
RFC 9239
Updates to ECMAScript Media Types

Abstract
This document describes the registration of media types for the ECMAScript and JavaScript
programming languages and conformance requirements for implementations of these types.
This document obsoletes RFC 4329 ("Scripting Media Types)", replacing the previous registrations
with information and requirements aligned with common usage and implementation
experiences.

IESG Note
This document records the relationship between the work of Ecma International's Technical
Committee 39 and the media types used to identify relevant payloads.

That relationship was developed outside of the IETF and as a result is unfortunately not aligned
with the best practices of BCP 13. Consequently, consensus exists in the IETF to document the
relationship and update the relevant IANA registrations for those media types, but this is not an
IETF endorsement of the media types chosen for this work.

Stream:
RFC:
Obsoletes:
Category:
Published:
ISSN:
Authors:

Internet Engineering Task Force (IETF)
9239
4329
Informational
May 2022
2070-1721

 M. Miller M. Borins
GitHub

M. Bynens
Google

B. Farias

Status of This Memo
This document is not an Internet Standards Track specification; it is published for informational
purposes.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Not all documents approved by
the IESG are candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9239

Miller, et al. Informational Page 1

https://www.rfc-editor.org/rfc/rfc9239
https://www.rfc-editor.org/rfc/rfc4329
https://www.rfc-editor.org/info/rfc9239

Copyright Notice
Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Terminology

2. Compatibility

3. Modules

4. Encoding

4.1. Charset Parameter

4.2. Character Encoding Scheme Detection

4.3. Character Encoding Scheme Error Handling

5. Security Considerations

6. IANA Considerations

6.1. Common JavaScript Media Types

6.1.1. text/javascript

6.2. Historic JavaScript Media Types

6.2.1. text/ecmascript

7. References

7.1. Normative References

7.2. Informative References

Appendix A. Changes from RFC 4329

Acknowledgements

RFC 9239 Updates to ECMAScript Media Types May 2022

Miller, et al. Informational Page 2

https://trustee.ietf.org/license-info

Authors' Addresses

1. Introduction
This memo describes media types for the JavaScript and ECMAScript programming languages.
Refer to the sections "Introduction" and "Overview" in for background information
on these languages. This document updates the descriptions and registrations for these media
types to reflect existing usage on the Internet, and it provides up-to-date security considerations.

This document replaces the media type registrations in and updates the requirements
for implementations using those media types defined in based on current existing
practices. As a consequence, this document obsoletes .

[ECMA-262]

[RFC4329]
[RFC4329]

[RFC4329]

1.1. Terminology
The key words " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", and " " in this document are to be
interpreted as described in BCP 14 when, and only when, they appear in all
capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD NOT
RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

2. Compatibility
This document defines equivalent processing requirements for the various script media types.
The most widely supported media type in use is text/javascript; all others are considered
historical and obsolete aliases of text/javascript.

The types defined in this document are applicable to scripts written in . New editions
of are subjected to strong obligations of backward compatibility, imposed by the
standardization process of Ecma International's Technical Committee 39 (TC39). As a result,
JavaScript code based on an earlier edition is generally compatible with a JavaScript engine
adhering to a later edition. The few exceptions to this are documented in in the
section "Additions and Changes That Introduce Incompatibilities with Prior Editions". JavaScript
developers commonly use feature detection to ensure that modern JavaScript features are only
used when available in the current environment. Later editions of are not directly
addressed in this document, although it is expected that implementations will behave as if
applicability were extended to them. This document does not address other extensions to

 or scripts written in other languages.

This document may be updated to take other content into account. Updates of this document
may introduce new optional parameters; implementations must consider the impact of such an
update.

[ECMA-262]
[ECMA-262]

[ECMA-262]

[ECMA-262]

[ECMA-262]

RFC 9239 Updates to ECMAScript Media Types May 2022

Miller, et al. Informational Page 3

This document does not define how fragment identifiers in resource identifiers
 for documents labeled with one of the media types defined in this document are

resolved. An update of this document may define processing of fragment identifiers.

Note that this use of the "text" media type tree willfully does not align with its original intent per
. The reason for this is historical. registered both the text/* and application/*

types, marking the text/* types obsolete. This was done to encourage people toward application/*,
matching the guidance in , the predecessor to . Since then, however, the
industry widely adopted text/* anyway. The definitions in this document reflect the current state
of implementation across the JavaScript ecosystem, in web browsers and other environments
such as Node.js alike, in order to guarantee backward compatibility with existing applications as
much as possible. Future registrations should not view this as a repeatable precedent.

[RFC3986]
[RFC3987]

[RFC2045] [RFC4329]

[RFC4288] [RFC6838]

3. Modules
In order to formalize support for modular programs, (starting with the 6th Edition)
defines two top-level goal symbols (or roots to the abstract syntax tree) for the ECMAScript
grammar: Module and Script. The Script goal represents the original structure where the code
executes in the global scope, while the Module goal represents the module system built into
ECMAScript starting with the 6th Edition. See the section "ECMAScript Language: Scripts and
Modules" in for details.

This separation means that (in the absence of additional information) there are two possible
interpretations for any given ECMAScript source text.

Ecma International's Technical Committee 39 (TC39), the standards body in charge of
ECMAScript, has determined that media types are outside of their scope of work

.

It is not possible to fully determine if a source text of ECMAScript is meant to be parsed using the
Module or Script grammar goals based upon content or media type alone. Therefore, as
permitted by the media types in this document, scripting environments use out-of-band
information in order to determine what goal should be used. Some scripting environments have
chosen to adopt the file extension of .mjs for this purpose.

[ECMA-262]

[ECMA-262]

[TC39-MIME-
ISSUE]

4. Encoding
Refer to for a discussion of terminology used in this section. Source text (as defined in
the section "Source Text" in) can be binary source text. Binary source text is a textual
data object that represents source text encoded using a character encoding scheme. A textual
data object is a whole text protocol message or a whole text document, or a part of it, that is
treated separately for purposes of external storage and retrieval. An implementation's internal
representation of source text is not considered binary source text.

[RFC6365]
[ECMA-262]

RFC 9239 Updates to ECMAScript Media Types May 2022

Miller, et al. Informational Page 4

Implementations need to determine a character encoding scheme in order to decode binary
source text to source text. The media types defined in this document allow an optional charset
parameter to explicitly specify the character encoding scheme used to encode the source text.

In order to ensure interoperability and align with widespread implementation practices, the
charset parameter is optional rather than required, despite the recommendation in

 for text/* types.

How implementations determine the character encoding scheme can be subject to processing
rules that are out of the scope of this document. For example, transport protocols can require that
a specific character encoding scheme is to be assumed if the optional charset parameter is not
specified, or they can require that the charset parameter is used in certain cases. Such
requirements are not defined by this document.

Implementations that support binary source text support binary source text encoded using
the UTF-8 character encoding scheme. Module goal sources be encoded as UTF-8;
all other encodings will fail. Source goal sources be encoded as UTF-8; other character
encoding schemes be supported but are discouraged. Whether U+FEFF is processed as a Byte
Order Mark (BOM) signature or not depends on the host environment and is not defined by this
document.

BCP 13
[RFC6838]

MUST
[RFC3629] MUST

SHOULD
MAY

4.1. Charset Parameter
The charset parameter provides a means to specify the character encoding scheme of binary
source text. If present, the value of the charset parameter be a registered charset

 and is considered valid if it matches the mime-charset production defined in
.

The charset parameter is only used when processing a Script goal source; Module goal sources
 always be processed as UTF-8.

MUST
[CHARSETS] Section
2.3 of [RFC2978]

MUST

4.2. Character Encoding Scheme Detection
It is possible that implementations cannot interoperably determine a single character encoding
scheme simply by complying with all requirements of the applicable specifications. To foster
interoperability in such cases, the following algorithm is defined. Implementations apply this
algorithm until a single character encoding scheme is determined.

If the binary source text is not already determined to be using a Module goal and starts with a
Unicode encoding form signature, the signature determines the encoding. The following octet
sequences, at the very beginning of the binary source text, are considered with their
corresponding character encoding schemes:

1.

Leading sequence Encoding

EF BB BF UTF-8

FF FE UTF-16LE

RFC 9239 Updates to ECMAScript Media Types May 2022

Miller, et al. Informational Page 5

https://www.rfc-editor.org/rfc/rfc2978#section-2.3
https://www.rfc-editor.org/rfc/rfc2978#section-2.3

Implementations of this step use these octet sequences to determine the character
encoding scheme, even if the determined scheme is not supported. If this step determines the
character encoding scheme, the octet sequence representing the Unicode encoding form
signature be ignored when decoding the binary source text.
Else, if a charset parameter is specified and its value is valid and supported by the
implementation, the value determines the character encoding scheme.
Else, the character encoding scheme is assumed to be UTF-8.

If the character encoding scheme is determined to be UTF-8 through any means other than step 1
as defined above and the binary source text starts with the octet sequence EF BB BF, the octet
sequence is ignored when decoding the binary source text.

Leading sequence Encoding

FE FF UTF-16BE

Table 1

MUST

MUST
2.

3.

4.3. Character Encoding Scheme Error Handling
Binary source text that is not properly encoded for the determined character encoding can pose
a security risk, as discussed in Section 5. That said, because of the varied and complex
environments scripts are executed in, most of the error handling specifics are left to the
processors. The following are broad guidelines that processors follow.

If binary source text is determined to have been encoded using a certain character encoding
scheme that the implementation is unable to process, implementations can consider the resource
unsupported (i.e., do not decode the binary source text using a different character encoding
scheme).

Binary source text can be determined to have been encoded using a certain character encoding
scheme but contain octet sequences that are not valid according to that scheme.
Implementations can substitute those invalid sequences with the replacement character U+FFFD
(properly encoded for the scheme) or stop processing altogether.

5. Security Considerations
Refer to for a discussion of terminology used in this section. Examples in this section
and discussions of interactions of host environments with scripts, modules, and extensions to

 are to be understood as non-exhaustive and of a purely illustrative nature.

The programming language defined in is not intended to be computationally self-
sufficient; rather, it is expected that the computational environment provides facilities to
programs to enable specific functionality. Such facilities constitute unknown factors and are thus
not defined by this document.

[RFC3552]

[ECMA-262]

[ECMA-262]

RFC 9239 Updates to ECMAScript Media Types May 2022

Miller, et al. Informational Page 6

Derived programming languages are permitted to include additional functionality that is not
described in ; such functionality constitutes an unknown factor and is thus not
defined by this document. In particular, extensions to defined for the JavaScript
programming language are not discussed in this document.

Uncontrolled execution of scripts can be exceedingly dangerous. Implementations that execute
scripts give consideration to their application's threat models and those of the individual
features they implement; in particular, they ensure that untrusted content is not executed
in an unprotected environment.

Module scripts in ECMAScript can request the fetching and processing of additional scripts; this is
called "importing". Implementations that support modules need to process imported sources in
the same way as scripts. See the section "ECMAScript Language: Scripts and Modules" in

 for details. Further, there may be additional privacy and security concerns,
depending on the location(s) the original script and its imported modules are obtained from. For
instance, a script obtained from "host-a.example" could request to import a script from "host-
b.example", which could expose information about the executing environment (e.g., IP address)
to "host-b.example".

Specifications for host environment facilities and for derived programming languages should
include security considerations. If an implementation supports such facilities, the respective
security considerations apply. In particular, if scripts can be referenced from or included in
specific document formats, the considerations for the embedding or referencing document
format apply.

For example, scripts embedded in application/xhtml+xml documents could be enabled
through the host environment to manipulate the document instance, which could cause the
retrieval of remote resources; security considerations regarding retrieval of remote resources of
the embedding document would apply in this case.

This circumstance can further be used to make information that is normally only available to the
script also available to a web server by encoding the information in the resource identifier of the
resource, which can further enable eavesdropping attacks. Implementation of such facilities is
subject to the security considerations of the host environment, as discussed above.

The programming language defined in does include facilities to loop, cause
computationally complex operations, or consume large amounts of memory; this includes, but is
not limited to, facilities that allow dynamically generated source text to be executed (e.g., the
eval() function); uncontrolled execution of such features can cause denial of service, which
implementations protect against.

With the addition of SharedArrayBuffer objects in ECMAScript version 8, it could be possible to
implement a high-resolution timer, which could lead to certain types of timing and side-channel
attacks (e.g.,). Implementations can take steps to mitigate this concern, such as
disabling or removing support for SharedArrayBuffer objects, or can take additional steps to
ensure that this shared memory is only accessible between execution contexts that have some
form of mutual trust.

[ECMA-262]
[ECMA-262]

MUST
MUST

[ECMA-262]

[RFC3236]

[ECMA-262]

MUST

[SPECTRE]

RFC 9239 Updates to ECMAScript Media Types May 2022

Miller, et al. Informational Page 7

A host environment can provide facilities to access external input. Scripts that pass such input to
the eval() function or similar language features can be vulnerable to code injection attacks.
Scripts are expected to protect against such attacks.

A host environment can provide facilities to output computed results in a user-visible manner.
For example, host environments supporting a graphical user interface can provide facilities that
enable scripts to present certain messages to the user. Implementations take steps to avoid
confusion of the origin of such messages. In general, the security considerations for the host
environment apply in such a case as discussed above.

Implementations are required to support the UTF-8 character encoding scheme; the security
considerations of apply. Additional character encoding schemes may be supported;
support for such schemes is subject to the security considerations of those schemes.

Source text is expected to be in Unicode Normalization Form C. Scripts and implementations
 consider security implications of unnormalized source text and data. For a detailed

discussion of such implications, refer to the security considerations in .

Scripts can be executed in an environment that is vulnerable to code injection attacks. For
example, a Common Gateway Interface (CGI) script echoing user input could allow the
inclusion of untrusted scripts that could be executed in an otherwise trusted environment. This
threat scenario is subject to security considerations that are out of the scope of this document.

The "data" resource identifier scheme , in combination with the types defined in this
document, could be used to cause execution of untrusted scripts through the inclusion of
untrusted resource identifiers in otherwise trusted content. Security considerations of
apply.

Implementations can fail to implement a specific security model or other means to prevent
possibly dangerous operations. Such failure could possibly be exploited to gain unauthorized
access to a system or sensitive information; such failure constitutes an unknown factor and is
thus not defined by this document.

MUST

[RFC3629]

MUST
[RFC3629]

[RFC3875]

[RFC2397]

[RFC2397]

6. IANA Considerations
The media type registrations herein are divided into two major categories: (1) the sole media type
"text/javascript", which is now in common usage and (2) all of the media types that are obsolete
(i.e., "application/ecmascript", "application/javascript", "application/x-ecmascript", "application/
x-javascript", "text/ecmascript", "text/javascript1.0", "text/javascript1.1", "text/javascript1.2", "text/
javascript1.3", "text/javascript1.4", "text/javascript1.5", "text/jscript", "text/livescript", and "text/x-
ecmascript").

For both categories, the "Published specification" entry for the media types is updated to reference
. In addition, a new file extension of .mjs has been added to the list of file extensions

with the restriction that contents should be parsed using the Module goal. Finally, the
specification uses "text/javascript" as the default media type of ECMAScript when preparing script
tags; therefore, "text/javascript" intended usage has been moved from OBSOLETE to COMMON.

[ECMA-262]
[HTML]

RFC 9239 Updates to ECMAScript Media Types May 2022

Miller, et al. Informational Page 8

These changes have been reflected in the IANA "Media Types" registry in accordance with
. All registrations will point to this document as the reference. The outdated note stating

that the "text/javascript" media type has been "OBSOLETED in favor of application/javascript"
has been removed. The outdated note stating that the "text/ecmascript" media type has been
"OBSOLETED in favor of application/ecmascript" has been removed. IANA has added the note
"OBSOLETED in favor of text/javascript" to all registrations except "text/javascript"; that is, this
note has been added to the "text/ecmascript", "application/javascript", and "application/
ecmascript" registrations.

Four of the legacy media types in this document have a subtype starting with the "x-" prefix:

application/x-ecmascript
application/x-javascript
text/x-ecmascript
text/x-javascript

Note that these are grandfathered media types registered as per . These
registrations predate , which they violate, and are only included in this
document for backward compatibility.

[RFC6838]

•
•
•
•

Appendix A of [RFC6838]
BCP 178 [RFC6648]

6.1. Common JavaScript Media Types

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Deprecated alias names for this type:

6.1.1. text/javascript

text

javascript

N/A

charset. See Section 4.1 of RFC 9239.

Binary

See Section 5 of RFC 9239.

It is expected that implementations will behave as if this
registration applies to later editions of , and its published specification references
may be updated accordingly from time to time. Although this expectation is unusual among
media type registrations, it matches widespread industry conventions. See Section 2 of RFC
9239.

Script interpreters as discussed in RFC 9239.

Additional information:

[ECMA-262]

[ECMA-262]

RFC 9239 Updates to ECMAScript Media Types May 2022

Miller, et al. Informational Page 9

https://www.rfc-editor.org/rfc/rfc6838#appendix-A

Magic number(s):
File extension(s):
Macintosh File Type Code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

application/javascript, application/x-javascript, text/javascript1.0, text/javascript1.1, text/
javascript1.2, text/javascript1.3, text/javascript1.4, text/javascript1.5, text/jscript, text/
livescript

N/A
.js, .mjs

TEXT

See the Authors' Addresses sections
of RFC 9239 and .

COMMON

The .mjs file extension signals that the file represents a JavaScript
module. Execution environments that rely on file extensions to determine how to process
inputs parse .mjs files using the Module grammar of .

See the Authors' Addresses sections of RFC 9239 and .

IESG <iesg@ietf.org>

[RFC4329]

[ECMA-262]

[RFC4329]

6.2. Historic JavaScript Media Types
The following media types and legacy aliases are added or updated for historical purposes. All
herein have an intended usage of OBSOLETE and are not expected to be in use with modern
implementations.

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

6.2.1. text/ecmascript

text

ecmascript

N/A

charset. See Section 4.1 of RFC 9239.

Binary

See Section 5 of RFC 9239.

It is expected that implementations will behave as if this
registration applies to later editions of , and its published specification references
may be updated accordingly from time to time. Although this expectation is unusual among
media type registrations, it matches widespread industry conventions. See Section 2 of RFC
9239.

Script interpreters as discussed in RFC 9239.

[ECMA-262]

[ECMA-262]

RFC 9239 Updates to ECMAScript Media Types May 2022

Miller, et al. Informational Page 10

[CHARSETS]

[ECMA-262]

[RFC2045]

[RFC2119]

[RFC2397]

[RFC2978]

[RFC3552]

7. References

7.1. Normative References

, , .

,
, June 2021, .

 and ,
, , ,

November 1996, .

, , ,
, , March 1997,
.

, , , , August
1998, .

 and , , , ,
, October 2000, .

 and ,
, , , , July 2003,

.

Deprecated alias names for this type:

Magic number(s):
File extension(s):
Macintosh File Type Code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Additional information:
application/ecmascript, application/x-ecmascript, text/

x-ecmascript
N/A

.es, .mjs
TEXT

See the Authors' Addresses sections
of RFC 9239 and .

OBSOLETE

This media type is obsolete; current implementations should use text/
javascript as the only JavaScript/ECMAScript media type. The .mjs file extension signals that
the file represents a JavaScript module. Execution environments that rely on file extensions to
determine how to process inputs parse .mjs files using the Module grammar of .

See the Authors' Addresses sections of RFC 9239 and .

IESG <iesg@ietf.org>

[RFC4329]

[ECMA-262]

[RFC4329]

IANA "Character Sets" <https://www.iana.org/assignments/character-sets>

Ecma International "ECMA-262 12th Edition, June 2021. ECMAScript 2021
language specification" <https://262.ecma-international.org/12.0/>

Freed, N. N. Borenstein "Multipurpose Internet Mail Extensions (MIME) Part
One: Format of Internet Message Bodies" RFC 2045 DOI 10.17487/RFC2045

<https://www.rfc-editor.org/info/rfc2045>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Masinter, L. "The "data" URL scheme" RFC 2397 DOI 10.17487/RFC2397
<https://www.rfc-editor.org/info/rfc2397>

Freed, N. J. Postel "IANA Charset Registration Procedures" BCP 19 RFC 2978
DOI 10.17487/RFC2978 <https://www.rfc-editor.org/info/rfc2978>

Rescorla, E. B. Korver "Guidelines for Writing RFC Text on Security
Considerations" BCP 72 RFC 3552 DOI 10.17487/RFC3552 <https://
www.rfc-editor.org/info/rfc3552>

RFC 9239 Updates to ECMAScript Media Types May 2022

Miller, et al. Informational Page 11

https://www.iana.org/assignments/character-sets
https://262.ecma-international.org/12.0/
https://www.rfc-editor.org/info/rfc2045
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2397
https://www.rfc-editor.org/info/rfc2978
https://www.rfc-editor.org/info/rfc3552
https://www.rfc-editor.org/info/rfc3552

[RFC3629]

[RFC4288]

[RFC4329]

[RFC6365]

[RFC6648]

[RFC6838]

[RFC8174]

[HTML]

[RFC3236]

[RFC3875]

[RFC3986]

[RFC3987]

[SPECTRE]

, , , ,
, November 2003, .

 and ,
, , , December 2005,

.

, , , , April
2006, .

 and ,
, , , , September 2011,

.

, , and ,
, , ,

, June 2012, .

, , and ,
, , , , January 2013,

.

, , ,
, , May 2017,
.

7.2. Informative References

, , May 2022,
.

 and , , ,
, January 2002, .

 and , ,
, , October 2004,
.

, , and ,
, , , , January 2005,

.

 and , ,
, , January 2005,

.

, , , , , , ,
, , and ,
, , January 2018,
.

Yergeau, F. "UTF-8, a transformation format of ISO 10646" STD 63 RFC 3629 DOI
10.17487/RFC3629 <https://www.rfc-editor.org/info/rfc3629>

Freed, N. J. Klensin "Media Type Specifications and Registration
Procedures" RFC 4288 DOI 10.17487/RFC4288 <https://www.rfc-
editor.org/info/rfc4288>

Hoehrmann, B. "Scripting Media Types" RFC 4329 DOI 10.17487/RFC4329
<https://www.rfc-editor.org/info/rfc4329>

Hoffman, P. J. Klensin "Terminology Used in Internationalization in the
IETF" BCP 166 RFC 6365 DOI 10.17487/RFC6365 <https://
www.rfc-editor.org/info/rfc6365>

Saint-Andre, P. Crocker, D. M. Nottingham "Deprecating the "X-" Prefix and
Similar Constructs in Application Protocols" BCP 178 RFC 6648 DOI 10.17487/
RFC6648 <https://www.rfc-editor.org/info/rfc6648>

Freed, N. Klensin, J. T. Hansen "Media Type Specifications and Registration
Procedures" BCP 13 RFC 6838 DOI 10.17487/RFC6838 <https://
www.rfc-editor.org/info/rfc6838>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP 14
RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

WHATWG "HTML Living Standard" <https://html.spec.whatwg.org/
multipage/scripting.html#prepare-a-script>

Baker, M. P. Stark "The 'application/xhtml+xml' Media Type" RFC 3236 DOI
10.17487/RFC3236 <https://www.rfc-editor.org/info/rfc3236>

Robinson, D. K. Coar "The Common Gateway Interface (CGI) Version 1.1"
RFC 3875 DOI 10.17487/RFC3875 <https://www.rfc-editor.org/info/
rfc3875>

Berners-Lee, T. Fielding, R. L. Masinter "Uniform Resource Identifier (URI):
Generic Syntax" STD 66 RFC 3986 DOI 10.17487/RFC3986 <https://
www.rfc-editor.org/info/rfc3986>

Duerst, M. M. Suignard "Internationalized Resource Identifiers (IRIs)" RFC
3987 DOI 10.17487/RFC3987 <https://www.rfc-editor.org/info/
rfc3987>

Kocher, P. Genkin, D. Gruss, D. Haas, W. Hamburg, M. Lipp, M. Mangard, S.
Prescher, T. Schwarz, M. Y. Yarom "Spectre Attacks: Exploiting Speculative
Execution" DOI 10.48550/arXiv.1801.01203 <https://arxiv.org/abs/
1801.01203>

RFC 9239 Updates to ECMAScript Media Types May 2022

Miller, et al. Informational Page 12

https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc4288
https://www.rfc-editor.org/info/rfc4288
https://www.rfc-editor.org/info/rfc4329
https://www.rfc-editor.org/info/rfc6365
https://www.rfc-editor.org/info/rfc6365
https://www.rfc-editor.org/info/rfc6648
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://html.spec.whatwg.org/multipage/scripting.html#prepare-a-script
https://html.spec.whatwg.org/multipage/scripting.html#prepare-a-script
https://www.rfc-editor.org/info/rfc3236
https://www.rfc-editor.org/info/rfc3875
https://www.rfc-editor.org/info/rfc3875
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3987
https://www.rfc-editor.org/info/rfc3987
https://arxiv.org/abs/1801.01203
https://arxiv.org/abs/1801.01203

[TC39-MIME-ISSUE] , ,
, August 2017,

.

TC39 "Add 'application/javascript+module' mime to remove ambiguity"
Wayback Machine archive <https://web.archive.org/web/
20170814193912/https://github.com/tc39/ecma262/issues/322>

Appendix A. Changes from RFC 4329
Added a section discussing ECMAScript modules and the impact on processing.
Updated the Security Considerations section to discuss concerns associated with ECMAScript
modules and SharedArrayBuffers.
Updated the character encoding scheme detection to remove normative guidance on its use,
to better reflect operational reality.
Changed the intended usage of the media type "text/javascript" from OBSOLETE to COMMON.
Changed the intended usage for all other script media types to obsolete.
Updated various references where the original has been obsoleted.
Updated references to ECMA-262 to match the version at the time of publication.

•
•

•

•
•
•
•

Acknowledgements
This work builds upon its antecedent document, authored by . The authors
would like to thank , , , ,

, , , , , ,
, , , , and for their

guidance and feedback throughout this process.

Björn Höhrmann
Adam Roach Alexey Melnikov Allen Wirfs-Brock Anne van Kesteren Ben

Campbell Benjamin Kaduk Éric Vyncke Francesca Palombini James Snell Kirsty Paine Mark
Nottingham Murray Kucherawy Ned Freed Robert Sparks Suresh Krishnan

Authors' Addresses
Matthew A. Miller

 linuxwolf+ietf@outer-planes.net Email:

Myles Borins
GitHub

 mylesborins@github.com Email:

Mathias Bynens
Google

 mths@google.com Email:

Bradley Farias
 bradley.meck@gmail.com Email:

RFC 9239 Updates to ECMAScript Media Types May 2022

Miller, et al. Informational Page 13

https://web.archive.org/web/20170814193912/https://github.com/tc39/ecma262/issues/322
https://web.archive.org/web/20170814193912/https://github.com/tc39/ecma262/issues/322
mailto:linuxwolf+ietf@outer-planes.net
mailto:mylesborins@github.com
mailto:mths@google.com
mailto:bradley.meck@gmail.com

	RFC 9239
	Updates to ECMAScript Media Types
	Abstract
	IESG Note
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Compatibility
	3. Modules
	4. Encoding
	4.1. Charset Parameter
	4.2. Character Encoding Scheme Detection
	4.3. Character Encoding Scheme Error Handling

	5. Security Considerations
	6. IANA Considerations
	6.1. Common JavaScript Media Types
	6.1.1. text/javascript

	6.2. Historic JavaScript Media Types
	6.2.1. text/ecmascript

	7. References
	7.1. Normative References
	7.2. Informative References

	Appendix A. Changes from RFC 4329
	Acknowledgements
	Authors' Addresses

