
RFC 9329

TCP Encapsulation of Internet Key Exchange

Protocol (IKE) and IPsec Packets

Abstract

This document describes a method to transport Internet Key Exchange Protocol (IKE) and IPsec

packets over a TCP connection for traversing network middleboxes that may block IKE

negotiation over UDP. This method, referred to as "TCP encapsulation", involves sending both IKE

packets for Security Association (SA) establishment and Encapsulating Security Payload (ESP)

packets over a TCP connection. This method is intended to be used as a fallback option when IKE

cannot be negotiated over UDP.

TCP encapsulation for IKE and IPsec was defined in RFC 8229. This document clarifies the

specification for TCP encapsulation by including additional clarifications obtained during

implementation and deployment of this method. This documents obsoletes RFC 8229.

Stream:

RFC:

Obsoletes:

Category:

Published:

ISSN:

Authors:

Internet Engineering Task Force (IETF)

9329

8229

Standards Track

November 2022

2070-1721

 T. Pauly

Apple Inc.

V. Smyslov

ELVIS-PLUS

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the

consensus of the IETF community. It has received public review and has been approved for

publication by the Internet Engineering Steering Group (IESG). Further information on Internet

Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9329

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights

reserved.

Pauly & Smyslov Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9329
https://www.rfc-editor.org/rfc/rfc8229
https://www.rfc-editor.org/info/rfc9329

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

with respect to this document. Code Components extracted from this document must include

Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Prior Work and Motivation

1.2. Terminology and Notation

2. Configuration

3. TCP-Encapsulated Data Formats

3.1. TCP-Encapsulated IKE Message Format

3.2. TCP-Encapsulated ESP Packet Format

4. TCP-Encapsulated Stream Prefix

5. Applicability

5.1. Recommended Fallback from UDP

6. Using TCP Encapsulation

6.1. Connection Establishment and Teardown

6.2. Retransmissions

6.3. Cookies and Puzzles

6.3.1. Statelessness versus Delay of SA Establishment

6.4. Error Handling in IKE_SA_INIT

6.5. NAT-Detection Payloads

6.6. NAT-Keepalive Packets

6.7. Dead Peer Detection and Transport Keepalives

6.8. Implications of TCP Encapsulation on IPsec SA Processing

7. Interaction with IKEv2 Extensions

7.1. MOBIKE Protocol

7.2. IKE Redirect

7.3. IKEv2 Session Resumption

RFC 9329 TCP Encapsulation of IKE & IPsec Packets November 2022

Pauly & Smyslov Standards Track Page 2

https://trustee.ietf.org/license-info

7.4. IKEv2 Protocol Support for High Availability

7.5. IKEv2 Fragmentation

8. Middlebox Considerations

9. Performance Considerations

9.1. TCP-in-TCP

9.2. Added Reliability for Unreliable Protocols

9.3. Quality-of-Service Markings

9.4. Maximum Segment Size

9.5. Tunneling ECN in TCP

10. Security Considerations

11. IANA Considerations

12. References

12.1. Normative References

12.2. Informative References

Appendix A. Using TCP Encapsulation with TLS

Appendix B. Example Exchanges of TCP Encapsulation with TLS 1.3

B.1. Establishing an IKE Session

B.2. Deleting an IKE Session

B.3. Re-establishing an IKE Session

B.4. Using MOBIKE between UDP and TCP Encapsulation

Acknowledgments

Authors' Addresses

1. Introduction

The Internet Key Exchange Protocol version 2 (IKEv2) is a protocol for establishing

IPsec Security Associations (SAs) using IKE messages over UDP for control traffic and using

Encapsulating Security Payload (ESP) messages for encrypted data traffic. Many

network middleboxes that filter traffic on public hotspots block all UDP traffic, including IKE and

IPsec, but allow TCP connections through because they appear to be web traffic. Devices on these

networks that need to use IPsec (to access private enterprise networks, to route Voice over IP

calls to carrier networks because of security policies, etc.) are unable to establish IPsec SAs. This

[RFC7296]

[RFC4303]

RFC 9329 TCP Encapsulation of IKE & IPsec Packets November 2022

Pauly & Smyslov Standards Track Page 3

document defines a method for encapsulating IKE control messages as well as ESP data messages

within a TCP connection. Note that Authentication Header (AH) is not supported by this

specification.

Using TCP as a transport for IPsec packets adds the third option (below) to the list of traditional

IPsec transports:

Direct. Usually, IKE negotiations begin over UDP port 500. If no Network Address Translation

(NAT) device is detected between the Initiator and the Responder, then subsequent IKE

packets are sent over UDP port 500 and IPsec data packets are sent using ESP.

UDP Encapsulation. Described in . If a NAT is detected between the Initiator and

the Responder, then subsequent IKE packets are sent over UDP port 4500 with 4 bytes of zero

at the start of the UDP payload, and ESP packets are sent out over UDP port 4500. Some

implementations default to using UDP encapsulation even when no NAT is detected on the

path, as some middleboxes do not support IP protocols other than TCP and UDP.

TCP Encapsulation. Described in this document. If the other two methods are not available or

appropriate, IKE negotiation packets as well as ESP packets can be sent over a single TCP

connection to the peer.

Direct use of ESP or UDP encapsulation should be preferred by IKE implementations due to

performance concerns when using TCP encapsulation (Section 9). Most implementations should

use TCP encapsulation only on networks where negotiation over UDP has been attempted

without receiving responses from the peer or if a network is known to not support UDP.

1.

2. [RFC3948]

3.

1.1. Prior Work and Motivation

Encapsulating IKE connections within TCP streams is a common approach to solve the problem

of UDP packets being blocked by network middleboxes. The specific goals of this document are as

follows:

To promote interoperability by defining a standard method of framing IKE and ESP messages

within TCP streams.

To be compatible with the current IKEv2 standard without requiring modifications or

extensions.

To use IKE over UDP by default to avoid the overhead of other alternatives that always rely

on TCP or Transport Layer Security (TLS) .

Some previous alternatives include:

Cellular Network Access:

Interworking Wireless LAN (IWLAN) uses IKEv2 to create secure connections to cellular

carrier networks for making voice calls and accessing other network services over Wi-Fi

networks. 3GPP has recommended that IKEv2 and ESP packets be sent within a TLS

connection to be able to establish connections on restrictive networks.

•

•

•

[RFC5246] [RFC8446]

RFC 9329 TCP Encapsulation of IKE & IPsec Packets November 2022

Pauly & Smyslov Standards Track Page 4

ISAKMP over TCP:

Various non-standard extensions to the Internet Security Association and Key Management

Protocol (ISAKMP) have been deployed that send IPsec traffic over TCP or TCP-like packets.

Secure Sockets Layer (SSL) VPNs:

Many proprietary VPN solutions use a combination of TLS and IPsec in order to provide

reliability. These often run on TCP port 443.

IKEv2 over TCP:

IKEv2 over TCP as described in is used to avoid UDP fragmentation.

TCP encapsulation for IKE and IPsec was defined in . This document updates the

specification for TCP encapsulation by including additional clarifications obtained during

implementation and deployment of this method.

In particular:

The interpretation of the Length field preceding every message is clarified (Section 3).

The use of the NAT_DETECTION_*_IP notifications is clarified (Sections 5.1, 6.5, and 7.1).

Retransmission behavior is clarified (Section 6.2).

The use of cookies and puzzles is described in more detail (Section 6.3).

Error handling is clarified (Section 6.4).

Implications of TCP encapsulation on IPsec SA processing are expanded (Section 6.8).

Section 7 describing interactions with other IKEv2 extensions is added.

The interaction of TCP encapsulation with IKEv2 Mobility and Multihoming (MOBIKE) is

clarified (Section 7.1).

The recommendation for TLS encapsulation (Appendix A) now includes TLS 1.3.

Examples of TLS encapsulation are provided using TLS 1.3 (Appendix B).

More security considerations are added.

[IPSECME-IKE-TCP]

[RFC8229]

•

•

•

•

•

•

•

•

•

•

•

1.2. Terminology and Notation

This document distinguishes between the IKE peer that initiates TCP connections to be used for

TCP encapsulation and the roles of Initiator and Responder for particular IKE messages. During

the course of IKE exchanges, the role of IKE Initiator and Responder may swap for a given SA (as

with IKE SA rekeys), while the Initiator of the TCP connection is still responsible for tearing down

the TCP connection and re-establishing it if necessary. For this reason, this document will use the

term "TCP Originator" to indicate the IKE peer that initiates TCP connections. The peer that

receives TCP connections will be referred to as the "TCP Responder". If an IKE SA is rekeyed one

or more times, the TCP Originator remain the peer that originally initiated the first IKE SA.

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in

all capitals, as shown here.

MUST

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

RFC 9329 TCP Encapsulation of IKE & IPsec Packets November 2022

Pauly & Smyslov Standards Track Page 5

2. Configuration

One of the main reasons to use TCP encapsulation is that UDP traffic may be entirely blocked on a

network. Because of this, support for TCP encapsulation is not specifically negotiated in the IKE

exchange. Instead, support for TCP encapsulation must be preconfigured on both the TCP

Originator and the TCP Responder.

Compliant implementations support TCP encapsulation on TCP port 4500, which is

reserved for IPsec NAT traversal.

Beyond a flag indicating support for TCP encapsulation, the configuration for each peer can

include the following optional parameters:

Alternate TCP ports on which the specific TCP Responder listens for incoming connections.

Note that the TCP Originator may initiate TCP connections to the TCP Responder from any

local port.

An extra framing protocol to use on top of TCP to further encapsulate the stream of IKE and

IPsec packets. See Appendix A for a detailed discussion.

Since TCP encapsulation of IKE and IPsec packets adds overhead and has potential performance

trade-offs compared to direct or UDP-encapsulated SAs (as described in Section 9),

implementations prefer ESP direct or UDP-encapsulated SAs over TCP-encapsulated SAs

when possible.

MUST

•

•

SHOULD

3. TCP-Encapsulated Data Formats

Like UDP encapsulation, TCP encapsulation uses the first 4 bytes of a message to differentiate IKE

and ESP messages. TCP encapsulation also adds a 16-bit Length field that precedes every message

to define the boundaries of messages within a stream. The value in this field is equal to the

length of the original message plus the length of the field itself, in octets. If the first 32 bits of the

message are zeros (a non-ESP marker), then the contents comprise an IKE message. Otherwise,

the contents comprise an ESP message. AH messages are not supported for TCP encapsulation.

Although a TCP stream may be able to send very long messages, implementations limit

message lengths to match the lengths used for UDP encapsulation of ESP messages. The

maximum message length is used as the effective MTU for connections that are being encrypted

using ESP, so the maximum message length will influence characteristics of these connections,

such as the TCP Maximum Segment Size (MSS).

Due to the fact that the Length field is 16 bits and includes both the message length and the

length of the field itself, it is impossible to encapsulate messages greater than 65533 octets in

length. In most cases, this is not a problem. Note that a similar limitation exists for encapsulation

ESP in UDP .

SHOULD

[RFC3948]

RFC 9329 TCP Encapsulation of IKE & IPsec Packets November 2022

Pauly & Smyslov Standards Track Page 6

The minimum size of an encapsulated message is 1 octet (for NAT-keepalive packets, see Section

6.6). Empty messages (where the Length field equals 2) be silently ignored by receiver.

Note that this method of encapsulation will also work for placing IKE and ESP messages within

any protocol that presents a stream abstraction, beyond TCP.

MUST

Length (2 octets, unsigned integer):

Non-ESP Marker (4 octets):

3.1. TCP-Encapsulated IKE Message Format

The IKE message is preceded by a 16-bit Length field in network byte order that specifies the

length of the IKE message (including the non-ESP marker) within the TCP stream. As with IKE

over UDP port 4500, a zeroed 32-bit non-ESP marker is inserted before the start of the IKE header

in order to differentiate the traffic from ESP traffic between the same addresses and ports.

Length of the IKE message, including the Length field and

non-ESP marker. The value in the Length field be 0 or 1. The receiver treat

these values as fatal errors and close the TCP connection.

Four zero-valued bytes.

Figure 1: IKE Message Format for TCP Encapsulation

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 | Length |

+-+

| Non-ESP Marker |

+-+

| |

~ IKE Message (RFC 7296) ~

| |

+-+

MUST NOT MUST

MUST

3.2. TCP-Encapsulated ESP Packet Format

Figure 2: ESP Packet Format for TCP Encapsulation

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 | Length |

+-+

| |

~ ESP Packet (RFC 4303) ~

| |

+-+

RFC 9329 TCP Encapsulation of IKE & IPsec Packets November 2022

Pauly & Smyslov Standards Track Page 7

Length (2 octets, unsigned integer):

The ESP packet is preceded by a 16-bit Length field in network byte order that specifies the

length of the ESP packet within the TCP stream.

The Security Parameter Index (SPI) field in the ESP header be a zero value.

Length of the ESP packet, including the Length field. The

value in the Length field be 0 or 1. The receiver treat these values as fatal

errors and close TCP connection.

[RFC7296] MUST NOT

MUST NOT MUST

MUST

4. TCP-Encapsulated Stream Prefix

Each stream of bytes used for IKE and IPsec encapsulation begin with a fixed sequence of 6

bytes as a magic value, containing the characters "IKETCP" as ASCII values.

This value is intended to identify and validate that the TCP connection is being used for TCP

encapsulation as defined in this document, to avoid conflicts with the prevalence of previous

non-standard protocols that used TCP port 4500. This value is only sent once, by the TCP

Originator only, at the beginning of the TCP stream of IKE and ESP messages.

If other framing protocols are used within TCP to further encapsulate or encrypt the stream of

IKE and ESP messages, the stream prefix must be at the start of the TCP Originator's IKE and ESP

message stream within the added protocol layer (Appendix A). Although some framing protocols

do support negotiating inner protocols, the stream prefix should always be used in order for

implementations to be as generic as possible and not rely on other framing protocols on top of

TCP.

MUST

Figure 3: TCP-Encapsulated Stream Prefix

 0 1 2 3 4 5

+------+------+------+------+------+------+

| 0x49 | 0x4b | 0x45 | 0x54 | 0x43 | 0x50 |

+------+------+------+------+------+------+

Initiator Responder

 <new TCP connection is established by Initiator>

Stream Prefix|Length|non-ESP marker|IKE message -->

 <-- Length|non-ESP marker|IKE message

Length|non-ESP marker|IKE message -->

 <-- Length|non-ESP marker|IKE message

 [...]

Length|ESP packet ->

 <- Length|ESP packet

RFC 9329 TCP Encapsulation of IKE & IPsec Packets November 2022

Pauly & Smyslov Standards Track Page 8

5. Applicability

TCP encapsulation is applicable only when it has been configured to be used with specific IKE

peers. If a Responder is configured to accept and is allowed to use TCP encapsulation, it

listen on the configured port(s) in case any peers will initiate new IKE sessions. Initiators

use TCP encapsulation for any IKE session to a peer that is configured to support TCP

encapsulation, although it is recommended that Initiators only use TCP encapsulation when

traffic over UDP is blocked.

Since the support of TCP encapsulation is a configured property, not a negotiated one, it is

recommended that if there are multiple IKE endpoints representing a single peer (such as

multiple machines with different IP addresses when connecting by Fully Qualified Domain Name

(FQDN), or endpoints used with IKE redirection), all of the endpoints equally support TCP

encapsulation.

If TCP encapsulation is being used for a specific IKE SA, all IKE messages for that IKE SA and ESP

packets for its Child SAs be sent over a TCP connection until the SA is deleted or IKEv2

Mobility and Multihoming (MOBIKE) is used to change the SA endpoints and/or the

encapsulation protocol. See Section 7.1 for more details on using MOBIKE to transition between

encapsulation modes.

MUST

MAY

MUST

5.1. Recommended Fallback from UDP

Since UDP is the preferred method of transport for IKE messages, implementations that use TCP

encapsulation should have an algorithm for deciding when to use TCP after determining that

UDP is unusable. If an Initiator implementation has no prior knowledge about the network it is

on and the status of UDP on that network, it always attempt to negotiate IKE over UDP

first. IKEv2 defines how to use retransmission timers with IKE messages and, specifically,

IKE_SA_INIT messages . Generally, this means that the implementation will define a

frequency of retransmission and the maximum number of retransmissions allowed before

marking the IKE SA as failed. An implementation can attempt negotiation over TCP once it has hit

the maximum retransmissions over UDP, or slightly before to reduce connection setup delays. It

is recommended that the initial message over UDP be retransmitted at least once before falling

back to TCP, unless the Initiator knows beforehand that the network is likely to block UDP.

When switching from UDP to TCP, a new IKE_SA_INIT exchange be initiated with the

Initiator's new SPI and with recalculated content of NAT_DETECTION_*_IP notifications.

SHOULD

[RFC7296]

MUST

6. Using TCP Encapsulation

6.1. Connection Establishment and Teardown

When the IKE Initiator uses TCP encapsulation, it will initiate a TCP connection to the Responder

using the Responder's preconfigured TCP port. The first bytes sent on the TCP stream be the

stream prefix value (Section 4). After this prefix, encapsulated IKE messages will negotiate the

MUST

RFC 9329 TCP Encapsulation of IKE & IPsec Packets November 2022

Pauly & Smyslov Standards Track Page 9

IKE SA and initial Child SA . After this point, both encapsulated IKE (Figure 1) and ESP

(Figure 2) messages will be sent over the TCP connection. The TCP Responder wait for the

entire stream prefix to be received on the stream before trying to parse out any IKE or ESP

messages. The stream prefix is sent only once, and only by the TCP Originator.

In order to close an IKE session, either the Initiator or Responder gracefully tear down

IKE SAs with DELETE payloads. Once the SA has been deleted, the TCP Originator close

the TCP connection if it does not intend to use the connection for another IKE session to the TCP

Responder. If the TCP connection is no longer associated with any active IKE SA, the TCP

Responder close the connection to clean up IKE resources if the TCP Originator didn't close it

within some reasonable period of time (e.g., a few seconds).

An unexpected FIN or a TCP Reset on the TCP connection may indicate a loss of connectivity, an

attack, or some other error. If a DELETE payload has not been sent, both sides maintain

the state for their SAs for the standard lifetime or timeout period. The TCP Originator is

responsible for re-establishing the TCP connection if it is torn down for any unexpected reason.

Since new TCP connections may use different IP addresses and/or ports due to NAT mappings or

local address or port allocations changing, the TCP Responder allow packets for existing

SAs to be received from new source IP addresses and ports. Note that the IPv6 Flow-ID header

 remain constant when a new TCP connection is created to avoid ECMP load balancing.

A peer discard a partially received message due to a broken connection.

Whenever the TCP Originator opens a new TCP connection to be used for an existing IKE SA, it

 send the stream prefix first, before any IKE or ESP messages. This follows the same

behavior as the initial TCP connection.

Multiple IKE SAs share a single TCP connection, unless one is a rekey of an existing

IKE SA, in which case there will temporarily be two IKE SAs on the same TCP connection.

If a TCP connection is being used to continue an existing IKE/ESP session, the TCP Responder can

recognize the session using either the IKE SPI from an encapsulated IKE message or the ESP SPI

from an encapsulated ESP packet. If the session had been fully established previously, it is

suggested that the TCP Originator send an UPDATE_SA_ADDRESSES message if MOBIKE is

supported and an empty informational message if it is not.

The TCP Responder accept any messages for the existing IKE session on a new

incoming connection, unless that connection begins with the stream prefix. If either the TCP

Originator or TCP Responder detects corruption on a connection that was started with a valid

stream prefix, it close the TCP connection. The connection can be corrupted if there are

too many subsequent messages that cannot be parsed as valid IKE messages or ESP messages

with known SPIs, or if the authentication check for an IKE message or ESP message with a known

SPI fails. Implementations tear down a connection if only a few consecutive ESP

packets have unknown SPIs since the SPI databases may be momentarily out of sync. If there is

instead a syntax issue within an IKE message, an implementation send the

INVALID_SYNTAX notify payload and tear down the IKE SA as usual, rather than tearing down

the TCP connection directly.

[RFC7296]

MUST

SHOULD

SHOULD

MAY

SHOULD

MUST

MUST

MUST

MUST

MUST NOT

MUST NOT

SHOULD

SHOULD NOT

MUST

RFC 9329 TCP Encapsulation of IKE & IPsec Packets November 2022

Pauly & Smyslov Standards Track Page 10

A TCP Originator only open one TCP connection per IKE SA, over which it sends all of the

corresponding IKE and ESP messages. This helps ensure that any firewall or NAT mappings

allocated for the TCP connection apply to all of the traffic associated with the IKE SA equally.

As with TCP Originators, a TCP Responder send packets for an IKE SA and its Child SAs

over only one TCP connection at any given time. It choose the TCP connection on which

it last received a valid and decryptable IKE or ESP message. In order to be considered valid for

choosing a TCP connection, an IKE message must be successfully decrypted and authenticated,

not be a retransmission of a previously received message, and be within the expected window

for IKE message IDs. Similarly, an ESP message must be successfully decrypted and

authenticated, and must not be a replay of a previous message.

Since a connection may be broken and a new connection re-established by the TCP Originator

without the TCP Responder being aware, a TCP Responder accept receiving IKE and ESP

messages on both old and new connections until the old connection is closed by the TCP

Originator. A TCP Responder close a TCP connection that it perceives as idle and extraneous

(one previously used for IKE and ESP messages that has been replaced by a new connection).

SHOULD

SHOULD

SHOULD

SHOULD

MAY

6.2. Retransmissions

 describes how IKEv2 deals with the unreliability of the UDP protocol. In

brief, the exchange Initiator is responsible for retransmissions and must retransmit request

messages until a response message is received. If no reply is received after several

retransmissions, the SA is deleted. The Responder never initiates retransmission, but it must

send a response message again in case it receives a retransmitted request.

When IKEv2 uses a reliable transport protocol, like TCP, the retransmission rules are as follows:

The exchange Initiator retransmit request message (*); if no response is

received within some reasonable period of time, the IKE SA is deleted.

If a new TCP connection for the IKE SA is established while the exchange Initiator is waiting

for a response, the Initiator retransmit its request over this connection and continue to

wait for a response.

The exchange Responder does not change its behavior, but acts as described in

.

(*) This is an optimization; implementations may continue to use the retransmission logic from

 for simplicity.

Section 2.1 of [RFC7296]

• SHOULD NOT

•

MUST

• Section 2.1 of

[RFC7296]

Section 2.1 of [RFC7296]

6.3. Cookies and Puzzles

IKEv2 provides a DoS attack protection mechanism through Cookies, which is described in

. extends this mechanism for protection against DDoS attacks

by means of Client Puzzles. Both mechanisms allow the Responder to avoid keeping state until

the Initiator proves its IP address is legitimate (and after solving a puzzle if required).

Section 2.6 of [RFC7296] [RFC8019]

RFC 9329 TCP Encapsulation of IKE & IPsec Packets November 2022

Pauly & Smyslov Standards Track Page 11

https://www.rfc-editor.org/rfc/rfc7296#section-2.1
https://www.rfc-editor.org/rfc/rfc7296#section-2.1
https://www.rfc-editor.org/rfc/rfc7296#section-2.1
https://www.rfc-editor.org/rfc/rfc7296#section-2.6

The connection-oriented nature of TCP transport brings additional considerations for using these

mechanisms. In general, Cookies provide less value in the case of TCP encapsulation; by the time

a Responder receives the IKE_SA_INIT request, the TCP session has already been established and

the Initiator's IP address has been verified. Moreover, a TCP/IP stack creates state once a TCP SYN

packet is received (unless SYN Cookies described in are employed), which contradicts

the statelessness of IKEv2 Cookies. In particular, with TCP, an attacker is able to mount a SYN

flooding DoS attack that an IKEv2 Responder cannot prevent using stateless IKEv2 Cookies. Thus,

when using TCP encapsulation, it makes little sense to send Cookie requests without Puzzles

unless the Responder is concerned with a possibility of TCP sequence number attacks (see

 and for details). Puzzles, on the other hand, still remain useful (and their

use requires using Cookies).

The following considerations are applicable for using Cookie and Puzzle mechanisms in the case

of TCP encapsulation:

The exchange Responder send an IKEv2 Cookie request without an

accompanied Puzzle; implementations might choose to have exceptions to this for cases like

mitigating TCP sequence number attacks.

If the Responder chooses to send a Cookie request (possibly along with Puzzle request), then

the TCP connection that the IKE_SA_INIT request message was received over be

closed after the Responder sends its reply and no repeated requests are received within

some short period of time to keep the Responder stateless (see Section 6.3.1). Note that the

Responder include the Initiator's TCP port into the Cookie calculation (*) since the

Cookie can be returned over a new TCP connection with a different port.

The exchange Initiator acts as described in and

, i.e., using TCP encapsulation doesn't change the Initiator's behavior.

(*) Examples of Cookie calculation methods are given in and in

, and they don't include transport protocol ports. However, these examples

are given for illustrative purposes since the Cookie generation algorithm is a local matter and

some implementations might include port numbers that won't work with TCP encapsulation.

Note also that these examples include the Initiator's IP address in Cookie calculation. In general,

this address may change between two initial requests (with and without Cookies). This may

happen due to NATs, which have more freedom to change source IP addresses for new TCP

connections than for UDP. In such cases, cookie verification might fail.

[RFC4987]

[RFC6528] [RFC9293]

• SHOULD NOT

•

SHOULD

MUST NOT

• Section 2.6 of [RFC7296] Section 7 of

[RFC8019]

Section 2.6 of [RFC7296] Section

7.1.1.3 of [RFC8019]

6.3.1. Statelessness versus Delay of SA Establishment

There is a trade-off in choosing the period of time after which the TCP connection is closed. If it is

too short, then the proper Initiator that repeats its request would need to re-establish the TCP

connection, introducing additional delay. On the other hand, if it is too long, then the Responder's

resources would be wasted in case the Initiator never comes back. This document doesn't

mandate the duration of time because it doesn't affect interoperability, but it is believed that 5-10

seconds is a good compromise. Also, note that if the Responder requests that the Initiator solve a

puzzle, then the Responder can estimate how long it would take the Initiator to find a solution

and adjust the time interval accordingly.

RFC 9329 TCP Encapsulation of IKE & IPsec Packets November 2022

Pauly & Smyslov Standards Track Page 12

https://www.rfc-editor.org/rfc/rfc7296#section-2.6
https://www.rfc-editor.org/rfc/rfc8019#section-7
https://www.rfc-editor.org/rfc/rfc7296#section-2.6
https://www.rfc-editor.org/rfc/rfc8019#section-7.1.1.3
https://www.rfc-editor.org/rfc/rfc8019#section-7.1.1.3

6.4. Error Handling in IKE_SA_INIT

 describes how error notifications are handled in the IKE_SA_INIT

exchange. In particular, it is advised that the Initiator should not act immediately after receiving

an error notification; instead, it should wait some time for a valid response since the

IKE_SA_INIT messages are completely unauthenticated. This advice does not apply equally in the

case of TCP encapsulation. If the Initiator receives a response message over TCP, then either this

message is genuine and was sent by the peer or the TCP session was hijacked and the message is

forged. In the latter case, no genuine messages from the Responder will be received.

Thus, in the case of TCP encapsulation, an Initiator wait for additional messages in

case it receives an error notification from the Responder in the IKE_SA_INIT exchange.

In the IKE_SA_INIT exchange, if the Responder returns an error notification that implies a

recovery action from the Initiator (such as INVALID_KE_PAYLOAD or INVALID_MAJOR_VERSION,

see), then the Responder close the TCP connection

immediately in anticipation of the fact that the Initiator will repeat the request with corrected

parameters. See also Section 6.3.

Section 2.21.1 of [RFC7296]

SHOULD NOT

Section 2.21.1 of [RFC7296] SHOULD NOT

6.5. NAT-Detection Payloads

When negotiating over UDP, IKE_SA_INIT packets include NAT_DETECTION_SOURCE_IP and

NAT_DETECTION_DESTINATION_IP payloads to determine if UDP encapsulation of IPsec packets

should be used. These payloads contain SHA-1 digests of the SPIs, IP addresses, and ports as

defined in . IKE_SA_INIT packets sent on a TCP connection include these

payloads with the same content as when sending over UDP and use the applicable TCP

ports when creating and checking the SHA-1 digests.

If a NAT is detected due to the SHA-1 digests not matching the expected values, no change should

be made for encapsulation of subsequent IKE or ESP packets since TCP encapsulation inherently

supports NAT traversal. However, for the transport mode IPsec SAs, implementations need to

handle TCP and UDP packet checksum fixup during decapsulation, as defined for UDP

encapsulation in .

Implementations use the information that a NAT is present to influence keepalive timer

values.

[RFC7296] SHOULD

SHOULD

[RFC3948]

MAY

6.6. NAT-Keepalive Packets

Encapsulating IKE and IPsec inside of a TCP connection can impact the strategy that

implementations use to maintain middlebox port mappings.

In general, TCP port mappings are maintained by NATs longer than UDP port mappings, so IPsec

ESP NAT-keepalive packets be sent when using TCP encapsulation. Any

implementation using TCP encapsulation silently drop incoming NAT-keepalive packets

[RFC3948] SHOULD NOT

MUST

RFC 9329 TCP Encapsulation of IKE & IPsec Packets November 2022

Pauly & Smyslov Standards Track Page 13

https://www.rfc-editor.org/rfc/rfc7296#section-2.21.1
https://www.rfc-editor.org/rfc/rfc7296#section-2.21.1

and not treat them as errors. NAT-keepalive packets over a TCP-encapsulated IPsec connection

will be sent as a 1-octet-long payload with the value 0xFF, preceded by the 2-octet Length

specifying a length of 3 (since it includes the length of the Length field).

6.7. Dead Peer Detection and Transport Keepalives

Peer liveness should be checked using IKE informational packets .

Note that, depending on the configuration of TCP and TLS on the connection, TCP keep-alives

 and TLS keep-alives be used. These be used as indications of

IKE peer liveness, for which purpose the standard IKEv2 mechanism of exchanging (usually

empty) INFORMATIONAL messages is used (see).

[RFC7296]

[RFC1122] [RFC6520] MAY MUST NOT

Section 1.4 of [RFC7296]

6.8. Implications of TCP Encapsulation on IPsec SA Processing

Using TCP encapsulation affects some aspects of IPsec SA processing.

 requires all tunnel mode IPsec SAs to be able to copy the Don't

Fragment (DF) bit from inner IPv4 header to the outer (tunnel) one. With TCP encapsulation,

this is generally not possible because the TCP/IP stack manages the DF bit in the outer IPv4

header, and usually the stack ensures that the DF bit is set for TCP packets to avoid IP

fragmentation. Note, that this behavior is compliant with generic tunneling considerations

since the outer TCP header acts as a link-layer protocol and its fragmentation and

reassembly have no correlation with the inner payload.

The other feature that is less applicable with TCP encapsulation is an ability to split traffic of

different QoS classes into different IPsec SAs, created by a single IKE SA. In this case, the

Differentiated Services Code Point (DSCP) field is usually copied from the inner IP header to

the outer (tunnel) one, ensuring that IPsec traffic of each SA receives the corresponding level

of service. With TCP encapsulation, all IPsec SAs created by a single IKE SA will share a single

TCP connection; thus, they will receive the same level of service (see Section 9.3). If this

functionality is needed, implementations should create several IKE SAs each over separate

TCP connections and assign a corresponding DSCP value to each of them.

TCP encapsulation of IPsec packets may have implications on performance of the encapsulated

traffic. Performance considerations are discussed in Section 9.

1. Section 8.1 of [RFC4301]

2.

7. Interaction with IKEv2 Extensions

7.1. MOBIKE Protocol

The MOBIKE protocol, which allows SAs to migrate between IP addresses, is defined in

; further clarifies the details of the protocol. When an IKE session that has

negotiated MOBIKE is transitioning between networks, the Initiator of the transition may switch

between using TCP encapsulation, UDP encapsulation, or no encapsulation. Implementations that

implement both MOBIKE and TCP encapsulation within the same connection configuration

support dynamically enabling and disabling TCP encapsulation as interfaces change.

[RFC4555] [RFC4621]

MUST

RFC 9329 TCP Encapsulation of IKE & IPsec Packets November 2022

Pauly & Smyslov Standards Track Page 14

https://www.rfc-editor.org/rfc/rfc7296#section-1.4
https://www.rfc-editor.org/rfc/rfc4301#section-8.1

When a MOBIKE-enabled Initiator changes networks, the INFORMATIONAL exchange with the

UPDATE_SA_ADDRESSES notification be initiated first over UDP before attempting over

TCP. If there is a response to the request sent over UDP, then the ESP packets should be sent

directly over IP or over UDP port 4500 (depending on if a NAT was detected), regardless of if a

connection on a previous network was using TCP encapsulation. If no response is received

within a certain period of time after several retransmissions, the Initiator ought to change its

transport for this exchange from UDP to TCP and resend the request message. A new

INFORMATIONAL exchange be started in this situation. If the Responder only

responds to the request sent over TCP, then the ESP packets should be sent over the TCP

connection, regardless of if a connection on a previous network did not use TCP encapsulation.

The value of the timeout and the specific number of retransmissions before switching to TCP can

vary depending on the Initiator's configuration. Implementations ought to provide reasonable

defaults to ensure that UDP attempts have a chance to succeed, but can shorten the timeout

based on historical data or metrics.

If the TCP transport was used for the previous network connection, the old TCP connection

 be closed by the Initiator once MOBIKE finishes migration to a new connection (either

TCP or UDP).

Since switching from UDP to TCP can happen during a single INFORMATIONAL message

exchange, the content of the NAT_DETECTION_*_IP notifications will in most cases be incorrect

(since UDP and TCP ports will most likely be different), and the peer may incorrectly detect the

presence of a NAT. states that a new INFORMATIONAL exchange with

the UPDATE_SA_ADDRESSES notify is initiated in case the address (or transport) is changed while

waiting for a response.

 also states that once an IKE SA is switched to a new IP address, all

outstanding requests in this SA are immediately retransmitted using this address. See also

Section 6.2.

The MOBIKE protocol defines the NO_NATS_ALLOWED notification that can be used to detect the

presence of NAT between peer and to refuse to communicate in this situation. In the case of TCP,

the NO_NATS_ALLOWED notification be ignored because TCP generally has no problems

with NAT boxes.

 describes an additional optional step in the process of changing IP

addresses called "Return Routability Check". It is performed by Responders in order to be sure

that the new Initiator's address is, in fact, routable. In the case of TCP encapsulation, this check

has little value since a TCP handshake proves the routability of the TCP Originator's address;

thus, the Return Routability Check be performed.

SHOULD

MUST NOT

SHOULD

Section 3.5 of [RFC4555]

Section 3.5 of [RFC4555]

SHOULD

Section 3.7 of [RFC4555]

SHOULD NOT

7.2. IKE Redirect

A redirect mechanism for IKEv2 is defined in . This mechanism allows security

gateways to redirect clients to another gateway either during IKE SA establishment or after

session setup. If a client is connecting to a security gateway using TCP and then is redirected to

[RFC5685]

RFC 9329 TCP Encapsulation of IKE & IPsec Packets November 2022

Pauly & Smyslov Standards Track Page 15

https://www.rfc-editor.org/rfc/rfc4555#section-3.5
https://www.rfc-editor.org/rfc/rfc4555#section-3.5
https://www.rfc-editor.org/rfc/rfc4555#section-3.7

another security gateway, the client needs to reset its transport selection. In other words, with

the next security gateway, the client first try UDP and then fall back to TCP while

establishing a new IKE SA, regardless of the transport of the SA the redirect notification was

received over (unless the client's configuration instructs it to instantly use TCP for the gateway it

is redirected to).

MUST

7.3. IKEv2 Session Resumption

Session resumption for IKEv2 is defined in . Once an IKE SA is established, the server

creates a resumption ticket where information about this SA is stored and transfers this ticket to

the client. The ticket may be later used to resume the IKE SA after it is deleted. In the event of

resumption, the client presents the ticket in a new exchange, called IKE_SESSION_RESUME. Some

parameters in the new SA are retrieved from the ticket and others are renegotiated (more details

are given in).

Since network conditions may change while the client is inactive, the fact that TCP encapsulation

was used in an old SA affect which transport is used during session resumption. In

other words, the transport should be selected as if the IKE SA is being created from scratch.

[RFC5723]

Section 5 of [RFC5723]

SHOULD NOT

7.4. IKEv2 Protocol Support for High Availability

 defines a support for High Availability in IKEv2. In case of cluster failover, a new

active node must immediately initiate a special INFORMATION exchange containing the

IKEV2_MESSAGE_ID_SYNC notification, which instructs the client to skip some number of

Message IDs that might not be synchronized yet between nodes at the time of failover.

Synchronizing states when using TCP encapsulation is much harder than when using UDP; doing

so requires access to TCP/IP stack internals, which is not always available from an IKE/IPsec

implementation. If a cluster implementation doesn't synchronize TCP states between nodes, then

after failover event the new active node will not have any TCP connection with the client, so the

node cannot initiate the INFORMATIONAL exchange as required by . Since the cluster

usually acts as TCP Responder, the new active node cannot re- establish TCP connection because

only the TCP Originator can do it. For the client, the cluster failover event may remain

undetected for long time if it has no IKE or ESP traffic to send. Once the client sends an ESP or

IKEv2 packet, the cluster node will reply with TCP RST and the client (as TCP Originator) will

reestablish the TCP connection so that the node will be able to initiate the INFORMATIONAL

exchange informing the client about the cluster failover.

This document makes the following recommendation: if support for High Availability in IKEv2 is

negotiated and TCP transport is used, a client that is a TCP Originator periodically send

IKEv2 messages (e.g., by initiating liveness check exchange) whenever there is no IKEv2 or ESP

traffic. This differs from the recommendations given in in the following:

the liveness check should be periodically performed even if the client has nothing to send over

ESP. The frequency of sending such messages should be high enough to allow quick detection and

restoration of broken TCP connections.

[RFC6311]

[RFC6311]

SHOULD

Section 2.4 of [RFC7296]

RFC 9329 TCP Encapsulation of IKE & IPsec Packets November 2022

Pauly & Smyslov Standards Track Page 16

https://www.rfc-editor.org/rfc/rfc5723#section-5
https://www.rfc-editor.org/rfc/rfc7296#section-2.4

7.5. IKEv2 Fragmentation

IKE message fragmentation is not required when using TCP encapsulation since a TCP

stream already handles the fragmentation of its contents across packets. Since fragmentation is

redundant in this case, implementations might choose to not negotiate IKE fragmentation. Even

if fragmentation is negotiated, an implementation send fragments when going over

a TCP connection, although it support receiving fragments.

If an implementation supports both MOBIKE and IKE fragmentation, it negotiate IKE

fragmentation over a TCP-encapsulated session in case the session switches to UDP encapsulation

on another network.

[RFC7383]

SHOULD NOT

MUST

SHOULD

8. Middlebox Considerations

Many security networking devices, such as firewalls or intrusion prevention systems, network

optimization/acceleration devices, and NAT devices, keep the state of sessions that traverse

through them.

These devices commonly track the transport-layer and/or application- layer data to drop traffic

that is anomalous or malicious in nature. While many of these devices will be more likely to pass

TCP-encapsulated traffic as opposed to UDP-encapsulated traffic, some may still block or interfere

with TCP-encapsulated IKE and IPsec traffic.

A network device that monitors the transport layer will track the state of TCP sessions, such as

TCP sequence numbers. If the IKE implementation has its own minimal implementation of TCP, it

 still use common TCP behaviors to avoid being dropped by middleboxes.

Operators that intentionally block IPsec because of security implications might want to also block

TCP port 4500 or use other methods to reject TCP encapsulated IPsec traffic (e.g., filter out TCP

connections that begin with the "IKETCP" stream prefix).

SHOULD

9. Performance Considerations

Several aspects of TCP encapsulation for IKE and IPsec packets may negatively impact the

performance of connections within a tunnel-mode IPsec SA. Implementations should be aware of

these performance impacts and take these into consideration when determining when to use TCP

encapsulation. Implementations favor using direct ESP or UDP encapsulation over TCP

encapsulation whenever possible.

MUST

9.1. TCP-in-TCP

If the outer connection between IKE peers is over TCP, inner TCP connections may suffer negative

effects from using TCP within TCP. Running TCP within TCP is discouraged since the TCP

algorithms generally assume that they are running over an unreliable datagram layer.

RFC 9329 TCP Encapsulation of IKE & IPsec Packets November 2022

Pauly & Smyslov Standards Track Page 17

If the outer (tunnel) TCP connection experiences packet loss, this loss will be hidden from any

inner TCP connections since the outer connection will retransmit to account for the losses. Since

the outer TCP connection will deliver the inner messages in order, any messages after a lost

packet may have to wait until the loss is recovered. This means that loss on the outer connection

will be interpreted only as delay by inner connections. The burstiness of inner traffic can

increase since a large number of inner packets may be delivered across the tunnel at once. The

inner TCP connection may interpret a long period of delay as a transmission problem, triggering

a retransmission timeout, which will cause spurious retransmissions. The sending rate of the

inner connection may be unnecessarily reduced if the retransmissions are not detected as

spurious in time.

The inner TCP connection's round-trip-time estimation will be affected by the burstiness of the

outer TCP connection if there are long delays when packets are retransmitted by the outer TCP

connection. This will make the congestion control loop of the inner TCP traffic less reactive,

potentially permanently leading to a lower sending rate than the outer TCP would allow for.

TCP-in-TCP can also lead to "TCP meltdown", where stacked instances of TCP can result in

significant impacts to performance . This can occur when losses in the lower

TCP (closer to the link) increase delays seen by the higher TCP (closer to the application) that

create timeouts, which, in turn, cause retransmissions that can then cause losses in the lower

TCP by overrunning its buffer. The very mechanism intended to avoid loss (retransmission)

interacts between the two layers to increase loss. To limit this effect, the timeouts of the two TCP

layers need to be carefully managed, e.g., such that the higher layer has a much longer timeout

than the lower layer.

Note that any negative effects will be shared among all flows going through the outer TCP

connection. This is of particular concern for any latency-sensitive or real-time applications using

the tunnel. If such traffic is using a TCP-encapsulated IPsec connection, it is recommended that

the number of inner connections sharing the tunnel be limited as much as possible.

[TCP-MELTDOWN]

9.2. Added Reliability for Unreliable Protocols

Since ESP is an unreliable protocol, transmitting ESP packets over a TCP connection will change

the fundamental behavior of the packets. Some application-level protocols that prefer packet loss

to delay (such as Voice over IP or other real-time protocols) may be negatively impacted if their

packets are retransmitted by the TCP connection due to packet loss.

9.3. Quality-of-Service Markings

Quality-of-Service (QoS) markings, such as the Differentiated Services Code Point (DSCP) and

Traffic Class, should be used with care on TCP connections used for encapsulation. Individual

packets use different markings than the rest of the connection since packets with

different priorities may be routed differently and cause unnecessary delays in the connection.

SHOULD NOT

RFC 9329 TCP Encapsulation of IKE & IPsec Packets November 2022

Pauly & Smyslov Standards Track Page 18

9.4. Maximum Segment Size

A TCP connection used for IKE encapsulation negotiate its MSS in order to avoid

unnecessary fragmentation of packets.

SHOULD

9.5. Tunneling ECN in TCP

Since there is not a one-to-one relationship between outer IP packets and inner ESP/IP messages

when using TCP encapsulation, the markings for Explicit Congestion Notification (ECN)

cannot easily be mapped. However, any ECN Congestion Experienced (CE) marking on inner

headers should be preserved through the tunnel.

Implementations follow the ECN compatibility mode for tunnel ingress as described in

. In compatibility mode, the outer tunnel TCP connection marks its packet headers as

not ECN-capable.

Upon egress, if the arriving outer header is marked with CE, the implementation will drop the

inner packet since there is not a distinct inner packet header onto which to translate the ECN

markings.

[RFC3168]

SHOULD

[RFC6040]

10. Security Considerations

IKE Responders that support TCP encapsulation may become vulnerable to new Denial-of-Service

(DoS) attacks that are specific to TCP, such as SYN-flooding attacks. TCP Responders should be

aware of this additional attack surface.

TCP connections are also susceptible to RST and other spoofing attacks . This

specification makes IPsec tolerant of sudden TCP connection drops, but if an attacker is able to

tear down TCP connections, IPsec connection's performance can suffer, effectively making this a

DoS attack.

TCP data injection attacks have no effect on application data since IPsec provides data integrity.

However, they can have some effect, mostly by creating DoS attacks:

If an attacker alters the content of the Length field that separates packets, then the Receiver

will incorrectly identify the boundaries of the following packets and will drop all of them or

even tear down the TCP connection if the content of the Length field happens to be 0 or 1

(see Section 3).

If the content of an IKE message is altered, then it will be dropped by the receiver; if the

dropped message is the IKE request message, then the Initiator will tear down the IKE SA

after some timeout since, in most cases, the request message will not be retransmitted (as

advised in Section 6.2); thus, the response will never be received.

If an attacker alters the non-ESP marker, then IKE packets will be dispatched to ESP (and

sometimes visa versa) and those packets will be dropped.

[RFC4953]

•

•

•

RFC 9329 TCP Encapsulation of IKE & IPsec Packets November 2022

Pauly & Smyslov Standards Track Page 19

If an attacker modifies TCP-Encapsulated stream prefix or unencrypted IKE messages before

IKE SA is established, then in most cases this will result in failure to establish IKE SA, often

with false "authentication failed" diagnostics.

 discusses how TCP injection attacks can be mitigated.

Note that data injection attacks are also possible on IP level (e.g., when IP fragmentation is used),

resulting in DoS attacks even if TCP encapsulation is not used. On the other hand, TCP injection

attacks are easier to mount than the IP fragmentation injection attacks because TCP keeps a long

receive window open that's a sitting target for such attacks.

If an attacker successfully mounts an injection attack on a TCP connection used for encapsulating

IPsec traffic and modifies a Length field, the receiver might not be able to correctly identify the

boundaries of the following packets in the stream since it will try to parse arbitrary data as an

ESP or IKE header. After such a parsing failure, all following packets will be dropped.

Communication will eventually recover, but this might take several minutes and can result in

IKE SA deletion and re-creation.

To speed up the recovery from such attacks, implementations are advised to follow

recommendations in Section 6.1 and close the TCP connection if incoming packets contain SPIs

that don't match any known SAs. Once the TCP connection is closed, it will be re-created by the

TCP Originator as described in Section 6.1.

To avoid performance degradation caused by closing and re-creating TCP connections,

implementations alternatively try to resync after they receive unknown SPIs by searching

the TCP stream for a 64-bit binary vector consisting of a known SPI in the first 32 bits and a valid

Sequence Number for this SPI in the second 32 bits. Then, they can validate the Integrity Check

Value (ICV) of this packet candidate by taking the preceding 16 bits as the Length field. They can

also search for 4 bytes of zero (non-ESP marker) followed by 128 bits of IKE SPIs of the IKE SA(s)

associated with this TCP connection and then validate the ICV of this IKE message candidate by

taking the 16 bits preceding the non-ESP marker as the Length field. Implementations

limit the attempts to resync, because if the injection attack is ongoing, then there is a high

probability that the resync process will not succeed or will quickly come under attack again.

An attacker capable of blocking UDP traffic can force peers to use TCP encapsulation, thus,

degrading the performance and making the connection more vulnerable to DoS attacks. Note

that an attacker that is able to modify packets on the wire or to block them can prevent peers

from communicating regardless of the transport being used.

TCP Responders should be careful to ensure that the stream prefix "IKETCP" uniquely identifies

incoming streams as streams that use the TCP encapsulation protocol.

Attackers may be able to disrupt the TCP connection by sending spurious TCP Reset packets.

Therefore, implementations make sure that IKE session state persists even if the

underlying TCP connection is torn down.

If MOBIKE is being used, all of the security considerations outlined for MOBIKE apply .

•

[RFC5961]

MAY

SHOULD

SHOULD

[RFC4555]

RFC 9329 TCP Encapsulation of IKE & IPsec Packets November 2022

Pauly & Smyslov Standards Track Page 20

[RFC2119]

[RFC3948]

[RFC4301]

[RFC4303]

[RFC6040]

[RFC7296]

12. References

12.1. Normative References

, , ,

, , March 1997,

.

, , , , and ,

, , , January

2005, .

 and , , ,

, December 2005,

.

, , ,

, December 2005, .

, , ,

, November 2010, .

, , , , and ,

, , , ,

October 2014, .

Similar to MOBIKE, TCP encapsulation requires a TCP Responder to handle changes to source

address and port due to network or connection disruption. The successful delivery of valid new

IKE or ESP messages over a new TCP connection is used by the TCP Responder to determine

where to send subsequent responses. If an attacker is able to send packets on a new TCP

connection that pass the validation checks of the TCP Responder, it can influence which path

future packets will take. For this reason, the validation of messages on the TCP Responder must

include decryption, authentication, and replay checks.

Service Name:

Port Number / Transport Protocol:

Description:

Reference:

11. IANA Considerations

TCP port 4500 is already allocated to IPsec for NAT traversal in the "Service Name and Transport

Protocol Port Number Registry". This port be used for TCP-encapsulated IKE and ESP as

described in this document.

This document updates the reference for TCP port 4500 from RFC 8229 to itself:

ipsec-nat-t

4500/tcp

IPsec NAT-Traversal

RFC 9329

SHOULD

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/

rfc2119>

Huttunen, A. Swander, B. Volpe, V. DiBurro, L. M. Stenberg "UDP

Encapsulation of IPsec ESP Packets" RFC 3948 DOI 10.17487/RFC3948

<https://www.rfc-editor.org/info/rfc3948>

Kent, S. K. Seo "Security Architecture for the Internet Protocol" RFC 4301

DOI 10.17487/RFC4301 <https://www.rfc-editor.org/info/

rfc4301>

Kent, S. "IP Encapsulating Security Payload (ESP)" RFC 4303 DOI 10.17487/

RFC4303 <https://www.rfc-editor.org/info/rfc4303>

Briscoe, B. "Tunnelling of Explicit Congestion Notification" RFC 6040 DOI

10.17487/RFC6040 <https://www.rfc-editor.org/info/rfc6040>

Kaufman, C. Hoffman, P. Nir, Y. Eronen, P. T. Kivinen "Internet Key

Exchange Protocol Version 2 (IKEv2)" STD 79 RFC 7296 DOI 10.17487/RFC7296

<https://www.rfc-editor.org/info/rfc7296>

RFC 9329 TCP Encapsulation of IKE & IPsec Packets November 2022

Pauly & Smyslov Standards Track Page 21

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3948
https://www.rfc-editor.org/info/rfc4301
https://www.rfc-editor.org/info/rfc4301
https://www.rfc-editor.org/info/rfc4303
https://www.rfc-editor.org/info/rfc6040
https://www.rfc-editor.org/info/rfc7296

[RFC8019]

[RFC8174]

[IPSECME-IKE-TCP]

[RFC9325]

[RFC1122]

[RFC2817]

[RFC3168]

[RFC4555]

[RFC4621]

[RFC4953]

[RFC4987]

[RFC5246]

 and ,

, ,

, November 2016,

.

, ,

, , , May 2017,

.

12.2. Informative References

, , ,

, 3 December 2012,

.

, , and ,

,

, , November 2022,

.

, ,

, , , October 1989,

.

 and , , ,

, May 2000, .

, , and ,

, , , September 2001,

.

, , ,

, June 2006, .

 and ,

, , , August 2006,

.

, , ,

, July 2007, .

, , ,

, August 2007, .

 and ,

, , , August 2008,

.

Nir, Y. V. Smyslov "Protecting Internet Key Exchange Protocol Version 2

(IKEv2) Implementations from Distributed Denial-of-Service Attacks" RFC 8019

DOI 10.17487/RFC8019 <https://www.rfc-editor.org/info/

rfc8019>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/

rfc8174>

Nir, Y. "A TCP transport for the Internet Key Exchange" Work in Progress

Internet-Draft, draft-ietf-ipsecme-ike-tcp-01 <https://

datatracker.ietf.org/doc/html/draft-ietf-ipsecme-ike-tcp-01>

Sheffer, Y. Saint-Andre, P. T. Fossati "Recommendations for Secure Use of

Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)"

RFC 9325 DOI 10.17487/RFC9325 <https://www.rfc-editor.org/

info/rfc9325>

Braden, R., Ed. "Requirements for Internet Hosts - Communication Layers" STD

3 RFC 1122 DOI 10.17487/RFC1122 <https://www.rfc-editor.org/

info/rfc1122>

Khare, R. S. Lawrence "Upgrading to TLS Within HTTP/1.1" RFC 2817 DOI

10.17487/RFC2817 <https://www.rfc-editor.org/info/rfc2817>

Ramakrishnan, K. Floyd, S. D. Black "The Addition of Explicit Congestion

Notification (ECN) to IP" RFC 3168 DOI 10.17487/RFC3168

<https://www.rfc-editor.org/info/rfc3168>

Eronen, P. "IKEv2 Mobility and Multihoming Protocol (MOBIKE)" RFC 4555 DOI

10.17487/RFC4555 <https://www.rfc-editor.org/info/rfc4555>

Kivinen, T. H. Tschofenig "Design of the IKEv2 Mobility and Multihoming

(MOBIKE) Protocol" RFC 4621 DOI 10.17487/RFC4621 <https://

www.rfc-editor.org/info/rfc4621>

Touch, J. "Defending TCP Against Spoofing Attacks" RFC 4953 DOI 10.17487/

RFC4953 <https://www.rfc-editor.org/info/rfc4953>

Eddy, W. "TCP SYN Flooding Attacks and Common Mitigations" RFC 4987 DOI

10.17487/RFC4987 <https://www.rfc-editor.org/info/rfc4987>

Dierks, T. E. Rescorla "The Transport Layer Security (TLS) Protocol Version

1.2" RFC 5246 DOI 10.17487/RFC5246 <https://www.rfc-editor.org/

info/rfc5246>

RFC 9329 TCP Encapsulation of IKE & IPsec Packets November 2022

Pauly & Smyslov Standards Track Page 22

https://www.rfc-editor.org/info/rfc8019
https://www.rfc-editor.org/info/rfc8019
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-ike-tcp-01
https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-ike-tcp-01
https://www.rfc-editor.org/info/rfc9325
https://www.rfc-editor.org/info/rfc9325
https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc2817
https://www.rfc-editor.org/info/rfc3168
https://www.rfc-editor.org/info/rfc4555
https://www.rfc-editor.org/info/rfc4621
https://www.rfc-editor.org/info/rfc4621
https://www.rfc-editor.org/info/rfc4953
https://www.rfc-editor.org/info/rfc4987
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246

[RFC5685]

[RFC5723]

[RFC5961]

[RFC6311]

[RFC6520]

[RFC6528]

[RFC9293]

[RFC7383]

[RFC8229]

[RFC8446]

[TCP-MELTDOWN]

 and ,

, , ,

November 2009, .

 and ,

, , , January 2010,

.

, , and ,

, , , August 2010,

.

, , , , and ,

, , , July 2011,

.

, , and ,

, ,

, February 2012,

.

 and , ,

, , February 2012,

.

, , , ,

, August 2022, .

,

, , , November 2014,

.

, , and ,

, , , August 2017,

.

, , ,

, August 2018, .

, , , , and ,

, October 2005, .

Devarapalli, V. K. Weniger "Redirect Mechanism for the Internet Key

Exchange Protocol Version 2 (IKEv2)" RFC 5685 DOI 10.17487/RFC5685

<https://www.rfc-editor.org/info/rfc5685>

Sheffer, Y. H. Tschofenig "Internet Key Exchange Protocol Version 2 (IKEv2)

Session Resumption" RFC 5723 DOI 10.17487/RFC5723 <https://

www.rfc-editor.org/info/rfc5723>

Ramaiah, A. Stewart, R. M. Dalal "Improving TCP's Robustness to Blind In-

Window Attacks" RFC 5961 DOI 10.17487/RFC5961 <https://

www.rfc-editor.org/info/rfc5961>

Singh, R., Ed. Kalyani, G. Nir, Y. Sheffer, Y. D. Zhang "Protocol Support for

High Availability of IKEv2/IPsec" RFC 6311 DOI 10.17487/RFC6311

<https://www.rfc-editor.org/info/rfc6311>

Seggelmann, R. Tuexen, M. M. Williams "Transport Layer Security (TLS)

and Datagram Transport Layer Security (DTLS) Heartbeat Extension" RFC 6520

DOI 10.17487/RFC6520 <https://www.rfc-editor.org/info/

rfc6520>

Gont, F. S. Bellovin "Defending against Sequence Number Attacks" RFC

6528 DOI 10.17487/RFC6528 <https://www.rfc-editor.org/info/

rfc6528>

Eddy, W., Ed. "Transmission Control Protocol (TCP)" STD 7 RFC 9293 DOI

10.17487/RFC9293 <https://www.rfc-editor.org/info/rfc9293>

Smyslov, V. "Internet Key Exchange Protocol Version 2 (IKEv2) Message

Fragmentation" RFC 7383 DOI 10.17487/RFC7383 <https://

www.rfc-editor.org/info/rfc7383>

Pauly, T. Touati, S. R. Mantha "TCP Encapsulation of IKE and IPsec

Packets" RFC 8229 DOI 10.17487/RFC8229 <https://www.rfc-

editor.org/info/rfc8229>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446

DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Honda, O. Ohsaki, H. Imase, M. Ishizuka, M. J. Murayama

"Understanding TCP over TCP: effects of TCP tunneling on end-to-end

throughput and latency" <https://doi.org/10.1117/12.630496>

Appendix A. Using TCP Encapsulation with TLS

This section provides recommendations on how to use TLS in addition to TCP encapsulation.

When using TCP encapsulation, implementations may choose to use TLS 1.2 or TLS 1.3

 on the TCP connection to be able to traverse middleboxes, which may otherwise block

the traffic.

[RFC5246]

[RFC8446]

RFC 9329 TCP Encapsulation of IKE & IPsec Packets November 2022

Pauly & Smyslov Standards Track Page 23

https://www.rfc-editor.org/info/rfc5685
https://www.rfc-editor.org/info/rfc5723
https://www.rfc-editor.org/info/rfc5723
https://www.rfc-editor.org/info/rfc5961
https://www.rfc-editor.org/info/rfc5961
https://www.rfc-editor.org/info/rfc6311
https://www.rfc-editor.org/info/rfc6520
https://www.rfc-editor.org/info/rfc6520
https://www.rfc-editor.org/info/rfc6528
https://www.rfc-editor.org/info/rfc6528
https://www.rfc-editor.org/info/rfc9293
https://www.rfc-editor.org/info/rfc7383
https://www.rfc-editor.org/info/rfc7383
https://www.rfc-editor.org/info/rfc8229
https://www.rfc-editor.org/info/rfc8229
https://www.rfc-editor.org/info/rfc8446
https://doi.org/10.1117/12.630496

If a web proxy is applied to the ports used for the TCP connection and TLS is being used, the TCP

Originator can send an HTTP CONNECT message to establish an SA through the proxy .

The use of TLS should be configurable on the peers and may be used as the default when using

TCP encapsulation or may be used as a fallback when basic TCP encapsulation fails. The TCP

Responder may expect to read encapsulated IKE and ESP packets directly from the TCP

connection, or it may expect to read them from a stream of TLS data packets. The TCP Originator

should be preconfigured regarding whether or not to use TLS when communicating with a given

port on the TCP Responder.

When new TCP connections are re-established due to a broken connection, TLS must be

renegotiated. TLS session resumption is recommended to improve efficiency in this case.

The security of the IKE session is entirely derived from the IKE negotiation and key

establishment and not from the TLS session (which, in this context, is only used for

encapsulation purposes); therefore, when TLS is used on the TCP connection, both the TCP

Originator and the TCP Responder allow the NULL cipher to be selected for performance

reasons. Note that TLS 1.3 only supports AEAD algorithms and at the time of writing this

document there was no recommended cipher suite for TLS 1.3 with the NULL cipher. It is

 to follow when selecting parameters for TLS.

Implementations should be aware that the use of TLS introduces another layer of overhead

requiring more bytes to transmit a given IKE and IPsec packet. For this reason, direct ESP, UDP

encapsulation, or TCP encapsulation without TLS should be preferred in situations in which TLS

is not required in order to traverse middleboxes.

[RFC2817]

SHOULD

RECOMMENDED [RFC9325]

Appendix B. Example Exchanges of TCP Encapsulation with

TLS 1.3

This appendix contains examples of data flows in cases where TCP encapsulation of IKE and

IPsec packets is used with TLS 1.3. The examples below are provided for illustrative purpose

only; readers should refer to the main body of the document for details.

RFC 9329 TCP Encapsulation of IKE & IPsec Packets November 2022

Pauly & Smyslov Standards Track Page 24

B.1. Establishing an IKE Session

 Client Server

 ---------- ----------

 1) -------------------- TCP Connection -------------------

 (IP_I:Port_I -> IP_R:Port_R)

 TcpSyn ------->

 <------- TcpSyn,Ack

 TcpAck ------->

 2) --------------------- TLS Session ---------------------

 ClientHello ------->

 ServerHello

 {EncryptedExtensions}

 {Certificate*}

 {CertificateVerify*}

 <------- {Finished}

 {Finished} ------->

 3) ---------------------- Stream Prefix --------------------

 "IKETCP" ------->

 4) ----------------------- IKE Session ---------------------

 Length + Non-ESP Marker ------->

 IKE_SA_INIT

 HDR, SAi1, KEi, Ni,

 [N(NAT_DETECTION_SOURCE_IP)],

 [N(NAT_DETECTION_DESTINATION_IP)]

 <------- Length + Non-ESP Marker

 IKE_SA_INIT

 HDR, SAr1, KEr, Nr,

 [N(NAT_DETECTION_SOURCE_IP)],

 [N(NAT_DETECTION_DESTINATION_IP)]

 Length + Non-ESP Marker ------->

 first IKE_AUTH

 HDR, SK {IDi, [CERTREQ]

 CP(CFG_REQUEST), IDr,

 SAi2, TSi, TSr, ...}

 <------- Length + Non-ESP Marker

 first IKE_AUTH

 HDR, SK {IDr, [CERT], AUTH,

 EAP, SAr2, TSi, TSr}

 Length + Non-ESP Marker ------->

 IKE_AUTH (repeat 1..N times)

 HDR, SK {EAP}

 <------- Length + Non-ESP Marker

 IKE_AUTH (repeat 1..N times)

 HDR SK {EAP}

 Length + Non-ESP Marker ------->

 final IKE_AUTH

 HDR, SK {AUTH}

 <------- Length + Non-ESP Marker

 final IKE_AUTH

 HDR, SK {AUTH, CP(CFG_REPLY),

 SA, TSi, TSr, ...}

 -------------- IKE and IPsec SAs Established ------------

 Length + ESP Frame ------->

RFC 9329 TCP Encapsulation of IKE & IPsec Packets November 2022

Pauly & Smyslov Standards Track Page 25

The client establishes a TCP connection with the server on port 4500 or on an alternate

preconfigured port that the server is listening on.

If configured to use TLS, the client initiates a TLS handshake. During the TLS handshake, the

server request the client's certificate since authentication is handled as part of

IKE negotiation.

The client sends the stream prefix for TCP-encapsulated IKE (Section 4) traffic to signal the

beginning of IKE negotiation.

The client and server establish an IKE connection. This example shows EAP-based

authentication, although any authentication type may be used.

1.

2.

SHOULD NOT

3.

4.

B.2. Deleting an IKE Session

The client and server exchange informational messages to notify IKE SA deletion.

The client and server negotiate TLS session deletion using TLS CLOSE_NOTIFY.

The TCP connection is torn down.

The deletion of the IKE SA should lead to the disposal of the underlying TLS and TCP state.

 Client Server

 ---------- ----------

 1) ----------------------- IKE Session ---------------------

 Length + Non-ESP Marker ------->

 INFORMATIONAL

 HDR, SK {[N,] [D,]

 [CP,] ...}

 <------- Length + Non-ESP Marker

 INFORMATIONAL

 HDR, SK {[N,] [D,]

 [CP], ...}

 2) --------------------- TLS Session ---------------------

 close_notify ------->

 <------- close_notify

 3) -------------------- TCP Connection -------------------

 TcpFin ------->

 <------- Ack

 <------- TcpFin

 Ack ------->

 -------------------- IKE SA Deleted -------------------

1.

2.

3.

RFC 9329 TCP Encapsulation of IKE & IPsec Packets November 2022

Pauly & Smyslov Standards Track Page 26

B.3. Re-establishing an IKE Session

If a previous TCP connection was broken (for example, due to a TCP Reset), the client is

responsible for re-initiating the TCP connection. The TCP Originator's address and port (IP_I

and Port_I) may be different from the previous connection's address and port.

The client attempt TLS session resumption if it has previously established a session

with the server.

After TCP and TLS are complete, the client sends the stream prefix for TCP-encapsulated IKE

traffic (Section 4).

The IKE and ESP packet flow can resume. If MOBIKE is being used, the Initiator send

an UPDATE_SA_ADDRESSES message.

 Client Server

 ---------- ----------

 1) -------------------- TCP Connection -------------------

 (IP_I:Port_I -> IP_R:Port_R)

 TcpSyn ------->

 <------- TcpSyn,Ack

 TcpAck ------->

 2) --------------------- TLS Session ---------------------

 ClientHello ------->

 ServerHello

 {EncryptedExtensions}

 <------- {Finished}

 {Finished} ------->

 3) ---------------------- Stream Prefix --------------------

 "IKETCP" ------->

 4) <---------------------> IKE/ESP Flow <------------------>

1.

2. SHOULD

3.

4. SHOULD

RFC 9329 TCP Encapsulation of IKE & IPsec Packets November 2022

Pauly & Smyslov Standards Track Page 27

B.4. Using MOBIKE between UDP and TCP Encapsulation

 Client Server

 ---------- ----------

 1) --------------------- IKE_session ----------------------

 (IP_I1:UDP500 -> IP_R:UDP500)

 IKE_SA_INIT ------->

 HDR, SAi1, KEi, Ni,

 [N(NAT_DETECTION_SOURCE_IP)],

 [N(NAT_DETECTION_DESTINATION_IP)]

 <------- IKE_SA_INIT

 HDR, SAr1, KEr, Nr,

 [N(NAT_DETECTION_SOURCE_IP)],

 [N(NAT_DETECTION_DESTINATION_IP)]

 (IP_I1:UDP4500 -> IP_R:UDP4500)

 Non-ESP Marker ------->

 IKE_AUTH

 HDR, SK { IDi, CERT, AUTH,

 SAi2, TSi, TSr,

 N(MOBIKE_SUPPORTED) }

 <------- Non-ESP Marker

 IKE_AUTH

 HDR, SK { IDr, CERT, AUTH,

 SAr2, TSi, TSr,

 N(MOBIKE_SUPPORTED) }

 <---------------------> IKE/ESP Flow <------------------>

 2) ------------ MOBIKE Attempt on New Network --------------

 (IP_I2:UDP4500 -> IP_R:UDP4500)

 Non-ESP Marker ------->

 INFORMATIONAL

 HDR, SK { N(UPDATE_SA_ADDRESSES),

 N(NAT_DETECTION_SOURCE_IP),

 N(NAT_DETECTION_DESTINATION_IP) }

 3) -------------------- TCP Connection -------------------

 (IP_I2:Port_I -> IP_R:Port_R)

 TcpSyn ------->

 <------- TcpSyn,Ack

 TcpAck ------->

 4) --------------------- TLS Session ---------------------

 ClientHello ------->

 ServerHello

 {EncryptedExtensions}

 {Certificate*}

 {CertificateVerify*}

 <------- {Finished}

 {Finished} ------->

 5) ---------------------- Stream Prefix --------------------

 "IKETCP" ------->

RFC 9329 TCP Encapsulation of IKE & IPsec Packets November 2022

Pauly & Smyslov Standards Track Page 28

During the IKE_AUTH exchange, the client and server exchange MOBIKE_SUPPORTED notify

payloads to indicate support for MOBIKE.

The client changes its point of attachment to the network and receives a new IP address. The

client attempts to re-establish the IKE session using the UPDATE_SA_ADDRESSES notify

payload, but the server does not respond because the network blocks UDP traffic.

The client brings up a TCP connection to the server in order to use TCP encapsulation.

The client initiates a TLS handshake with the server.

The client sends the stream prefix for TCP-encapsulated IKE traffic (Section 4).

The client sends the UPDATE_SA_ADDRESSES notify payload in the INFORMATIONAL

exchange on the TCP-encapsulated connection. Note that this IKE message is the same as the

one sent over UDP in step 2; it should have the same message ID and contents.

Once the client receives a response on the TCP-encapsulated connection, it immediately

starts a new INFORMATIONAL exchange with an UPDATE_SA_ADDRESSES notify payload

and recalculated NAT_DETECTION_*_IP notify payloads in order to get correct information

about the presence of NATs.

The IKE and ESP packet flow can resume.

 6) ------------ Retransmit Message from step 2 -------------

 Length + Non-ESP Marker ------->

 INFORMATIONAL

 HDR, SK { N(UPDATE_SA_ADDRESSES),

 N(NAT_DETECTION_SOURCE_IP),

 N(NAT_DETECTION_DESTINATION_IP) }

 <------- Length + Non-ESP Marker

 INFORMATIONAL

 HDR, SK { N(NAT_DETECTION_SOURCE_IP),

 N(NAT_DETECTION_DESTINATION_IP) }

 7) -- New Exchange with recalculated NAT_DETECTION_*_IP ---

 Length + Non-ESP Marker ------->

 INFORMATIONAL

 HDR, SK { N(UPDATE_SA_ADDRESSES),

 N(NAT_DETECTION_SOURCE_IP),

 N(NAT_DETECTION_DESTINATION_IP) }

 <------- Length + Non-ESP Marker

 INFORMATIONAL

 HDR, SK { N(NAT_DETECTION_SOURCE_IP),

 N(NAT_DETECTION_DESTINATION_IP) }

 8) <---------------------> IKE/ESP Flow <------------------>

1.

2.

3.

4.

5.

6.

7.

8.

Acknowledgments

Thanks to the authors of RFC 8229 (, , and). Since this

document clarifies and obsoletes RFC 8229, most of its text was borrowed from the original

document.

Tommy Pauly Samy Touati Ravi Mantha

RFC 9329 TCP Encapsulation of IKE & IPsec Packets November 2022

Pauly & Smyslov Standards Track Page 29

The following people provided valuable feedback and advice while preparing RFC 8229:

, , , , , ,

, , , , , , and .

Special thanks to for his implementation work.

The authors would like to thank , , , and

 for their valuable comments while preparing this document.

Stuart

Cheshire Delziel Fernandes Yoav Nir Christoph Paasch Yaron Sheffer David Schinazi Graham

Bartlett Byju Pularikkal March Wu Kingwel Xie Valery Smyslov Jun Hu Tero Kivinen

Eric Kinnear

Tero Kivinen Paul Wouters Joseph Touch Christian

Huitema

Authors' Addresses

Tommy Pauly

Apple Inc.

1 Infinite Loop

, Cupertino California 95014

United States of America

 tpauly@apple.com Email:

Valery Smyslov

ELVIS-PLUS

PO Box 81

Moscow (Zelenograd)

124460

Russian Federation

 +7 495 276 0211 Phone:

 svan@elvis.ru Email:

RFC 9329 TCP Encapsulation of IKE & IPsec Packets November 2022

Pauly & Smyslov Standards Track Page 30

mailto:tpauly@apple.com
tel:+7%20495%20276%200211
mailto:svan@elvis.ru

	RFC 9329
	TCP Encapsulation of Internet Key Exchange Protocol (IKE) and IPsec Packets
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Prior Work and Motivation
	1.2. Terminology and Notation

	2. Configuration
	3. TCP-Encapsulated Data Formats
	3.1. TCP-Encapsulated IKE Message Format
	3.2. TCP-Encapsulated ESP Packet Format

	4. TCP-Encapsulated Stream Prefix
	5. Applicability
	5.1. Recommended Fallback from UDP

	6. Using TCP Encapsulation
	6.1. Connection Establishment and Teardown
	6.2. Retransmissions
	6.3. Cookies and Puzzles
	6.3.1. Statelessness versus Delay of SA Establishment

	6.4. Error Handling in IKE_SA_INIT
	6.5. NAT-Detection Payloads
	6.6. NAT-Keepalive Packets
	6.7. Dead Peer Detection and Transport Keepalives
	6.8. Implications of TCP Encapsulation on IPsec SA Processing

	7. Interaction with IKEv2 Extensions
	7.1. MOBIKE Protocol
	7.2. IKE Redirect
	7.3. IKEv2 Session Resumption
	7.4. IKEv2 Protocol Support for High Availability
	7.5. IKEv2 Fragmentation

	8. Middlebox Considerations
	9. Performance Considerations
	9.1. TCP-in-TCP
	9.2. Added Reliability for Unreliable Protocols
	9.3. Quality-of-Service Markings
	9.4. Maximum Segment Size
	9.5. Tunneling ECN in TCP

	10. Security Considerations
	11. IANA Considerations
	12. References
	12.1. Normative References
	12.2. Informative References

	Appendix A. Using TCP Encapsulation with TLS
	Appendix B. Example Exchanges of TCP Encapsulation with TLS 1.3
	B.1. Establishing an IKE Session
	B.2. Deleting an IKE Session
	B.3. Re-establishing an IKE Session
	B.4. Using MOBIKE between UDP and TCP Encapsulation

	Acknowledgments
	Authors' Addresses

