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Abstract

This document provides an overview of operational networking and transport protocol issues

that pertain to the quality of experience (QoE) when streaming video and other high-bitrate

media over the Internet.

This document explains the characteristics of streaming media delivery that have surprised

network designers or transport experts who lack specific media expertise, since streaming media

highlights key differences between common assumptions in existing networking practices and

observations of media delivery issues encountered when streaming media over those existing

networks.
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1. Introduction 

This document provides an overview of operational networking and transport protocol issues

that pertain to the quality of experience (QoE) when streaming video and other high-bitrate

media over the Internet.
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This document is intended to explain the characteristics of streaming media delivery that have

surprised network designers or transport experts who lack specific media expertise, since

streaming media highlights key differences between common assumptions in existing

networking practices and observations of media delivery issues encountered when streaming

media over those existing networks.

Streaming Media Operator:

Media Server:

Intermediary:

1.1. Key Definitions 

This document defines "high-bitrate streaming media over the Internet" as follows:

"High-bitrate" is a context-sensitive term broadly intended to capture rates that can be

sustained over some but not all of the target audience's network connections. A snapshot of

values commonly qualifying as high-bitrate on today's Internet is given by the higher-value

entries in Section 3.1.1. 

"Streaming" means the continuous transmission of media segments from a server to a client

and its simultaneous consumption by the client.

The term "simultaneous" is critical, as media segment transmission is not considered

"streaming" if one downloads a media file and plays it after the download is completed.

Instead, this would be called "download and play". 

This has two implications. First, the sending rate for media segments must match the

client's consumption rate (whether loosely or tightly) to provide uninterrupted playback.

That is, the client must not run out of media segments (buffer underrun) and must not

accept more media segments than it can buffer before playback (buffer overrun). 

Second, the client's media segment consumption rate is limited not only by the path's

available bandwidth but also by media segment availability. The client cannot fetch media

segments that a media server cannot provide (yet). 

"Media" refers to any type of media and associated streams, such as video, audio, metadata,

etc. 

"Over the Internet" means that a single operator does not have control of the entire path

between media servers and media clients, so it is not a "walled garden". 

This document uses these terms to describe the streaming media ecosystem:

an entity that provides streaming media servers

a server that provides streaming media to a media player, which is also referred

to as a streaming media server, or simply a server

an entity that is on-path, between the streaming media operator and the ultimate

media consumer, and that is media aware

When the streaming media is encrypted, an intermediary must have credentials that allow

the intermediary to decrypt the media in order to be media aware.

An intermediary can be one of many specialized subtypes that meet this definition.

• 

• 

◦ 

◦ 

◦ 

• 

• 

RFC 9317 Media Streaming Operations October 2022

Holland, et al. Informational Page 4



Media Player:

Ultimate Media Consumer:

an endpoint that requests streaming media from a media server for an ultimate

media consumer, which is also referred to as a streaming media client, or simply a client

a human or machine using a media player

1.2. Document Scope 

A full review of all streaming media considerations for all types of media over all types of

network paths is too broad a topic to cover comprehensively in a single document.

This document focuses chiefly on the large-scale delivery of streaming high-bitrate media to end

users. It is primarily intended for those controlling endpoints involved in delivering streaming

media traffic. This can include origin servers publishing content, intermediaries like content

delivery networks (CDNs), and providers for client devices and media players.

Most of the considerations covered in this document apply to both "live media" (created and

streamed as an event is in progress) and "media on demand" (previously recorded media that is

streamed from storage), except where noted.

Most of the considerations covered in this document apply to both media that is consumed by a

media player, for viewing by a human, and media that is consumed by a machine, such as a

media recorder that is executing an adaptive bitrate (ABR) streaming algorithm, except where

noted.

This document contains

a short description of streaming video characteristics in Section 2 to set the stage for the rest

of the document, 

general guidance on bandwidth provisioning (Section 3) and latency considerations (Section

4) for streaming media delivery, 

a description of adaptive encoding and adaptive delivery techniques in common use for

streaming video, along with a description of the challenges media senders face in detecting

the bitrate available between the media sender and media receiver, and a collection of

measurements by a third party for use in analytics (Section 5), 

a description of existing transport protocols used for media streaming and the issues

encountered when using those protocols, along with a description of the QUIC transport

protocol  more recently used for streaming media (Section 6), 

a description of implications when streaming encrypted media (Section 7), and 

a pointer to additional resources for further reading on this rapidly changing subject

(Section 8). 

Topics outside this scope include the following:

an in-depth examination of real-time, two-way interactive media, such as videoconferencing;

although this document touches lightly on topics related to this space, the intent is to let

readers know that for more in-depth coverage they should look to other documents, since

• 

• 

• 

• 

[RFC9000]

• 

• 

• 
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the techniques and issues for interactive real-time, two-way media differ so dramatically

from those in large-scale, one-way delivery of streaming media. 

specific recommendations on operational practices to mitigate issues described in this

document; although some known mitigations are mentioned in passing, the primary intent is

to provide a point of reference for future solution proposals to describe how new

technologies address or avoid existing problems. 

generalized network performance techniques; while considerations, such as data center

design, transit network design, and "walled garden" optimizations, can be crucial

components of a performant streaming media service, these are considered independent

topics that are better addressed by other documents. 

transparent tunnels; while tunnels can have an impact on streaming media via issues like

the round-trip time and the maximum transmission unit (MTU) of packets carried over

tunnels, for the purposes of this document, these issues are considered as part of the set of

network path properties. 

Questions about whether this document also covers "Web Real-Time Communication (WebRTC)"

have come up often. It does not. WebRTC's principal media transport protocol  

, the Real-time Transport Protocol (RTP), is mentioned in this document. However, as

noted in Section 2, it is difficult to give general guidance for unreliable media transport protocols

used to carry interactive real-time media.

• 

• 

• 

[RFC8834]

[RFC8835]

2. Our Focus on Streaming Video 

As the Internet has grown, an increasingly large share of the traffic delivered to end users has

become video. The most recent available estimates found that 75% of the total traffic to end users

was video in 2019 (as described in , such traffic surveys have since become impossible

to conduct due to ubiquitous encryption). At that time, the share of video traffic had been

growing for years and was projected to continue growing (Appendix D of ).

A substantial part of this growth is due to the increased use of streaming video. However, video

traffic in real-time communications (for example, online videoconferencing) has also grown

significantly. While both streaming video and videoconferencing have real-time delivery and

latency requirements, these requirements vary from one application to another. For additional

discussion of latency requirements, see Section 4.

In many contexts, media traffic can be handled transparently as generic application-level traffic.

However, as the volume of media traffic continues to grow, it is becoming increasingly important

to consider the effects of network design decisions on application-level performance, with

considerations for the impact on media delivery.

Much of the focus of this document is on media streaming over HTTP. HTTP is widely used for

media streaming because

support for HTTP is widely available in a wide range of operating systems, 

HTTP is also used in a wide variety of other applications, 

HTTP has been demonstrated to provide acceptable performance over the open Internet, 

[RFC8404]

[CVNI]

• 

• 

• 
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HTTP includes state-of-the-art standardized security mechanisms, and 

HTTP can use already-deployed caching infrastructure, such as CDNs, local proxies, and

browser caches. 

Various HTTP versions have been used for media delivery. HTTP/1.0, HTTP/1.1, and HTTP/2 are

carried over TCP , and TCP's transport behavior is described in Section 6.1. HTTP/3 is

carried over QUIC, and QUIC's transport behavior is described in Section 6.3.

Unreliable media delivery using RTP and other UDP-based protocols is also discussed in Sections 

4.1, 6.2, and 7.2, but it is difficult to give general guidance for these applications. For instance,

when packet loss occurs, the most appropriate response may depend on the type of codec being

used.

• 

• 

[RFC9293]

3. Bandwidth Provisioning 

3.1. Scaling Requirements for Media Delivery 

3.1.1. Video Bitrates 

Video bitrate selection depends on many variables including the resolution (height and width),

frame rate, color depth, codec, encoding parameters, scene complexity, and amount of motion.

Generally speaking, as the resolution, frame rate, color depth, scene complexity, and amount of

motion increase, the encoding bitrate increases. As newer codecs with better compression tools

are used, the encoding bitrate decreases. Similarly, a multi-pass encoding generally produces

better quality output compared to single-pass encoding at the same bitrate or delivers the same

quality at a lower bitrate.

Here are a few common resolutions used for video content, with typical ranges of bitrates for the

two most popular video codecs .

Name Width x Height H.264 H.265

DVD 720 x 480 1.0 Mbps 0.5 Mbps

720p (1K) 1280 x 720 3-4.5 Mbps 2-4 Mbps

1080p (2K) 1920 x 1080 6-8 Mbps 4.5-7 Mbps

2160p (4k) 3840 x 2160 N/A 10-20 Mbps

Table 1: Typical Resolutions and Bitrate Ranges Used for Video

Encoding 

Note that these codecs do not take the actual "available bandwidth" between media servers

and media players into account when encoding because the codec does not have any idea

what network paths and network path conditions will carry the encoded video at some point

in the future. It is common for codecs to offer a small number of resource variants, differing

only in the bandwidth each variant targets. 

[Encodings]

• 
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Note that media players attempting to receive encoded video across a network path with

insufficient available path bandwidth might request the media server to provide video

encoded for lower bitrates, at the cost of lower video quality, as described in Section 5.3. 

In order to provide multiple encodings for video resources, the codec must produce multiple

variants (also called renditions) of the video resource encoded at various bitrates, as

described in Section 5.2. 

• 

• 

3.1.2. Virtual Reality Bitrates 

The bitrates given in Section 3.1.1 describe video streams that provide the user with a single,

fixed point of view -- therefore, the user has no "degrees of freedom", and the user sees all of the

video image that is available.

Even basic virtual reality (360-degree) videos that allow users to look around freely (referred to

as "three degrees of freedom" or 3DoF) require substantially larger bitrates when they are

captured and encoded, as such videos require multiple fields of view of the scene. Yet, due to

smart delivery methods, such as viewport-based or tile-based streaming, there is no need to send

the whole scene to the user. Instead, the user needs only the portion corresponding to its

viewpoint at any given time .

In more immersive applications, where limited user movement ("three degrees of freedom plus"

or 3DoF+) or full user movement ("six degrees of freedom" or 6DoF) is allowed, the required

bitrate grows even further. In this case, immersive content is typically referred to as volumetric

media. One way to represent the volumetric media is to use point clouds, where streaming a

single object may easily require a bitrate of 30 Mbps or higher. Refer to  and  for

more details.

[Survey360]

[MPEGI] [PCC]

3.2. Path Bottlenecks and Constraints 

Even when the bandwidth requirements for media streams along a path are well understood,

additional analysis is required to understand the constraints on bandwidth at various points

along the path between media servers and media players. Media streams can encounter

bottlenecks at many points along a path, whether the bottleneck happens at a node or at a path

segment along the path, and these bottlenecks may involve a lack of processing power, buffering

capacity, link speed, or any other exhaustible resource.

Media servers may react to bandwidth constraints using two independent feedback loops:

Media servers often respond to application-level feedback from the media player that

indicates a bottleneck somewhere along the path by sending a different media bitrate. This is

described in greater detail in Section 5. 

Media servers also typically rely on transport protocols with capacity-seeking congestion

controllers that probe for available path bandwidth and adjust the media sending rate based

on transport mechanisms. This is described in greater detail in Section 6. 

• 

• 

RFC 9317 Media Streaming Operations October 2022

Holland, et al. Informational Page 8



The result is that these two (potentially competing) "helpful" mechanisms each respond to the

same bottleneck with no coordination between themselves, so that each is unaware of actions

taken by the other, and this can result in QoE for users that is significantly lower than what could

have been achieved.

One might wonder why media servers and transport protocols are each unaware of what the

other is doing, and there are multiple reasons for that. One reason is that media servers are often

implemented as applications executing in user space, relying on a general-purpose operating

system that typically has its transport protocols implemented in the operating system kernel,

making decisions that the media server never knows about.

As one example, if a media server overestimates the available bandwidth to the media player,

the transport protocol may detect loss due to congestion and reduce its sending window size

per round trip, 

the media server adapts to application-level feedback from the media player and reduces its

own sending rate, and/or 

the transport protocol sends media at the new, lower rate and confirms that this new, lower

rate is "safe" because no transport-level loss is occurring. 

However, because the media server continues to send at the new, lower rate, the transport

protocol's maximum sending rate is now limited by the amount of information the media server

queues for transmission. Therefore, the transport protocol cannot probe for available path

bandwidth by sending at a higher rate until the media player requests segments that buffer

enough data for the transport to perform the probing.

To avoid these types of situations, which can potentially affect all the users whose streaming

media segments traverse a bottleneck path segment, there are several possible mitigations that

streaming operators can use. However, the first step toward mitigating a problem is knowing

that a problem is occurring.

• 

• 

• 

3.2.1. Recognizing Changes from a Baseline 

There are many reasons why path characteristics might change in normal operation. For

example:

If the path topology changes. For example, routing changes, which can happen in normal

operation, may result in traffic being carried over a new path topology that is partially or

entirely disjointed from the previous path, especially if the new path topology includes one

or more path segments that are more heavily loaded, offer lower total bandwidth, change

the overall Path MTU size, or simply cover more distance between the path endpoints. 

If cross traffic that also traverses part or all of the same path topology increases or decreases,

especially if this new cross traffic is "inelastic" and does not respond to indications of path

congestion. 

Wireless links (Wi-Fi, 5G, LTE, etc.) may see rapid changes to capacity from changes in radio

interference and signal strength as endpoints move. 

• 

• 

• 
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To recognize that a path carrying streaming media has experienced a change, maintaining a

baseline that captures its prior properties is fundamental. Analytics that aid in that recognition

can be more or less sophisticated and can usefully operate on several different time scales, from

milliseconds to hours or days.

Useful properties to monitor for changes can include the following:

round-trip times 

loss rate (and explicit congestion notification (ECN)  when in use) 

out-of-order packet rate 

packet and byte receive rate 

application-level goodput 

properties of other connections carrying competing traffic, in addition to the connections

carrying the streaming media 

externally provided measurements, for example, from network cards or metrics collected by

the operating system 

• 

• [RFC3168]

• 

• 

• 

• 

• 

3.3. Path Requirements 

The bitrate requirements in Section 3.1 are per end user actively consuming a media feed, so in

the worst case, the bitrate demands can be multiplied by the number of simultaneous users to

find the bandwidth requirements for a delivery path with that number of users downstream. For

example, at a node with 10,000 downstream users simultaneously consuming video streams,

approximately 80 Gbps might be necessary for all of them to get typical content at 1080p

resolution.

However, when there is some overlap in the feeds being consumed by end users, it is sometimes

possible to reduce the bandwidth provisioning requirements for the network by performing

some kind of replication within the network. This can be achieved via object caching with the

delivery of replicated objects over individual connections and/or by packet-level replication

using multicast.

To the extent that replication of popular content can be performed, bandwidth requirements at

peering or ingest points can be reduced to as low as a per-feed requirement instead of a per-user

requirement.

3.4. Caching Systems 

When demand for content is relatively predictable, and especially when that content is relatively

static, caching content close to requesters and preloading caches to respond quickly to initial

requests are often useful (for example, HTTP/1.1 caching is described in ). This is

subject to the usual considerations for caching -- for example, how much data must be cached to

make a significant difference to the requester and how the benefit of caching and preloading

cache balances against the costs of tracking stale content in caches and refreshing that content.

[RFC9111]

RFC 9317 Media Streaming Operations October 2022

Holland, et al. Informational Page 10



It is worth noting that not all high-demand content is "live" content. One relevant example is

when popular streaming content can be staged close to a significant number of requesters, as can

happen when a new episode of a popular show is released. This content may be largely stable

and is therefore low-cost to maintain in multiple places throughout the Internet. This can reduce

demands for high end-to-end bandwidth without having to use mechanisms like multicast.

Caching and preloading can also reduce exposure to peering point congestion, since less traffic

crosses the peering point exchanges if the caches are placed in peer networks. This is especially

true when the content can be preloaded during off-peak hours and if the transfer can make use

of "A Lower-Effort Per-Hop Behavior (LE PHB) for Differentiated Services" , "Low Extra

Delay Background Transport (LEDBAT)" , or similar mechanisms.

All of this depends, of course, on the ability of a streaming media operator to predict usage and

provision bandwidth, caching, and other mechanisms to meet the needs of users. In some cases

(Section 3.5), this is relatively routine, but in other cases, it is more difficult (Section 3.6).

With the emergence of ultra-low-latency streaming, responses have to start streaming to the end

user while still being transmitted to the cache and while the cache does not yet know the size of

the object. Some of the popular caching systems were designed around a cache footprint and had

deeply ingrained assumptions about knowing the size of objects that are being stored, so the

change in design requirements in long-established systems caused some errors in production.

Incidents occurred where a transmission error in the connection from the upstream source to

the cache could result in the cache holding a truncated segment and transmitting it to the end

user's device. In this case, players rendering the stream often had a playback freeze until the

player was reset. In some cases, the truncated object was even cached that way and served later

to other players as well, causing continued stalls at the same spot in the media for all players

playing the segment delivered from that cache node.

[RFC8622]

[RFC6817]

3.5. Predictable Usage Profiles 

Historical data shows that users consume more videos, and these videos are encoded at a bitrate

higher than they were in the past. Improvements in the codecs that help reduce the encoding

bitrates with better compression algorithms have not offset the increase in the demand for the

higher quality video (higher resolution, higher frame rate, better color gamut, better dynamic

range, etc.). In particular, mobile data usage in cellular access networks has shown a large jump

over the years due to increased consumption of entertainment and conversational video.

3.6. Unpredictable Usage Profiles 

It is also possible for usage profiles to change significantly and suddenly. These changes are more

difficult to plan for, but at a minimum, recognizing that sudden changes are happening is critical.

The two examples that follow are instructive.
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3.6.1. Peer-to-Peer Applications 

In the first example, described in "Report from the IETF Workshop on Peer-to-Peer (P2P)

Infrastructure, May 28, 2008" , when the BitTorrent file sharing application came into

widespread use in 2005, sudden and unexpected growth in peer-to-peer traffic led to complaints

from ISP customers about the performance of delay-sensitive traffic (Voice over IP (VoIP) and

gaming). These performance issues resulted from at least two causes:

Many access networks for end users used underlying technologies that are inherently

asymmetric, favoring downstream bandwidth (e.g., ADSL, cellular technologies, and most

IEEE 802.11 variants), assuming that most users will need more downstream bandwidth than

upstream bandwidth. This is a good assumption for client-server applications, such as

streaming media or software downloads, but BitTorrent rewarded peers that uploaded as

much as they downloaded, so BitTorrent users had much more symmetric usage profiles,

which interacted badly with these asymmetric access network technologies. 

Some P2P systems also used distributed hash tables to organize peers into a ring topology,

where each peer knew its "next peer" and "previous peer". There was no connection

between the application-level ring topology and the lower-level network topology, so a peer's

"next peer" might be anywhere on the reachable Internet. Traffic models that expected most

communication to take place with a relatively small number of servers were unable to cope

with peer-to-peer traffic that was much less predictable. 

Especially as end users increase the use of video-based social networking applications, it will be

helpful for access network providers to watch for increasing numbers of end users uploading

significant amounts of content.

[RFC5594]

• 

• 

3.6.2. Impact of Global Pandemic 

Early in 2020, the COVID-19 pandemic and resulting quarantines and shutdowns led to

significant changes in traffic patterns due to a large number of people who suddenly started

working and attending school remotely and using more interactive applications (e.g.,

videoconferencing and streaming media). Subsequently, the Internet Architecture Board (IAB)

held a COVID-19 Network Impacts Workshop  in November 2020. The following

observations from the workshop report are worth considering.

Participants describing different types of networks reported different kinds of impacts, but

all types of networks saw impacts. 

Mobile networks saw traffic reductions, and residential networks saw significant increases. 

Reported traffic increases from ISPs and Internet Exchange Points (IXPs) over just a few

weeks were as big as the traffic growth over the course of a typical year, representing a

15-20% surge in growth to land at a new normal that was much higher than anticipated. 

At Deutscher Commercial Internet Exchange (DE-CIX) Frankfurt, the world's largest IXP in

terms of data throughput, the year 2020 has seen the largest increase in peak traffic within a

single year since the IXP was founded in 1995. 

The usage pattern changed significantly as work-from-home and videoconferencing usage

peaked during normal work hours, which would have typically been off-peak hours with

[RFC9075]

• 

• 

• 

• 

• 
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adults at work and children at school. One might expect that the peak would have had more

impact on networks if it had happened during typical evening peak hours for streaming

applications. 

The increase in daytime bandwidth consumption reflected both significant increases in

essential applications, such as videoconferencing and virtual private networks (VPNs), and

entertainment applications as people watched videos or played games. 

At the IXP level, it was observed that physical link utilization increased. This phenomenon

could probably be explained by a higher level of uncacheable traffic, such as

videoconferencing and VPNs, from residential users as they stopped commuting and

switched to working at home. 

Again, it will be helpful for streaming operators to monitor traffic as described in Section 5.6,

watching for sudden changes in performance.

• 

• 

4. Latency Considerations 

Streaming media latency refers to the "glass-to-glass" time duration, which is the delay between

the real-life occurrence of an event and the streamed media being appropriately played on an

end user's device. Note that this is different from the network latency (defined as the time for a

packet to cross a network from one end to another end) because it includes media encoding/

decoding and buffering time and, for most cases, also the ingest to an intermediate service, such

as a CDN or other media distribution service, rather than a direct connection to an end user.

The team working on this document found these rough categories to be useful when considering

a streaming media application's latency requirements:

ultra-low-latency (less than 1 second) 

low-latency live (less than 10 seconds) 

non-low-latency live (10 seconds to a few minutes) 

on-demand (hours or more) 

• 

• 

• 

• 

4.1. Ultra-Low-Latency 

Ultra-low-latency delivery of media is defined here as having a glass-to-glass delay target under 1

second.

Some media content providers aim to achieve this level of latency for live media events. This

introduces new challenges when compared to the other latency categories described in Section 4,

because ultra-low-latency is on the same scale as commonly observed end-to-end network

latency variation, often due to bufferbloat , Wi-Fi error correction, or packet reordering.

These effects can make it difficult to achieve ultra-low-latency for many users and may require

accepting relatively frequent user-visible media artifacts. However, for controlled environments

that provide mitigations against such effects, ultra-low-latency is potentially achievable with the

right provisioning and the right media transport technologies.

[CoDel]
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Most applications operating over IP networks and requiring latency this low use the Real-time

Transport Protocol (RTP)  or WebRTC , which uses RTP as its media transport

protocol, along with several other protocols necessary for safe operation in browsers.

It is worth noting that many applications for ultra-low-latency delivery do not need to scale to as

many users as applications for low-latency and non-low-latency live delivery, which simplifies

many delivery considerations.

Recommended reading for applications adopting an RTP-based approach also includes 

. For increasing the robustness of the playback by implementing adaptive playout

methods, refer to  and .

[RFC3550] [RFC8825]

[RFC7656]

[RFC4733] [RFC6843]

4.1.1. Near-Real-Time Latency 

Some Internet applications that incorporate media streaming have specific interactivity or

control-feedback requirements that drive much lower glass-to-glass media latency targets than 1

second. These include videoconferencing or voice calls; remote video gameplay; remote control

of hardware platforms like drones, vehicles, or surgical robots; and many other envisioned or

deployed interactive applications.

Applications with latency targets in these regimes are out of scope for this document.

4.2. Low-Latency Live 

Low-latency live delivery of media is defined here as having a glass-to-glass delay target under 10

seconds.

This level of latency is targeted to have a user experience similar to broadcast TV delivery. A

frequently cited problem with failing to achieve this level of latency for live sporting events is the

user experience failure from having crowds within earshot of one another who react audibly to

an important play or from users who learn of an event in the match via some other channel, for

example, social media, before it has happened on the screen showing the sporting event.

Applications requiring low-latency live media delivery are generally feasible at scale with some

restrictions. This typically requires the use of a premium service dedicated to the delivery of live

media, and some trade-offs may be necessary relative to what is feasible in a higher-latency

service. The trade-offs may include higher costs, delivering a lower quality media, reduced

flexibility for adaptive bitrates, or reduced flexibility for available resolutions so that fewer

devices can receive an encoding tuned for their display. Low-latency live delivery is also more

susceptible to user-visible disruptions due to transient network conditions than higher-latency

services.

Implementation of a low-latency live media service can be achieved with the use of HTTP Live

Streaming (HLS)  by using its low-latency extension (called LL-HLS) 

or with Dynamic Adaptive Streaming over HTTP (DASH)  by using its low-latency

extension (called LL-DASH) . These extensions use the Common Media Application

Format (CMAF) standard  that allows the media to be packaged into and

transmitted in units smaller than segments, which are called "chunks" in CMAF language. This

[RFC8216] [HLS-RFC8216BIS]

[MPEG-DASH]

[LL-DASH]

[MPEG-CMAF]
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way, the latency can be decoupled from the duration of the media segments. Without a CMAF-like

packaging, lower latencies can only be achieved by using very short segment durations.

However, using shorter segments means using more frequent intra-coded frames, and that is

detrimental to video encoding quality. The CMAF standard allows us to still use longer segments

(improving encoding quality) without penalizing latency.

While an LL-HLS client retrieves each chunk with a separate HTTP GET request, an LL-DASH

client uses the chunked transfer encoding feature of the HTTP , which allows the LL-

DASH client to fetch all the chunks belonging to a segment with a single GET request. An HTTP

server can transmit the CMAF chunks to the LL-DASH client as they arrive from the encoder/

packager. A detailed comparison of LL-HLS and LL-DASH is given in .

[CMAF-CTE]

[MMSP20]

4.3. Non-Low-Latency Live 

Non-low-latency live delivery of media is defined here as a live stream that does not have a

latency target shorter than 10 seconds.

This level of latency is the historically common case for segmented media delivery using HLS and

DASH. This level of latency is often considered adequate for content like news. This level of

latency is also sometimes achieved as a fallback state when some part of the delivery system or

the client-side players do not support low-latency live streaming.

This level of latency can typically be achieved at scale with commodity CDN services for HTTP(s)

delivery, and in some cases, the increased time window can allow for the production of a wider

range of encoding options relative to the requirements for a lower-latency service without the

need for increasing the hardware footprint, which can allow for wider device interoperability.

4.4. On-Demand 

On-demand media streaming refers to the playback of pre-recorded media based on a user's

action. In some cases, on-demand media is produced as a by-product of a live media production,

using the same segments as the live event but freezing the manifest that describes the media

available from the media server after the live event has finished. In other cases, on-demand

media is constructed out of pre-recorded assets with no streaming necessarily involved during

the production of the on-demand content.

On-demand media generally is not subject to latency concerns, but other timing-related

considerations can still be as important or even more important to the user experience than the

same considerations with live events. These considerations include the startup time, the stability

of the media stream's playback quality, and avoidance of stalls and other media artifacts during

the playback under all but the most severe network conditions.

In some applications, optimizations are available to on-demand media but are not always

available to live events, such as preloading the first segment for a startup time that does not have

to wait for a network download to begin.
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5. Adaptive Encoding, Adaptive Delivery, and Measurement

Collection 

This section describes one of the best-known ways to provide a good user experience over a

given network path, but one thing to keep in mind is that application-level mechanisms cannot

provide a better experience than the underlying network path can support.

5.1. Overview 

A simple model of media playback can be described as a media stream consumer, a buffer, and a

transport mechanism that fills the buffer. The consumption rate is fairly static and is represented

by the content bitrate. The size of the buffer is also commonly a fixed size. The buffer fill process

needs to be at least fast enough to ensure that the buffer is never empty; however, it also can

have significant complexity when things like personalization or advertising insertion workflows

are introduced.

The challenges in filling the buffer in a timely way fall into two broad categories:

Content variation (also sometimes called a "bitrate ladder") is the set of content renditions

that are available at any given selection point. 

Content selection comprises all of the steps a client uses to determine which content

rendition to play. 

The mechanism used to select the bitrate is part of the content selection, and the content

variation is all of the different bitrate renditions.

Adaptive bitrate streaming ("ABR streaming" or simply "ABR") is a commonly used technique for

dynamically adjusting the media quality of a stream to match bandwidth availability. When this

goal is achieved, the media server will tend to send enough media that the media player does not

"stall", without sending so much media that the media player cannot accept it.

ABR uses an application-level response strategy in which the streaming client attempts to detect

the available bandwidth of the network path by first observing the successful application-layer

download speed; then, given the available bandwidth, the client chooses a bitrate for each of the

video, audio, subtitles, and metadata (among a limited number of available options for each type

of media) that fits within that bandwidth, typically adjusting as changes in available bandwidth

occur in the network or changes in capabilities occur during the playback (such as available

memory, CPU, display size, etc.).

• 

• 

5.2. Adaptive Encoding 

Media servers can provide media streams at various bitrates because the media has been

encoded at various bitrates. This is a so-called "ladder" of bitrates that can be offered to media

players as part of the manifest so that the media player can select among the available bitrate

choices.
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The media server may also choose to alter which bitrates are made available to players by

adding or removing bitrate options from the ladder delivered to the player in subsequent

manifests built and sent to the player. This way, both the player, through its selection of bitrate to

request from the manifest, and the server, through its construction of the bitrates offered in the

manifest, are able to affect network utilization.

5.3. Adaptive Segmented Delivery 

Adaptive segmented delivery attempts to optimize its own use of the path between a media

server and a media client. ABR playback is commonly implemented by streaming clients using

HLS  or DASH  to perform a reliable segmented delivery of media over

HTTP. Different implementations use different strategies , often relying on

proprietary algorithms (called rate adaptation or bitrate selection algorithms) to perform

available bandwidth estimation/prediction and the bitrate selection.

Many systems will do an initial probe or a very simple throughput speed test at the start of media

playback. This is done to get a rough sense of the highest (total) media bitrate that the network

between the server and player will likely be able to provide under initial network conditions.

After the initial testing, clients tend to rely upon passive network observations and will make use

of player-side statistics, such as buffer fill rates, to monitor and respond to changing network

conditions.

The choice of bitrate occurs within the context of optimizing for one or more metrics monitored

by the client, such as the highest achievable audiovisual quality or the lowest chances for a

rebuffering event (playback stall).

[RFC8216] [MPEG-DASH]

[ABRSurvey]

5.4. Advertising 

The inclusion of advertising alongside or interspersed with streaming media content is common

in today's media landscape.

Some commonly used forms of advertising can introduce potential user experience issues for a

media stream. This section provides a very brief overview of a complex and rapidly evolving

space.

The same techniques used to allow a media player to switch between renditions of different

bitrates at segment boundaries can also be used to enable the dynamic insertion of

advertisements (hereafter referred to as "ads"), but this does not mean that the insertion of ads

has no effect on the user's quality of experience.

Ads may be inserted with either Client-side Ad Insertion (CSAI) or Server-side Ad Insertion (SSAI).

In CSAI, the ABR manifest will generally include links to an external ad server for some segments

of the media stream, while in SSAI, the server will remain the same during ads but will include

media segments that contain the advertising. In SSAI, the media segments may or may not be

sourced from an external ad server like with CSAI.
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In general, the more targeted the ad request is, the more requests the ad service needs to be able

to handle concurrently. If connectivity is poor to the ad service, this can cause rebuffering even if

the underlying media assets (both content and ads) can be accessed quickly. The less targeted the

ad request is, the more likely that ad requests can be consolidated and that ads can be cached

similarly to the media content.

In some cases, especially with SSAI, advertising space in a stream is reserved for a specific

advertiser and can be integrated with the video so that the segments share the same encoding

properties, such as bitrate, dynamic range, and resolution. However, in many cases, ad servers

integrate with a Supply Side Platform (SSP) that offers advertising space in real-time auctions via

an Ad Exchange, with bids for the advertising space coming from Demand Side Platforms (DSPs)

that collect money from advertisers for delivering the ads. Most such Ad Exchanges use

application-level protocol specifications published by the Interactive Advertising Bureau 

, an industry trade organization.

This ecosystem balances several competing objectives, and integrating with it naively can

produce surprising user experience results. For example, ad server provisioning and/or the

bitrate of the ad segments might be different from that of the main content, and either of these

differences can result in playback stalls. For another example, since the inserted ads are often

produced independently, they might have a different base volume level than the main content,

which can make for a jarring user experience.

Another major source of competing objectives comes from user privacy considerations vs. the

advertiser's incentives to target ads to user segments based on behavioral data. Multiple studies,

for example,  and , have reported large improvements in ad effectiveness

when using behaviorally targeted ads, relative to untargeted ads. This provides a strong

incentive for advertisers to gain access to the data necessary to perform behavioral targeting,

leading some to engage in what is indistinguishable from a pervasive monitoring attack 

 based on user tracking in order to collect the relevant data. A more complete review of

issues in this space is available in .

On top of these competing objectives, this market historically has had incidents of misreporting

of ad delivery to end users for financial gain . As a mitigation for concerns driven by

those incidents, some SSPs have required the use of specific media players that include features

like reporting of ad delivery or providing additional user information that can be used for

tracking.

In general, this is a rapidly developing space with many considerations, and media streaming

operators engaged in advertising may need to research these and other concerns to find

solutions that meet their user experience, user privacy, and financial goals. For further reading

on mitigations,  has published some standards and best practices based on user experience

research.

[IAB-

ADS]

[BEHAVE] [BEHAVE2]

[RFC7258]

[BALANCING]

[ADFRAUD]

[BAP]
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5.5. Bitrate Detection Challenges 

This kind of bandwidth-measurement system can experience various troubles that are affected

by networking and transport protocol issues. Because adaptive application-level response

strategies are often using rates as observed by the application layer, there are sometimes

inscrutable transport-level protocol behaviors that can produce surprising measurement values

when the application-level feedback loop is interacting with a transport-level feedback loop.

A few specific examples of surprising phenomena that affect bitrate detection measurements are

described in the following subsections. As these examples will demonstrate, it is common to

encounter cases that can deliver application-level measurements that are too low, too high, and

(possibly) correct but that vary more quickly than a lab-tested selection algorithm might expect.

These effects and others that cause transport behavior to diverge from lab modeling can

sometimes have a significant impact on bitrate selection and on user QoE, especially where

players use naive measurement strategies and selection algorithms that do not account for the

likelihood of bandwidth measurements that diverge from the true path capacity.

5.5.1. Idle Time between Segments 

When the bitrate selection is chosen substantially below the available capacity of the network

path, the response to a segment request will typically complete in much less absolute time than

the duration of the requested segment, leaving significant idle time between segment downloads.

This can have a few surprising consequences:

TCP slow-start, when restarting after idle, requires multiple RTTs to re-establish a

throughput at the network's available capacity. When the active transmission time for

segments is substantially shorter than the time between segments, leaving an idle gap

between segments that triggers a restart of TCP slow-start, the estimate of the successful

download speed coming from the application-visible receive rate on the socket can thus end

up much lower than the actual available network capacity. This, in turn, can prevent a shift

to the most appropriate bitrate.  provides some mitigations for this effect at the

TCP transport layer for senders who anticipate a high incidence of this problem. 

Mobile flow-bandwidth spectrum and timing mapping can be impacted by idle time in some

networks. The carrier capacity assigned to a physical or virtual link can vary with activity.

Depending on the idle time characteristics, this can result in a lower available bitrate than

would be achievable with a steadier transmission in the same network. 

Some receiver-side ABR algorithms, such as , are designed to try to avoid this effect.

Another way to mitigate this effect is by the help of two simultaneous TCP connections, as

explained in  for Microsoft Smooth Streaming. In some cases, the system-level TCP

slow-start restart can also be disabled, for example, as described in .

• 

[RFC7661]

• 

[ELASTIC]

[MMSys11]

[OReilly-HPBN]
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5.5.2. Noisy Measurements 

In addition to smoothing over an appropriate time scale to handle network jitter (see ),

ABR systems relying on measurements at the application layer also have to account for noise

from the in-order data transmission at the transport layer.

For instance, in the event of a lost packet on a TCP connection with SACK support (a common

case for segmented delivery in practice), loss of a packet can provide a confusing bandwidth

signal to the receiving application. Because of the sliding window in TCP, many packets may be

accepted by the receiver without being available to the application until the missing packet

arrives. Upon the arrival of the one missing packet after retransmit, the receiver will suddenly

get access to a lot of data at the same time.

To a receiver measuring bytes received per unit time at the application layer and interpreting it

as an estimate of the available network bandwidth, this appears as a high jitter in the goodput

measurement, presenting as a stall followed by a sudden leap that can far exceed the actual

capacity of the transport path from the server when the hole in the received data is filled by a

later retransmission.

[RFC5481]

5.5.3. Wide and Rapid Variation in Path Capacity 

As many end devices have moved to wireless connections for the final hop (such as Wi-Fi, 5G,

LTE, etc.), new problems in bandwidth detection have emerged.

In most real-world operating environments, wireless links can often experience sudden changes

in capacity as the end user device moves from place to place or encounters new sources of

interference. Microwave ovens, for example, can cause a throughput degradation in Wi-Fi of

more than a factor of 2 while active .

These swings in actual transport capacity can result in user experience issues when interacting

with ABR algorithms that are not tuned to handle the capacity variation gracefully.

[Micro]

5.6. Measurement Collection 

Media players use measurements to guide their segment-by-segment adaptive streaming

requests but may also provide measurements to streaming media providers.

In turn, media providers may base analytics on these measurements to guide decisions, such as

whether adaptive encoding bitrates in use are the best ones to provide to media players or

whether current media content caching is providing the best experience for viewers.

To that effect, the Consumer Technology Association (CTA), who owns the Web Application Video

Ecosystem (WAVE) project, has published two important specifications.

CTA-2066: Streaming Quality of Experience Events, Properties and Metrics • 
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 specifies a set of media player events, properties, QoE metrics, and associated

terminology for representing streaming media QoE across systems, media players, and analytics

vendors. While all these events, properties, metrics, and associated terminology are used across a

number of proprietary analytics and measurement solutions, they were used in slightly (or

vastly) different ways that led to interoperability issues. CTA-2066 attempts to address this issue

by defining common terminology and how each metric should be computed for consistent

reporting.

CTA-5004: Web Application Video Ecosystem - Common Media Client Data (CMCD) 

Many assume that the CDNs have a holistic view of the health and performance of the streaming

clients. However, this is not the case. The CDNs produce millions of log lines per second across

hundreds of thousands of clients, and they have no concept of a "session" as a client would have,

so CDNs are decoupled from the metrics the clients generate and report. A CDN cannot tell which

request belongs to which playback session, the duration of any media object, the bitrate, or

whether any of the clients have stalled and are rebuffering or are about to stall and will rebuffer.

The consequence of this decoupling is that a CDN cannot prioritize delivery for when the client

needs it most, prefetch content, or trigger alerts when the network itself may be

underperforming. One approach to couple the CDN to the playback sessions is for the clients to

communicate standardized media-relevant information to the CDNs while they are fetching data.

 was developed exactly for this purpose.

[CTA-2066]

• 

[CTA-5004]

6. Transport Protocol Behaviors and Their Implications for

Media Transport Protocols 

Within this document, the term "media transport protocol" is used to describe any protocol that

carries media metadata and media segments in its payload, and the term "transport protocol"

describes any protocol that carries a media transport protocol, or another transport protocol, in

its payload. This is easier to understand if the reader assumes a protocol stack that looks

something like this:

where

"Media segments" would be something like the output of a codec or some other source of

media segments, such as closed-captioning, 

"Media format" would be something like an RTP payload format  or an ISO base

media file format (ISOBMFF) profile , 

          Media Segments
    ---------------------------
           Media Format
    ---------------------------
      Media Transport Protocol
    ---------------------------
       Transport Protocol(s)

• 

• [RFC2736]

[ISOBMFF]
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"Media transport protocol" would be something like RTP  or DASH ,

and 

"Transport protocol" would be a protocol that provides appropriate transport services, as

described in . 

Not all possible streaming media applications follow this model, but for the ones that do, it seems

useful to distinguish between the protocol layer that is aware it is transporting media segments

and underlying protocol layers that are not aware.

As described in the abstract of , the IETF has standardized a number of protocols that

provide transport services. Although these protocols, taken in total, provide a wide variety of

transport services, Section 6 will distinguish between two extremes:

transport protocols used to provide reliable, in-order media delivery to an endpoint,

typically providing flow control and congestion control (Section 6.1), and 

transport protocols used to provide unreliable, unordered media delivery to an endpoint,

without flow control or congestion control (Section 6.2). 

Because newly standardized transport protocols, such as QUIC , that are typically

implemented in user space can evolve their transport behavior more rapidly than currently used

transport protocols that are typically implemented in operating system kernel space, this

document includes a description of how the path characteristics that streaming media providers

may see are likely to evolve; see Section 6.3.

It is worth noting explicitly that the transport protocol layer might include more than one

protocol. For example, a specific media transport protocol might run over HTTP, or over

WebTransport, which in turn runs over HTTP.

It is worth noting explicitly that more complex network protocol stacks are certainly possible --

for instance, when packets with this protocol stack are carried in a tunnel or in a VPN, the entire

packet would likely appear in the payload of other protocols. If these environments are present,

streaming media operators may need to analyze their effects on applications as well.

• [RFC3550] [MPEG-DASH]

• 

Section 5 of [RFC8095]

[RFC8095]

• 

• 

[RFC9000]

6.1. Media Transport over Reliable Transport Protocols 

The HLS  and DASH  media transport protocols are typically carried over

HTTP, and HTTP has used TCP as its only standardized transport protocol until HTTP/3 .

These media transport protocols use ABR response strategies as described in Section 5 to respond

to changing path characteristics, and underlying transport protocols are also attempting to

respond to changing path characteristics.

The past success of the largely TCP-based Internet is evidence that the various flow control and

congestion control mechanisms that TCP has used to achieve equilibrium quickly, at a point

where TCP senders do not interfere with other TCP senders for sustained periods of time 

, have been largely successful. The Internet has continued to work even when the

specific TCP mechanisms used to reach equilibrium changed over time . Because TCP

[RFC8216] [MPEG-DASH]

[RFC9114]

[RFC5681]

[RFC7414]
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provided a common tool to avoid contention, even when significant TCP-based applications like

FTP were largely replaced by other significant TCP-based applications like HTTP, the transport

behavior remained safe for the Internet.

Modern TCP implementations  continue to probe for available bandwidth and "back

off" when a network path is saturated but may also work to avoid growing queues along network

paths, which can prevent older TCP senders from quickly detecting when a network path is

becoming saturated. Congestion control mechanisms, such as Copa  and Bottleneck

Bandwidth and Round-trip propagation time (BBR) , make these

decisions based on measured path delays, assuming that if the measured path delay is

increasing, the sender is injecting packets onto the network path faster than the network can

forward them (or the receiver can accept them), so the sender should adjust its sending rate

accordingly.

Although common TCP behavior has changed significantly since the days of 

and , even with adding new congestion controllers such as CUBIC , the

common practice of implementing TCP as part of an operating system kernel has acted to limit

how quickly TCP behavior can change. Even with the widespread use of automated operating

system update installation on many end-user systems, streaming media providers could have a

reasonable expectation that they could understand TCP transport protocol behaviors and that

those behaviors would remain relatively stable in the short term.

[RFC9293]

[COPA18]

[BBR-CONGESTION-CONTROL]

[Jacobson-Karels]

[RFC2001] [RFC8312]

6.2. Media Transport over Unreliable Transport Protocols 

Because UDP does not provide any feedback mechanism to senders to help limit impacts on other

users, UDP-based application-level protocols have been responsible for the decisions that TCP-

based applications have delegated to TCP, i.e., what to send, how much to send, and when to send

it. Because UDP itself has no transport-layer feedback mechanisms, UDP-based applications that

send and receive substantial amounts of information are expected to provide their own feedback

mechanisms and to respond to the feedback the application receives. This expectation is most

recently codified as a Best Current Practice .

In contrast to adaptive segmented delivery over a reliable transport as described in Section 5.3,

some applications deliver streaming media segments using an unreliable transport and rely on a

variety of approaches, including:

media encapsulated in a raw MPEG Transport Stream (MPEG-TS)  over UDP, which

makes no attempt to account for reordering or loss in the transport, 

RTP , which can notice packet loss and repair some limited reordering, 

the Stream Control Transmission Protocol (SCTP) , which can use partial reliability 

 to recover from some loss but can abandon recovery to limit head-of-line

blocking, and 

the Secure Reliable Transport (SRT) , which can use forward error correction and time-

bound retransmission to recover from loss within certain limits but can abandon recovery to

limit head-of-line blocking. 

[RFC8085]

• [MPEG-TS]

• [RFC3550]

• [RFC9260]

[RFC3758]

• [SRT]
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Under congestion and loss, approaches like the above generally experience transient media

artifacts more often and delay of playback effects less often, as compared with reliable segment

transport. Often, one of the key goals of using a UDP-based transport that allows some

unreliability is to reduce latency and better support applications like videoconferencing or other

live-action video with interactive components, such as some sporting events.

Congestion avoidance strategies for deployments using unreliable transport protocols vary

widely in practice, ranging from being entirely unresponsive to responding by using strategies,

including:

feedback signaling to change encoder settings (as in ), 

fewer enhancement layers (as in ), and 

proprietary methods to detect QoE issues and turn off video to allow less bandwidth-

intensive media, such as audio, to be delivered. 

RTP relies on RTCP sender and receiver reports  as its own feedback mechanism and

even includes circuit breakers for unicast RTP sessions  for situations when normal

RTP congestion control has not been able to react sufficiently to RTP flows sending at rates that

result in sustained packet loss.

The notion of "circuit breakers" has also been applied to other UDP applications in ,

such as tunneling packets over UDP that are potentially not congestion controlled (for example,

"encapsulating MPLS in UDP", as described in ). If streaming media segments are

carried in tunnels encapsulated in UDP, these media streams may encounter "tripped circuit

breakers", with resulting user-visible impacts.

• [RFC5762]

• [RFC6190]

• 

[RFC3550]

[RFC8083]

[RFC8084]

[RFC7510]

6.3. QUIC and Changing Transport Protocol Behavior 

The QUIC protocol, developed from a proprietary protocol into an IETF Standards Track protocol 

, behaves differently than the transport protocols characterized in Sections 6.1 and 6.2.

Although QUIC provides an alternative to the TCP and UDP transport protocols, QUIC is itself

encapsulated in UDP. As noted elsewhere in Section 7.1, the QUIC protocol encrypts almost all of

its transport parameters and all of its payload, so any intermediaries that network operators may

be using to troubleshoot HTTP streaming media performance issues, perform analytics, or even

intercept exchanges in current applications will not work for QUIC-based applications without

making changes to their networks. Section 7 describes the implications of media encryption in

more detail.

While QUIC is designed as a general-purpose transport protocol and can carry different

application-layer protocols, the current standardized mapping is for HTTP/3 , which

describes how QUIC transport services are used for HTTP. The convention is for HTTP/3 to run

over UDP port 443 , but this is not a strict requirement.

When HTTP/3 is encapsulated in QUIC, which is then encapsulated in UDP, streaming operators

(and network operators) might see UDP traffic patterns that are similar to HTTP(S) over TCP. UDP

ports may be blocked for any port numbers that are not commonly used, such as UDP 53 for DNS.

[RFC9000]

[RFC9114]

[Port443]
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Even when UDP ports are not blocked and QUIC packets can flow, streaming operators (and

network operators) may severely rate-limit this traffic because they do not expect to see

legitimate high-bandwidth traffic, such as streaming media over the UDP ports that HTTP/3 is

using.

As noted in Section 5.5.2, because TCP provides a reliable, in-order delivery service for

applications, any packet loss for a TCP connection causes head-of-line blocking so that no TCP

segments arriving after a packet is lost will be delivered to the receiving application until

retransmission of the lost packet has been received, allowing in-order delivery to the application

to continue. As described in , QUIC connections can carry multiple streams, and when

packet losses do occur, only the streams carried in the lost packet are delayed.

A QUIC extension currently being specified  adds the capability for "unreliable"

delivery, similar to the service provided by UDP, but these datagrams are still subject to the QUIC

connection's congestion controller, providing some transport-level congestion avoidance

measures, which UDP does not.

As noted in Section 6.1, there is an increasing interest in congestion control algorithms that

respond to delay measurements instead of responding to packet loss. These algorithms may

deliver an improved user experience, but in some cases, they have not responded to sustained

packet loss, which exhausts available buffers along the end-to-end path that may affect other

users sharing that path. The QUIC protocol provides a set of congestion control hooks that can be

used for algorithm agility, and  defines a basic congestion control algorithm that is

roughly similar to TCP NewReno . However, QUIC senders can and do unilaterally

choose to use different algorithms, such as loss-based CUBIC , delay-based Copa or BBR,

or even something completely different.

The Internet community does have experience with deploying new congestion controllers

without causing congestion collapse on the Internet. As noted in , both the CUBIC

congestion controller and its predecessor BIC have significantly different behavior from Reno-

style congestion controllers, such as TCP NewReno ; both were added to the Linux

kernel to allow experimentation and analysis, both were then selected as the default TCP

congestion controllers in Linux, and both were deployed globally.

The point mentioned in Section 6.1 about TCP congestion controllers being implemented in

operating system kernels is different with QUIC. Although QUIC can be implemented in operating

system kernels, one of the design goals when this work was chartered was "QUIC is expected to

support rapid, distributed development and testing of features"; to meet this expectation, many

implementers have chosen to implement QUIC in user space, outside the operating system

kernel, and to even distribute QUIC libraries with their own applications. It is worth noting that

streaming operators using HTTP/3, carried over QUIC, can expect more frequent deployment of

new congestion controller behavior than has been the case with HTTP/1 and HTTP/2, carried

over TCP.

[RFC9000]

[RFC9221]

[RFC9002]

[RFC6582]

[RFC8312]

[RFC8312]

[RFC6582]
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It is worth considering that if TCP-based HTTP traffic and UDP-based HTTP/3 traffic are allowed

to enter operator networks on roughly equal terms, questions of fairness and contention will be

heavily dependent on interactions between the congestion controllers in use for TCP-based HTTP

traffic and UDP-based HTTP/3 traffic.

7. Streaming Encrypted Media 

"Encrypted Media" has at least three meanings:

Media encrypted at the application layer, typically using some sort of Digital Rights

Management (DRM) system or other object encryption/security mechanism and typically

remaining encrypted at rest when senders and receivers store it. 

Media encrypted by the sender at the transport layer and remaining encrypted until it

reaches the ultimate media consumer (in this document, it is referred to as end-to-end media

encryption). 

Media encrypted by the sender at the transport layer and remaining encrypted until it

reaches some intermediary that is not the ultimate media consumer but has credentials

allowing decryption of the media content. This intermediary may examine and even

transform the media content in some way, before forwarding re-encrypted media content (in

this document, it is referred to as hop-by-hop media encryption). 

This document focuses on media encrypted at the transport layer, whether encryption is

performed hop by hop or end to end. Because media encrypted at the application layer will only

be processed by application-level entities, this encryption does not have transport-layer

implications. Of course, both hop-by-hop and end-to-end encrypted transport may carry media

that is, in addition, encrypted at the application layer.

Each of these encryption strategies is intended to achieve a different goal. For instance,

application-level encryption may be used for business purposes, such as avoiding piracy or

enforcing geographic restrictions on playback, while transport-layer encryption may be used to

prevent media stream manipulation or to protect manifests.

This document does not take a position on whether those goals are valid.

Both end-to-end and hop-by-hop media encryption have specific implications for streaming

operators. These are described in Sections 7.2 and 7.3.

• 

• 

• 

7.1. General Considerations for Streaming Media Encryption 

The use of strong encryption does provide confidentiality for encrypted streaming media, from

the sender to either the ultimate media consumer or to an intermediary that possesses

credentials allowing decryption. This does prevent deep packet inspection (DPI) by any on-path

intermediary that does not possess credentials allowing decryption. However, even encrypted

content streams may be vulnerable to traffic analysis. An on-path observer that can identify that

encrypted traffic contains a media stream could "fingerprint" this encrypted media stream and

then compare it against "fingerprints" of known content. The protection provided by strong

encryption can be further lessened if a streaming media operator is repeatedly encrypting the
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same content. "Identifying HTTPS-Protected Netflix Videos in Real-Time"  is an

example of what is possible when identifying HTTPS-protected videos over TCP transport, based

either on the length of entire resources being transferred or on characteristic packet patterns at

the beginning of a resource being transferred. If traffic analysis is successful at identifying

encrypted content and associating it with specific users, this tells an on-path observer what

resource is being streamed, and by who, almost as certainly as examining decrypted traffic.

Because HTTPS has historically layered HTTP on top of TLS, which is in turn layered on top of

TCP, intermediaries have historically had access to unencrypted TCP-level transport information,

such as retransmissions, and some carriers exploited this information in attempts to improve

transport-layer performance . The most recent standardized version of HTTPS, HTTP/3 

, uses the QUIC protocol  as its transport layer. QUIC relies on the TLS 1.3

initial handshake  only for key exchange  and encrypts almost all transport

parameters itself, except for a few invariant header fields. In the QUIC short header, the only

transport-level parameter that is sent "in the clear" is the Destination Connection ID ,

and even in the QUIC long header, the only transport-level parameters sent "in the clear" are the

version, Destination Connection ID, and Source Connection ID. For these reasons, HTTP/3 is

significantly more "opaque" than HTTPS with HTTP/1 or HTTP/2.

 discusses the manageability of the QUIC transport protocol that is used to encapsulate

HTTP/3, focusing on the implications of QUIC's design and wire image on network operations

involving QUIC traffic. It discusses what network operators can consider in some detail.

More broadly, "Considerations around Transport Header Confidentiality, Network Operations,

and the Evolution of Internet Transport Protocols"  describes the impact of increased

encryption of transport headers in general terms.

It is also worth noting that considerations for heavily encrypted transport protocols also come

into play when streaming media is carried over IP-level VPNs and tunnels, with the additional

consideration that an intermediary that does not possess credentials allowing decryption will not

have visibility to the source and destination IP addresses of the packets being carried inside the

tunnel.

[CODASPY17]

[RFC3135]

[RFC9114] [RFC9000]

[RFC8446] [RFC9001]

[RFC8999]

[RFC9312]

[RFC9065]

7.2. Considerations for Hop-by-Hop Media Encryption 

Hop-by-hop media encryption offers the benefits described in Section 7.1 between the streaming

media operator and authorized intermediaries, among authorized intermediaries, and between

authorized intermediaries and the ultimate media consumer; however, it does not provide these

benefits end to end. The streaming media operator and ultimate media consumer must trust the

authorized intermediaries, and if these intermediaries cannot be trusted, the benefits of

encryption are lost.

Although the IETF has put considerable emphasis on end-to-end streaming media encryption,

there are still important use cases that require the insertion of intermediaries.

There are a variety of ways to involve intermediaries, and some are much more intrusive than

others.
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From a streaming media operator's perspective, a number of considerations are in play. The first

question is likely whether the streaming media operator intends that intermediaries are

explicitly addressed from endpoints or whether the streaming media operator is willing to allow

intermediaries to "intercept" streaming content transparently, with no awareness or permission

from either endpoint.

If a streaming media operator does not actively work to avoid interception by on-path

intermediaries, the effect will be indistinguishable from "impersonation attacks", and endpoints

cannot be assured of any level of confidentiality and cannot trust that the content received came

from the expected sender.

Assuming that a streaming media operator does intend to allow intermediaries to participate in

content streaming and does intend to provide some level of privacy for endpoints, there are a

number of possible tools, either already available or still being specified. These include the

following:

Server and Network Assisted DASH :

This specification introduces explicit messaging between DASH clients and DASH-aware

network elements or among various DASH-aware network elements for the purpose of

improving the efficiency of streaming sessions by providing information about real-time

operational characteristics of networks, servers, proxies, caches, CDNs, as well as a DASH

client's performance and status. 

"Double Encryption Procedures for the Secure Real-Time Transport Protocol (SRTP)" :

This specification provides a cryptographic transform for the SRTP that provides both hop-by-

hop and end-to-end security guarantees. 

Secure Frames :

 is closely tied to SRTP, and this close association impeded widespread deployment,

because it could not be used for the most common media content delivery mechanisms. A

more recent proposal, Secure Frames , also provides both hop-by-hop and end-to-

end security guarantees but can be used with other media transport protocols beyond SRTP. 

A streaming media operator's choice of whether to involve intermediaries requires careful

consideration. As an example, when ABR manifests were commonly sent unencrypted, some

access network operators would modify manifests during peak hours by removing high-bitrate

renditions to prevent players from choosing those renditions, thus reducing the overall

bandwidth consumed for delivering these media streams and thereby reducing the network load

and improving the average user experience for their customers. Now that ubiquitous encryption

typically prevents this kind of modification, a streaming media operator who used

intermediaries in the past, and who now wishes to maintain the same level of network health

and user experience, must choose between adding intermediaries who are authorized to change

the manifests or adding some other form of complexity to their service.

Some resources that might inform other similar considerations are further discussed in 

 (for WebRTC) and  (for HTTP/3 and QUIC).

[MPEG-DASH-SAND]

[RFC8723]

[SFRAME]

[RFC8723]

[SFRAME]

[RFC8824] [RFC9312]
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11. Informative References 

7.3. Considerations for End-to-End Media Encryption 

End-to-end media encryption offers the benefits described in Section 7.1 from the streaming

media operator to the ultimate media consumer.

End-to-end media encryption has become much more widespread in the years since the IETF

issued "Pervasive Monitoring Is an Attack"  as a Best Current Practice, describing

pervasive monitoring as a much greater threat than previously appreciated. After the Snowden

disclosures, many content providers made the decision to use HTTPS protection -- HTTP over TLS

-- for most or all content being delivered as a routine practice, rather than in exceptional cases

for content that was considered sensitive.

However, as noted in , there is no way to prevent pervasive monitoring by an attacker

while allowing monitoring by a more benign entity who only wants to use DPI to examine HTTP

requests and responses to provide a better user experience. If a modern encrypted transport

protocol is used for end-to-end media encryption, unauthorized on-path intermediaries are

unable to examine transport and application protocol behavior. As described in Section 7.2, only

an intermediary explicitly authorized by the streaming media operator who is to examine packet

payloads, rather than intercepting packets and examining them without authorization, can

continue these practices.

 states that "[t]he IETF will strive to produce specifications that mitigate pervasive

monitoring attacks", so streaming operators should expect the IETF's direction toward

preventing unauthorized monitoring of IETF protocols to continue for the foreseeable future.

[RFC7258]

[RFC7258]

[RFC7258]

8. Additional Resources for Streaming Media 

The Media Operations (MOPS) community maintains a list of references and resources; for

further reading, see .[MOPS-RESOURCES]

9. IANA Considerations 

This document has no IANA actions.

10. Security Considerations 

Security is an important matter for streaming media applications, and the topic of media

encryption was explained in Section 7. This document itself introduces no new security issues.
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