Stream: Internet Engineering Task Force (IETF)

RFC: 9535

Category: Standards Track

Published: February 2024

ISSN: 2070-1721

Authors: S. Gossner, Ed. G. Normington, Ed. C. Bormann, Ed.
Fachhochschule Dortmund Universitdt Bremen TZI

RFC 9535
JSONPath: Query Expressions for JSON

Abstract

JSONPath defines a string syntax for selecting and extracting JSON (RFC 8259) values from within
a given JSON value.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at https://www.rfc-editor.org/info/rfc9535.

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Gossner, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9535
https://www.rfc-editor.org/info/rfc9535
https://trustee.ietf.org/license-info

RFC 9535

Table of Contents

1. Introduction
1.1. Terminology
1.1.1. JSON Values as Trees of Nodes

1.2. History

1.3. JSON Values

1.4. Overview of J[SONPath Expressions
1.4.1. Identifiers
1.4.2. Segments
1.4.3. Selectors

1.4.4. Summary
1.5. JSONPath Examples

2. JSONPath Syntax and Semantics
2.1. Overview
2.1.1. Syntax
2.1.2. Semantics

2.1.3. Example

2.2. Root Identifier
2.2.1. Syntax
2.2.2. Semantics

2.2.3. Examples

2.3. Selectors
2.3.1. Name Selector
2.3.1.1. Syntax
2.3.1.2. Semantics

2.3.1.3. Examples

2.3.2. Wildcard Selector
2.3.2.1. Syntax

Gossner, et al. Standards Track

JSONPath

February 2024

~

© © 0 0 o o 3

10

12
12
13
13
14

14
14
15
15

15
16
16
18
18

19
19

Page 2

RFC 9535

2.3.2.2. Semantics
2.3.2.3. Examples
2.3.3. Index Selector
2.3.3.1. Syntax
2.3.3.2. Semantics

2.3.3.3. Examples

2.3.4. Array Slice Selector

2.3.4.1. Syntax
2.3.4.2. Semantics
2.3.4.3. Examples
2.3.5. Filter Selector
2.3.5.1. Syntax
2.3.5.2. Semantics

2.3.5.3. Examples

2.4. Function Extensions

JSONPath

2.4.1. Type System for Function Expressions

2.4.2. Type Conversion

2.4.3. Well-Typedness of Function Expressions

2.4.4. length() Function Extension
2.4.5. count() Function Extension
2.4.6. match() Function Extension
2.4.7. search() Function Extension

2.4.8. value() Function Extension

2.4.9. Examples
2.5. Segments
2.5.1. Child Segment
2.5.1.1. Syntax
2.5.1.2. Semantics

2.5.1.3. Examples

Gossner, et al.

Standards Track

February 2024

19
20

20
20
21
21

22
22
22
24

25
26
28
29

34
35
36
36
37
38
38
38
39
39

40
41
41
42
42

Page 3

RFC 9535 JSONPath February 2024

2.5.2. Descendant Segment 42
2.5.2.1. Syntax 42

2.5.2.2. Semantics 43

2.5.2.3. Examples 43

2.6. Semantics of null 45
2.6.1. Examples 45

2.7. Normalized Paths 46
2.7.1. Examples 47

3. IANA Considerations 48
3.1. Registration of Media Type application/jsonpath 48
3.2. Function Extensions Subregistry 49

4. Security Considerations 50
4.1. Attack Vectors on JSONPath Implementations 50
4.2. Attack Vectors on How JSONPath Queries Are Formed 51
4.3. Attacks on Security Mechanisms That Employ JSONPath 51

5. References 51
5.1. Normative References 51
5.2. Informative References 52
Appendix A. Collected ABNF Grammars 53
Appendix B. Inspired by XPath 57
B.1. JSONPath and XPath 58
Appendix C. JSON Pointer 60
Acknowledgements 61
Contributors 61
Authors' Addresses 62

1. Introduction

JSON [RFC8259] is a popular representation format for structured data values. JSONPath defines
a string syntax for selecting and extracting JSON values from within a given JSON value.

Gossner, et al. Standards Track Page 4

RFC 9535 JSONPath February 2024

In relation to JSON Pointer [RFC6901], JSONPath is not intended as a replacement but as a more
powerful companion. See Appendix C.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in
all capitals, as shown here.

The grammatical rules in this document are to be interpreted as ABNF, as described in [RFC5234].
ABNTF terminal values in this document define Unicode scalar values rather than their UTF-8
encoding. For example, the Unicode PLACE OF INTEREST SIGN (U+2318) would be defined in
ABNF as %x2318.

Functions are referred to using the function name followed by a pair of parentheses, as in
fname().

The terminology of [RFC8259] applies except where clarified below. The terms "primitive" and
"structured" are used to group different kinds of values as in Section 1 of [RFC8259]. JSON objects

and arrays are structured; all other values are primitive. Definitions for "object", "array",
"number", and "string" remain unchanged. Importantly, "object" and "array" in particular do not
take on a generic meaning, such as they would in a general programming context.

The terminology of [RFC9485] applies.

Additional terms used in this document are defined below.

Value: As per [RFC8259], a data item conforming to the generic data model of JSON, i.e.,
primitive data (numbers, text strings, and the special values null, true, and false), or

structured data (JSON objects and arrays). [RFC8259] focuses on the textual representation of
JSON values and does not fully define the value abstraction assumed here.

Member: A name/value pair in an object. (A member is not itself a value.)

Name: The name (a string) in a name/value pair constituting a member. This is also used in
[RFC8259], but that specification does not formally define it. It is included here for
completeness.

Element: A valuein a]JSON array.
Index: An integer that identifies a specific element in an array.
Query: Short name for a JSONPath expression.

Query Argument: Short name for the value a JSONPath expression is applied to.

Gossner, et al. Standards Track Page 5

https://rfc-editor.org/rfc/rfc8259#section-1

RFC 9535 JSONPath February 2024

Location: The position of a value within the query argument. This can be thought of as a
sequence of names and indexes navigating to the value through the objects and arrays in the
query argument, with the empty sequence indicating the query argument itself. A location
can be represented as a Normalized Path (defined below).

Node: The pair of a value along with its location within the query argument.
Root Node: The unique node whose value is the entire query argument.
Root Node Identifier: The expression $, which refers to the root node of the query argument.

Current Node Identifier: The expression @, which refers to the current node in the context of
the evaluation of a filter expression (described later).

Children (of a node): If the node is an array, the nodes of its elements; if the node is an object,
the nodes of its member values. If the node is neither an array nor an object, it has no
children.

Descendants (of a node): The children of the node, together with the children of its children,
and so forth recursively. More formally, the "descendants" relation between nodes is the
transitive closure of the "children" relation.

Depth (of a descendant node within a value): The number of ancestors of the node within the
value. The root node of the value has depth zero, the children of the root node have depth
one, their children have depth two, and so forth.

Nodelist: A list of nodes. While a nodelist can be represented in JSON, e.g., as an array, this
document does not require or assume any particular representation.

Parameter: Formal parameter (of a function) that can take a function argument (an actual
parameter) in a function expression.

Normalized Path: A form of JSONPath expression that identifies a node in a value by providing
a query that results in exactly that node. Each node in a query argument is identified by
exactly one Normalized Path (we say that the Normalized Path is "unique" for that node), and
to be a Normalized Path for a specific query argument, the Normalized Path needs to identify
exactly one node. This is similar to, but syntactically different from, a JSON Pointer [RFC6901].
Note: This definition is based on the syntactical definition in Section 2.7; JSONPath
expressions that identify a node in a value but do not conform to that syntax are not
Normalized Paths.

Unicode Scalar Value: Any Unicode [UNICODE] code point except high-surrogate and low-
surrogate code points (in other words, integers in the inclusive base 16 ranges, either 0 to
D7FF or E000 to 10FFFF). JSONPath queries are sequences of Unicode scalar values.

Segment: One of the constructs that selects children ([<selectors>]) or descendants
(..[<selectors>]) of an input value.

Gossner, et al. Standards Track Page 6

RFC 9535 JSONPath February 2024

Selector: A single item within a segment that takes the input value and produces a nodelist
consisting of child nodes of the input value.

Singular Query: A JSONPath expression built from segments that have been syntactically
restricted in a certain way (Section 2.3.5.1) so that, regardless of the input value, the
expression produces a nodelist containing at most one node. Note: JSONPath expressions that
always produce a singular nodelist but do not conform to the syntax in Section 2.3.5.1 are not
singular queries.

1.1.1. JSON Values as Trees of Nodes

This document models the query argument as a tree of JSON values, each with its own node. A
node is either the root node or one of its descendants.

This document models the result of applying a query to the query argument as a nodelist (a list of
nodes).

Nodes are the selectable parts of the query argument. The only parts of an object that can be
selected by a query are the member values. Member names and members (name/value pairs)
cannot be selected. Thus, member values have nodes, but members and member names do not.
Similarly, member values are children of an object, but members and member names are not.

1.2. History

This document is based on Stefan Gossner's popular JSONPath proposal (dated 2007-02-21)
[JSONPath-orig], builds on the experience from the widespread deployment of its
implementations, and provides a normative specification for it.

Appendix B describes how JSONPath was inspired by XML's XPath [XPath].

JSONPath was intended as a lightweight companion to JSON implementations in programming
languages such as PHP and JavaScript, so instead of defining its own expression language, like
XPath did, JSONPath delegated parts of a query to the underlying runtime, e.g., JavaScript's
eval() function. As JSONPath was implemented in more environments, JSONPath expressions
became decreasingly portable. For example, regular expression processing was often delegated
to a convenient regular expression engine.

This document aims to remove such implementation-specific dependencies and serve as a
common JSONPath specification that can be used across programming languages and
environments. This means that backwards compatibility is not always achieved; a design
principle of this document is to go with a "consensus" between implementations even if it is
rough, as long as that does not jeopardize the objective of obtaining a usable, stable JSON query
language.

The term JSONPath was chosen because of the XPath inspiration and also because the outcome of
a query consists of paths identifying nodes in the JSON query argument.

Gossner, et al. Standards Track Page 7

RFC 9535 JSONPath February 2024

1.3. JSON Values

The JSON value a JSONPath query is applied to is, by definition, a valid JSON value. A JSON value
is often constructed by parsing a JSON text.

The parsing of a JSON text into a JSON value and what happens if a JSON text does not represent
valid JSON are not defined by this document. Sections 4 and 8 of [RFC8259] identify specific
situations that may conform to the grammar for JSON texts but are not interoperable uses of
JSON, as they may cause unpredictable behavior. This document does not attempt to define
predictable behavior for JSONPath queries in these situations.

Specifically, the "Semantics" subsections of Sections 2.3.1, 2.3.2, 2.3.5, and 2.5.2 describe behavior
that becomes unpredictable when the JSON value for one of the objects under consideration was
constructed out of JSON text that exhibits multiple members for a single object that share the
same member name ("duplicate names"; see Section 4 of [RFC8259]). Also, when selecting a child
by name (Section 2.3.1) and comparing strings (Section 2.3.5.2.2), it is assumed these strings are
sequences of Unicode scalar values; the behavior becomes unpredictable if they are not (Section
8.2 of [RFC8259]).

1.4. Overview of JSONPath Expressions

A JSONPath expression is applied to a JSON value, known as the query argument. The output is a
nodelist.

A JSONPath expression consists of an identifier followed by a series of zero or more segments,
each of which contains one or more selectors.

1.4.1. Identifiers

The root node identifier $ refers to the root node of the query argument, i.e., to the argument as a
whole.

The current node identifier @ refers to the current node in the context of the evaluation of a filter
expression (Section 2.3.5).

1.4.2. Segments

Segments select children ([<selectors>]) or descendants (. . [<selectors>]) of an input value.

Segments can use bracket notation, for example:
S['store']['book'][0]["'title"]
or the more compact dot notation, for example:

S.store.book[0].title

Gossner, et al. Standards Track Page 8

https://rfc-editor.org/rfc/rfc8259#section-4
https://rfc-editor.org/rfc/rfc8259#section-8
https://rfc-editor.org/rfc/rfc8259#section-4
https://rfc-editor.org/rfc/rfc8259#section-8.2
https://rfc-editor.org/rfc/rfc8259#section-8.2

RFC 9535 JSONPath February 2024

Bracket notation contains one or more (comma-separated) selectors of any kind. Selectors are
detailed in the next section.

A JSONPath expression may use a combination of bracket and dot notations.

This document treats the bracket notations as canonical and defines the shorthand dot notation
in terms of bracket notation. Examples and descriptions use shorthand where convenient.

1.4.3. Selectors

A name selector, e.g., 'name', selects a named child of an object.
An index selector, e.g., 3, selects an indexed child of an array.

In the expression [*], a wildcard * (Section 2.3.2) selects all children of a node, and in the
expression .. [*], it selects all descendants of a node.

An array slice start:end:step (Section 2.3.4) selects a series of elements from an array, giving a
start position, an end position, and an optional step value that moves the position from the start
to the end.

A filter expression ?<logical-expr> selects certain children of an object or array, as in:

S.store.book[?@.price < 10].title

1.4.4. Summary

Table 1 provides a brief overview of JSONPath syntax.

Syntax Element Description

$ root node identifier (Section 2.2)

@ current node identifier (Section 2.3.5) (valid only within filter selectors)
[<selectors>] child segment (Section 2.5.1): selects zero or more children of a node
.name shorthand for ['name"']

UK shorthand for [*]

..[<selectors>] descendant segment (Section 2.5.2): selects zero or more descendants of

a node
. .name shorthand for ..['name’]
Lo shorthand for . .[*]
"name’ name selector (Section 2.3.1): selects a named child of an object

Gossner, et al. Standards Track Page 9

RFC 9535 JSONPath February 2024

Syntax Element Description

* wildcard selector (Section 2.3.2): selects all children of a node

3 index selector (Section 2.3.3): selects an indexed child of an array (from
0)

0:100:5 array slice selector (Section 2.3.4): start:end:step for arrays

?<logical-expr> filter selector (Section 2.3.5): selects particular children using a logical
expression

length(@.foo) function extension (Section 2.4): invokes a function in a filter expression

Table 1: Overview of JSONPath Syntax

1.5. JSONPath Examples

This section is informative. It provides examples of JSONPath expressions.

The examples are based on the simple JSON value shown in Figure 1, representing a bookstore
(which also has a bicycle).

Gossner, et al. Standards Track Page 10

RFC 9535 JSONPath

{ "store": {

"book": [

{ "category": "reference",
"author": "Nigel Rees",
“title": "Sayings of the Century",
"price": 8.95

Ji s

{ "category": "fiction",
"author": "Evelyn Waugh",
"title": "Sword of Honour",
"price": 12.99

Ji s

{ "category": "fiction",
"author": "Herman Melville",
"title": "Moby Dick",

"isbn": "@0-553-21311-3",
"price": 8.99

Ji s

{ "category": "fiction",
"author": "J. R. R. Tolkien",
"title": "The Lord of the Rings",
"isbn": "0-395-19395-8",
"price": 22.99

}

1,
"bicycle": {

“color": "red",

"price": 399

}
}
}

Figure 1: Example JSON Value

February 2024

Table 2 shows some JSONPath queries that might be applied to this example and their intended

results.

JSONPath Intended Result

S.store.book[*].author the authors of all books in the store

$..author all authors
S.store.* all things in the store, which are some books and a red bicycle
$.store..price the prices of everything in the store
$. .book[2] the third book
S..book[2].author the third book's author
Gossner, et al. Standards Track Page 11

RFC 9535 JSONPath February 2024

JSONPath Intended Result

$..book[2].publisher empty result: the third book does not have a "publisher"
member

S..book[-1] the last book in order

$..book[0,1] the first two books

S..book[:2]

S..book[?@.isbn] all books with an ISBN number

S..book[?@.price<10] all books cheaper than 10

§..* all member values and array elements contained in the input
value

Table 2: Example J[SONPath Expressions and Their Intended Results When Applied to the Example
JSON Value

2. JSONPath Syntax and Semantics

2.1. Overview

A JSONPath expression is a string that, when applied to a JSON value (the query argument), selects
zero or more nodes of the argument and outputs these nodes as a nodelist.

A query MUST be encoded using UTF-8. The grammar for queries given in this document assumes
that its UTF-8 form is first decoded into Unicode scalar values as described in [RFC3629];
implementation approaches that lead to an equivalent result are possible.

A string to be used as a JSONPath query needs to be well-formed and valid. A string is a well-
formed JSONPath query if it conforms to the ABNF syntax in this document. A well-formed
JSONPath query is valid if it also fulfills both semantic requirements posed by this document,
which are as follows:

1. Integer numbers in the JSONPath query that are relevant to the JSONPath processing (e.g.,
index values and steps) MUST be within the range of exact integer values defined in Internet

JSON (I-JSON) (see Section 2.2 of [RFC7493]), namely within the interval [-(2°3)+1, (2°3)-1].
2. Uses of function extensions MUST be well-typed, as described in Section 2.4.3.

A JSONPath implementation MUST raise an error for any query that is not well-formed and valid.
The well-formedness and the validity of JSONPath queries are independent of the JSON value the
query is applied to. No further errors relating to the well-formedness and the validity of a
JSONPath query can be raised during application of the query to a value. This clearly separates
well-formedness/validity errors in the query from mismatches that may actually stem from flaws
in the data.

Gossner, et al. Standards Track Page 12

https://rfc-editor.org/rfc/rfc7493#section-2.2

RFC 9535 JSONPath February 2024

Mismatches between the structure expected by a valid query and the structure found in the data
can lead to empty query results, which may be unexpected and indicate bugs in either. JSONPath
implementations might therefore want to provide diagnostics to the application developer that
aid in finding the cause of empty results.

Obviously, an implementation can still fail when executing a JSONPath query, e.g., because of
resource depletion, but this is not modeled in this document. However, the implementation MUST
NOT silently malfunction. Specifically, if a valid JSONPath query is evaluated against a structured
value whose size is too large to process the query correctly (for instance, requiring the
processing of numbers that fall outside the range of exact values), the implementation MUST
provide an indication of overflow.

(Readers familiar with the HTTP error model may be reminded of 400 type errors when
pondering well-formedness and validity, and they may recognize resource depletion and related
errors as comparable to 500 type errors.)

2.1.1. Syntax

Syntactically, a JSONPath query consists of a root identifier ($), which stands for a nodelist that
contains the root node of the query argument, followed by a possibly empty sequence of
segments.

jsonpath-query root-identifier segments

segments *(S segment)

B = %x20 / ; Space
%x09 / ; Horizontal tab
%x0A / ; Line feed or New line
%x0D ; Carriage return

S = *B ; optional blank space

The syntax and semantics of segments are defined in Section 2.5.

2.1.2. Semantics

In this document, the semantics of a JSONPath query define the required results and do not
prescribe the internal workings of an implementation. This document may describe semantics in
a procedural step-by-step fashion; however, such descriptions are normative only in the sense
that any implementation MUST produce an identical result but not in the sense that
implementers are required to use the same algorithms.

The semantics are that a valid query is executed against a value (the query argument) and
produces a nodelist (i.e., a list of zero or more nodes of the value).

The query is a root identifier followed by a sequence of zero or more segments, each of which is
applied to the result of the previous root identifier or segment and provides input to the next
segment. These results and inputs take the form of nodelists.

Gossner, et al. Standards Track Page 13

RFC 9535 JSONPath February 2024

The nodelist resulting from the root identifier contains a single node (the query argument). The
nodelist resulting from the last segment is presented as the result of the query. Depending on the
specific AP], it might be presented as an array of the JSON values at the nodes, an array of
Normalized Paths referencing the nodes, or both -- or some other representation as desired by
the implementation. Note: An empty nodelist is a valid query result.

A segment operates on each of the nodes in its input nodelist in turn, and the resultant nodelists
are concatenated in the order of the input nodelist they were derived from to produce the result
of the segment. A node may be selected more than once and appears that number of times in the
nodelist. Duplicate nodes are not removed.

A syntactically valid segment MUST NOT produce errors when executing the query. This means
that some operations that might be considered erroneous, such as using an index lying outside
the range of an array, simply result in fewer nodes being selected. (Additional discussion of this
property can be found in the introduction of Section 2.1.)

As a consequence of this approach, if any of the segments produces an empty nodelist, then the
whole query produces an empty nodelist.

If the semantics of a query give an implementation a choice of producing multiple possible
orderings, a particular implementation may produce distinct orderings in successive runs of the

query.

2.1.3. Example

Consider this example. With the query argument {"a":[{"b":0},{"b":1}, {"c":2}]}, the query
$.a[*].b selects the following list of nodes (denoted here by their values): o, 1.

The query consists of $ followed by three segments: .a, [*], and .b.

First, $ produces a nodelist consisting of just the query argument.

Next, .a selects from any object input node and selects the node of any member value of the
input node corresponding to the member name "a". The result is again a list containing a single
node: [{"b":0},{"b":1},{"c":2}].

Next, [*] selects all the elements from the input array node. The result is a list of three nodes:
{"b":0},{"b":1},and {"c":2}.

Finally, .b selects from any object input node with a member name b and selects the node of the
member value of the input node corresponding to that name. The result is a list containing @, 1.
This is the concatenation of three lists: two of length one containing 0, 1, respectively, and one of
length zero.

2.2. Root Identifier

2.2.1. Syntax

Every JSONPath query (except those inside filter expressions; see Section 2.3.5) MUST begin with
the root identifier S.

Gossner, et al. Standards Track Page 14

RFC 9535 JSONPath February 2024

root-identifier = "g"

2.2.2. Semantics

The root identifier $ represents the root node of the query argument and produces a nodelist
consisting of that root node.

2.2.3. Examples

Note: In this example and the following examples in Sections 2.2 and 2.3, except for
Table 11, we will present a JSON text to show the JSON value used as the query
argument to the queries in the examples and then a table with the following
columns:

* Query: an example query to be applied to the query argument

* Result: the query result as a list of JSON values that were located in the query
argument

* Result Path: the query result as a list of (normalized) paths into the query
argument, giving locations of the JSON values in the previous column

* Comment: descriptive information

JSON:
{"k": "v"}
Queries:
Query Result Result Path Comment
$ {"k": "v"} $ Root node

Table 3: Root Identifier Example

2.3. Selectors

Selectors appear only inside child segments (Section 2.5.1) and descendant segments (Section
2.5.2).

A selector produces a nodelist consisting of zero or more children of the input value.

There are various kinds of selectors that produce children of objects, children of arrays, or
children of either objects or arrays.

Gossner, et al. Standards Track Page 15

RFC 9535 JSONPath February 2024

selector = name-selector /
wildcard-selector /
slice-selector /
index-selector /
filter-selector

The syntax and semantics of each kind of selector are defined below.

2.3.1. Name Selector

2.3.1.1. Syntax
A name selector '<name>" selects at most one object member value.

In contrast to JSON, the JSONPath syntax allows strings to be enclosed in single or double quotes.

Gossner, et al. Standards Track Page 16

RFC 9535

name-selector

string-literal

double-quoted

single-quoted

ESC

unescaped

escapable

hexchar
non-surrogate

high-surrogate
low-surrogate

HEXDIG

Notes:

JSONPath February 2024

string-literal

%x22 *double-quoted %x22 / ; "string”
%x27 *single-quoted %x27 ; 'string’

unescaped /

%x27 / ;
ESC %x22 / ;o\
ESC escapable

unescaped /

%Xx22 / ;o
ESC %x27 / ;o\
ESC escapable

%x5C ; \ backslash

%x20-21 / ; see RFC 8259
; omit ©x22 "
%x23-26 /
; omit Ox27
%x28-5B /
; omit @x5C \
%x5D-D7FF /
; skip surrogate code points
%XEQBO-10FFFF

%x62 / ; b BS backspace U+0008

%x66 / ; f FF form feed U+000C

%X6E / ; n LF line feed U+B0OA

%x72 / ; r CR carriage return U+000D

%x74 / ; t HT horizontal tab U+0009

"/" / ; [/ slash (solidus) U+0B2F

"\" / ; \ backslash (reverse solidus) U+005C
(%x75 hexchar) ; uXXXX U+XXXX

non-surrogate /

(high-surrogate "\" %x75 low-surrogate)
((DIGIT / "A"/"B"/"C" / "E"/"F") 3HEXDIG) /
("D" %x30-37 2HEXDIG)

"D" ("8"/"9"/"A"/"B") 2HEXDIG

"D" ("C"/"D"/"E"/"F") 2HEXDIG

pIGIT / "A" / "B" / "C" / "D" / "E" / "F"

* Double-quoted strings follow the JSON string syntax (Section 7 of [RFC8259]); single-
quoted strings follow an analogous pattern. No attempt was made to improve on this syntax,
so if it is desired to escape characters with scalar values above 0XFFFE, such as U+1F041 ("=",
DOMINO TILE HORIZONTAL-02-02), they need to be represented by a pair of surrogate
escapes ("\uD83C\uDC41" in this case).

Gossner, et al.

Standards Track Page 17

https://rfc-editor.org/rfc/rfc8259#section-7

RFC 9535 JSONPath February 2024

* Alphabetic characters in quoted strings are case-insensitive in ABNF, so each of the
hexadecimal digits within \u escapes (as specified in rules referenced by hexchar) can be
either lowercase or uppercase, while the u in \u needs to be lowercase (indicated as %x75).

2.3.1.2. Semantics

A name-selector string MUST be converted to a member name M by removing the surrounding
quotes and replacing each escape sequence with its equivalent Unicode character, as shown in
Table 4:

Escape Sequence Unicode Character Description

\b U+0008 BS backspace

\t U+0009 HT horizontal tab

\n U+000A LF line feed

\f U+000C FF form feed

\r U+000D CR carriage return

\" U+0022 quotation mark

\' U+0027 apostrophe

\/ U+002F slash (solidus)

\\ U+005C backslash (reverse solidus)
\UXXXX see Section 2.3.1.1 hexadecimal escape

Table 4: Escape Sequence Replacements

Applying the name-selector to an object node selects a member value whose name equals the
member name M or selects nothing if there is no such member value. Nothing is selected from a
value that is not an object.

Note: Processing the name selector requires comparing the member name string M with member
name strings in the JSON to which the selector is being applied. Two strings MUST be considered
equal if and only if they are identical sequences of Unicode scalar values. In other words,
normalization operations MUST NOT be applied to either the member name string M from the
JSONPath or the member name strings in the JSON prior to comparison.

2.3.1.3. Examples
JSON:

Gossner, et al. Standards Track Page 18

RFC 9535 JSONPath February 2024

{
"o": {"j j": {"k.k": 3}},
e {"e": 2}
}
Queries:

The examples in Table 5 show the name selector in use by child segments.

Query Result Result Paths Comment

$.0['] j'] {"k.k": 3} S['o"I['F §'1] Named
value in
a nested
object

$.o['j j'1['k.k"] 3 $['o"1['j j'I['k.k"] Nesting
further
down

S.o["j j"1["k.k"] 3 S['o"]["'"j j'1['k.k"] Different
delimiter
in the query,
unchanged
Normalized
Path

s " 1"e"] 2 st 1re] Unusual
member
names

Table 5: Name Selector Examples

2.3.2. Wildcard Selector

2.3.2.1. Syntax
The wildcard selector consists of an asterisk.

wildcard-selector = "%

2.3.2.2. Semantics

A wildcard selector selects the nodes of all children of an object or array. The order in which the
children of an object appear in the resultant nodelist is not stipulated, since JSON objects are
unordered. Children of an array appear in array order in the resultant nodelist.

Note that the children of an object are its member values, not its member names.

Gossner, et al. Standards Track Page 19

RFC 9535 JSONPath February 2024

The wildcard selector selects nothing from a primitive JSON value (that is, a number, a string,
true, false, or null).

2.3.2.3. Examples

JSON:
{
"o": {"j": 1, "k": 2},
"a": [5, 3
}
Queries:

The examples in Table 6 show the wildcard selector in use by a child segment.

Query Result Result Paths Comment
S[*] {"j": 1, "k": 2} $['o'1] Object values
[5, 3] $['a']
S.o[*] 1 S['o"1["'j"] Object values
2 S$['o"I['k"]
S.o[*] 2 S['o"]['k"] Alternative result
1 S['o"1['3"]
S.o[*, *] 1 S['o'1['j"] Non-deterministic ordering
2 S['o"]['k"]
2 S['o"]['k"]
1 S['o'1['3"]
S.a[*] 5 S['a'][e] Array members
3 S['a"1[1]

Table 6: Wildcard Selector Examples

The example above with the query $.o[*, *] shows that the wildcard selector may produce
nodelists in distinct orders each time it appears in the child segment when it is applied to an
object node with two or more members (but not when it is applied to object nodes with fewer
than two members or to array nodes).

2.3.3. Index Selector

2.3.3.1. Syntax
An index selector <index> matches at most one array element value.

Gossner, et al. Standards Track Page 20

RFC 9535 JSONPath February 2024

index-selector = int ; decimal integer
int = "Q" /

(["-"] DIGIT1 *DIGIT) ; - optional
DIGIT1 = %x31-39 ; 1-9 non-zero digit

Applying the numerical index-selector selects the corresponding element. JSONPath allows it
to be negative (see Section 2.3.3.2).

To be valid, the index selector value MUST be in the I-J]SON range of exact values (see Section 2.1).
Notes:

* An index-selector is an integer (in base 10, as in JSON numbers).

* As in JSON numbers, the syntax does not allow octal-like integers with leading zeros, such as
01 or -01.

2.3.3.2. Semantics

A non-negative index-selector applied to an array selects an array element using a zero-based
index. For example, the selector 0 selects the first, and the selector 4 selects the fifth element of a
sufficiently long array. Nothing is selected, and it is not an error, if the index lies outside the
range of the array. Nothing is selected from a value that is not an array.

A negative index-selector counts from the array end backwards, obtaining an equivalent non-
negative index-selector by adding the length of the array to the negative index. For example,
the selector -1 selects the last, and the selector -2 selects the penultimate element of an array
with at least two elements. As with non-negative indexes, it is not an error if such an element
does not exist; this simply means that no element is selected.

2.3.3.3. Examples
JSON:

[n a n , n b n]
Queries:
The examples in Table 7 show the index selector in use by a child segment.

Query Result ResultPaths Comment
sl "b" $[11] Element of array

§[-2] "a" S[o] Element of array, from the end

Table 7: Index Selector Examples

Gossner, et al. Standards Track Page 21

RFC 9535 JSONPath February 2024

2.3.4. Array Slice Selector

2.3.4.1. Syntax

The array slice selector has the form <start>:<end>:<step>. It matches elements from arrays
starting at index <start> and ending at (but not including) <end>, while incrementing by step
with a default of 1.

slice-selector = [start S] ":" S [end S] [":" [S step]]
start = int ; included in selection

end = int ;: not included in selection
step = int ; default: 1

The slice selector consists of three optional decimal integers separated by colons. The second
colon can be omitted when the third integer is omitted.

To be valid, the integers provided MUST be in the I-JSON range of exact values (see Section 2.1).

2.3.4.2. Semantics

The slice selector was inspired by the slice operator that was proposed for ECMAScript 4 (ES4),
which was never released, and that of Python.

2.3.4.2.1. Informal Introduction
This section is informative.

Array slicing is inspired by the behavior of the Array.prototype.slice method of the JavaScript
language, as defined by the ECMA-262 standard [ECMA-262], with the addition of the step
parameter, which is inspired by the Python slice expression.

The array slice expression start:end:step selects elements at indices starting at start,
incrementing by step, and ending with end (which is itself excluded). So, for example, the
expression 1:3 (where step defaults to 1) selects elements with indices 1 and 2 (in that order),
whereas 1:5:2 selects elements with indices 1 and 3.

When step is negative, elements are selected in reverse order. Thus, for example, 5:1:-2 selects
elements with indices 5 and 3 (in that order), and : : -1 selects all the elements of an array in
reverse order.

When step is 0, no elements are selected. (This is the one case that differs from the behavior of
Python, which raises an error in this case.)

The following section specifies the behavior fully, without depending on JavaScript or Python
behavior.

Gossner, et al. Standards Track Page 22

RFC 9535 JSONPath February 2024

2.3.4.2.2. Normative Semantics

A slice expression selects a subset of the elements of the input array in the same order as the
array or the reverse order, depending on the sign of the step parameter. It selects no nodes from
a node that is not an array.

A slice is defined by the two slice parameters, start and end, and an iteration delta, step. Each
of these parameters is optional. In the rest of this section, 1en denotes the length of the input
array.

The default value for step is 1. The default values for start and end depend on the sign of step,
as shown in Table 8.

Condition start end
step >=0 0 len
step<0 len-1 -len-1

Table 8: Default Array Slice start and end
Values

Slice expression parameters start and end are not directly usable as slice bounds and must first
be normalized. Normalization for this purpose is defined as:

FUNCTION Normalize(i, len):
IF i >= @ THEN
RETURN i
ELSE
RETURN len + i
END IF

The result of the array index expression i applied to an array of length 1len is the result of the
array slicing expression Normalize(i, len):Normalize(i, len)+1:1.

Slice expression parameters start and end are used to derive slice bounds lower and upper. The
direction of the iteration, defined by the sign of step, determines which of the parameters is the
lower bound and which is the upper bound:

Gossner, et al. Standards Track Page 23

RFC 9535

JSONPath

FUNCTION Bounds(start, end, step, len):

n_start
n_end =

IF step
lower
upper

ELSE
upper
lower

END IF

= Normalize(start, len)
Normalize(end, len)

>= 0 THEN
MIN(MAX(n_start, @), len)
MIN(MAX(n_end, 8), len)

MIN(MAX(n_start, -1), len-1)
MIN(MAX(n_end, -1), len-1)

RETURN (lower, upper)

February 2024

The slice expression selects elements with indices between the lower and upper bounds. In the
following pseudocode, a(1i) is the i+1th element of the array a (i.e., a(0) is the first element,
a(1) the second, and so forth).

IF step >

© THEN

i = lower

WHILE i

< upper:

SELECT a(i)

i=1

+ step

END WHILE

ELSE if step < @ THEN

i = upper
WHILE lower < i:
SELECT a(i)

i=1

+ step

END WHILE

END IF

When step =

0, no elements are selected, and the result array is empty.

2.3.4.3. Examples

JSON:

[IlalI, ”b”,

Queries:

The examples in Table 9 show the array slice selector in use by a child segment.

Gossner, et al.

"C”, ”d”, IlelI' ”f”’ ||g||]

Standards Track

Page 24

RFC 9535 JSONPath February 2024

Query Result Result Paths Comment

S$[1:3] "b" S[1] Slice with default step
iCH $[2]
S[5:] "t S[5] Slice with no end index
‘g" S[e]
S$[1:5:2] "b" S[11] Slice with step 2
"d" S[3]
$[5:1:-2] "f" S[5] Slice with negative step
"d" S[3]
S[::-1] "g" S[6] Slice in reverse order
" S[5]
"e" $[4]
"d" $[3]
"c" $[2]
"b" S[1]
"a" $[o]

Table 9: Array Slice Selector Examples

2.3.5. Filter Selector

Filter selectors are used to iterate over the elements or members of structured values, i.e., JSON
arrays and objects. The structured values are identified in the nodelist offered by the child or
descendant segment using the filter selector.

For each iteration (element/member), a logical expression (the filter expression) is evaluated,
which decides whether the node of the element/member is selected. (While a logical expression
evaluates to what mathematically is a Boolean value, this specification uses the term logical to
maintain a distinction from the Boolean values that JSON can represent.)

During the iteration process, the filter expression receives the node of each array element or
object member value of the structured value being filtered; this element or member value is then
known as the current node.

The current node can be used as the start of one or more JSONPath queries in subexpressions of
the filter expression, notated via the current-node-identifier @. Each JSONPath query can be used
either for testing existence of a result of the query, for obtaining a specific JSON value resulting
from that query that can then be used in a comparison, or as a function argument.

Filter selectors may use function extensions, which are covered in Section 2.4. Within the logical
expression for a filter selector, function expressions can be used to operate on nodelists and
values. The set of available functions is extensible, with a number of functions predefined (see
Section 2.4) and the ability to register further functions provided by the "Function Extensions"
subregistry (Section 3.2). When a function is defined, it is given a unique name, and its return

Gossner, et al. Standards Track Page 25

RFC 9535 JSONPath February 2024

value and each of its parameters are given a declared type. The type system is limited in scope; its
purpose is to express restrictions that, without functions, are implicit in the grammar of filter
expressions. The type system also guides conversions (Section 2.4.2) that mimic the way different
kinds of expressions are handled in the grammar when function expressions are not in use.

2.3.5.1. Syntax
The filter selector has the form ?<logical-expr>.

filter-selector = "?" S logical-expr

As the filter expression is composed of constituents free of side effects, the order of evaluation
does not need to be (and is not) defined. Similarly, for conjunction (&&) and disjunction (| |)
(defined later), both a short-circuiting and a fully evaluating implementation will lead to the
same result; both implementation strategies are therefore valid.

The current node is accessible via the current node identifier @. This identifier addresses the
current node of the filter-selector that is directly enclosing the identifier. Note: Within nested
filter-selectors, there is no syntax to address the current node of any other than the directly
enclosing filter-selector (i.e., of filter-selectors enclosing the filter-selector that is directly
enclosing the identifier).

Logical expressions offer the usual Boolean operators (| | for OR, && for AND, and ! for NOT).
They have the normal semantics of Boolean algebra and obey its laws (for example, see
[BOOLEAN-LAWS]). Parentheses MAY be used within logical-expr for grouping.

It is not required that logical-expr consist of a parenthesized expression (Which was required
in [JSONPath-orig]), although it can be, and the semantics are the same as without the
parentheses.

logical-expr
logical-or-expr

logical-or-expr
logical-and-expr *(S "||" S logical-and-expr)
; disjunction
; binds less tightly than conjunction
logical-and-expr = basic-expr *(S "&&" S basic-expr)
; conjunction
; binds more tightly than disjunction

basic-expr = paren-expr /
comparison-expr /
test-expr
paren-expr = [logical-not-op S] "(" S logical-expr S ")"

; parenthesized expression
; logical NOT operator

logical-not-op

A test expression either tests the existence of a node designated by an embedded query (see
Section 2.3.5.2.1) or tests the result of a function expression (see Section 2.4). In the latter case, if
the function's declared result type is LogicalType (see Section 2.4.1), it tests whether the result is

Gossner, et al. Standards Track Page 26

RFC 9535 JSONPath February 2024

LogicalTrue; if the function's declared result type is NodesType, it tests whether the result is
non-empty. If the function's declared result type is ValueType, its use in a test expression is not
well-typed (see Section 2.4.3).

test-expr [logical-not-op S]

(filter-query / ; existence/non-existence
function-expr) ; LogicalType or NodesType
filter-query rel-query / jsonpath-query

rel-query current-node-identifier segments
current-node-identifier = "@"

Comparison expressions are available for comparisons between primitive values (that is,
numbers, strings, true, false, and null). These can be obtained via literal values; singular
queries, each of which selects at most one node, the value of which is then used; or function
expressions (see Section 2.4) of type ValueType.

comparison-expr
literal

comparable S comparison-op S comparable
number / string-literal /

true / false / null

literal /

singular-query / ; singular query value
function-expr ; ValueType

na=" oy M=

te=") M=t

nem e

comparable

comparison-op

singular-query rel-singular-query / abs-singular-query
rel-singular-query current-node-identifier singular-query-segments
abs-singular-query root-identifier singular-query-segments

singular-query-segments = *(S (name-segment / index-segment))

name-segment = ("[" name-selector "]") /
("." member-name-shorthand)
index-segment = "[" index-selector "]"

Literals can be notated in the way that is usual for JSON (with the extension that strings can use
single-quote delimiters).

Note: Alphabetic characters in quoted strings are case-insensitive in ABNF, so within a floating
point number, the ABNF expression "e" can be either the character 'e' or 'E'".

true, false, and null are lowercase only (case-sensitive).

number = (int / "-0") [frac] [exp] ; decimal number
frac = "." 1*DIGIT ; decimal fraction
exp = "e" ["-" / "+"] 1*DIGIT ; decimal exponent
true = %X74.72.75.65 ; true
false = %x66.61.6c.73.65 ; false
null = %x6e.75.6¢c.6¢C ;o null

Gossner, et al. Standards Track Page 27

RFC 9535 JSONPath February 2024

Table 10 lists filter expression operators in order of precedence from highest (binds most tightly)
to lowest (binds least tightly).

Precedence Operator type Syntax
5 Grouping (...)
Function Expressions name(. . .)
4 Logical NOT !
3 Relations ==l=
< <=>>=
2 Logical AND &&
1 Logical OR | |

Table 10: Filter Expression Operator Precedence

2.3.5.2. Semantics

The filter selector works with arrays and objects exclusively. Its result is a list of (zero, one,
multiple, or all) their array elements or member values, respectively. Applied to