Internet Engineering Task Force (IETF) G. Enyedi

Request for Comments: 7811 A. Csaszar
Category: Standards Track Ericsson
ISSN: 2070-1721 A. Atlas
C. Bowers
Juniper Networks
A. Gopalan
University of Arizona
June 2016

An Algorithm for Computing IP/LDP Fast Reroute
Using Maximally Redundant Trees (MRT-FRR)

Abstract

This document supports the solution put forth in "An Architecture for
IP/LDP Fast Reroute Using Maximally Redundant Trees (MRT-FRR)"
(RFC 7812) by defining the associated MRT Lowpoint algorithm that is
used in the Default MRT Profile to compute both the necessary
Maximally Redundant Trees with their associated next hops and the
alternates to select for MRT-FRR.

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata,

and how to provide feedback on it may be obtained at
http://lwww.rfc-editor.org/info/rfc7811.

Enyedi, et al. Standards Track [Page 1]

RFC 7811 MRT-FRR Algorithm June 2016

Copyright Notice

Copyright (c) 2016 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with respect

to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction 3
2. RequirementsLanguage 5
3. Terminology and Definitions 5
4. Algorithm Key Concepts 6
4.1. Partial Ordering for Disjoint Paths 7
4.2. Finding an Ear and the Correct Direction 8
4.3. Lowpoint Values and TheirUses 11
4.4. BlocksinaGraph.................... 14
4.5. Determining Localroot and Assigning Block-ID 16
5. MRT Lowpoint Algorithm Specification 18
5.1. Interface Ordering 18
5.2. MRT Island Identification 21
5.3. GADAG Root Selection 21
5.4. Initialization 22
5.5. Constructing the GADAG Using Lowpoint Inheritance 23
5.6. Augmenting the GADAG by Directing All Links 25
5.7. Compute MRT NextHops 29
5.7.1. MRT Next Hops to All Nodes Ordered with Respect to
the ComputingNode 29
5.7.2. MRT Next Hops to All Nodes Not Ordered with Respect
to the ComputingNode 30
5.7.3. Computing Redundant Tree Next Hops in a 2-Connected
Graph....... 31
5.7.4. Generalizing for a Graph That Isn't 2-Connected . . . 33
5.7.5. Complete Algorithm to Compute MRT Next Hops 34
5.8. Identify MRT Alternates 36
5.9. Named Proxy-Nodes 44
5.9.1. Determining Proxy-Node Attachment Routers 45
5.9.2. Computing If an Island Neighbor (IN) Is Loop-Free .. 45
5.9.3. Computing MRT Next Hops for Proxy-Nodes a7
5.9.4. Computing MRT Alternates for Proxy-Nodes 53

Enyedi, et al. Standards Track [Page 2]

RFC 7811 MRT-FRR Algorithm June 2016

6. MRT Lowpoint Algorithm: Next-Hop Conformance 61
7. Broadcast Interfaces 61

7.1. Computing MRT Next Hops on Broadcast Networks 62

7.2. Using MRT Next Hops as Alternates in the Event of

Failures on Broadcast Networks 63

8. Evaluation of Alternative Methods for Constructing GADAGs .. 64
9. Operational Considerations 66

9.1. GADAG Root Selection 67

9.2. Destination-Rooted GADAGS 67
10. Security Considerations 67
11.References 68

11.1. Normative References.................. 68

11.2. Informative References 68
Appendix A. Python Implementation of MRT Lowpoint Algorithm .. 70
Appendix B. Constructing a GADAG Using SPFs 110
Appendix C. Constructing a GADAG Using a Hybrid Method 115
Acknowledgements 117
Authors’ Addresses, 118

1. Introduction

MRT Fast Reroute requires that packets can be forwarded not only on
the shortest-path tree, but also on two Maximally Redundant Trees
(MRTSs), referred to as the MRT-Blue and the MRT-Red. A router that
experiences a local failure must also have predetermined which
alternate to use. This document defines how to compute these three
things for use in MRT-FRR and describes the algorithm design
decisions and rationale. The algorithm is based on those presented
in [MRTLinear] and expanded in [EnyediThesis]. The MRT Lowpoint
algorithm is required for implementation when the Default MRT Profile
is implemented.

The MRT Lowpoint Algorithm defined in this document, when used for
MRT Fast-Reroute as described in [RFC7812], guarantees 100% recovery
for single failures when the network is 2-connected. This guaranteed
coverage does not depend on the link metrics, which an operator may

be using to traffic-engineer the IP network. Thus, the link metrics

and general network topology are largely decoupled from the

guaranteed coverage.

Just as packets routed on a hop-by-hop basis require that each router
compute a shortest-path tree that is consistent, it is necessary for

each router to compute the MRT-Blue next hops and MRT-Red next hops
in a consistent fashion. This document defines the MRT Lowpoint
algorithm to be used as a standard in the Default MRT Profile for
MRT-FRR.

Enyedi, et al. Standards Track [Page 3]

RFC 7811 MRT-FRR Algorithm June 2016

A router’s Forwarding Information Base (FIB) will continue to contain
primary next hops for the current shortest-path tree for forwarding
traffic. In addition, a router’s FIB will contain primary next hops

for the MRT-Blue for forwarding received traffic on the MRT-Blue and
primary next hops for the MRT-Red for forwarding received traffic on
the MRT-Red.

What alternate next hops a Point of Local Repair (PLR) selects need
not be consistent -- but loops must be prevented. To reduce
congestion, it is possible for multiple alternate next hops to be
selected; in the context of MRT alternates, each of those alternate
next hops would be equal-cost paths.

This document defines an algorithm for selecting an appropriate MRT
alternate for consideration. Other alternates, e.g., Loop-Free
Alternates (LFAS) that are downstream paths, may be preferred when
available. See the "Operational Considerations" section of [RFC7812]
for a more detailed discussion of combining MRT alternates with those
produced by other FRR technologies.

[F]“i[D]Iml | [E/]<--|[D]<--| | [E|]-->[D]---I
[1 | v || Y
[R] [F]I [C] [RA] [AF] [C] . {R] [F] [C]
| 1 | || | Vv
A~ [Al->[B]- [Al<--{Bl<~|
(a) (b) (©)
A 2-connected graph MRT-Blue towards R MRT-Red towards R
Figure 1

The MRT Lowpoint algorithm can handle arbitrary network topologies
where the whole network graph is not 2-connected, as in Figure 2, as
well as the easier case where the network graph is 2-connected
(Figure 1). Each MRT is a spanning tree. The pair of MRTs provide
two paths from every node X to the root of the MRTs. Those paths
share the minimum number of nodes and the minimum number of links.
Each such shared node is a cut-vertex. Any shared links are cut-

links.

Enyedi, et al. Standards Track [Page 4]

RFC 7811 MRT-FRR Algorithm June 2016

[E}-Dl- |-
R

[N
[F] I[F]I [Cll---[IG] I

[T
[Al---[B]—| |--[H]

(a) a graph that is not 2-connected

[;E]<-A-[D]|<--I | [J] [IE]T[DI]“—“I I---[J]

Vo] [vV V V

(R] A[F] A[C]<A--[G|] | . [IT] |[F] [C]|<--[G] |
1V A I

[Al-->[B]---| |--[H] [Al<--[B]<-| (H]

(b) MRT-Blue towards R (c) MRT-Red towards R

Figure 2: A Network That Is Not 2-Connected
2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

3. Terminology and Definitions

Please see the Terminology section of [RFC7812] for a complete list
of terminology relevant to this document. The list below does not
repeat terminology introduced in that RFC.

spanning tree: A tree that contains links and that connects all
nodes in the network graph.

back-edge: In the context of a spanning tree computed via a depth-
first search, a back-edge is a link that connects a descendant of
a node x with an ancestor of x.

partial ADAG: A subset of an Almost Directed Acyclic Graph (ADAG)
that doesn'’t yet contain all the nodes in the block. A partial
ADAG is created during the MRT Lowpoint algorithm and then
expanded until all nodes in the block are included and it becomes
an ADAG.

DFS: Depth-First Search

Enyedi, et al. Standards Track [Page 5]

RFC 7811 MRT-FRR Algorithm June 2016

DFS ancestor: A node n is a DFS ancestor of x if n is on the DFS-
tree path from the DFS root to x.

DFS descendant: A node nis a DFS descendant of x if x is on the
DFS-tree path from the DFS root to n.

ear: A path along nodes that are not yet included in the Generalized
ADAG (GADAG) that starts at a node that is already included in the
GADAG and that ends at a node that is already included in the
GADAG. The starting and ending nodes may be the same node if it
is a cut-vertex.

X>>Y or Y<<X: Indicates the relationship between X and Y in a
partial order, such as found in a GADAG. X>>Y means that X is
higher in the partial order than Y. Y<<X means that Y is lower in
the partial order than X.

X>Y or Y<X: Indicates the relationship between X and Y in the total
order, such as found via a topological sort. X>Y means that X is
higher in the total order than Y. Y<X means that Y is lower in
the total order than X.

X ??Y: Indicates that X is unordered with respect to Y in the
partial order.

UNDIRECTED: In the GADAG, each link is marked as OUTGOING, INCOMING,
or both. Until the directionality of the link is determined, the
link is marked as UNDIRECTED to indicate that its direction hasn't
been determined.

OUTGOING: A link marked as OUTGOING has direction in the GADAG from
the interface’s router to the remote end.

INCOMING: A link marked as INCOMING has direction in the GADAG from
the remote end to the interface’s router.

4. Algorithm Key Concepts

There are five key concepts that are critical for understanding the
MRT Lowpoint algorithm. The first is the idea of partially ordering
the nodes in a network graph with regard to each other and to the
GADAG root. The second is the idea of finding an ear of nodes and
adding them in the correct direction. The third is the idea of a
Lowpoint value and how it can be used to identify cut-vertices and to
find a second path towards the root. The fourth is the idea that a
non-2-connected graph is made up of blocks, where a block is a

Enyedi, et al. Standards Track [Page 6]

RFC 7811 MRT-FRR Algorithm June 2016

2-connected cluster, a cut-link or an isolated node. The fifth is
the idea of a localroot for each node; this is used to compute ADAGs
in each block.

4.1. Partial Ordering for Disjoint Paths

Given any two nodes X and Y in a graph, a particular total order
means that either X<Y or X>Y in that total order. An example would
be a graph where the nodes are ranked based upon their unique IP
loopback addresses. In a partial order, there may be some nodes for
which it can’'t be determined whether X<<Y or X>>Y. A partial order
can be captured in a directed graph, as shown in Figure 3. Ina
graphical representation, a link directed from X to Y indicates that
X'is a neighbor of Y in the network graph and X<<Y.

[Al<---[R] [E] R<<A<<B<<C<<D<<E

| A R<<A<<B<<F<<G<<H<<D<< E
| I

Vv | Unspecified Relationships:
[B]--->[C]--->[D] CandF

| A Cand G

| | CandH

\Y
[F]--->[G]--->[H]

Figure 3: Directed Graph Showing a Partial Order

To compute MRTSs, the root of the MRTSs is at both the very bottom and
the very top of the partial ordering. This means that from any node
X, one can pick nodes higher in the order until the root is reached.
Similarly, from any node X, one can pick nodes lower in the order
until the root is reached. For instance, in Figure 4, from G the

higher nodes picked can be traced by following the directed links and
are H, D, E, and R. Similarly, from G the lower nodes picked can be
traced by reversing the directed links and are F, B, A,and R. A
graph that represents this modified partial order is no longer a DAG;
it is termed an Almost DAG (ADAG) because if the links directed to
the root were removed, it would be a DAG.

Enyedi, et al. Standards Track [Page 7]

RFC 7811 MRT-FRR Algorithm June 2016

[Al<--[R]<---[E] R<<A<<B<<C<<R

|~ R<<A<<B<<C<<D<<E<<R
|] R<<A<<B<<F<<G<<H<<D<<E<<R
\

[B]--->[C]--->[D] Unspecified Relationships:
| n CandF
| | Cand G
\% | CandH

[F]--->[G]--->[H]

Figure 4. ADAG Showing a Partial Order with R Lowest and Highest

Most importantly, if a node Y>>X, then Y can only appear on the
increasing path from X to the root and never on the decreasing path.
Similarly, if a node Z<<X, then Z can only appear on the decreasing
path from X to the root and never on the increasing path.

When following the increasing paths, it is possible to pick multiple
higher nodes and still have the certainty that those paths will be
disjoint from the decreasing paths. For example, in the previous
example, node B has multiple possibilities to forward packets along
an increasing path: it can either forward packets to C or F.

4.2. Finding an Ear and the Correct Direction

For simplicity, the basic idea of creating a GADAG by adding ears is
described assuming that the network graph is a single 2-connected
cluster so that an ADAG is sufficient. Generalizing to multiple
blocks is done by considering the block-roots instead of the GADAG
root -- and the actual algorithm is given in Section 5.5.

In order to understand the basic idea of finding an ADAG, first
suppose that we have already a partial ADAG, which doesn’t contain
all the nodes in the block yet, and we want to extend it to cover all
the nodes. Suppose that we find a path from a node X to Y such that
X and Y are already contained by our partial ADAG, but all the
remaining nodes along the path are not added to the ADAG yet. We
refer to such a path as an "ear".

Recall that our ADAG is closely related to a partial order. More
precisely, if we remove root R, the remaining DAG describes a partial
order of the nodes. If we suppose that neither X nor Y is the root,

we may be able to compare them. If one of them is definitely lesser
with respect to our partial order (say X<<Y), we can add the new path
to the ADAG in a direction from X to Y. As an example, consider
Figure 5.

Enyedi, et al. Standards Track [Page 8]

RFC 7811 MRT-FRR Algorithm June 2016

E---D--| E<--D--| E<--D<-|
[1] |~ |~
L] Vol Vol
RFC RFC RFC
|1 |~ | ~n
[1] vl Vol
A---B-—| A-->B-—| A-->B-—|
(@) (b) (©

(a) A 2-connected graph
(b) Partial ADAG (C is not included)
(c) Resulting ADAG after adding path (or ear) B-C-D

Figure 5

In this partial ADAG, node C is not yet included. However, we can
find path B-C-D, where both endpoints are contained by this partial
ADAG (we say those nodes are "ready" in the following text), and the
remaining node (node C) is not contained yet. If we remove R, the
remaining DAG defines a partial order, and with respect to this

partial order, we can say that B<<D; so, we can add the path to the
ADAG in the direction from B to D (arcs B->C and C->D are added). If
B>>D, we would add the same path in reverse direction.

If, in the partial order where an ear’s two ends are X and Y, X<<Y,
then there must already be a directed path from X to Y in the ADAG.
The ear must be added in a direction such that it doesn’t create a
cycle; therefore, the ear must go from X to Y.

In the case when X and Y are not ordered with each other, we can
select either direction for the ear. We have no restriction since
neither of the directions can result in a cycle. In the corner case
when one of the endpoints of an ear, say X, is the root (recall that
the two endpoints must be different), we could use both directions
again for the ear because the root can be considered both as smaller
and as greater than Y. However, we strictly pick that direction in
which the root is lower than Y. The logic for this decision is
explained in Section 5.7

A partial ADAG is started by finding a cycle from the root R back to
itself. This can be done by selecting a non-ready neighbor N of R
and then finding a path from N to R that doesn’t use any links
between R and N. The direction of the cycle can be assigned either
way since it is starting the ordering.

Enyedi, et al. Standards Track [Page 9]

RFC 7811 MRT-FRR Algorithm June 2016

Once a partial ADAG is already present, it will always have a node
that is not the root R in it. The following is a brief proof that a
partial ADAG can always have ears added to it: just select a non-
ready neighbor N of a ready node Q, such that Q is not the root R,
find a path from N to the root R in the graph with Q removed. This
path is an ear where the first node of the ear is Q, the next is N,
then the path until the first ready node the path reached (that ready
node is the other endpoint of the path). Since the graph is
2-connected, there must be a path from N to R without Q.

It is always possible to select a non-ready neighbor N of a ready

node Q so that Q is not the root R. Because the network is
2-connected, N must be connected to two different nodes and only one
can be R. Because the initial cycle has already been added to the
ADAG, there are ready nodes that are not R. Since the graph is
2-connected, while there are non-ready nodes, there must be a non-
ready neighbor N of a ready node that is not R.

Generic_Find_Ears_ ADAG(root)
Create an empty ADAG. Add root to the ADAG.
Mark root as IN_GADAG.
Select an arbitrary cycle containing root.
Add the arbitrary cycle to the ADAG.
Mark cycle’s nodes as IN_GADAG.
Add cycle’s non-root nodes to process_list.
While there exist connected nodes in graph that are not IN_GADAG
Select a new ear. Let its endpoints be X and Y.
If Y is root or (Y<<X)
Add the ear towards X to the ADAG
Else // (a) X is root, or (b) X<<Y, or (c) X, Y not ordered
Add the ear towards Y to the ADAG

Figure 6: Generic Algorithm to Find Ears and Their Direction in
2-Connected Graph

The algorithm in Figure 6 merely requires that a cycle or ear be

selected without specifying how. Regardless of the method for

selecting the path, we will get an ADAG. The method used for finding
and selecting the ears is important; shorter ears result in shorter

paths along the MRTs. The MRT Lowpoint algorithm uses the Lowpoint
Inheritance method for constructing an ADAG (and ultimately a GADAG).
This method is defined in Section 5.5. Other methods for

constructing GADAGSs are described in Appendices B and C. An
evaluation of these different methods is given in Section 8.

As an example, consider Figure 5 again. First, we select the

shortest cycle containing R, which can be R-A-B-F-D-E (uniform link
costs were assumed), so we get to the situation depicted in

Enyedi, et al. Standards Track [Page 10]

RFC 7811 MRT-FRR Algorithm June 2016

Figure 5(b). Finally, we find a node next to a ready node; that must

be node C and assume we reached it from ready node B. We search a
path from C to R without B in the original graph. The first ready

node along this is node D, so the open ear is B-C-D. Since B<<D, we
add arc B->C and C->D to the ADAG. Since all the nodes are ready, we
stop at this point.

4.3. Lowpoint Values and Their Uses

A basic way of computing a spanning tree on a network graph is to run
a DFS, such as given in Figure 7. This tree has the important
property that if there is a link (x, n), then either nis a DFS

ancestor of x or n is a DFS descendant of x. In other words, either

n is on the path from the root to x or x is on the path from the root

ton.

global_variable: dfs_number

DFS_Visit(node x, node parent)
D(x) = dfs_number
dfs_number +=1
x.dfs_parent = parent
for each link (x, w)

if D(w) is not set
DFS_Visit(w, X)

Run_DFS(node gadag_root)
dfs_number =0
DFS_Visit(gadag_root, NONE)

Figure 7: Basic DFS Algorithm

Given a node x, one can compute the minimal DFS number of the
neighbors of x, i.e., min(D(w) if (x,w) is a link). This gives the
earliest attachment point neighboring x. What is interesting,
though, is the earliest attachment point from x and x’s descendants.
This is what is determined by computing the Lowpoint value.

In order to compute the low point value, the network is traversed

using DFS and the vertices are numbered based on the DFS walk. Let
this number be represented as DFS(x). All the edges that lead to
already-visited nodes during DFS walk are back-edges. The back-edges
are important because they give information about reachability of a

node via another path.

Enyedi, et al. Standards Track [Page 11]

RFC 7811 MRT-FRR Algorithm June 2016

The low point number is calculated by finding:

Low(x) = Minimum of ((DFS(x),
Lowest DFS(n, x->n is a back-edge),
Lowest Low(n, x->n is tree edge in DFS walk)).

A detailed algorithm for computing the lowpoint value is given in
Figure 8. Figure 9 illustrates how the Lowpoint algorithm applies to
an example graph.

global_variable: dfs_number

Lowpoint_Visit(node x, node parent, interface p_to_X)
D(x) = dfs_number
L(x) = D(x)
dfs_number +=1
x.dfs_parent = parent
x.dfs_parent_intf = p_to_x.remote_intf
x.lowpoint_parent = NONE
for each ordered_interface intf of x
if D(intf.remote_node) is not set
Lowpoint_Visit(intf.remote_node, x, intf)
if L(intf.remote_node) < L(x)
L(x) = L(intf.remote_node)
x.lowpoint_parent = intf.remote_node
x.lowpoint_parent_intf = intf
else if intf.remote_node is not parent
if D(intf.remote_node) < L(x)
L(x) = D(intf.remote_node)
x.lowpoint_parent = intf.remote_node
x.lowpoint_parent_intf = intf

Run_Lowpoint(node gadag_root)
dfs_number =0
Lowpoint_Visit(gadag_root, NONE, NONE)

Figure 8: Computing Lowpoint Value

Enyedi, et al. Standards Track [Page 12]

RFC 7811 MRT-FRR Algorithm June 2016

[F]--l-l I[J]-----l--[llI [Pl]---[O]

| | 1
[F] [D]-I--[(I3]--|[F] |[H]-l--[K] [N]

| [
[Al-——-[B] [G-| [L]--[M]
(a) a non-2-connected graph

(€| [F---rell] [P--={O]
6. [do) ©)de)5

I I R
R [DF-{C--[F] [H---KI [N]
0)@)CIEIE)aL) a4)
[B

[AJ--+-{B] [Gl-~| [L-+-M]
L) @)F) @2)as)

(b) with DFS values assigned (D(x), L(x))

[+ [@J]] _[P}---O]
(5,0) | (10,3) (9,3) (16,11) (15,11)
B

I R

R [D-{Cl-[F]_[H}---{K] [N]
(0,0) (4,0) (3,0) (6,3) (8,3) (11,11) (14,11)
N

[B N
[AJ----{B] [Gl--| [L-+--{M]

1,0) (20)(7.3) (12,11) (13,11)
(c) with lowpoint values assigned (D(x), L(x))
Figure 9: Example Lowpoint Value Computation

From the lowpoint value and lowpoint parent, there are three very
useful things that motivate our computation.

First, if there is a child ¢ of x such that L(c) >= D(x), then there

are no paths in the network graph that go from c or its descendants
to an ancestor of x; therefore, x is a cut-vertex. In Figure 9, this

can be seen by looking at the DFS children of C. C has two children,
D and F and L(F) = 3 = D(C); so, itis clear that C is a cut-vertex

and F is in a block where C is the block’s root. L(D) = 0<3 = D(C),
so D has a path to the ancestors of C; in this case, D can go via E

Enyedi, et al. Standards Track [Page 13]

RFC 7811 MRT-FRR Algorithm June 2016

to reach R. Comparing the lowpoint values of all a node’s DFS-
children with the node’s DFS-value is very useful because it allows
identification of the cut-vertices and thus the blocks.

Second, by repeatedly following the path given by lowpoint_parent,
there is a path from x back to an ancestor of x that does not use the
link [X, x.dfs_parent] in either direction. The full path need not

be taken, but this gives a way of finding an initial cycle and then
ears.

Third, as seen in Figure 9, even if L(x)<D(x), there may be a block
that contains both the root and a DFS-child of a node while other
DFS-children might be in different blocks. In this example, C's
child D is in the same block as R while F is not. It is important to
realize that the root of a block may also be the root of another
block.

4.4. Blocks in a Graph

A key idea for the MRT Lowpoint algorithm is that any non-2-connected
graph is made up by blocks (e.g., 2-connected clusters, cut-links,

and/or isolated nodes). To compute GADAGs and thus MRTs, computation
is done in each block to compute ADAGs or Redundant Trees and then
those ADAGs or Redundant Trees are combined into a GADAG or MRT.

Enyedi, et al. Standards Track [Page 14]

RFC 7811 MRT-FRR Algorithm June 2016

[lE]--l-I |[J]-----l--[l]| [F’ll---[O]

L1 |1
[IR] [D]-l--[Cll--llF] |[H]-I--[K] [N]

| I A I
[A]---- [B] [G]—| [L]---[M]

(a) A graph with four blocks:
three 2-connected clusters
and one cut-link

[;5]<|--| |[J]<--/-\---[||] [E\’]<--[0]

V| V |V
R} (DI<-AC)) (i<~ [N

\%
[Al----- >[B] [G]--| [L]->[M]

(b) MRT-Blue for destination R

I R

\ \Y \
%) (D}->(Cl—IF] (i<t [N

| A2 I U
[Al<---—-[B] [G]<-| [L]<-[M]

(c) MRT-Red for destination R

Figure 10

Consider the example depicted in Figure 10 (a). In this figure, a
special graph is presented, showing us all the ways 2-connected
clusters can be connected. It has four blocks: block 1 contains R,

A, B, C, D, E; block 2 contains C, F, G, H, I, J; block 3 contains K,

L, M, N, O, P; and block 4 is a cut-link containing H and K. As can

be observed, the first two blocks have one common node (node C) and
blocks 2 and 3 do not have any common node, but they are connected
through a cut-link that is block 4. No two blocks can have more than
one common node, since two blocks with at least two common nodes
would qualify as a single 2-connected cluster.

Enyedi, et al. Standards Track [Page 15]

RFC 7811 MRT-FRR Algorithm June 2016

Moreover, observe that if we want to get from one block to another,
we must use a cut-vertex (the cut-vertices in this graph are C, H,

K), regardless of the path selected, so we can say that all the paths
from block 3 along the MRTSs rooted at R will cross K first. This
observation means that if we want to find a pair of MRTs rooted at R,
then we need to build up a pair of RTs in block 3 with K as a root.
Similarly, we need to find another pair of RTs in block 2 with C as a
root, and finally, we need the last pair of RTs in block 1 with R as
aroot. When all the trees are selected, we can simply combine them;
when a block is a cut-link (as in block 4), that cut-link is added in

the same direction to both of the trees. The resulting trees are
depicted in Figure 10 (b) and (c).

Similarly, to create a GADAG it is sufficient to compute ADAGS in
each block and connect them.

It is necessary, therefore, to identify the cut-vertices, the blocks
and identify the appropriate localroot to use for each block.

4.5. Determining Localroot and Assigning Block-ID

Each node in a network graph has a localroot, which is the cut-vertex
(or root) in the same block that is closest to the root. The

localroot is used to determine whether two nodes share a common
block.

Compute_Localroot(node x, node localroot)
x.localroot = localroot
for each DFS child node c of x
if L(c) < D(x) //xis not a cut-vertex
Compute_Localroot(c, x.localroot)
else
mark x as cut-vertex
Compute_Localroot(c, x)

Compute_Localroot(gadag_root, gadag_root)
Figure 11: A Method for Computing Localroots

There are two different ways of computing the localroot for each

node. The stand-alone method is given in Figure 11 and better

illustrates the concept; it is used by the GADAG construction methods
given in Appendices B and C. The MRT Lowpoint algorithm computes the
localroot for a block as part of computing the GADAG using lowpoint
inheritance; the essence of this computation is given in Figure 12.

Both methods for computing the localroot produce the same results.

Enyedi, et al. Standards Track [Page 16]

RFC 7811 MRT-FRR Algorithm June 2016

Get the current node, s.
Compute an ear (either through lowpoint inheritance
or by following dfs parents) from s to a ready node e.
(Thus, s is not e, if there is such ear.)
ifsise
for each node x in the ear that is not s
x.localroot = s
else
for each node x in the ear that is not s or e
x.localroot = e.localroot

Figure 12: Ear-Based Method for Computing Localroots

Once the localroots are known, two nodes X and Y are in a common
block if and only if one of the following three conditions apply.

0 Y’s localroot is X’s localroot : They are in the same block and
neither is the cut-vertex closest to the root.

o Y’'slocalroot is X: X is the cut-vertex closest to the root for
Y’s block

0 Y is X's localroot: Y is the cut-vertex closest to the root for
X’s block

Once we have computed the localroot for each node in the network
graph, we can assign for each node, a Block-ID that represents the
block in which the node is present. This computation is shown in
Figure 13.

global_var: max_block_id

Assign_Block_ID(x, cur_block_id)
x.block_id = cur_block_id
foreach DFS child c of x
if (c.local_root is x)
max_block_id +=1
Assign_Block_ID(c, max_block_id)
else
Assign_Block_ID(c, cur_block_id)

max_block_id =0
Assign_Block _ID(gadag_root, max_block_id)

Figure 13: Assigning Block-ID to Identify Blocks

Enyedi, et al. Standards Track [Page 17]

RFC 7811 MRT-FRR Algorithm June 2016

5. MRT Lowpoint Algorithm Specification

The MRT Lowpoint algorithm computes one GADAG that is then used by a
router to determine its MRT-Blue and MRT-Red next hops to all
destinations. Finally, based upon that information, alternates are

selected for each next hop to each destination. The different parts

of this algorithm are described below.

o Order the interfaces in the network graph. See Section 5.1.

o Compute the local MRT Island for the particular MRT Profile. See
Section 5.2.

o Select the root to use for the GADAG. See Section 5.3.
o Initialize all interfaces to UNDIRECTED. See Section 5.4.

o Compute the DFS value, e.g., D(x), and lowpoint value, L(x). See
Figure 8.

o Construct the GADAG. See Section 5.5.

0 Assign directions to all interfaces that are still UNDIRECTED.
See Section 5.6.

o From the computing router x, compute the next hops for the MRT-
Blue and MRT-Red. See Section 5.7.

o ldentify alternates for each next hop to each destination by
determining which one of the MRT-Blue and the MRT-Red the
computing router x should select. See Section 5.8.

A Python implementation of this algorithm is given in Appendix A.
5.1. Interface Ordering

To ensure consistency in computation, all routers MUST order
interfaces identically down to the set of links with the same metric
to the same neighboring node. This is necessary for the DFS in
Lowpoint_Visit in Section 4.3, where the selection order of the
interfaces to explore results in different trees. Consistent

interface ordering is also necessary for computing the GADAG, where
the selection order of the interfaces to use to form ears can result

in different GADAGS. It is also necessary for the topological sort
described in Section 5.8, where different topological sort orderings
can result in undirected links being added to the GADAG in different
directions.

Enyedi, et al. Standards Track [Page 18]

RFC 7811 MRT-FRR Algorithm June 2016

The required ordering between two interfaces from the same router x
is given in Figure 14.

Interface_Compare(interface a, interface b)

if a.metric < b.metric
return A_LESS_THAN_B

if b.metric < a.metric
return B_LESS THAN_A

if a.neighbor.mrt_node_id < b.neighbor.mrt_node_id
return A_ LESS THAN_B

if b.neighbor.mrt_node_id < a.neighbor.mrt_node_id
return B_LESS THAN_A

/I Same metric to same node, so the order doesn’t matter for

/I interoperability.

return A_EQUAL_TO_B

Figure 14: Rules for Ranking Multiple Interfaces (Order Is from Low
to High)

In Figure 14, if two interfaces on a router connect to the same
remote router with the same metric, the Interface_Compare function
returns A_ EQUAL_TO_B. This is because the order in which those
interfaces are initially explored does not affect the final GADAG
produced by the algorithm described here. While only one of the
links will be added to the GADAG in the initial traversal, the other
parallel links will be added to the GADAG with the same direction
assigned during the procedure for assigning direction to UNDIRECTED
links described in Section 5.6. An implementation is free to apply
some additional criteria to break ties in interface ordering in this
situation, but those criteria are not specified here since they will

not affect the final GADAG produced by the algorithm.

The Interface_Compare function in Figure 14 relies on the
interface.metric and the interface.neighbor.mrt_node_id values to
order interfaces. The exact source of these values for different

IGPs and applications is specified in Figure 15. The metric and
mrt_node_id values for OSPFv2, OSPFv3, and IS-IS provided here is
normative. The metric and mrt_node_id values for IS-IS Path Control
and Reservation (PCR) in this table should be considered
informational. The normative values are specified in [[EEE8021Qca].

Enyedi, et al. Standards Track [Page 19]

RFC 7811 MRT-FRR Algorithm June 2016

+ + + +
| IGP/flooding | mrt_node_id | metric of |
| protocol | of neighbor | interface [
| and | on interface | |
| application | | |
+ + + +
OSPFv2 for	4-octet Neighbor	2-octet Metric field
IP/LDP FRR	Router ID in	for corresponding
Link ID field for	point-to-point link	
corresponding	in Router-LSA	

| point-to-point link | |
| in Router-LSA | |

I

I

|

I

+ + + +

| OSPFv3 for | 4-octet Neighbor | 2-octet Metric field |

| IP/LDP FRR | Router ID field | for corresponding |

| | for corresponding | point-to-point link |

| | point-to-point link | in Router-LSA |

| | in Router-LSA | |

+ + + +

| IS-1S for | 7-octet neighbor | 3-octet metric field |

| IP/LDP FRR | system ID and | in Extended IS

| | pseudonode number | Reachability TLV (type 22) |
| | in Extended IS | or Multi-Topology |

| | Reachability TLV (type| IS Neighbor TLV (type 222) |
| | 22) or Multi-Topology | |

[| IS Neighbor TLV (type | |

I | 222) I I

+ + + +

IS-1S PCR for	8-octet Bridge ID	3-octet SPB-LINK-METRIC in
protection	created from 2-octet	SPB-Metric sub-TLV (type 29)
of traffic	Bridge Priority in	in Extended IS Reachability
in bridged	Shortest Path Bridging	TLV (type 22) or
	SPB Instance sub-TLV	Multi-Topology
networks	(type 1) carried in	Intermediate Systems
MT-Capability TLV	TLV (type 222). In the case	
(type 144) and 6-octet	of asymmetric link metrics,	
neighbor system ID in	the larger link metric	
Extended IS	is used for both link	
Reachability TLV (type]	directions.	
22) or Multi-Topology	(informational)	
Intermediate Systems		
TLV (type 222)		
(informational)		
+ + +

—

Figure 15: Value of interface.neighbor.mrt_node_id and
interface.metric to Be Used for Ranking Interfaces, for Different
Flooding Protocols and Applications

Enyedi, et al. Standards Track [Page 20]

RFC 7811 MRT-FRR Algorithm June 2016

The metrics are unsigned integers and MUST be compared as unsigned
integers. The results of mrt_node_id comparisons MUST be the same as
would be obtained by converting the mrt_node_ids to unsigned integers
using network byte order and performing the comparison as unsigned
integers. In the case of IS-1S for IP/LDP FRR with point-to-point

links, the pseudonode number (the 7th octet) is zero. Broadcast
interfaces will be discussed in Section 7.

5.2. MRT Island Identification

The local MRT Island for a particular MRT profile can be determined
by starting from the computing router in the network graph and doing
a breadth-first-search (BFS). The BFS explores only links that are

in the same areallevel, are not IGP-excluded, and are not MRT-
ineligible. The BFS explores only nodes that support the particular
MRT profile. See Section 7 of [RFC7812] for more-precise definitions
of these criteria.

MRT _Island_ldentification(topology, computing_rtr, profile_id, area)
for all routers in topology
rtr.IN_MRT_ISLAND = FALSE
computing_rtr.IN_MRT_ISLAND = TRUE
explore_list = { computing_rtr }
while (explore_list is not empty)
next_rtr = remove_head(explore_list)
for each intf in next_rtr
if (not intf.IN_MRT_ISLAND
and not intf. MRT-ineligible
and not intf.remote_intf. MRT-ineligible
and not intf.IGP-excluded and (intf in area)
and (intf.remote_node supports profile_id))
intf.IN_MRT _ISLAND = TRUE
intf.remote_intf.IN_MRT_ISLAND = TRUE
if (not intf.remote_node.IN_MRT_ISLAND))
intf.remote_node.IN_MRT_ISLAND = TRUE
add_to_tail(explore_list, intf.remote_node)

Figure 16: MRT Island Identification
5.3. GADAG Root Selection

In Section 8.3 of [RFC7812], the GADAG Root Selection Policy is

described for the Default MRT Profile. This selection policy allows

routers to consistently select a common GADAG Root inside the local

MRT Island, based on advertised priority values. The MRT Lowpoint
algorithm simply requires that all routers in the MRT Island MUST

select the same GADAG Root; the mechanism can vary based upon the MRT
profile description. Before beginning computation, the network graph

Enyedi, et al. Standards Track [Page 21]

RFC 7811 MRT-FRR Algorithm June 2016

is reduced to contain only the set of routers that support the
specific MRT profile whose MRTs are being computed.

As noted in Section 7, pseudonodes MUST NOT be considered for GADAG
root selection.

It is expected that an operator will designate a set of routers as

good choices for selection as GADAG root by setting the GADAG Root
Selection Priority for that set of routers to lower (more preferred)
numerical values. For guidance on setting the GADAG Root Selection
Priority values, refer to Section 9.1.

5.4. Initialization

Before running the algorithm, there is the standard type of

initialization to be done, such as clearing any computed DFS-values,
lowpoint-values, DFS parents, lowpoint-parents, any MRT-computed next
hops, and flags associated with algorithm.

It is assumed that a regular SPF computation has been run so that the
primary next hops from the computing router to each destination are
known. This is required for determining alternates at the last step.

Initially, all interfaces MUST be initialized to UNDIRECTED. Whether
they are OUTGOING, INCOMING, or both is determined when the GADAG is
constructed and augmented.

It is possible that some links and nodes will be marked using
standard IGP mechanisms to discourage or prevent transit traffic.
Section 7.3.1 of [RFC7812] describes how those links and nodes are
excluded from MRT Island formation.

MRT-FRR also has the ability to advertise links MRT-Ineligible, as
described in Section 7.3.2 of [RFC7812]. These links are excluded

from the MRT Island and the GADAG. Computation of MRT next hops will
therefore not use any MRT-ineligible links. The MRT Lowpoint

algorithm does still need to consider MRT-ineligible links when

computing FRR alternates, because an MRT-ineligible link can still be

the shortest-path next hop to reach a destination.

When a broadcast interface is advertised as MRT-ineligible, then the
pseudonode representing the entire broadcast network MUST NOT be
included in the MRT Island. This is equivalent to excluding all of

the broadcast interfaces on that broadcast network from the MRT
Island.

Enyedi, et al. Standards Track [Page 22]

RFC 7811 MRT-FRR Algorithm June 2016

5.5. Constructing the GADAG Using Lowpoint Inheritance

As discussed in Section 4.2, it is necessary to find ears from a node

X that is already in the GADAG (known as IN_GADAG). Two different
methods are used to find ears in the algorithm. The first is by

going to a DFS-child that is not IN_GADAG and then following the
chain of lowpoint parents until an IN_GADAG node is found. The
second is by going to a neighbor that is not IN_GADAG and then
following the chain of DFS parents until an IN_GADAG node is found.
As an ear is found, the associated interfaces are marked based on the
direction taken. The nodes in the ear are marked as IN_GADAG. In
the algorithm, first the ears via DFS-children are found and then the
ears via DFS-neighbors are found.

By adding both types of ears when an IN_GADAG node is processed, all
ears that connect to that node are found. The order in which the
IN_GADAG nodes are processed is, of course, key to the algorithm.

The order is a stack of ears so the most recent ear is found at the

top of the stack. Of course, the stack stores nodes and not ears, so

an ordered list of nodes, from the first node in the ear to the last

node in the ear, is created as the ear is explored and then that list

is pushed onto the stack.

Each ear represents a partial order (see Figure 4) and processing the
nodes in order along each ear ensures that all ears connecting to a
node are found before a node higher in the partial order has its ears
explored. This means that the direction of the links in the ear is
always from the node x being processed towards the other end of the
ear. Additionally, by using a stack of ears, this means that any
unprocessed nodes in previous ears can only be ordered higher than
nodes in the ears below it on the stack.

In this algorithm that depends upon Lowpoint inheritance, it is
necessary that every node has a lowpoint parent that is not itself.

If a node is a cut-vertex, that may not yet be the case. Therefore,
any nodes without a lowpoint parent will have their lowpoint parent
set to their DFS parent and their lowpoint value set to the DFS-value
of their parent. This assignment also properly allows an ear between
two cut-vertices.

Finally, the algorithm simultaneously computes each node’s localroot,
as described in Figure 12. This is further elaborated as follows.

The localroot can be inherited from the node at the end of the ear
unless the end of the ear is x itself, in which case the localroot

for all the nodes in the ear would be x. This is because whenever
the first cycle is found in a block, or an ear involving a bridge is
computed, the cut-vertex closest to the root would be x itself. In

all other scenarios, the properties of lowpoint/dfs parents ensure

Enyedi, et al. Standards Track [Page 23]

RFC 7811 MRT-FRR Algorithm June 2016

that the end of the ear will be in the same block, and thus
inheriting its localroot would be the correct localroot for all newly
added nodes.

The pseudocode for the GADAG algorithm (assuming that the adjustment
of lowpoint for cut-vertices has been made) is shown in Figure 17.

Construct_Ear(x, Stack, intf, ear_type)
ear_list = empty
cur_node = intf.remote_node
cur_intf = intf
not_done = true

while not_done
cur_intf. UNDIRECTED = false
cur_intf. OUTGOING = true
cur_intf.remote_intf. UNDIRECTED = false
cur_intf.remote_intf.INCOMING = true

if cur_node.IN_GADAG is false
cur_node.IN_GADAG = true
add_to_list_end(ear_list, cur_node)
if ear_type is CHILD
cur_intf = cur_node.lowpoint_parent_intf
cur_node = cur_node.lowpoint_parent
else // ear_type must be NEIGHBOR
cur_intf = cur_node.dfs_parent_intf
cur_node = cur_node.dfs_parent
else
not_done = false

if (ear_type is CHILD) and (cur_node is x)
/I x is a cut-vertex and the local root for
/l the block in which the ear is computed
x.IS_CUT_VERTEX = true
localroot = x

else
/I Inherit localroot from the end of the ear
localroot = cur_node.localroot

while ear_list is not empty
y = remove_end_item_from_list(ear_list)
y.localroot = localroot
push(Stack, y)

Construct. GADAG_via_Lowpoint(topology, gadag_root)
gadag_root.IN_GADAG = true
gadag_root.localroot = None
Initialize Stack to empty

Enyedi, et al. Standards Track [Page 24]

RFC 7811 MRT-FRR Algorithm June 2016

push gadag_root onto Stack
while (Stack is not empty)
X = pop(Stack)
foreach ordered_interface intf of x
if ((intf.remote_node.IN_GADAG == false) and
(intf.remote_node.dfs_parent is x))
Construct_Ear(x, Stack, intf, CHILD)
foreach ordered_interface intf of x
if ((intf.remote_node.IN_GADAG == false) and
(intf.remote_node.dfs_parent is not x))
Construct_Ear(x, Stack, intf, NEIGHBOR)

Construct. GADAG_via_Lowpoint(topology, gadag_root)
Figure 17: Lowpoint Inheritance GADAG Algorithm
5.6. Augmenting the GADAG by Directing All Links

The GADAG, regardless of the method used to construct it, at this

point could be used to find MRTSs, but the topology does not include

all links in the network graph. That has two impacts. First, there

might be shorter paths that respect the GADAG partial ordering and so
the alternate paths would not be as short as possible. Second, there
may be additional paths between a router x and the root that are not
included in the GADAG. Including those provides potentially more
bandwidth to traffic flowing on the alternates and may reduce
congestion compared to just using the GADAG as currently constructed.

The goal is thus to assign direction to every remaining link marked
as UNDIRECTED to improve the paths and number of paths found when the
MRTs are computed.

To do this, we need to establish a total order that respects the

partial order described by the GADAG. This can be done using Kahn’s
topological sort [Kahn_1962_topo_sort], which essentially assigns a
number to a node x only after all nodes before it (e.g., with a link
incoming to x) have had their numbers assigned. The only issue with
the topological sort is that it works on DAGs and not ADAGS or
GADAGsS.

To convert a GADAG to a DAG, it is necessary to remove all links that
point to a root of block from within that block. That provides the
necessary conversion to a DAG and then a topological sort can be
done. When adding undirected links to the GADAG, links connecting
the block root to other nodes in that block need special handling
because the topological order will not always give the right answer

for those links. There are three cases to consider. If the

undirected link in question has another parallel link between the

Enyedi, et al. Standards Track [Page 25]

RFC 7811 MRT-FRR Algorithm June 2016

same two nodes that is already directed, then the direction of the
undirected link can be inherited from the previously directed link.

In the case of parallel cut links, we set all of the parallel links

to both INCOMING and OUTGOING. Otherwise, the undirected link in
guestion is set to OUTGOING from the block root node. A cut-link can
then be identified by the fact that it will be directed both INCOMING

and OUTGOING in the GADAG. The exact details of this whole process
are captured in Figure 18.

Add_Undirected_Block_Root_Links(topo, gadag_root)
foreach node x in topo
if x.IS_CUT_VERTEX or x is gadag_root
foreach interface i of x
if (i.remote_node.localroot is not x
or i.PROCESSED)
continue
Initialize bundle_list to empty
bundle. UNDIRECTED = true
bundle.OUTGOING = false
bundle.INCOMING = false
foreach interface i2 in x
if i2.remote_node is i.remote_node
add_to_list_end(bundle_list, i2)
if not i2.UNDIRECTED:
bundle.UNDIRECTED = false
if i2.INCOMING:
bundle.INCOMING = true
if i2.0UTGOING:
bundle.OUTGOING = true
if bundle. UNDIRECTED
foreach interface i3 in bundle_list
i3.UNDIRECTED = false
i3.remote_intf. UNDIRECTED = false
i3.PROCESSED = true
i3.remote_intf. PROCESSED = true
i3.O0UTGOING = true
i3.remote_intf.INCOMING = true
else
if (bundle.OUTGOING and bundle.INCOMING)
foreach interface i3 in bundle_list
i3.UNDIRECTED = false
i3.remote_intf. UNDIRECTED = false
i3.PROCESSED = true
i3.remote_intf. PROCESSED = true
i3.OUTGOING = true
i3.INCOMING = true
i3.remote_intf.INCOMING = true
i3.remote_intf. OUTGOING = true

Enyedi, et al. Standards Track [Page 26]

RFC 7811 MRT-FRR Algorithm June 2016

else if bundle.OUTGOING
foreach interface i3 in bundle_list
i3.UNDIRECTED = false
i3.remote_intf. UNDIRECTED = false
i3.PROCESSED = true
i3.remote_intf. PROCESSED = true
i3.0UTGOING = true
i3.remote_intf.INCOMING = true
else if bundle.INCOMING
foreach interface i3 in bundle_list
i3.UNDIRECTED = false
i3.remote_intf. UNDIRECTED = false
i3.PROCESSED = true
i3.remote_intf. PROCESSED = true
i3.INCOMING = true
i3.remote_intf. OUTGOING = true

Modify_Block _Root_Incoming_Links(topo, gadag_root)
foreach node x in topo
if x.IS_CUT_VERTEX or x is gadag_root
foreach interface i of x
if i.,remote_node.localroot is x
if .INCOMING:

i.I