and that rough consensus on the request

Bit:

Description:

Reference:

New registration requests use the following template:

desired bit to be allocated in the 8-bit flags field of the IOAM POT Option-Type

brief description of the newly registered bit

reference to the document that defines the new bit

MUST

[RFC8126]

MUST

[RFC8126]

•

•

•

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 32

8. Management and Deployment Considerations
This document defines the structure and use of IOAM-Data-Fields. This document does not define
the encapsulation of IOAM-Data-Fields into different protocols. Management and deployment
aspects for IOAM have to be considered within the context of the protocol IOAM-Data-Fields are
encapsulated into and, as such, are out of scope for this document. For a discussion of IOAM
deployment, please also refer to , which outlines a framework for
IOAM deployment and provides best current practices.

0x0000:

0x0001 - 0x7FFF:

0x8000 - 0xFFFF:

Name:

Code point:

Description:

Reference:

Status of the registration:

exists. At a minimum, the expert will solicit feedback from the IPPM Working Group by
posting the request to the ippm@ietf.org mailing list. The expert will allow for a 3-week review
period on the mailing lists. If the feedback received from the relevant working groups and
communities within the review period indicates rough consensus on the request, the expert
will approve the request and ask IANA to allocate the new Namespace-ID. In case the expert
senses a lack of consensus from the feedback received, the expert will ask the requester to
engage with the corresponding working groups and communities to further review and refine
the request.

It is intended that any allocation will be accompanied by a published RFC. In order to allow for
the allocation of code points prior to the RFC being approved for publication, the designated
expert can approve allocations once it seems clear that an RFC will be published.

default namespace (known to all IOAM nodes)

reserved for private use

unassigned

New registration requests use the following template:

name of the newly registered Namespace-ID

desired value of the requested Namespace-ID

brief description of the newly registered Namespace-ID

reference to the document that defines the new Namespace-ID

Status can be either "permanent" or "provisional". Namespace-ID
registrations following a successful expert review will have the status "provisional". Once the
RFC that defines the new Namespace-ID is published, the status is changed to "permanent".

MUST

[IPPM-IOAM-DEPLOYMENT]

9. Security Considerations
As discussed in , a successful attack on an OAM protocol in general, and specifically on
IOAM, can prevent the detection of failures or anomalies or create a false illusion of nonexistent
ones. In particular, these threats are applicable by compromising the integrity of IOAM data,

[RFC7276]

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 33

either by maliciously modifying IOAM options in transit or by injecting packets with maliciously
generated IOAM options. All nodes in the path of an IOAM-carrying packet can perform such an
attack.

The Proof of Transit Option-Type (see Section 4.5) is used for verifying the path of data packets,
i.e., proving that packets transited through a defined set of nodes.

In case an attacker gains access to several nodes in a network and would be able to change the
system software of these nodes, IOAM-Data-Fields could be misused and repurposed for a use
different from what is specified in this document. One type of misuse is the implementation of a
covert channel between network nodes.

From a confidentiality perspective, although IOAM options are not expected to contain user data,
they can be used for network reconnaissance, allowing attackers to collect information about
network paths, performance, queue states, buffer occupancy, etc. Moreover, if IOAM data leaks
from the IOAM-Domain, it could enable reconnaissance beyond the scope of the IOAM-Domain.
One possible application of such reconnaissance is to gauge the effectiveness of an ongoing
attack, e.g., if buffers and queues are overflowing.

IOAM can be used as a means for implementing Denial-of-Service (DoS) attacks or for amplifying
them. For example, a malicious attacker can add an IOAM header to packets in order to consume
the resources of network devices that take part in IOAM or entities that receive, collect, or
analyze the IOAM data. Another example is a packet length attack in which an attacker pushes
headers associated with IOAM-Option-Types into data packets, causing these packets to be
increased beyond the MTU size, resulting in fragmentation or in packet drops. In case POT is
used, an attacker could corrupt the POT data fields in the packet, resulting in a verification failure
of the POT data, even if the packet followed the correct path.

Since IOAM options can include timestamps, if network devices use synchronization protocols,
then any attack on the time protocol can compromise the integrity of the timestamp-
related data fields.

At the management plane, attacks can be set up by misconfiguring or by maliciously configuring
IOAM-enabled nodes in a way that enables other attacks. IOAM configuration should only be
managed by authorized processes or users.

IETF protocols require features to ensure their security. While IOAM-Data-Fields don't represent a
protocol by themselves, the IOAM-Data-Fields add to the protocol that the IOAM-Data-Fields are
encapsulated into. Any specification that defines how IOAM-Data-Fields carried in an
encapsulating protocol provide for a mechanism for cryptographic integrity protection of
the IOAM-Data-Fields. Cryptographic integrity protection could be achieved through a
mechanism of the encapsulating protocol, or it could incorporate the mechanisms specified in

.

The current document does not define a specific IOAM encapsulation. It has to be noted that
some IOAM encapsulation types can introduce specific security considerations. A specification
that defines an IOAM encapsulation is expected to address the respective encapsulation-specific
security considerations.

[RFC7384]

MUST

[IPPM-IOAM-DATA-INTEGRITY]

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 34

[POSIX]

[RFC2119]

10. References

10.1. Normative References

,

, , January 2018,
.

, , ,
, , March 1997,
.

Notably, IOAM is expected to be deployed in limited domains, thus confining the potential attack
vectors to within the limited domain. A limited administrative domain provides the operator with
the means to select, monitor, and control the access of all the network devices, making these
devices trusted by the operator. Indeed, in order to limit the scope of threats mentioned above to
within the current limited domain, the network operator is expected to enforce policies that
prevent IOAM traffic from leaking outside of the IOAM-Domain and prevent IOAM data from
outside the domain to be processed and used within the domain.

This document does not define the data contents of custom fields, like "Opaque State Snapshot"
and "namespace-specific data" IOAM-Data-Fields. These custom data fields will have security
considerations corresponding to their defined data contents that need to be described where
those formats are defined.

IOAM deployments that leverage both IOAM Trace Option-Types, i.e., the Pre-allocated Trace
Option-Type and Incremental Trace Option-Type, can suffer from incomplete visibility if the
information gathered via the two Trace Option-Types is not correlated and aggregated
appropriately. If IOAM transit nodes leverage the IOAM-Data-Fields in the packet for further
actions or insights, then IOAM transit nodes that only support one IOAM Trace Option-Type in an
IOAM deployment that leverages both Trace Option-Types have limited visibility and thus can
draw inappropriate conclusions or take wrong actions.

The security considerations of a system that deploys IOAM, much like any system, has to be
reviewed on a per-deployment-scenario basis based on a systems-specific threat analysis, which
can lead to specific security solutions that are beyond the scope of the current document.
Specifically, in an IOAM deployment that is not confined to a single LAN but spans multiple inter-
connected sites (for example, using an overlay network), the inter-site links can be secured (e.g.,
by IPsec) in order to avoid external threats.

IOAM deployment considerations, including approaches to mitigate the above discussed threads
and potential attacks, are outside the scope of this document. IOAM deployment considerations
are discussed in .[IPPM-IOAM-DEPLOYMENT]

IEEE "IEEE/Open Group 1003.1-2017 - IEEE Standard for Information
Technology--Portable Operating System Interface (POSIX(TM)) Base
Specifications, Issue 7" IEEE Std 1003.1-2017 <https://
standards.ieee.org/ieee/1003.1/7101/>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 35

https://standards.ieee.org/ieee/1003.1/7101/
https://standards.ieee.org/ieee/1003.1/7101/
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

[RFC5905]

[RFC8126]

[RFC8174]

[IPPM-IOAM-DATA-INTEGRITY]

[IPPM-IOAM-DEPLOYMENT]

[IPPM-IOAM-RAWEXPORT]

[IPV6-RECORD-ROUTE]

[NVO3-VXLAN-GPE]

[RFC7276]

[RFC7384]

, , , and ,
, ,

, June 2010, .

, , and ,
, , , , June

2017, .

, , ,
, , May 2017,
.

10.2. Informative References

, , , and ,
, ,

, 2 March 2022,
.

, , , and ,
, ,

, 11 April 2022,
.

, , , and ,
, ,

, 21 February 2022,
.

,
, ,

, 17 November 2000,
.

, , and ,
, ,

, 22 September 2021,
.

, , , and ,
, ,

, June 2014, .

,
, , , October 2014,

.

Mills, D. Martin, J., Ed. Burbank, J. W. Kasch "Network Time Protocol
Version 4: Protocol and Algorithms Specification" RFC 5905 DOI 10.17487/
RFC5905 <https://www.rfc-editor.org/info/rfc5905>

Cotton, M. Leiba, B. T. Narten "Guidelines for Writing an IANA
Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP 14
RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Brockners, F. Bhandari, S. Mizrahi, T. J. Iurman
"Integrity of In-situ OAM Data Fields" Work in Progress Internet-Draft, draft-
ietf-ippm-ioam-data-integrity-01 <https://datatracker.ietf.org/doc/
html/draft-ietf-ippm-ioam-data-integrity-01>

Brockners, F. Bhandari, S. Bernier, D. T. Mizrahi "In-situ
OAM Deployment" Work in Progress Internet-Draft, draft-ietf-ippm-ioam-
deployment-01 <https://datatracker.ietf.org/doc/html/draft-ietf-
ippm-ioam-deployment-01>

Spiegel, M. Brockners, F. Bhandari, S. R. Sivakolundu "In-situ
OAM raw data export with IPFIX" Work in Progress Internet-Draft, draft-spiegel-
ippm-ioam-rawexport-06 <https://datatracker.ietf.org/doc/
html/draft-spiegel-ippm-ioam-rawexport-06>

Kitamura, H. "Record Route for IPv6 (RR6) Hop-by-Hop Option
Extension" Work in Progress Internet-Draft, draft-kitamura-ipv6-record-
route-00 <https://datatracker.ietf.org/doc/html/draft-
kitamura-ipv6-record-route-00>

Maino, F., Ed. Kreeger, L., Ed. U. Elzur, Ed. "Generic Protocol
Extension for VXLAN (VXLAN-GPE)" Work in Progress Internet-Draft, draft-ietf-
nvo3-vxlan-gpe-12 <https://datatracker.ietf.org/doc/html/
draft-ietf-nvo3-vxlan-gpe-12>

Mizrahi, T. Sprecher, N. Bellagamba, E. Y. Weingarten "An Overview of
Operations, Administration, and Maintenance (OAM) Tools" RFC 7276 DOI
10.17487/RFC7276 <https://www.rfc-editor.org/info/rfc7276>

Mizrahi, T. "Security Requirements of Time Protocols in Packet Switched
Networks" RFC 7384 DOI 10.17487/RFC7384 <https://www.rfc-
editor.org/info/rfc7384>

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 36

https://www.rfc-editor.org/info/rfc5905
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/draft-ietf-ippm-ioam-data-integrity-01
https://datatracker.ietf.org/doc/html/draft-ietf-ippm-ioam-data-integrity-01
https://datatracker.ietf.org/doc/html/draft-ietf-ippm-ioam-deployment-01
https://datatracker.ietf.org/doc/html/draft-ietf-ippm-ioam-deployment-01
https://datatracker.ietf.org/doc/html/draft-spiegel-ippm-ioam-rawexport-06
https://datatracker.ietf.org/doc/html/draft-spiegel-ippm-ioam-rawexport-06
https://datatracker.ietf.org/doc/html/draft-kitamura-ipv6-record-route-00
https://datatracker.ietf.org/doc/html/draft-kitamura-ipv6-record-route-00
https://datatracker.ietf.org/doc/html/draft-ietf-nvo3-vxlan-gpe-12
https://datatracker.ietf.org/doc/html/draft-ietf-nvo3-vxlan-gpe-12
https://www.rfc-editor.org/info/rfc7276
https://www.rfc-editor.org/info/rfc7384
https://www.rfc-editor.org/info/rfc7384

[RFC7665]

[RFC7799]

[RFC7820]

[RFC7821]

[RFC8300]

[RFC8799]

[RFC8877]

[RFC8926]

 and ,
, , , October 2015,

.

,
, , , May 2016,

.

,
,

, , March 2016,
.

, ,
, , March 2016,
.

, , and ,
, , , January 2018,

.

 and , , ,
, July 2020, .

, , and ,
, , , September 2020,

.

, , and ,
, , , November 2020,

.

Acknowledgements
The authors would like to thank , , , ,

, , , ,
, , , , , and for

the comments and advice.

This document leverages and builds on top of several concepts described in
. The authors would like to acknowledge the work done by the author

and people involved in writing it.

The authors would like to gracefully acknowledge useful review and insightful comments
received from , , , , ,

, , , , , ,
, , , , ,

, , and .

Halpern, J., Ed. C. Pignataro, Ed. "Service Function Chaining (SFC)
Architecture" RFC 7665 DOI 10.17487/RFC7665 <https://www.rfc-
editor.org/info/rfc7665>

Morton, A. "Active and Passive Metrics and Methods (with Hybrid Types In-
Between)" RFC 7799 DOI 10.17487/RFC7799 <https://www.rfc-
editor.org/info/rfc7799>

Mizrahi, T. "UDP Checksum Complement in the One-Way Active Measurement
Protocol (OWAMP) and Two-Way Active Measurement Protocol (TWAMP)" RFC
7820 DOI 10.17487/RFC7820 <https://www.rfc-editor.org/info/
rfc7820>

Mizrahi, T. "UDP Checksum Complement in the Network Time Protocol (NTP)"
RFC 7821 DOI 10.17487/RFC7821 <https://www.rfc-editor.org/info/
rfc7821>

Quinn, P., Ed. Elzur, U., Ed. C. Pignataro, Ed. "Network Service Header
(NSH)" RFC 8300 DOI 10.17487/RFC8300 <https://www.rfc-
editor.org/info/rfc8300>

Carpenter, B. B. Liu "Limited Domains and Internet Protocols" RFC 8799
DOI 10.17487/RFC8799 <https://www.rfc-editor.org/info/rfc8799>

Mizrahi, T. Fabini, J. A. Morton "Guidelines for Defining Packet
Timestamps" RFC 8877 DOI 10.17487/RFC8877 <https://www.rfc-
editor.org/info/rfc8877>

Gross, J., Ed. Ganga, I., Ed. T. Sridhar, Ed. "Geneve: Generic Network
Virtualization Encapsulation" RFC 8926 DOI 10.17487/RFC8926
<https://www.rfc-editor.org/info/rfc8926>

Éric Vyncke Nalini Elkins Srihari Raghavan Ranganathan T S
Karthik Babu Harichandra Babu Akshaya Nadahalli LJ Wobker Erik Nordmark Vengada Prasad
Govindan Andrew Yourtchenko Aviv Kfir Tianran Zhou Zhenbin (Robin) Greg Mirsky

[IPV6-RECORD-
ROUTE] Hiroshi Kitamura

Joe Clarke Al Morton Tom Herbert Carlos J. Bernardos Haoyu Song Mickey
Spiegel Roman Danyliw Benjamin Kaduk Murray S. Kucherawy Ian Swett Martin Duke
Francesca Palombini Lars Eggert Alvaro Retana Erik Kline Robert Wilton Zaheduzzaman
Sarker Dan Romascanu Barak Gafni

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 37

https://www.rfc-editor.org/info/rfc7665
https://www.rfc-editor.org/info/rfc7665
https://www.rfc-editor.org/info/rfc7799
https://www.rfc-editor.org/info/rfc7799
https://www.rfc-editor.org/info/rfc7820
https://www.rfc-editor.org/info/rfc7820
https://www.rfc-editor.org/info/rfc7821
https://www.rfc-editor.org/info/rfc7821
https://www.rfc-editor.org/info/rfc8300
https://www.rfc-editor.org/info/rfc8300
https://www.rfc-editor.org/info/rfc8799
https://www.rfc-editor.org/info/rfc8877
https://www.rfc-editor.org/info/rfc8877
https://www.rfc-editor.org/info/rfc8926

Contributors
This document was the collective effort of several authors. The text and content were contributed
by the editors and the coauthors listed below.

Carlos Pignataro
Cisco Systems, Inc.
Research Triangle Park
7200-11 Kit Creek Road

 NC 27709
United States of America

 cpignata@cisco.com Email:

Mickey Spiegel
Barefoot Networks, an Intel company
101 Innovation Drive

, San Jose CA 95134-1941
United States of America

 mickey.spiegel@intel.com Email:

Barak Gafni
Nvidia
Suite 100
350 Oakmead Parkway

, Sunnyvale CA 94085
United States of America

 gbarak@nvidia.com Email:

Jennifer Lemon
Broadcom
270 Innovation Drive

, San Jose CA 95134
United States of America

 jennifer.lemon@broadcom.com Email:

Hannes Gredler
RtBrick Inc.

 hannes@rtbrick.com Email:

John Leddy
United States of America

 john@leddy.net Email:

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 38

mailto:cpignata@cisco.com
mailto:mickey.spiegel@intel.com
mailto:gbarak@nvidia.com
mailto:jennifer.lemon@broadcom.com
mailto:hannes@rtbrick.com
mailto:john@leddy.net

Stephen Youell
JP Morgan Chase
25 Bank Street
London
E14 5JP
United Kingdom

 stephen.youell@jpmorgan.com Email:

David Mozes
 mosesster@gmail.com Email:

Petr Lapukhov
Facebook
1 Hacker Way

, Menlo Park CA 94025
United States of America

 petr@fb.com Email:

Remy Chang
Barefoot Networks, an Intel company
101 Innovation Drive

, San Jose CA 95134-1941
United States of America

 remy.chang@intel.com Email:

Daniel Bernier
Bell Canada
Canada

 daniel.bernier@bell.ca Email:

Authors' Addresses
Frank Brockners ()editor
Cisco Systems, Inc.
3rd Floor
Nordhein-Westfalen
Hansaallee 249

 40549 Duesseldorf
Germany

 fbrockne@cisco.com Email:

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 39

mailto:stephen.youell@jpmorgan.com
mailto:mosesster@gmail.com
mailto:petr@fb.com
mailto:remy.chang@intel.com
mailto:daniel.bernier@bell.ca
mailto:fbrockne@cisco.com

Shwetha Bhandari ()editor
Thoughtspot
3rd Floor
Indiqube Orion
Garden Layout
HSR Layout
24th Main Rd

 Bangalore 560 102
Karnataka
India

 shwetha.bhandari@thoughtspot.com Email:

Tal Mizrahi ()editor
Huawei
8-2 Matam

 Haifa 3190501
Israel

 tal.mizrahi.phd@gmail.com Email:

RFC 9197 In Situ OAM Data Fields May 2022

Brockners, et al. Standards Track Page 40

mailto:shwetha.bhandari@thoughtspot.com
mailto:tal.mizrahi.phd@gmail.com

	RFC 9197
	Data Fields for In Situ Operations, Administration, and Maintenance (IOAM)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions
	3. Scope, Applicability, and Assumptions
	4. IOAM Data-Fields, Types, and Nodes
	4.1. IOAM Data-Fields and Option-Types
	4.2. IOAM-Domains and Types of IOAM Nodes
	4.3. IOAM-Namespaces
	4.4. IOAM Trace Option-Types
	4.4.1. Pre-allocated and Incremental Trace Option-Types
	4.4.2. IOAM Node Data Fields and Associated Formats
	4.4.2.1. Hop_Lim and node_id Short
	4.4.2.2. ingress_if_id and egress_if_id Short
	4.4.2.3. Timestamp Seconds
	4.4.2.4. Timestamp Fraction
	4.4.2.5. Transit Delay
	4.4.2.6. Namespace-Specific Data
	4.4.2.7. Queue Depth
	4.4.2.8. Checksum Complement
	4.4.2.9. Hop_Lim and node_id Wide
	4.4.2.10. ingress_if_id and egress_if_id Wide
	4.4.2.11. Namespace-Specific Data Wide
	4.4.2.12. Buffer Occupancy
	4.4.2.13. Opaque State Snapshot

	4.4.3. Examples of IOAM Node Data

	4.5. IOAM Proof of Transit Option-Type
	4.5.1. IOAM Proof of Transit Type 0

	4.6. IOAM Edge-to-Edge Option-Type

	5. Timestamp Formats
	5.1. PTP Truncated Timestamp Format
	5.2. NTP 64-Bit Timestamp Format
	5.3. POSIX-Based Timestamp Format

	6. IOAM Data Export
	7. IANA Considerations
	7.1. IOAM Option-Type Registry
	7.2. IOAM Trace-Type Registry
	7.3. IOAM Trace-Flags Registry
	7.4. IOAM POT-Type Registry
	7.5. IOAM POT-Flags Registry
	7.6. IOAM E2E-Type Registry
	7.7. IOAM Namespace-ID Registry

	8. Management and Deployment Considerations
	9. Security Considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Acknowledgements
	Contributors
	Authors' Addresses

