000000000 Insakmwm 00000000
0000w 0000000000000
L luy2ooow

JSON Web Signature (JWS)
draft-ietf-jose-json-web-signature-14

Abstract

JSON Web Signature (JWS) is a means of representing content secured with digital signatures
or Message Authentication Codes (MACs) using JavaScript Object Notation (JSON) based data
structures. Cryptographic algorithms and identifiers for use with this specification are
described in the separate JSON Web Algorithms (JWA) specification. Related encryption
capabilities are described in the separate JSON Web Encryption (JWE) specification.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note
that other groups may also distribute working documents as Internet-Drafts. The list of
current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them other than as “work in progress.”

This Internet-Draft will expire on January 30, 2014.

Copyright Notice

Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted from this document
must include Simplified BSD License text as described in Section 4.e of the Trust Legal
Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction
1.1. Notational Conventions
2. Terminology
3. JSON Web Signature (JWS) Overview
3.1. Example JWS
4. JWS Header
4.1. Reserved Header Parameter Names
4.1.1. "alg" (Algorithm) Header Parameter
4.1.2. "jku" (JWK Set URL) Header Parameter
4.1.3. "jwk" (JSON Web Key) Header Parameter

4.1.4. "x5u" (X.509 URL) Header Parameter
4.1.5. "x5t" (X.509 Certificate Thumbprint) Header Parameter
4.1.6. "x5c" (X.509 Certificate Chain) Header Parameter
4.1.7. "kid" (Key ID) Header Parameter
4.1.8. "typ" (Type) Header Parameter
4.1.9. "cty" (Content Type) Header Parameter
4.1.10. "crit" (Critical) Header Parameter
4.2. Public Header Parameter Names

P
_3 Private Header Parameter Names
Producing and Consuming JWSs
.1. Message Sighing or MACing
Message Signature or MAC Validation
3. String Comparison Rules
ey Identification
Serializations
7.1. JWS Compact Serialization
7.2. JWS JSON Serialization
8. IANA Considerations
8.1. JSON Web Signature and Encryption Header Parameters Registry
8.1.1. Registration Template
8.1.2. Initial Registry Contents
8.2. JSON Web Signature and Encryption Type Values Registry
8.2.1. Registration Template
8.2.2. Initial Registry Contents
8.3. Media Type Registration
8.3.1. Registry Contents
9. Security Considerations
9.1. Cryptographic Security Considerations
9.2. JSON Security Considerations
9.3. Unicode Comparison Security Considerations
9.4. TLS Requirements
10. References
10.1. Normative References
10.2. Informative References
Appendix A. JWS Examples
A.1l. Example JWS using HMAC SHA-256
A.1.1. Encoding
A.1.2. Decoding
A.1.3. Validating
xample JWS using RSASSA-PKCS-vl 5 SHA-256
A.2.1. Encoding
A.2.2. Decoding
A.2.3. Validating
xample JWS using ECDSA P-256 SHA-256
A.3.1. Encoding
A.3.2. Decoding
3 3. Validating
A.4. Example JWS using ECDSA P-521 SHA-512
A.4.1. Encoding
A.4.2. Decoding
A.4.3. Validating
A.5. Example Plaintext JWS
A.6. Example JWS Using JWS JSON Serialization
A.6.1. JWS Per-Signature Protected Headers
A.6.2. JWS Per-Signature Unprotected Headers
A.6.3. Complete JWS Header Values
A.6.4. Complete JWS JSON Serialization Representation
Appendix B. "x5c¢" (X.509 Certificate Chain) Example
Appendix C. Notes on implementing base64url encoding without padding
Appendix D. Negative Test Case for "crit" Header Parameter
Appendix E. Acknowledgements
Appendix F. Document History
& Authors' Addresses

5.

U'ISJ'IU'I
N [k

6.
7.

's

> >
>99>>>P>>>P>>>P>
wmeNNm

> >

1. Introduction

JSON Web Signature (JWS) is a means of representing content secured with digital signatures
or Message Authentication Codes (MACs) using JavaScript Object Notation (JSON)
[RFC4627] based data structures. The JWS cryptographic mechanisms provide integrity
protection for arbitrary sequences of octets.

Two closely related representations for JWS objects are defined. The JWS Compact
Serialization is a compact, URL-safe representation intended for space constrained
environments such as HTTP Authorization headers and URI query parameters. The JWS JSON
Serialization represents JWS objects as JSON objects and enables multiple signatures and/or
MACs to be applied to the same content. Both share the same cryptographic underpinnings.

Cryptographic algorithms and identifiers for use with this specification are described in the
separate JSON Web Algorithms (JWA) [JWA] specification. Related encryption capabilities are
described in the separate JSON Web Encryption (JWE) [JWE] specification.

1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in Key words for use in RFCs to Indicate Requirement Levels
[RFC2119].

2. Terminology

JSON Web Signature (JWS)
A data structure representing a digitally signed or MACed message. The structure
represents three values: the WS Header, the WS Payload, and the JWS Signature.

JSON Text Object
A UTF-8 [RFC3629] encoded text string representing a JSON object; the syntax of
JSON objects is defined in Section 2.2 of [RFC46271].

JWS Header
A JSON Text Object (or JSON Text Objects, when using the JWS JSON Serialization)
that describes the digital signature or MAC operation applied to create the JWS
Signature value. The members of the WS Header object(s) are Header
Parameters.

JWS Payload
The sequence of octets to be secured -- a.k.a., the message. The payload can
contain an arbitrary sequence of octets.

JWS Signature
A sequence of octets containing the cryptographic material that ensures the
integrity of the JWS Protected Header and the JWS Payload. The JWS Signature
value is a digital signature or MAC value calculated over the JWS Signing Input
using the parameters specified in the JWS Header.

JWS Protected Header
A JSON Text Object that contains the portion of the WS Header that is integrity
protected. For the JWS Compact Serialization, this comprises the entire JWS
Header. For the JWS JSON Serialization, this is one component of the JWS Header.

Header Parameter
A name/value pair that is member of the JWS Header.

Header Parameter Name
The name of a member of the JWS Header.

Header Parameter Value
The value of a member of the JWS Header.

Base64url Encoding
The URL- and filename-safe Base64 encoding described in RFC 4648 [RFC4648],
Section 5, with the (non URL-safe) '=' padding characters omitted, as permitted by
Section 3.2. (See Appendix C for notes on implementing base64url encoding
without padding.)

Encoded JWS Header
Base64url encoding of the JWS Protected Header.

TOC

TOC

Encoded JWS Payload
Base64url encoding of the JWS Payload.

Encoded JWS Signature
Base64url encoding of the JWS Signature.

JWS Signing Input
The concatenation of the Encoded JWS Header, a period ('.") character, and the
Encoded JWS Payload.

JWS Compact Serialization
A representation of the JWS as the concatenation of the Encoded JWS Header, the
Encoded JWS Payload, and the Encoded JWS Signature in that order, with the three
strings being separated by two period ('.') characters. This representation is
compact and URL-safe.

JWS JSON Serialization
A representation of the JWS as a JSON structure containing JWS Header, Encoded
JWS Payload, and Encoded JWS Signature values. Unlike the JWS Compact
Serialization, the JWS JSON Serialization enables multiple digital signatures and/or
MACs to be applied to the same content. This representation is neither compact
nor URL-safe.

Collision Resistant Namespace
A namespace that allows names to be allocated in a manner such that they are
highly unlikely to collide with other names. For instance, collision resistance can be
achieved through administrative delegation of portions of the namespace or
through use of collision-resistant name allocation functions. Examples of Collision
Resistant Namespaces include: Domain Names, Object Identifiers (OIDs) as
defined in the ITU-T X.660 and X.670 Recommendation series, and Universally
Unique IDentifiers (UUIDs) [RFC4122]. When using an administratively delegated
namespace, the definer of a name needs to take reasonable precautions to
ensure they are in control of the portion of the namespace they use to define the
name.

StringOrURI
A JSON string value, with the additional requirement that while arbitrary string
values MAY be used, any value containing a ":" character MUST be a URI
[RFC3986]. StringOrURI values are compared as case-sensitive strings with no
transformations or canonicalizations applied.

3. JSON Web Signature (JWS) Overview

JWS represents digitally signed or MACed content using JSON data structures and base64url
encoding. Three values are represented in a JWS: the JWS Header, the JWS Payload, and the
JWS Signature. In the Compact Serialization, the three values are base64url-encoded for
transmission, and represented as the concatenation of the encoded strings in that order,
with the three strings being separated by two period ('.") characters. A JSON Serialization for
this information is also defined in Section 7.2.

The JWS Header describes the signature or MAC method and parameters employed. The JWS
Payload is the message content to be secured. The JWS Signature ensures the integrity of
both the JWS Protected Header and the JWS Payload.

3.1. Example JWS

The following example JWS Header declares that the encoded object is a JSON Web Token
(JWT) [JWT] and the JWS Header and the JWS Payload are secured using the HMAC SHA-256
algorithm:

{lltypll : "JWT" ,
"alg":"HS256"}

Base64url encoding the octets of the UTF-8 representation of the JWS Header yields this
Encoded JWS Header value:

TOC

TOC

eyJ0eXAi1i0iJKV1QiLAGKICIhbGci0iJIUZzI1NiJ9

The following is an example of a JSON object that can be used as a JWS Payload. (Note that
the payload can be any content, and need not be a representation of a JSON object.)

{"iSS" E "joe",
"exp":1300819380,
"http://example.com/is_root":true}

The following octet sequence, which is the UTF-8 representation of the JSON object above, is
the JWS Payload:

[123, 34, 105, 115, 115, 34, 58, 34, 106, 111, 101, 34, 44, 13, 10, 32, 34, 101, 120, 112, 34,
58, 49, 51, 48, 48, 56, 49, 57, 51, 56, 48, 44, 13, 10, 32, 34, 104, 116, 116, 112, 58, 47, 47,

101, 120, 97, 109, 112, 108, 101, 46, 99, 111, 109, 47, 105, 115, 95, 114, 111, 111, 116, 34,
58, 116, 114, 117, 101, 125]

Base64url encoding the JWS Payload yields this Encoded JWS Payload (with line breaks for
display purposes only):

eyJpc3Mi0iJgb2UiLAGKICJI1eHAiOjEzMDA4MTkzODAsSDQogImhO@dHAGLY91eGFt
CGX1LmNvbS9pc19yb290IjpOcnV1fQ

Computing the HMAC of the octets of the ASCII [USASCII] representation of the JWS Signing
Input (the concatenation of the Encoded JWS Header, a period ('.") character, and the
Encoded JWS Payload) with the HMAC SHA-256 algorithm using the key specified in
Appendix A.1 and base64url encoding the result yields this Encoded JWS Signature value:

dBjftJeZ4CVP-mB92K27uhbUJU1lplr_wW1gFWFOEjXk

Concatenating these values in the order Header.Payload.Signature with period ('.") characters
between the parts yields this complete JWS representation using the JWS Compact
Serialization (with line breaks for display purposes only):

eyJOeXA10iJKV1QiLAGKICIhbGci0iJIUZI1N1iJ9

eyJpc3Mi0iJgb2UiLAGKICJI1eHAiO]jEzMDA4MTkzODAsSDQogImhO@dHAGLY91eGFt
CGX1LmNvbS9pc19yb290IjpOcnV1fQ

dBjftJeZ4CVP-mB92K27uhbUJU1lplr_wW1gFWFOEjXk

This computation is illustrated in more detail in Appendix A.1. See Appendix A for
additional examples.

4. JWS Header s

The members of the JSON object(s) representing the JWS Header describe the digital
signature or MAC applied to the Encoded JWS Header and the Encoded JWS Payload and
optionally additional properties of the JWS. The Header Parameter Names within the JWS
Header MUST be unique; recipients MUST either reject JWSs with duplicate Header Parameter
Names or use a JSON parser that returns only the lexically last duplicate member name, as
specified in Section 15.12 (The JSON Object) of ECMAScript 5.1 [ECMAScript].

Implementations are required to understand the specific header parameters defined by this
specification that are designated as "MUST be understood" and process them in the manner
defined in this specification. All other header parameters defined by this specification that are

not so designated MUST be ignored when not understood. Unless listed as a critical header
parameter, per Section 4.1.10, all header parameters not defined by this specification
MUST be ignored when not understood.

There are three classes of Header Parameter Names: Reserved Header Parameter Names,
Public Header Parameter Names, and Private Header Parameter Names.

TOC
4.1. Reserved Header Parameter Names

The following Header Parameter Names are reserved with meanings as defined below. All the
names are short because a core goal of this specification is for the resulting representations
using the JWS Compact Serialization to be compact.

Additional reserved Header Parameter Names can be defined via the IANA J[SON Web
Signature and Encryption Header Parameters registry Section 8.1. As indicated by the
common registry, JWSs and JWEs share a common header parameter space; when a
parameter is used by both specifications, its usage must be compatible between the
specifications.

4.1.1. "alg" (Algorithm) Header Parameter _—

The alg (algorithm) header parameter identifies a cryptographic algorithm used to secure
the JWS. The recipient MUST reject the JWS if the alg value does not represent a supported
algorithm, or if there is not a key for use with that algorithm associated with the party that
digitally signed or MACed the content. alg values SHOULD either be registered in the IANA
JSON Web Signature and Encryption Algorithms registry [JWA] or be a value that contains a
Collision Resistant Namespace. The alg value is a case sensitive string containing a
StringOrURI value. Use of this header parameter is REQUIRED. This header parameter MUST
be understood by implementations.

A list of defined alg values can be found in the IANA JSON Web Signature and Encryption
Algorithms registry [JWA]; the initial contents of this registry are the values defined in
Section 3.1 of the JSON Web Algorithms (JWA) [JWA] specification.

4.1.2. "jku" (JWK Set URL) Header Parameter —

The jku (JWK Set URL) header parameter is a URI [RFC3986] that refers to a resource for a
set of JSON-encoded public keys, one of which corresponds to the key used to digitally sign
the JWS. The keys MUST be encoded as a JSON Web Key Set (JWK Set) [JWK]. The protocol
used to acquire the resource MUST provide integrity protection; an HTTP GET request to
retrieve the JWK Set MUST use TLS [RFC2818] [RFC5246]; the identity of the server MUST
be validated, as per Section 3.1 of HTTP Over TLS [RFC2818]. Use of this header parameter
is OPTIONAL.

4.1.3. "jwk" (JSON Web Key) Header Parameter s

The jwk (JSON Web Key) header parameter is the public key that corresponds to the key
used to digitally sign the JWS. This key is represented as a JSON Web Key [JWK]. Use of this
header parameter is OPTIONAL.

4.1.4. "x5u" (X.509 URL) Header Parameter —

The x5u (X.509 URL) header parameter is a URI [RFC3986] that refers to a resource for the
X.509 public key certificate or certificate chain [RFC5280] corresponding to the key used to

digitally sign the JWS. The identified resource MUST provide a representation of the certificate
or certificate chain that conforms to RFC 5280 [RFC5280] in PEM encoded form
[RFC1421]. The certificate containing the public key corresponding to the key used to
digitally sign the JWS MUST be the first certificate. This MAY be followed by additional
certificates, with each subsequent certificate being the one used to certify the previous one.
The protocol used to acquire the resource MUST provide integrity protection; an HTTP GET
request to retrieve the certificate MUST use TLS [RFC2818] [RFC5246]; the identity of the
server MUST be validated, as per Section 3.1 of HTTP Over TLS [RFC2818]. Use of this
header parameter is OPTIONAL.

4.1.5. "x5t" (X.509 Certificate Thumbprint) Header Parameter s

The x5t (X.509 Certificate Thumbprint) header parameter is a base64url encoded SHA-1
thumbprint (a.k.a. digest) of the DER encoding of the X.509 certificate [RFC5280]
corresponding to the key used to digitally sign the JWS. Use of this header parameter is
OPTIONAL.

If, in the future, certificate thumbprints need to be computed using hash functions other than
SHA-1, it is suggested that additional related header parameters be defined for that
purpose. For example, it is suggested that a new x5t#S256 (X.509 Certificate Thumbprint
using SHA-256) header parameter could be defined by registering it in the IANA JSON Web
Signature and Encryption Header Parameters registry Section 8.1.

4.1.6. "x5c¢" (X.509 Certificate Chain) Header Parameter o

The x5c¢ (X.509 Certificate Chain) header parameter contains the X.509 public key certificate
or certificate chain [RFC5280] corresponding to the key used to digitally sign the JWS. The
certificate or certificate chain is represented as a JSON array of certificate value strings. Each
string in the array is a base64 encoded ([RFC4648] Section 4 -- not base64url encoded)
DER [ITU.X690.1994] PKIX certificate value. The certificate containing the public key
corresponding to the key used to digitally sign the JWS MUST be the first certificate. This MAY
be followed by additional certificates, with each subsequent certificate being the one used to
certify the previous one. The recipient MUST verify the certificate chain according to
[RFC5280] and reject the JWS if any validation failure occurs. Use of this header parameter
is OPTIONAL.

See Appendix B for an example x5c value.

4.1.7. "kid" (Key ID) Header Parameter s

The kid (key ID) header parameter is a hint indicating which key was used to secure the JWS.
This parameter allows originators to explicitly signal a change of key to recipients. Should the
recipient be unable to locate a key corresponding to the kid value, they SHOULD treat that
condition as an error. The interpretation of the kid value is unspecified. Its value MUST be a
string. Use of this header parameter is OPTIONAL.

When used with a JWK, the kid value can be used to match a JWK kid parameter value.

4.1.8. "typ" (Type) Header Parameter —

The typ (type) header parameter MAY be used to declare the type of this complete JWS
object in an application-specific manner in contexts where this is useful to the application.
This parameter has no effect upon the JWS processing. The type value JOSE MAY be used by
applications to indicate that this object is a JWS or JWE using the JWS Compact Serialization or
the JWE Compact Serialization. The type value JOSE+JSON MAY be used by applications to
indicate that this object is a JWS or JWE using the JWS JSON Serialization or the JWE JSON
Serialization. Other type values MAY be used, and if not understood, SHOULD be ianored.

The typ value is a case sensitive string. Use of this header paramefer is OPTIONAL.
MIME Media Type [RFC2046] values MAY be used as typ values.

typ values SHOULD either be registered in the IANA JSON Web Signature and Encryption

Type Values registry Section 8.2 or be a value that contains a Collision Resistant
Namespace.

4.1.9. "cty" (Content Type) Header Parameter s

The cty (content type) header parameter MAY be used to declare the type of the secured
content (the payload) in an application-specific manner in contexts where this is useful to the
application. This parameter has no effect upon the JWS processing. Content type values that
are not understood SHOULD be ignored. The cty value is a case sensitive string. Use of this
header parameter is OPTIONAL.

The values used for the cty header parameter come from the same value space as the typ
header parameter, with the same rules applying.

TOC
4.1.10. "crit" (Critical) Header Parameter

The crit (critical) header parameter indicates that extensions to [[this specification]] are
being used that MUST be understood and processed. Its value is an array listing the header
parameter names defined by those extensions that are used in the JWS Header. If any of the
listed extension header parameters are not understood and supported by the receiver, it
MUST reject the JWS. Senders MUST NOT include header parameter names defined by [[this
specification]] or by [JWA] for use with JWS, duplicate names, or names that do not occur as
header parameter names within the JWS Header in the crit list. Senders MUST not use the
empty list [] as the crit value. Recipients MAY reject the JWS if the critical list contains any
header parameter names defined by [[this specification 1] or by [JWA] for use with JWS, or
any other constraints on its use are violated. This header parameter MUST be integrity
protected, and therefore MUST occur only with the JWS Protected Header, when used. Use of
this header parameter is OPTIONAL. This header parameter MUST be understood by
implementations.

An example use, along with a hypothetical exp (expiration-time) field is:

{"alg":"ES256",
llcritll : [llexpll] ,
"exp":1363284000

}

4.2. Public Header Parameter Names —

Additional Header Parameter Names can be defined by those using JWSs. However, in order
to prevent collisions, any new Header Parameter Name SHOULD either be registered in the
IANA JSON Web Signature and Encryption Header Parameters registry Section 8.1 or be a
Public Name: a value that contains a Collision Resistant Namespace. In each case, the
definer of the name or value needs to take reasonable precautions to make sure they are in
control of the part of the namespace they use to define the Header Parameter Name.

New header parameters should be introduced sparingly, as they can result in non-
interoperable JWSs.

TOC
4.3. Private Header Parameter Names

A producer and consumer of a JWS may agree to use Header Parameter Names that are
Private Names: names that are not Reserved Names Section 4.1 or Public Names
Section 4.2. Unlike Public Names, Private Names are subject to collision and should be
used with caution.

5. Producing and Consuming JWSs _—

5.1. Message Signing or MACing s

To create a JWS, one MUST perform these steps. The order of the steps is not significant in
cases where there are no dependencies between the inputs and outputs of the steps.

1. Create the content to be used as the JWS Payload.

2. Baseb4url encode the octets of the JWS Payload. This encoding becomes the
Encoded JWS Payload.

3. Create a JWS Header containing the desired set of header parameters. Note that
white space is explicitly allowed in the representation and no canonicalization
need be performed before encoding.

4. Baseb4url encode the octets of the UTF-8 representation of the JWS Protected
Header to create the Encoded JWS Header. If the WS Protected Header is not
present (which can only happen when using the JWS JSON Serialization and no
protected member is present), let the Encoded JWS Header be the empty
string.

5. Compute the JWS Signature in the manner defined for the particular algorithm
being used over the JWS Signing Input (the concatenation of the Encoded JWS
Header, a period ('.') character, and the Encoded JWS Payload). The alg
(algorithm) header parameter MUST be present in the JWS Header, with the
algorithm value accurately representing the algorithm used to construct the JWS
Signature.

6. Base64url encode the representation of the JWS Signature to create the
Encoded JWS Signature.

7. The three encoded parts are result values used in both the JWS Compact
Serialization and the JWS JSON Serialization representations.

8. If the JWS JSON Serialization is being used, repeat this process for each digital
signature or MAC value being applied.

9. Create the desired serialized output. The JWS Compact Serialization of this result
is the concatenation of the Encoded JWS Header, the Encoded JWS Payload, and
the Encoded JWS Signature in that order, with the three strings being separated
by two period ('.") characters. The JWS JSON Serialization is described in
Section 7.2.

5.2. Message Signature or MAC Validation _—

When validating a JWS, the following steps MUST be taken. The order of the steps is not
significant in cases where there are no dependencies between the inputs and outputs of the
steps. If any of the listed steps fails, then the JWS MUST be rejected.

1. Parse the serialized input to determine the values of the JWS Header, the
Encoded JWS Payload, and the Encoded JWS Signature. When using the JWS
Compact Serialization, the Encoded JWS Header, the Encoded JWS Payload, and
the Encoded JWS Signature are represented as text strings in that order,
separated by two period ('.') characters. The JWS JSON Serialization is described
in Section 7.2.

2. The Encoded JWS Header MUST be successfully base64url decoded following the
restriction given in this specification that no padding characters have been used.

3. Let the JWS Protected Header value be the result of base64url decoding the
Encoded JWS Header.

4. The resulting JWS Protected Header MUST be a completely valid JSON object
conforming to RFC 4627 [RFC4627].

5. If using the WS Compact Serialization, let the JWS Header be the JWS Protected
Header; otherwise, when using the JWS JSON Serialization, let the JWS Header be
the union of the members of the corresponding protected and header header
parameter values, all of which must be completely valid JSON objects.

6. The resulting JWS Header MUST NOT contain duplicate Header Parameter
Names. When using the JWS JSON Serialization, this restriction includes that the
same Header Parameter Name also MUST NOT occur in distinct JSON Text
Object values that together comprise the JWS Header.

7. The resulting JWS Header MUST be validated to only include parameters and
values whose syntax and semantics are both understood and supported or that
are specified as being ignored when not understood.

8. The Encoded JWS Payload MUST be successfully base64url decoded following the
restriction given in this specification that no padding characters have been used.

9. The Encoded JWS Signature MUST be successfully base64url decoded following
the restriction given in this specification that no padding characters have been
used.

10. The JWS Signature MUST be successfully validated against the JWS Signing Input
(the concatenation of the Encoded JWS Header, a period ('.") character, and the
Encoded JWS Payload) in the manner defined for the algorithm being used, which
MUST be accurately represented by the value of the alg (algorithm) header
parameter, which MUST be present.

11. If the JWS JSON Serialization is being used, repeat this process for each digital
signature or MAC value contained in the representation.

5.3. String Comparison Rules TOC

Processing a JWS inevitably requires comparing known strings to values in JSON objects. For
example, in checking what the algorithm is, the Unicode string encoding alg will be checked
against the member names in the JWS Header to see if there is a matching Header
Parameter Name. A similar process occurs when determining if the value of the alg header
parameter represents a supported algorithm.

Comparisons between JSON strings and other Unicode strings MUST be performed as
specified below:

1. Remove any JSON escaping from the input JSON string and convert the string
into a sequence of Unicode code points.

2. Likewise, convert the string to be compared against into a sequence of Unicode
code points.

3. Unicode Normalization [USA15] MUST NOT be applied at any point to either the
JSON string or to the string it is to be compared against.

4. Comparisons between the two strings MUST be performed as a Unicode code
point to code point equality comparison. (Note that values that originally used
different Unicode encodings (UTF-8, UTF-16, etc.) may result in the same code
point values.)

Also, see the JSON security considerations in Section 9.2 and the Unicode security
considerations in Section 9.3.

6. Key Identification TOC

It is necessary for the recipient of a JWS to be able to determine the key that was employed
for the digital signature or MAC operation. The key employed can be identified using the
Header Parameter methods described in Section 4.1 or can be identified using methods
that are outside the scope of this specification. Specifically, the Header Parameters jku, jwk,
x5u, x5t, x5¢, and kid can be used to identify the key used. The sender SHOULD include
sufficient information in the Header Parameters to identify the key used, unless the
application uses another means or convention to determine the key used. Recipients MUST
reject the input when the algorithm used requires a key (which is true of all algorithms except
for none) and the key used cannot be determined.

.y . TOC
7. Serializations

JWS objects use one of two serializations, the JWS Compact Serialization or the JWS JSON
Serialization. The WS Compact Serialization is mandatory to implement. Implementation of
the JWS JSON Serialization is OPTIONAL.

7.1. JWS Compact Serialization _—

The JWS Compact Serialization represents digitally signed or MACed content as a compact
URL-safe string. This string is the concatenation of the Encoded JWS Header, the Encoded
JWS Payload, and the Encoded JWS Signature in that order, with the three strings being
separated by two period ('.') characters. Only one signature/MAC is supported by the JWS
Compact Serialization.

7.2. JWS JSON Serialization —

The JWS JSON Serialization represents digitally signed or MACed content as a JSON object.
Unlike the JWS Compact Serialization, content using the JWS JSON Serialization can be
secured with more than one digital signature and/or MAC value.

The representation is closely related to that used in the JWS Compact Serialization, with the
following differences for the JWS JSON Serialization:

¢ Values in the JWS JSON Serialization are represented as members of a JSON
object, rather than as base64url encoded strings separated by period ('.")
characters. (However binary values and values that are integrity protected are
still base64url encoded.)

¢ The Encoded JWS Payload value is stored in the payload member.

e There can be multiple signature and/or MAC values, rather than just one. A JSON
array in the signatures member is used to hold values that are specific to a
particular signature or MAC computation, with one array element per
signature/MAC represented. These array elements are JSON objects.

¢ Each Encoded JWS Signature value, if non-empty, is stored in the signature
member of a JSON object that is an element of the signatures array.

e Each Encoded JWS Header value, which is a base64url encoded set of header
parameter values that are included in the signature/MAC computation, if non-
empty, is stored in the protected member of the corresponding element of the
signatures array.

e Unlike the JWS Compact Serialization, in the JWS JSON Serialization there can
also be header parameter values that are not included in the signature/MAC
computation. If present, unprotected header parameter values are represented
as an unencoded JSON Text Object in the header member of the corresponding
element of the signatures array.

e The header parameter values used when creating or validating individual
signature or MAC values are the union of the two sets of header parameter
values that may be present: (1) the integrity-protected per-signature/MAC
values represented in the protected member of the signature/MAC's array
element, and (2) the non-integrity-protected per-signature/MAC values in the
header member of the signature/MAC's array element. The union of these sets
of header parameters comprises the WS Header. The header parameter names
in the two locations MUST be disjoint.

The syntax of a JWS using the JWS JSON Serialization is as follows:

"payload":"<payload contents>"

"signatures":[

{"protected":<integrity-protected header 1 contents>",
"header":"<non-integrity-protected header 1 contents>",
"signature":"<signature 1 contents>"},

{"protected":<integrity-protected header N contents>",
"header":"<non-integrity-protected header N contents>",
"signature":'"<signature N contents>"}],

Of these members, only the payload, signatures, and signature members MUST be
present. At least one of the protected and header members MUST be present for each
signature/MAC computation so that an alg header parameter value is conveyed.

The contents of the Encoded JWS Payload and Encoded JWS Signature values are exactly as
defined in the rest of this specification. They are interpreted and validated in the same
manner, with each corresponding Encoded JWS Signature and set of header parameter
values being created and validated together. The JWS Header values used are the union of
the header parameters in the corresponding protected and header members, as described
earlier.

Each JWS Signature value is computed on the JWS Signing Input using the parameters of the
corresponding JWS Header value in the same manner as for the JWS Compact Serialization.
This has the desirable property that each Encoded JWS Signature value in the signatures
array is identical to the value that would have been computed for the same parameter in the
JWS Compact Serialization, provided that the Encoded JWS Header value for that
signature/MAC computation (which represents the integrity-protected header parameter
values) matches that used in the JWS Compact Serialization.

See Appendix A.6 for an example of computing a JWS using the JWS JSON Serialization.

8. IANA Considerations

The following registration procedure is used for all the registries established by this
specification.

Values are registered with a Specification Required [RFC5226] after a two-week review
period on the [TBD]@ietf.org mailing list, on the advice of one or more Designated Experts.
However, to allow for the allocation of values prior to publication, the Designated Expert(s)
may approve registration once they are satisfied that such a specification will be published.

Registration requests must be sent to the [TBD]@ietf.org mailing list for review and
comment, with an appropriate subject (e.g., "Request for access token type: example"). [[
Note to RFC-EDITOR: The name of the mailing list should be determined in consultation with
the IESG and IANA. Suggested name: jose-reg-review.]]

Within the review period, the Designated Expert(s) will either approve or deny the registration
request, communicating this decision to the review list and IANA. Denials should include an
explanation and, if applicable, suggestions as to how to make the request successful.

IANA must only accept registry updates from the Designated Expert(s) and should direct all
requests for registration to the review mailing list.

8.1. JSON Web Signature and Encryption Header Parameters Registry

This specification establishes the IANA JSON Web Signature and Encryption Header
Parameters registry for reserved JWS and JWE Header Parameter Names. The registry
records the reserved Header Parameter Name and a reference to the specification that
defines it. The same Header Parameter Name MAY be registered multiple times, provided
that the parameter usage is compatible between the specifications. Different registrations of
the same Header Parameter Name will typically use different Header Parameter Usage
Location(s) values.

TOC

TOC

8.1.1. Registration Template

Header Parameter Name:

The name requested (e.g., "example"). This name is case sensitive. Names that
match other registered names in a case insensitive manner SHOULD NOT be

accepted.
Header Parameter Usage Location(s):

The header parameter usage locations, which should be one or more of the values

JWS or JWE.
Change Controller:

For Standards Track RFCs, state "IETF". For others, give the name of the
responsible party. Other details (e.g., postal address, email address, home page

URI) may also be included.
Specification Document(s):

Reference to the document(s) that specify the parameter, preferably including
URI(s) that can be used to retrieve copies of the document(s). An indication of the

relevant sections may also be included but is not required.

8.1.2. Initial Registry Contents

This specification registers the Header Parameter Names defined in Section 4.1 in this

registry.

Header Parameter Name: alg

Header Parameter Usage Location(s): JWS

Change Controller: IETF

Specification Document(s): Section 4.1.1 of [[this document]]

Header Parameter Name: jku

Header Parameter Usage Location(s): JWS

Change Controller: IETF

Specification Document(s): Section 4.1.2 of [[this document]]

Header Parameter Name: jwk

Header Parameter Usage Location(s): JWS

Change Controller: IETF

Specification document(s): Section 4.1.3 of [[this document]]

Header Parameter Name: x5u

Header Parameter Usage Location(s): JWS

Change Controller: IETF

Specification Document(s): Section 4.1.4 of [[this document]]

Header Parameter Name: x5t

Header Parameter Usage Location(s): JWS

Change Controller: IETF

Specification Document(s): Section 4.1.5 of [[this document]]

Header Parameter Name: x5c¢

Header Parameter Usage Location(s): JWS

Change Controller: IETF

Specification Document(s): Section 4.1.6 of [[this document]]

Header Parameter Name: kid

Header Parameter Usage Location(s): JWS

Change Controller: IETF

Specification Document(s): Section 4.1.7 of [[this document]]

Header Parameter Name: typ

Header Parameter Usage Location(s): JWS

Change Controller: IETF

Specification Document(s): Section 4.1.8 of [[this document]]

e Header Parameter Name: cty
¢ Header Parameter Usage Location(s): JWS

TOC

e Change Controller: IETF
Specification Document(s): Section 4.1.9 of [[this document]]

Header Parameter Name: crit

Header Parameter Usage Location(s): JWS

Change Controller: IETF

Specification Document(s): Section 4.1.10 of [[this document]]

8.2. JSON Web Signature and Encryption Type Values Registry _—

This specification establishes the IANA JSON Web Signature and Encryption Type Values
registry for values of the JWS and JWE typ (type) header parameter. It is RECOMMENDED that
all registered typ values also include a MIME Media Type [RFC2046] value that the
registered value is a short name for. The registry records the typ value, the MIME type value
that it is an abbreviation for (if any), and a reference to the specification that defines it.

MIME Media Type [RFC2046] values MUST NOT be directly registered as new typ values;
rather, new typ values MAY be registered as short names for MIME types.

. . TOC
8.2.1. Registration Template
"typ" Header Parameter Value:
The name requested (e.g., "example"). This name is case sensitive. Names that
match other registered names in a case insensitive manner SHOULD NOT be
accepted.
Abbreviation for MIME Type:
The MIME type that this name is an abbreviation for (e.g., "application/example").
Change Controller:
For Standards Track RFCs, state "IETF". For others, give the name of the
responsible party. Other details (e.g., postal address, email address, home page
URI) may also be included.
Specification Document(s):
Reference to the document(s) that specify the parameter, preferably including
URI(s) that can be used to retrieve copies of the document(s). An indication of the
relevant sections may also be included but is not required.
i, . TOC
8.2.2. Initial Registry Contents
This specification registers the JOSE and JOSE+JSON type values in this registry:
e "typ" Header Parameter Value: JOSE
e Abbreviation for MIME type: application/jose
e Change Controller: IETF
e Specification Document(s): Section 4.1.8 of [[this document]]
o "typ" Header Parameter Value: JOSE+JSON
e Abbreviation for MIME type: application/jose+json
e Change Controller: IETF
e Specification Document(s): Section 4.1.8 of [[this document]]
. . . TOC
8.3. Media Type Registration
TOC

8.3.1. Registry Contents

This specification registers the application/jose Media Type [RFC2046] in the MIME
Media Type registry [RFC4288], which can be used to indicate that the content is a JWS or
JWE object using the JWS Compact Serialization or the JWE Compact Serialization and the
application/jose+json Media Type in the MIME Media Type registry, which can be used to
indicate that the content is a JWS or JWE object using the JWS JSON Serialization or the JWE
JSON Serialization.

Type name: application

Subtype name: jose

Required parameters: n/a

Optional parameters: n/a

Encoding considerations: application/jose values are encoded as a series of

base64url encoded values (some of which may be the empty string) separated

by period ('.") characters.

e Security considerations: See the Security Considerations section of [[this
document 1]

¢ Interoperability considerations: n/a

e Published specification: [[this document]]

¢ Applications that use this media type: OpenID Connect, Mozilla Persona,
Salesforce, Google, numerous others that use signed JWTs

¢ Additional information: Magic number(s): n/a, File extension(s): n/a, Macintosh
file type code(s): n/a

e Person & email address to contact for further information: Michael B. Jones,

mbj@microsoft.com

Intended usage: COMMON

Restrictions on usage: none

Author: Michael B. Jones, mbj@microsoft.com

Change Controller: IETF

Type name: application

Subtype name: jose+json

Required parameters: n/a

Optional parameters: n/a

Encoding considerations: application/jose+json values are represented as a
JSON Object; UTF-8 encoding SHOULD be employed for the JSON object.
Security considerations: See the Security Considerations section of [[this
document]]

Interoperability considerations: n/a

Published specification: [[this document]]

Applications that use this media type: TBD

Additional information: Magic number(s): n/a, File extension(s): n/a, Macintosh
file type code(s): n/a

Person & email address to contact for further information: Michael B. Jones,
mbj@microsoft.com

Intended usage: COMMON

Restrictions on usage: none

Author: Michael B. Jones, mbj@microsoft.com

Change Controller: IETF

TOC
9. Security Considerations

9.1. Cryptographic Security Considerations _—

All of the security issues faced by any cryptographic application must be faced by a
JWS/JWE/JWK agent. Among these issues are protecting the user's private and symmetric
keys, preventing various attacks, and helping the user avoid mistakes such as inadvertently
encrypting a message for the wrong recipient. The entire list of security considerations is
beyond the scope of this document, but some significant concerns are listed here.

All the security considerations in XML DSIG 2.0 [W3C.CR-xmldsig-core2-20120124], also
apply to this specification, other than those that are XML specific. Likewise, many of the best
practices documented in XML Signature Best Practices

[W3C.WD-xmldsig-bestpractices-20110809] also apply to this specification, other than those
that are XML specific.

Keys are only as strong as the amount of entropy used to generate them. A minimum of 128
bits of entropy should be used for all keys, and depending upon the application context, more
may be required. In particular, it may be difficult to generate sufficiently random values in
some browsers and application environments.

Creators of JWSs should not allow third parties to insert arbitrary content into the message
without adding entropy not controlled by the third party.

When utilizing TLS to retrieve information, the authority providing the resource MUST be
authenticated and the information retrieved MUST be free from modification.

When cryptographic algorithms are implemented in such a way that successful operations
take a different amount of time than unsuccessful operations, attackers may be able to use
the time difference to obtain information about the keys employed. Therefore, such timing
differences must be avoided.

A SHA-1 hash is used when computing x5t (x.509 certificate thumbprint) values, for
compatibility reasons. Should an effective means of producing SHA-1 hash collisions be
developed, and should an attacker wish to interfere with the use of a known certificate on a
given system, this could be accomplished by creating another certificate whose SHA-1 hash
value is the same and adding it to the certificate store used by the intended victim. A
prerequisite to this attack succeeding is the attacker having write access to the intended
victim's certificate store.

If, in the future, certificate thumbprints need to be computed using hash functions other than
SHA-1, it is suggested that additional related header parameters be defined for that
purpose. For example, it is suggested that a new x5t#S256 (X.509 Certificate Thumbprint
using SHA-256) header parameter could be defined and used.

9.2. JSON Security Considerations _—

Strict JSON validation is a security requirement. If malformed JSON is received, then the
intent of the sender is impossible to reliably discern. Ambiguous and potentially exploitable
situations could arise if the JSON parser used does not reject malformed JSON syntax.

Section 2.2 of the JavaScript Object Notation (JSON) specification [RFC4627] states "The
names within an object SHOULD be unique", whereas this specification states that "Header
Parameter Names within this object MUST be unique; recipients MUST either reject JWSs with
duplicate Header Parameter Names or use a JSON parser that returns only the lexically last
duplicate member name, as specified in Section 15.12 (The JSON Object) of ECMAScript 5.1
[ECMAScript]". Thus, this specification requires that the Section 2.2 "SHOULD" be treated
as a "MUST" by senders and that it be either treated as a "MUST" or in the manner specified
in ECMAScript 5.1 by receivers. Ambiguous and potentially exploitable situations could arise if
the JSON parser used does not enforce the uniqueness of member names or returns an
unpredictable value for duplicate member names.

Some JSON parsers might not reject input that contains extra significant characters after a
valid input. For instance, the input {"tag" :"value"}ABCD contains a valid JSON object
followed by the extra characters ABCD. Such input MUST be rejected in its entirety.

9.3. Unicode Comparison Security Considerations _—

Header Parameter Names and algorithm names are Unicode strings. For security reasons,
the representations of these names must be compared verbatim after performing any
escape processing (as per RFC 4627 [RFC4627], Section 2.5). This means, for instance, that
these JSON strings must compare as being equal ("sig", "\u0073ig"), whereas these must all
compare as being not equal to the first set or to each other ("SIG", "Sig", "si\u0047").

JSON strings can contain characters outside the Unicode Basic Multilingual Plane. For
instance, the G clef character (U+1D11E) may be represented in a JSON string as

"\uD834\uDD1E". Ideally, JWS implementations SHOULD ensure that characters outside the
Basic Multilingual Plane are preserved and compared correctly; alternatively, if this is not
possible due to these characters exercising limitations present in the underlying JSON
implementation, then input containing them MUST be rejected.

9.4. TLS Requirements TOC

Implementations MUST support TLS. Which version(s) ought to be implemented will vary over
time, and depend on the widespread deployment and known security vulnerabilities at the
time of implementation. At the time of this writing, TLS version 1.2 [RFC5246] is the most
recent version, but has very limited actual deployment, and might not be readily available in
implementation toolkits. TLS version 1.0 [RFC2246] is the most widely deployed version,
and will give the broadest interoperability.

To protect against information disclosure and tampering, confidentiality protection MUST be
applied using TLS with a ciphersuite that provides confidentiality and integrity protection.

Whenever TLS is used, a TLS server certificate check MUST be performed, per RFC 6125
[RFC6125].

TOC
10. References

10.1. Normative References i

[ECMA Script] Ecma International, “ECMAScript Language Specification, 5.1 Edition,” ECMA 262, June 2011 (HTML, PDF).

[ITU.X690.1994] International Telecommunications Union, “Information Technology - ASN.1 encoding rules: Specification of
Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER),"” ITU-
T Recommendation X.690, 1994.

[JWA] Jones, M., “ISON Web Algorithms (JWA),” draft-ietf-jose-json-web-algorithms (work in progress), July 2013
(HTML).

[JWK] Jones, M., “ISON Web Key (JWK),” draft-ietf-jose-json-web-key (work in progress), July 2013 (HTML).

[RFC1421] Linn,]., “Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption and
Authentication Procedures,” RFC 1421, February 1993 (TXT).

[RFC2046] Freed, N. and N. Borenstein, “Multipurpose Internet Mail Extensions (MIME) Part Two: Media
Types,” RFC 2046, November 1996 (TXT).

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” BCP 14, RFC 2119,
March 1997 (TXT, HTML, XML).

[RFC2246] Dierks, T. and C. Allen, “The TLS Protocol Version 1.0,” RFC 2246, January 1999 (TXT).

[RFC2818] Rescorla, E., “HTTP Over TLS,” RFC 2818, May 2000 (TXT).

[RFC3629] Yergeau, F., “UTF-8, a transformation format of ISO 10646,” STD 63, RFC 3629, November 2003 (TXT).

[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform Resource Identifier (URI): Generic
Syntax,” STD 66, RFC 3986, January 2005 (TXT, HTML, XML).

[RFC4288] Freed, N. and J. Klensin, “Media Type Specifications and Registration Procedures,” RFC 4288,
December 2005 (TXT).

[RFC46271] Crockford, D., “The application/json Media Type for JavaScript Object Notation (JSON),” RFC 4627,
July 2006 (TXT).

[RFC4648] Josefsson, S., “The Basel6, Base32, and Base64 Data Encodings,” RFC 4648, October 2006 (TXT).

[RFC5226] Narten, T. and H. Alvestrand, “Guidelines for Writing an IANA Considerations Section in RFCs,”
BCP 26, RFC 5226, May 2008 (TXT).

[RFC5246] Dierks, T. and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,” RFC 5246,
August 2008 (TXT).

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, “Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile,” RFC 5280, May 2008
(TXT).

[RFC6125] Saint-Andre, P. and J. Hodges, “Representation and V erification of Domain-Based A pplication

Service Identity within Internet Public Key Infrastructure Using X.509 (PKIX) Certificates in the
Context of Transport Layer Security (TLS),” RFC 6125, March 2011 (TXT).

[USA15] Davis, M., Whistler, K., and M. Deurst, “Unicode Normalization Forms,” Unicode Standard Annex 15,
09 2009.
[USASCII] American National Standards Institute, “Coded Character Set -- 7-bit American Standard Code for

Information Interchange,” ANSI X3.4, 1986.
[W3C.WD-

http://www.ecma-international.org/ecma-262/5.1/
http://www.ecma-international.org/ecma-262/5.1/ECMA-262.pdf
mailto:mbj@microsoft.com
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms
mailto:mbj@microsoft.com
http://tools.ietf.org/html/draft-ietf-jose-json-web-key
http://tools.ietf.org/html/draft-ietf-jose-json-web-key
mailto:104-8456@mcimail.com
http://tools.ietf.org/html/rfc1421
http://www.rfc-editor.org/rfc/rfc1421.txt
mailto:ned@innosoft.com
mailto:nsb@nsb.fv.com
http://tools.ietf.org/html/rfc2046
http://www.rfc-editor.org/rfc/rfc2046.txt
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
mailto:tdierks@certicom.com
mailto:callen@certicom.com
http://tools.ietf.org/html/rfc2246
http://www.rfc-editor.org/rfc/rfc2246.txt
http://tools.ietf.org/html/rfc2818
http://www.rfc-editor.org/rfc/rfc2818.txt
http://tools.ietf.org/html/rfc3629
http://www.rfc-editor.org/rfc/rfc3629.txt
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://www.rfc-editor.org/rfc/rfc3986.txt
http://xml.resource.org/public/rfc/html/rfc3986.html
http://xml.resource.org/public/rfc/xml/rfc3986.xml
http://tools.ietf.org/html/rfc4288
http://www.rfc-editor.org/rfc/rfc4288.txt
http://tools.ietf.org/html/rfc4627
http://www.rfc-editor.org/rfc/rfc4627.txt
http://tools.ietf.org/html/rfc4648
http://www.rfc-editor.org/rfc/rfc4648.txt
http://tools.ietf.org/html/rfc5226
http://www.rfc-editor.org/rfc/rfc5226.txt
http://tools.ietf.org/html/rfc5246
http://www.rfc-editor.org/rfc/rfc5246.txt
http://tools.ietf.org/html/rfc5280
http://www.rfc-editor.org/rfc/rfc5280.txt
http://tools.ietf.org/html/rfc6125
http://www.rfc-editor.org/rfc/rfc6125.txt
mailto:markdavis@google.com
mailto:ken@unicode.org

xmldsig- Datta, P. and F. Hirsch, “XML Signature Best Practices,” World Wide Web Consortium WD WD-xmldsig-
bestpractices- bestpractices-20110809, August 2011 (HTML).
20110809]

10.2. Informative References _—

[CanvasAppl Facebook, “Canvas A pplications,” 2010.

[JSS] Bradley,). and N. Sakimura (editor), “JSON Simple Sign,” September 2010.

[JWE] Jones, M., Rescorla, E., and). Hildebrand, “JSON Web Encryption (JWE),” draft-ietf-jose-json-web-
encryption (work in progress), July 2013 (HTML).

[JWT] Jones, M., Bradley, ., and N. Sakimura, “JSON Web Token (JWT),"” draft-ietf-oauth-json-web-token

(work in progress), July 2013 (HTML).
[MagicSignatures] Panzer (editor), J., Laurie, B., and D. Balfanz, “Magic Signatures,” January 2011.

[RFC4122] Leach, P., Mealling, M., and R. Salz, “A Universally Unique IDentifier (UUID) URN Namespace,”
RFC 4122, July 2005 (TXT, HTML, XML).

[W3C.CR-xmldsig- Eastlake, D., Reagle, J., Yiu, K., Solo, D., Datta, P., Hirsch, F., Cantor, S., and T. Roessler, “XML Signature
core2-20120124] Syntax and Processing Version 2.0,” World Wide Web Consortium CR CR-xmldsig-core2-20120124,
January 2012 (HTML).

TOC
Appendix A. JWS Examples
This section provides several examples of JWSs. While the first three examples all represent
JSON Web Tokens (JWTs) [JWT], the payload can be any octet sequence, as shown in
Appendix A.4.
) TOC
A.1. Example JWS using HMAC SHA-256
TOC

A.1.1. Encoding

The following example JWS Header declares that the data structure is a JSON Web Token (JWT)
[JWT] and the JWS Signing Input is secured using the HMAC SHA-256 algorithm.

{Iltypll E "JWT",
"alg":"HS256"}

The following octet sequence contains the UTF-8 representation of the JWS Header:

[123, 34, 116, 121, 112, 34, 58, 34, 74, 87, 84, 34, 44, 13, 10, 32, 34, 97, 108, 103, 34, 58,
34,72, 83, 50, 53, 54, 34, 125]

Base64url encoding these octets yields this Encoded JWS Header value:

eyJ0eXAi10iJKV1QiLAGKICIhbGci0iJIUZzI1NiJ9

The JWS Payload used in this example is the octets of the UTF-8 representation of the JSON
object below. (Note that the payload can be any base64url encoded octet sequence, and
need not be a base64url encoded JSON object.)

{"iSS" g lljoeH,
"exp":1300819380,
"http://example.com/is_root":true}

The following octet sequence, which is the UTF-8 representation of the JSON object above, is
the JWS Payload:

http://www.w3.org/TR/2011/WD-xmldsig-bestpractices-20110809
http://www.w3.org/TR/2011/WD-xmldsig-bestpractices-20110809
http://developers.facebook.com/docs/authentication/canvas
http://jsonenc.info/jss/1.0/
mailto:mbj@microsoft.com
mailto:ekr@rtfm.com
mailto:jhildebr@cisco.com
http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption
http://tools.ietf.org/html/draft-ietf-jose-json-web-encryption
mailto:mbj@microsoft.com
mailto:ve7jtb@ve7jtb.com
mailto:n-sakimura@nri.co.jp
http://tools.ietf.org/html/draft-ietf-oauth-json-web-token
http://tools.ietf.org/html/draft-ietf-oauth-json-web-token
http://salmon-protocol.googlecode.com/svn/trunk/draft-panzer-magicsig-01.html
mailto:paulle@microsoft.com
mailto:michael@refactored-networks.com
mailto:rsalz@datapower.com
http://tools.ietf.org/html/rfc4122
http://www.rfc-editor.org/rfc/rfc4122.txt
http://xml.resource.org/public/rfc/html/rfc4122.html
http://xml.resource.org/public/rfc/xml/rfc4122.xml
http://www.w3.org/TR/2012/CR-xmldsig-core2-20120124
http://www.w3.org/TR/2012/CR-xmldsig-core2-20120124

[123, 34, 105, 115, 115, 34, 58, 34, 106, 111, 101, 34, 44, 13, 10, 32, 34, 101, 120, 112, 34,
58, 49, 51, 48, 48, 56, 49, 57, 51, 56, 48, 44, 13, 10, 32, 34, 104, 116, 116, 112, 58, 47, 47,

101, 120, 97, 109, 112, 108, 101, 46, 99, 111, 109, 47, 105, 115, 95, 114, 111, 111, 116, 34,
58, 116, 114, 117, 101, 125]

Base64url encoding the JWS Payload yields this Encoded JWS Payload value (with line breaks
for display purposes only):

eyJpc3Mi0iJqb2UiLAGKICJI1eHAL0jEZzMDA4MTkzODASDQogImhOdHAGLY91eGFt
CcGx1LmNvbS9pc19yb290IjpOcnV1fQ

Concatenating the Encoded JWS Header, a period ('.') character, and the Encoded JWS
Payload yields this JWS Signing Input value (with line breaks for display purposes only):

eyJ0eXAi0iJKV1QiLAGKICIhbGci0iJIUZI1N1iJ9

eyJpc3Mi0iJqb2UiLAGKICJI1eHAL0jEZzMDA4MTkzODASDQogImhOdHAGLY91eGFt
CcGx1LmNvbS9pc19yb290IjpOcnV1fQ

The ASCII representation of the JWS Signing Input is the following octet sequence:

[101, 121, 74, 48, 101, 88, 65, 105, 79, 105, 74, 75, 86, 49, 81, 105, 76, 65, 48, 75, 73, 67,
74,104, 98, 71, 99, 105, 79, 105, 74, 73, 85, 122, 73, 49, 78, 105, 74, 57, 46, 101, 121, 74,
112, 99, 51, 77, 105, 79, 105, 74, 113, 98, 50, 85, 105, 76, 65, 48, 75, 73, 67, 74, 108, 101,
72, 65, 105, 79, 106, 69, 122, 77, 68, 65, 52, 77, 84, 107, 122, 79, 68, 65, 115, 68, 81, 111,
103, 73, 109, 104, 48, 100, 72, 65, 54, 76, 121, 57, 108, 101, 71, 70, 116, 99, 71, 120, 108,
76, 109, 78, 118, 98, 83, 57, 112, 99, 49, 57, 121, 98, 50, 57, 48, 73, 106, 112, 48, 99, 110,
86, 108, 102, 81]

HMACs are generated using keys. This example uses the symmetric key represented in JSON
Web Key [JWK] format below (with line breaks for display purposes only):

{llktyll E "OCt",
"k":"AyM1SysPpbyDfgzld3umj1qzKObwVMkoqQ-EstJQLr_T-19SOgZH75
aKtMN3YjOiPS4hcgUuTwjAzZr1Z9CAow"
}

Running the HMAC SHA-256 algorithm on the octets of the ASCII representation of the JWS
Signing Input with this key yields this octet sequence:

[116, 24, 223, 180, 151, 153, 224, 37, 79, 250, 96, 125, 216, 173, 187, 186, 22, 212, 37, 77,
105, 214, 191, 240, 91, 88, 5, 88, 83, 132, 141, 121]

Base64url encoding the above HMAC output yields this Encoded JWS Signature value:

dBjftJeZ4CVP-mB92K27uhbUJU1lplr_wW1gFWFOEjXk

Concatenating these values in the order Header.Payload.Signature with period ('.") characters
between the parts yields this complete JWS representation using the JWS Compact
Serialization (with line breaks for display purposes only):

eyJO0eXA10iJKV1QiLAGKICJIhbGci0iJIUZI1NiJ9

eyJpc3Mi0iJgb2UiLAGKICJI1eHAiOjEzMDA4MTkzODAsSDQogImh@dHAGLY91eGFt
CcGX1LmNvbS9pc19yb290IjpOcnV1fQ

dBjftJeZ4CVP-mB92K27uhbUJU1lplr_wW1gFWFOEjXk

A.1.2. Decoding _—

Decoding the JWS requires base64url decoding the Encoded JWS Header, Encoded JWS
Payload, and Encoded JWS Signature to produce the JWS Header, JWS Payload, and JWS
Signature octet sequences. The octet sequence containing the UTF-8 representation of the
JWS Header is decoded into the JWS Header string.

TOC
A.1.3. Validating
Next we validate the decoded results. Since the alg parameter in the header is "HS256", we
validate the HMAC SHA-256 value contained in the JWS Signature. If any of the validation
steps fail, the JWS MUST be rejected.
First, we validate that the JWS Header string is legal JSON.
To validate the HMAC value, we repeat the previous process of using the correct key and the
ASCIl representation of the JWS Signing Input as input to the HMAC SHA-256 function and
then taking the output and determining if it matches the JWS Signature. If it matches exactly,
the HMAC has been validated.
. TOC
A.2. Example JWS using RSASSA-PKCS-v1_5 SHA-256
TOC

A.2.1. Encoding

The JWS Header in this example is different from the previous example in two ways: First,
because a different algorithm is being used, the alg value is different. Second, for illustration
purposes only, the optional "typ" parameter is not used. (This difference is not related to the
algorithm employed.) The JWS Header used is:

{"alg":"RS256"}

The following octet sequence contains the UTF-8 representation of the JWS Header:
[123, 34, 97, 108, 103, 34, 58, 34, 82, 83, 50, 53, 54, 34, 125]

Base64url encoding these octets yields this Encoded JWS Header value:

eyJhbGci0iJSUzI1INiJ9

The JWS Payload used in this example, which follows, is the same as in the previous example.
Since the Encoded JWS Payload will therefore be the same, its computation is not repeated
here.

{"iSS" : "joe",
"exp":1300819380,
"http://example.com/is_root":true}

Concatenating the Encoded JWS Header, a period ('.') character, and the Encoded JWS
Payload yields this JWS Signing Input value (with line breaks for display purposes only):

eyJhbGci0iJSUzI1NiJ9

eyJpc3Mi0iJqb2UiLAGKICJI1eHAi0jEzZMDA4MTkzODASDQogImhO@dHAGLY91eGFt
CcGX1LmNvbS9pc19yb290IjpOcnV1fQ

The ASCII representation of the JWS Signing Input is the following octet sequence:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 83, 85, 122, 73, 49, 78, 105, 74, 57, 46, 101,
121, 74, 112, 99, 51, 77, 105, 79, 105, 74, 113, 98, 50, 85, 105, 76, 65, 48, 75, 73, 67, 74,
108, 101, 72, 65, 105, 79, 106, 69, 122, 77, 68, 65, 52, 77, 84, 107, 122, 79, 68, 65, 115, 68,
81, 111, 103, 73, 109, 104, 48, 100, 72, 65, 54, 76, 121, 57, 108, 101, 71, 70, 116, 99, 71,
120, 108, 76, 109, 78, 118, 98, 83, 57, 112, 99, 49, 57, 121, 98, 50, 57, 48, 73, 106, 112, 48,
99, 110, 86, 108, 102, 81]

This example uses the RSA key represented in JSON Web Key [JWK] format below (with line
breaks for display purposes only):

{llktyll : "RSA",
"n":"ofgWCuLjybR1zo0tZWJIjNiuSTb4p4fAkd_wwWIcyQoThbjiokel8w26mPddx
HmfHQp-Vaw-4qPCJrcS2mJPMEzP1Pt0Bm4d4QlL -yRT-SFd21ZS-pCgNMs
D1W_YpRPEwWOWVG6b32690r2jZ47soMZo9wGzjb_70MgOLOL -bSTf63kpaSH
SXndS5z5rexMdbBYUsLA9e - KXBAQOS-UTo7WTBEMa2R2CapHg665xsmtdV
MTBQY4uDZ1xvb3qCo5ZwKh9kG4LT6_I5Ih1JH7aGhyxXFvUK-DWNmoudF8
NAco9_h9iaGNj8q2ethFkMLs91kzk2PAcDTW9gb54h4FRWyuXpoQ",
Ilell : "AQAB",
"d":"Eq5XpGnNNCivDf1JIsRQBXHx1hdR1k6Ulwe2JZD50LpXyWPEAeP88VLNO97I
J1A7_GQ5SLKMgvTfTeXZX9SE-7YwV012NX00AJe46sui395IW_GO-pwWJ100
BkTGOVEN2bKVRUCgu-GjBVaYLU6f319kJIJFFNS3EOQbVdxzubSu3Mkqgzjkn
439XOM_V51gfpRLI9JIYanrC4D4gAdGcopV_0ZHHzQ1BjudU2QvXt4ehNYT
CBr6XCcLQUShb1juu01ZdiYoFaFQT5Tw8bGULl_x_jTj3ccPDVZFD9pIuhLh
BOneufuBiB4cS9812SR_RQyGWSeWjnczTOQU91p1DhOVRuUOopznQ"

The RSA private key is then passed to the RSA signing function, which also takes the hash
type, SHA-256, and the octets of the ASCII representation of the JWS Signing Input as inputs.
The result of the digital signature is an octet sequence, which represents a big endian
integer. In this example, it is:

[112, 46, 33, 137, 67, 232, 143, 209, 30, 181, 216, 45, 191, 120, 69, 243, 65, 6, 174, 27, 129,
255, 247, 115, 17, 22, 173, 209, 113, 125, 131, 101, 109, 66, 10, 253, 60, 150, 238, 221, 115,
162, 102, 62, 81, 102, 104, 123, 0, 11, 135, 34, 110, 1, 135, 237, 16, 115, 249, 69, 229, 130,
173, 252, 239, 22, 216, 90, 121, 142, 232, 198, 109, 219, 61, 184, 151, 91, 23, 208, 148, 2,
190, 237, 213, 217, 217, 112, 7, 16, 141, 178, 129, 96, 213, 248, 4, 12, 167, 68, 87, 98, 184,
31, 190, 127, 249, 217, 46, 10, 231, 111, 36, 242, 91, 51, 187, 230, 244, 74, 230, 30, 177, 4,
10, 203, 32, 4, 77, 62, 249, 18, 142, 212, 1, 48, 121, 91, 212, 189, 59, 65, 238, 202, 208, 102,
171, 101, 25, 129, 253, 228, 141, 247, 127, 55, 45, 195, 139, 159, 175, 221, 59, 239, 177,
139, 93, 163, 204, 60, 46, 176, 47, 158, 58, 65, 214, 18, 202, 173, 21, 145, 18, 115, 160, 95,
35, 185, 232, 56, 250, 175, 132, 157, 105, 132, 41, 239, 90, 30, 136, 121, 130, 54, 195, 212,
14, 96, 69, 34, 165, 68, 200, 242, 122, 122, 45, 184, 6, 99, 209, 108, 247, 202, 234, 86, 222
64, 92, 178, 33, 90, 69, 178, 194, 85, 102, 181, 90, 193, 167, 72, 160, 112, 223, 200, 163, 42,
70, 149, 67, 208, 25, 238, 251, 71]

Base64url encoding the digital signature produces this value for the Encoded JWS Signature
(with line breaks for display purposes only):

cC4hiUPoj9Eetdgtv3hF8OEGrhuB__dzERatOXF9g2VtQgroPJbu3X0izj5RZmh7
AAUHIM4Bh-0Qc_lF5YKt_08W2Fp5jujGbds9uJdbF9CUAr7t1dnZcAcQjbKBYNX4
BAYNRFdiuB--f_nzZLgrnbyTyWz075vRK5h6xBArLIARNPVkSjtQBMH1b1LO7Qe7K
0GarZRmB_eSN9383LcOLn6_d0O--xi12jzDwusC-eOkHWEsqtFZESc6BTfI7no0Pqv
hJ1phCnvWh6IeYI2w9QOYEUipUTI8np6LbgGY9Fs98rqVt5AXLIhWkWywlVmtVrB
p@igcN_IoypGlUPQGe77Rw

Concatenating these values in the order Header.Payload.Signature with period ('.') characters

between the parts yields this complete JWS representation using the JWS Compact
Serialization (with line breaks for display purposes only):

eyJhbGci0iJSUzI1NiJ9

eyJpc3Mi0iJqb2UiLAGKICJI1eHAi10jEzZMDA4MTkzODAsSDQogImhO@dHAGLY91eGFt
CGX1LmNvbS9pc19yb290IjpOcnV1fQ

cC4hiUP0j9Eetdgtv3hF8OEGrhuB__dzERat@®@XF9g2VtQgr9PJbu3X0iZj5RZmh7
AAUHIM4Bh-0Qc_lF5YKt_08W2Fp5jujGbds9uJdbF9CUAr7tidnZcAcQjbKBYNX4
BAynRFdiuB--f_nZLgrnbyTyWz075VvRK5h6XBArLIARNPVkSjtQBMH1b1LO7Qe7K
0GarZRmB_eSN9383LcOLn6_d0O--xil12jzDwusC-eOkHWESqtFZESc6BfI7no0OPqv
hJ1phCnvWh6IeYI2w9QOYEUipUTI8Np6LbgGYIFs98rgVt5AXLIhWkWywlVmtVrB
p@igcN_IoypGlUPQGe77Rw

TOC
A.2.2. Decoding
Decoding the JWS requires base64url decoding the Encoded JWS Header, Encoded JWS
Payload, and Encoded JWS Signature to produce the JWS Header, JWS Payload, and JWS
Signature octet sequences. The octet sequence containing the UTF-8 representation of the
JWS Header is decoded into the JWS Header string.
TOC

A.2.3. Validating

Since the alg parameter in the header is "RS256", we validate the RSASSA-PKCS-vl 5 SHA-
256 digital signature contained in the JWS Signature. If any of the validation steps fail, the JWS
MUST be rejected.

First, we validate that the JWS Header string is legal JSON.

Validating the JWS Signature is a little different from the previous example. First, we
base64url decode the Encoded JWS Signature to produce a digital signature S to check. We
then pass (n, e), S and the octets of the ASCII representation of the JWS Signing Input to an

RSASSA-PKCS-v1 5 signature verifier that has been configured to use the SHA-256 hash
function.

A.3. Example JWS using ECDSA P-256 SHA-256 _—

A.3.1. Encoding o

The JWS Header for this example differs from the previous example because a different
algorithm is being used. The JWS Header used is:

{"alg":"ES256"}

The following octet sequence contains the UTF-8 representation of the JWS Header:
[123, 34, 97, 108, 103, 34, 58, 34, 69, 83, 50, 53, 54, 34, 125]

Base64url encoding these octets yields this Encoded JWS Header value:

eyJhbGci0iJFUzI1NiJ9

The JWS Payload used in this example, which follows, is the same as in the previous
examples. Since the Encoded JWS Payload will therefore be the same, its computation is not
repeated here.

{llissll : Iljoe"’
"exp":1300819380,
"http://example.com/is_root":true}

Concatenating the Encoded JWS Header, a period ('.") character, and the Encoded JWS
Payload yields this JWS Signing Input value (with line breaks for display purposes only):

eyJhbGciOiJFUzI1NiJ9

eyJpc3Mi0iJgb2UiLAGKICJI1eHAiOjEZMDA4MTkz0ODAsDQogImh@dHAGLY91eGFt
CcGx1LmNvbS9pc19yb290IjpOcnV1fQ

The ASCII representation of the JWS Signing Input is the following octet sequence:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 70, 85, 122, 73, 49, 78, 105, 74, 57, 46, 101,
121, 74, 112, 99, 51, 77, 105, 79, 105, 74, 113, 98, 50, 85, 105, 76, 65, 48, 75, 73, 67, 74,
108, 101, 72, 65, 105, 79, 106, 69, 122, 77, 68, 65, 52, 77, 84, 107, 122, 79, 68, 65, 115, 68,
81, 111, 103, 73, 109, 104, 48, 100, 72, 65, 54, 76, 121, 57, 108, 101, 71, 70, 116, 99, 71,
120, 108, 76, 109, 78, 118, 98, 83, 57, 112, 99, 49, 57, 121, 98, 50, 57, 48, 73, 106, 112, 48,
99, 110, 86, 108, 102, 81]

This example uses the elliptic curve key represented in JSON Web Key [JWK] format below:

Ilkt n : "EC"
{Ilcrzll . IIP_2,56II
. 4
"x":"f830J3D2xF1Bg8vub9tLelgHMzV76e8TusQuPHVRVEU",
"y":"X_FEZRU9M36HLN_tue659LNpXW6pCyStikYjKIWI5a0",
"d":"jpsQnnGQmL-YBIffH1136CcSpYG6-0iY7X1FCE9-EQLI"
}

The ECDSA private part d is then passed to an ECDSA signing function, which also takes the
curve type, P-256, the hash type, SHA-256, and the octets of the ASCIl representation of the
JWS Signing Input as inputs. The result of the digital signature is the EC point (R, S), where R

and S are unsigned integers. In this example, the R and S values, given as octet sequences

representing big endian integers are:

Result Value

Name

R [14, 209, 33, 83, 121, 99, 108, 72, 60, 47, 127, 21, 88, 7, 212, 2, 163, 178, 40, 3, 58, 249,
124, 126, 23, 129, 154, 195, 22, 158, 166, 101]

S [197, 10, 7, 211, 140, 60, 112, 229, 216, 241, 45, 175, 8, 74, 84, 128, 166, 101, 144, 197,

242, 147, 80, 154, 143, 63, 127, 138, 131, 163, 84, 213]

Concatenating the S array to the end of the R array and base64url encoding the result
produces this value for the Encoded JWS Signature (with line breaks for display purposes
only):

DtEhU31jbEg8L38VWATUAQOYKAMG - XX - F4AGawxaepmXFCgfTjDxw5djxLa8IS1SA
pmWQXFKTUJqPP3-Kg6NU1Q

Concatenating these values in the order Header.Payload.Signature with period ('.') characters
between the parts yields this complete JWS representation using the JWS Compact
Serialization (with line breaks for display purposes only):

eyJhbGci0iJFUzI1NiJ9

eyJpc3Mi0iJgb2UiLAGKICJI1eHAiO]jEzMDA4MTkzODAsSDQogImhO@dHAGLY91eGFt
CGX1LmNvbS9pc19yb290IjpOcnV1fQ

DtEhU31jbEg8L38VWATUAGOYKAMG - XX - F4GawxaepmXFCgfTjDxw5djxLa8IS1SA
pMWQXFKTUJQPP3-Kg6NU1Q

TOC
A.3.2. Decoding
Decoding the JWS requires base64url decoding the Encoded JWS Header, Encoded JWS
Payload, and Encoded JWS Signature to produce the JWS Header, JWS Payload, and JWS
Signature octet sequences. The octet sequence containing the UTF-8 representation of the
JWS Header is decoded into the JWS Header string.
TOC

A.3.3. Validating

Since the alg parameter in the header is "ES256", we validate the ECDSA P-256 SHA-256
digital signature contained in the JWS Signature. If any of the validation steps fail, the JWS
MUST be rejected.

First, we validate that the JWS Header string is legal JSON.

Validating the JWS Signature is a little different from the first example. First, we base64url
decode the Encoded JWS Signature as in the previous examples but we then need to split the
64 member octet sequence that must result into two 32 octet sequences, the first R and the
second S. We then pass (x, y), (R, S) and the octets of the ASCII representation of the JWS
Signing Input to an ECDSA signature verifier that has been configured to use the P-256 curve
with the SHA-256 hash function.

As explained in Section 3.4 of the JSON Web Algorithms (JWA) [JWA] specification, the use of
the K value in ECDSA means that we cannot validate the correctness of the digital signature

in the same way we validated the correctness of the HMAC. Instead, implementations MUST
use an ECDSA validator to validate the digital signature.

A.4. Example JWS using ECDSA P-521 SHA-512 s

A.4.1. Encoding L

The JWS Header for this example differs from the previous example because different ECDSA
curves and hash functions are used. The JWS Header used is:

{"alg":"ES512"}

The following octet sequence contains the UTF-8 representation of the JWS Header:
[123, 34, 97, 108, 103, 34, 58, 34, 69, 83, 53, 49, 50, 34, 125]

Base64url encoding these octets yields this Encoded JWS Header value:

eyJhbGciOiJFUzUxMiJ9

The JWS Payload used in this example, is the ASCII string "Payload". The representation of this
string is the octet sequence:

[80, 97, 121, 108, 111, 97, 100]

Base64url encoding these octets yields this Encoded JWS Payload value:

UGF5bG9hZA

Concatenating the Encoded JWS Header, a period ('.") character, and the Encoded JWS
Payload yields this JWS Signing Input value:

eyJhbGci0iJFUzUxMiJ9.UGF5bG9hZA

The ASCII representation of the JWS Signing Input is the following octet sequence:

[101, 121, 74, 104, 98, 71, 99, 105, 79, 105, 74, 70, 85, 122, 85, 120, 77, 105, 74, 57, 46, 85,
71,70, 53, 98, 71, 57, 104, 90, 65]

This example uses the elliptic curve key represented in JSON Web Key [JWK] format below
(with line breaks for display purposes only):

n m.nmn n
.

"x":"AekpBQ8ST8a8VcfVOTN1353vSrDCLLIXmMPKO6GWTjXrrjcBpXp5EONYG_
NjFZ60VLFV1jSfS9tsz4quxcWceqwQGk",

"y":"ADSMRA43Z1DSNX_RvcLI87cdL0716jQyyBXMoxVg_12Th-x3S1wWDhjD1l
y79ajL4Kkd0AZMaZmh9ubmf63e3kyMj2",

"d":"AY5pb7A0QUFiB3RELSD64fTLOSV_jazdF7fLYyuTw810fRhWg6Y6rUrPA
xerEzgdRhajnu@ferBOd53vMImE15j2C"

The ECDSA private part d is then passed to an ECDSA signing function, which also takes the
curve type, P-521, the hash type, SHA-512, and the octets of the ASCIl representation of the
JWS Signing Input as inputs. The result of the digital signature is the EC point (R, S), where R

and S are unsigned integers. In this example, the R and S values, given as octet sequences

representing big endian integers are:

Result

Value
Name

[1, 220, 12, 129, 231, 171, 194, 209, 232, 135, 233, 117, 247, 105, 122, 210, 26, 125, 192,

R 1,217, 21, 82, 91, 45, 240, 255, 83, 19, 34, 239, 71, 48, 157, 147, 152, 105, 18, 53, 108,
163, 214, 68, 231, 62, 153, 150, 106, 194, 164, 246, 72, 143, 138, 24, 50, 129, 223, 133,
206, 209, 172, 63, 237, 119, 109]

[0, 111, 6, 105, 44, 5, 41, 208, 128, 61, 152, 40, 92, 61, 152, 4, 150, 66, 60, 69, 247, 196,

S 170, 81, 193, 199, 78, 59, 194, 169, 16, 124, 9, 143, 42, 142, 131, 48, 206, 238, 34, 175, 83,
203, 220, 159, 3, 107, 155, 22, 27, 73, 111, 68, 68, 21, 238, 144, 229, 232, 148, 188, 222,
59, 242, 103]

Concatenating the S array to the end of the R array and base64url encoding the result
produces this value for the Encoded JWS Signature (with line breaks for display purposes
only):

AdwMgeerwtHoh-1192160hp9wAHZFVJbLfD_UXxMi70cwnZ0YaRI1bKPWROC-mZZq
w(qT2SI-KGDKB34X00aw_7XdtAG8GaSwFKACAPZgoXD2YBJZCPEX3XxKpRwcd0O08Kp
EHwJjyq0gzD07iKvU8vcnwNrmxYbSWOERBXukOXolLzeO_Jn

Concatenating these values in the order Header.Payload.Signature with period ('.') characters

between the parts yields this complete JWS representation using the JWS Compact
Serialization (with line breaks for display purposes only):

eyJhbGciOiJFUzUxMiJ9

eyJpc3Mi0iJqb2UiLAGKICJI1eHAi0jEzZMDA4MTkzODAsSDQogImhO@dHAG6LY91eGFt
CGX1LmNvbS9pc19yb290IjpOcnV1fQ

AdwMgeerwtHoh-1192160hp9wAHZFVJbLfD_UxMi70cwnZ0YaRI1bKPWROC-mZZq
w(qT2SI-KGDKB34X00aw_7XdtAG8GaSwWFKACAPZgoXD2YBJZCPEX3xKpRwcd0O08Kp
EHwJjyq0gzD07iKvU8vcnwNrmxYbSWOERBXukOXolLzeO _Jn

TOC
A.4.2. Decoding
Decoding the JWS requires base64url decoding the Encoded JWS Header, Encoded JWS
Payload, and Encoded JWS Signature to produce the JWS Header, JWS Payload, and JWS
Signature octet sequences. The octet sequence containing the UTF-8 representation of the
JWS Header is decoded into the JWS Header string.
TOC

A.4.3. Validating

Since the alg parameter in the header is "ES512", we validate the ECDSA P-521 SHA-512
digital signature contained in the JWS Signature. If any of the validation steps fail, the JWS
MUST be rejected.

First, we validate that the JWS Header string is legal JSON.

Validating the JWS Signature is similar to the previous example. First, we base64url decode
the Encoded JWS Signature as in the previous examples but we then need to split the 132
member octet sequence that must result into two 66 octet sequences, the first R and the
second S. We then pass (X, y), (R, S) and the octets of the ASCII representation of the JWS
Signing Input to an ECDSA signature verifier that has been configured to use the P-521 curve
with the SHA-512 hash function.

As explained in Section 3.4 of the JSON Web Algorithms (JWA) [JWA] specification, the use of
the K value in ECDSA means that we cannot validate the correctness of the digital signature
in the same way we validated the correctness of the HMAC. Instead, implementations MUST
use an ECDSA validator to validate the digital signature.

A.5. Example Plaintext JWS TOC

The following example JWS Header declares that the encoded object is a Plaintext JWS:

{Ilalgll - Ilnonell}

Base64url encoding the octets of the UTF-8 representation of the JWS Header yields this
Encoded JWS Header:

eyJhbGci0iJub251In0

The JWS Payload used in this example, which follows, is the same as in the previous
examples. Since the Encoded JWS Payload will therefore be the same, its computation is not
repeated here.

{"iSS" : lljoe"’
"exp":1300819380,
"http://example.com/is_root":true}

The Encoded JWS Signature is the empty string.

Concatenating these parts in the order Header.Payload.Signature with period ('.') characters
between the parts yields this complete JWS (with line breaks for display purposes only):

eyJhbGci0iJub251In0

eyJpc3Mi0iJqb2UiLAGKICJI1eHA10jEzZMDA4MTkzODAsDQogImh@dHAGLY91eGFt
cGx1LmNvbS9pc19yb290IjpOcnV1fQ

A.6. Example JWS Using JWS JSON Serialization _—

This section contains an example using the JWS JSON Serialization. This example
demonstrates the capability for conveying multiple digital signatures and/or MACs for the
same payload.

The Encoded JWS Payload used in this example is the same as that used in the examples in
Appendix A.2 and Appendix A.3 (with line breaks for display purposes only):

eyJpc3Mi0iJgb2UiLAGKICJI1eHAiOjEZMDA4MTkz0ODAsDQogImhO@dHAGLY91eGFt
cGX1LmNvbS9pc19yb290IjpOcnV1fQ

Two digital signatures are used in this example: the first using RSASSA-PKCS-vl 5 SHA-256
and the second using ECDSA P-256 SHA-256. For the first, the WS Protected Header and key
are the same as in Appendix A.2, resulting in the same JWS Signature value; therefore, its
computation is not repeated here. For the second, the JWS Protected Header and key are the
same as in Appendix A.3, resulting in the same JWS Signature value; therefore, its
computation is not repeated here.

A.6.1. JWS Per-Signature Protected Headers _—

The JWS Protected Header value used for the first signature is:
{"alg":"RS256"}

Base64url encoding these octets yields this Encoded JWS Header value:
eyJhbGci0iJSUzI1NiJ9

The JWS Protected Header value used for the second signature is:
{"alg":"ES256"}

Base64url encoding these octets yields this Encoded JWS Header value:

eyJhbGci0iJFUzI1NiJ9

A.6.2. JWS Per-Signature Unprotected Headers _—

Key ID values are supplied for both keys using per-signature header parameters. The two
values used to represent these Key IDs are:
{"kid":"2010-12-29"}

and:

{"kid":"e9bc097a-ce51-4036-9562-d2ade882dbod"}

TOC
A.6.3. Complete JWS Header Values
Combining the protected and unprotected header values supplied, the JWS Header values
used for the first and second sighatures respectively are:
{"alg":"RS256",
"kid":"2010-12-29"}
and:
{"alg":"ES256",
"kid":"e9bc@97a-ce51-4036-9562-d2ade882dbod"}
TOC

A.6.4. Complete JWS JSON Serialization Representation

The complete JSON Web Signature JSON Serialization for these values is as follows (with line
breaks for display purposes only):

{"payload":
"eyJpc3Mi0iJgb2UiLAGKICJI1eHAiOjEzMDA4MTkzODAsDQogImhO@dHAGELY91eGF
tcGx1LmNvbS9pc19yb290IjpOcnV1fQ",
"signatures":[
{"protected":"eyJhbGci0iJSUzI1NiJ9",

"header":
{"kid":"2010-12-29"},
"signature":

"cC4hiUPoj9Eetdgtv3hF8OEGrhuB__dzERatOXF9g2VtQgr9PJbu3X0iZj5RZ
mh7AAUHIM4Bh-0Qc_l1F5YKt_08W2Fp5jujGbds9uldbF9CUAr7tidnZcAcQjb
KBYNX4BAynRFdiuB--f_nZLgrnbyTyWz075vRK5h6xBAr LIARNPVkS]jtQBMH1
b1L07Qe7KOGarZRmB_eSN9383LcOLn6_d0--xi12jzDwusC-eOkHWESqQtFZES
c6BfI7noOPqvhJ1iphCnvWh6IeYI2w9QOYEUipUTI8Np6LbgGYIFS98rqVt5AX
LIhWkWywlVmtVrBpOigcN_IoypGlUPQGe77Rw"},

{"protected":"eyJhbGciOiJFUzI1NiJ9",

"header":
{"kid":"e9bc097a-ce51-4036-9562-d2ade882dbhed"},
"signature":

"DtEhU31jbEg8L38VWATUAQOYKAM6 - XX - FAGawxaepmXFCgfTjDxw5djxLa8IS
1SApMWQXFKTUJIQGPP3-Kg6NU1Q"}]

Appendix B. "x5¢" (X.509 Certificate Chain) Example AL

The JSON array below is an example of a certificate chain that could be used as the value of
an x5c (X.509 Certificate Chain) header parameter, per Section 4.1.6. Note that since
these strings contain base64 encoded (not base64url encoded) values, they are allowed to
contain white space and line breaks.

["MIIE3jCCA8agAwIBAgICAWEWDQYJK0ZIhvcNAQEFBQAwWYZELMAKGA1UEBhMCVVM
XITAfBgNVBAOTGFR0ZSBHbyBEYWRkeSBHcm91cCwgSW5jLjEXMC8GALUECXMOR2
89gRGFkZHkgQ2xhc3MgMiBDZXJ0aWZpY2FQawWOuIEF1dGhvcmloeTAeFwOWNjEXM
TYWMTUOMzdaFwOYNjEXMTYWMTUOMzdaMIHKMQswCQYDVQQGEwJVUZEQMA4GA1UE
CBMHQXJpem9QuYTETMBEGA1UEBXMKU2NVdAHRzZGFsZTEaMBgGA1UEChMRR29EYWR
keS5jb20sIE1uYy4xMzAXBgNVBASTKMhOAHAGLY9jZXJ0aWZpY2FOZXMuZ29kYW
RkeS5jb20vcmVwb3NpdG9ye TEWMC4GA1UEAXMNR28gRGFkZHkgU2VjdXJ1IEN]1C
NRpZm1jYXRpb24gQXV0aG9yaXR5MREWDWYDVQQFEWgWNzk20TI4NzCCASIwDQYJ
KoZIhvcNAQEBBQADggEPADCCAQOCggEBAMQt1RWMNCZM7DI161+4WQFapmGBWTt
wY6V3j3D3HKrj IMIN55Dr tPDAjhI62zMBS2s0fDPZVUBJI7fmdOLIR4h3mUpfjwoqV
Tr9vey0dQmVZwt7/v+WIbXnvQAjYwgDL1CBM6NnPwT270Dyqu9SowWlm2r4arv3al
GbgGmu75RpRSgAVSMeYddi5Kcju+GZtCpyz8/x4fKL40/K1iw/05epHBp+Y1lLpyo
7RJI1bmr2EKRTcDCVW5WrWCS9CHRK8r5RsL+HOEWNWGUINcWdrxcx+AuP7g2BNgW
JCJjP0g81h8BJ6qT9Z/dFjpfMFDNniNowWlfho3/Rb2cRGadDAW/hOUoz+EDU8CAW
EAAaOCATIwggEUMBOGA1UdDgQWBBTOrGEyk2xF1luLuhV+auud2mwjM5zAfBgNVH
SMEGDAWQBTSXLDSKkdRMEXGzYcs90f7dqGrU4zASBgNVHRMBAT8ECDAGAQH/AQEA
MDMGCCsGAQUFBWEBBCcwJTAjBggrBgEFBQCcwAYYXaHROcDovL297jc3AuZ29kYWR
keS5jb20wRgYDVROTBD8WPTA70DmgN4Y1aHROcDovL2N1cnRpZmljYXR1lcy5nb2
RhZGR5LmMNvbS9yZXBvc210b3J5L2dkcm9vdC5jcmwwSwYDVROGBEQWQjBABgRVH
SAAMDgWNQY IKwYBBQUHAgEWKMhOAHAGLY9jZXJ0aWZpY2FOZXMuZ29kYWRKkeS5 j
b20vcmVwb3NpdG9ye TAOBgNVHQ8BAT8EBAMCAQYWDQY JKoZIhvcNAQEFBQADQQE
BANKGwOY9+aG2Z+5mC6IGOgRQjhVyrEpO@l1VPLN8tESe8HkGsz2ZbwlFalEzAFPI
UyIXvIxwqoJKSQ3kbTISMUA2fCENZvD117esyfxVggqwcSeIaha86ykRvOe5GPLL
5CkKSkB2XIsKd83ASe8T+500yGPwWLPkIQntOhCqU7S+8MxZC9Y71hyVIEnfzuz9
pPOiRFEUOO]jZv2kWzRaJBYdTXRE4+uXR21aITVSzGh601mawGhId/dQb8vXxRMDsx
UXN89txJIx90jXxUUALIKENgHUUHgDTMBgLAELlrRhjZkAzVvb3du6/KFUJheqwNTrZ
EjYx8WnM25sgVjOuH@aBsXBTWVU+4=",

"MIIE+zCCBGSgAWIBAQICAQOWDQYJKoZIhvcNAQEFBQAwWgbsxJDAiBgNVBACTG1Z
hbG1DZXJOIFZhbG1lkYXRpb24gTmVOd29yazEXMBUGALIUEChMOVmFsaUN1cnQsIE
1uYy4xNTAzBgNVBASTLFZhbG1DZXJOIENSYXNzIDIgUG9saWNS5IFZhbG1kYXRpb
249gQXVeaG9yaXR5MSEwWHwWYDVQQDEXhodHRw0i8vd3d3LnZhbG1ljZXJOLmMNvbS8x
IDAeBgkqhkiGOwOBCQEWEWluZm9AdmFsawWNl1cnQuY29tMB4XDTAGMDYYOTE3MDY
YMFoXDTIOMDYYOTE3MDYyMFowYzELMAKGALIUEBhMCVVMXITATfBgNVBAOTGFROZS
BHbyBEYWRkeSBHcm91cCwgSW57jLjEXMC8GALIUECXMOR28gRGFkZHkgQ2xhc3MgM
iBDZXJ0aWZpY2F0aWOuUIEF1dGhvcmlOeTCCASAWDQYJIJKoZIhvcNAQEBBQADgQEN
ADCCAQQUCggEBANG6d1+pXGEMhW+VXX01G6r7d/+TvZXxz0ZWizV3GgXne77ZtJ6XC
APVYYYwhv2vLMOD9/A1QiVBDYsoHUwHU9S3/Hd8M+eKsaA7Ugay9qK7HFiH7EuX
6wwdhFJ2+qN1j3hybX2C32gRe3H3I2TqYXP2WYktsqbl2i/0jgC95/5Y0OV4evLO
tXiEQITLAi0r18SPaAIBQi2XKV10OARFMR6]jYGBOXUGlcmIbYsUfb18aQr4CuUwWwo
riMYavx4A61Nf4DD+qta/KFApMoZFv6yy09ecw3ud72a9nmYVLEHZ6IVDd2gwWMZ
Eewo+YihfukEHU1jPEX44dMX4/7VpkI+EdOqXG68CAQOjggHhMIIB3TAdBgNVHQ
4EFgQUOSSwWOpPHUTBFxs2HLPaH+3ahq10MwgdIGA1UdIwSBYjCBx6GBwaSBvjCBu
ZEKMCIGA1UEBXxMbVmFsaUNlcnQgVmFsaWRhdG1lvbiB0ZXR3b3JrMRcwFQYDVQQK
EwSWYWxpQ2VydCwgSW5jLjEIMDMGALIUECXMsVmFsaUN1cnQgQ2xhc3MgMiBQb2x
pY3kgVmFsaWRhdGlvbiBBdXRob3JpdHkXITAfBgNVBAMTGGhOAHAGLY93d3cudm
FsaWN1lcnQuY29tLzEgMB4GCSqGSIb3DQEJARYRaW5mMbOB2YWxpY2VydC5jb22CA
QEwDwWYDVROTAQH/BAUWAWEB/zAzBggrBgEFBQCcBAQQNMCUwIwWYIKwYBBQUHMAGG
F2hOdHAB6LY9VY3NwLmdvZGFkZHkuY29tMEQGA1UdHWQIMDswOaA30DWGM2hOdHA
6LYy9]jZXJI0aWZpY2FOZXMuZ29kYWRkeS5jb20vemVwb3NpdGOyeS9yb290LmNybD
BLBgNVHSAERDBCMEAGBFUdIAAWODA2BggrBgEFBQcCARYgaHROcDovL2N1cnRpZ
mljYXR1lcy5nb2RhZGR5LmNvbS9yZXBvc210b3I5MA4GA1UdDWEB/WQEAWIBBjAN
BgkghkiGOwOBAQUFAAOBgQC1QPmnHfbq/qQaQlpE9xXUhUaJwL6e4+PrxeNYiY+
Sn1leocSxIOYGyeR+sBjUZSE40WBsUs51B0QQeyATJIg594RA0YC5jcdnplDQltgM
QLARzLrUc+cb53S8wGd9DOVmMsTSx0aFIgII6hR8INMgzW/Rn453HWkrugp++85]
O9VZw==",

"MIIC5zCCA1ACAQEWDQYJK0ZIhvcNAQEFBQAwWgbsxJDAi1iBgNVBACTG1ZhbG1DZXJ
OIFZhbGlkYXRpb24gTmVOd29yazEXMBUGALUEChMOVMFsaUN1cnQSIELuYy4xNT

AzBgNVBASTLFZhbG1DZXJOIENSYXNzIDIgUG9saWN5IFZhbGlkYXRpb24gQXVoea
G9yaXR5MSEwWHwWYDVQQDEXhodHRw0i8vd3d3LnZhbG1ljZXJOLmNvbS8xIDAeBgkq
hkiGO9wOBCQEWEWluZm9AdmFsaWN1lcnQuY29tMB4XDTK5MDYYNjAWMTKk1NFOXDTE
5MDYYNjAWMTKI1NFowgbsxJDA1iBgNVBACTG1ZhbG1DZXJOIFZhbG1lkYXRpb24gTm
VOd29yazEXMBUGALUEChMOVmFsaUN1cnQsIE1uYy4xNTAzBgNVBASTLFZhbG1DZ
XJOIENSYXNzIDIgUG9saWNS5IFZhbG1kYXRpb24gQXVeaG9yaXR5MSEwHwWYDVQQD
ExhodHRw0i8vd3d3LnZhbG1ljZXJOLmMNvbS8xIDAeBgkghkiGO9wOBCQEWEW1uzZm9
AdmFsaWN1cnQuY29tMIGFfMAGGCSqGSIb3DQEBAQUAA4AGNADCBiQKBgQDOONHK5a
VIWZJIV16VvYdA757tn2VUdZZUcOBVXc6592PFXTXdMwzzjsvUGJI7SVCCSRrCl16zf
N1SLUzMINZOWImpZdRIEYOKkTRXxQb7XBhVQ7/nHKkO1XC+YDgkROKWZzK2Z/M/VXwb
P7RfZHMO47QSv4dk+NoS/zcnwbNDu+97bi5p9wIDAQABMAOGCSqGSIb3DQEBBQU
AA4GBADt /UG9VUJISZSWI40BIL+KXIPgeCgfYrx+jFzug6EILLGACOTb20WH+heQ
C1lu+mNrOHZDzTuUIYEZoDJJKPTEj1lbVUjPOUNV+mWwD5MIM/Mt sq2azSiGM5bUMM
j4QssxsodyamEwCW/POuz6lcg5Ktz885hZo+L7tdEy8WIOViHOPd"]

Appendix C. Notes on implementing base64url encoding without padding

This appendix describes how to implement base64url encoding and decoding functions

without padding based upon standard base64 encoding and decoding functions that do use

padding.

TOC

To be concrete, example C# code implementing these functions is shown below. Similar code
could be used in other languages.

static string base64urlencode(byte [] arg)

{

3

string s = Convert.ToBase64String(arg); // Regular base64 encoder
s = s.Split('="')[0]; // Remove any trailing '='s

s = s.Replace('+', '-'); // 62nd char of encoding

s = s.Replace('/', '_'"); // 63rd char of encoding

return s;

static byte [] base64urldecode(string arg)

string s = arg;

S = s.Replace('-"', '+'); // 62nd char of encoding
s = s.Replace('_"', '/"); // 63rd char of encoding
switch (s.Length % 4) // Pad with trailing '='s
{
case 0: break; // No pad chars in this case
case 2: s += "=="; break; // Two pad chars
case 3: s += "="; break; // One pad char

default: throw new System.Exception(
"Illegal base64url string!");
}

return Convert.FromBase64String(s); // Standard base64 decoder

As per the example code above, the number of '=' padding characters that needs to be
added to the end of a base64url encoded string without padding to turn it into one with

padding is a deterministic function of the length of the encoded string. Specifically, if the
length mod 4 is 0, no padding is added; if the length mod 4 is 2, two '=' padding characters
are added; if the length mod 4 is 3, one '=' padding character is added; if the length mod 4 is

1, the input is malformed.

An example correspondence between unencoded and encoded values follows. The octet
sequence below encodes into the string below, which when decoded, reproduces the octet

sequence.

3 236 255 224 193

A-z_4ME

. . - TOC
Appendix D. Negative Test Case for "crit" Header Parameter
Conforming implementations must reject input containing critical extensions that are not
understood or cannot be processed. The following JWS must be rejected by all
implementations, because it uses an extension header parameter name
http://example.invalid/UNDEFINED that they do not understand. Any other similar input,
in which the use of the value http://example.invalid/UNDEFINED is substituted for any
other header parameter name not understood by the implementation, must also be
rejected.
The JWS Header value for this JWS is:
{Ilalgll g llnonell
"crit":["http://example.invalid/UNDEFINED"],
"http://example.invalid/UNDEFINED" : true
}
The complete JWS that must be rejected is as follows (with line breaks for display purposes
only):
eyJhbGci0iJub251TiwNCiAiY3JpdCI6WyJodHRwWOi8vZXhhbXBsZS5jb20vVUSERU
ZJTKVEI10sDQogImh@dHA6LY91eGFtcGXx1LmNVvbSOVTKkRFRk1IORUQiONRydWUNCNO.
RKFJTA.
TOC

Appendix E. Acknowledgements

Solutions for signing JSON content were previously explored by Magic Signatures
[MagicSignatures], JSON Simple Sign [JSS], and Canvas Applications [CanvasApp], all of
which influenced this draft.

Thanks to Axel Nennker for his early implementation and feedback on the JWS and JWE
specifications.

This specification is the work of the JOSE Working Group, which includes dozens of active and
dedicated participants. In particular, the following individuals contributed ideas, feedback, and
wording that influenced this specification:

Dirk Balfanz, Richard Barnes, Brian Campbell, Breno de Medeiros, Dick Hardt, Joe Hildebrand,
Jeff Hodges, Edmund Jay, Yaron Y. Goland, Ben Laurie, James Manger, Matt Miller, Tony
Nadalin, Axel Nennker, John Panzer, Emmanuel Raviart, Eric Rescorla, Jim Schaad, Paul
Tarjan, Hannes Tschofenig, and Sean Turner.

Jim Schaad and Karen O'Donoghue chaired the JOSE working group and Sean Turner and
Stephen Farrell served as Security area directors during the creation of this specification.

Appendix F. Document History i

[[to be removed by the RFC editor before publication as an RFC]]
-14

¢ Stated that the signature parameteris to be omitted in the JWS JSON
Serialization when its value would be empty (which is only the case for a Plaintext
JWS).

-13

-12

-11

-10

-09

-08

-07

Made all header parameter values be per-signature/MAC, addressing issue #24.

Clarified that the typ and cty header parameters are used in an application-
specific manner and have no effect upon the JWS processing.

Replaced the MIME types application/jws+json and application/jws with
application/jose+json and application/jose.

Stated that recipients MUST either reject JWSs with duplicate Header Parameter
Names or use a JSON parser that returns only the lexically last duplicate
member name.

Added a Serializations section with parallel treatment of the JWS Compact
Serialization and the JWS JSON Serialization and also moved the former
Implementation Considerations content there.

o Added Key Identification section.
e For the JWS JSON Serialization, enable header parameter values to be specified

in any of three parameters: the protected member that is integrity protected
and shared among all recipients, the unprotected member that is not integrity
protected and shared among all recipients, and the header member that is not
integrity protected and specific to a particular recipient. (This does not affect the
JWS Compact Serialization, in which all header parameter values are in a single
integrity protected JWE Header value.)

Removed suggested compact serialization for multiple digital signatures and/or
MACs.

Changed the MIME type name application/jws-js to
application/jws+json, addressing issue #22.

¢ Tightened the description of the crit (critical) header parameter.
¢ Added a negative test case for the crit header parameter

Added an appendix suggesting a possible compact serialization for JWSs with
multiple digital signatures and/or MACs.

Added JWS JSON Serialization, as specified by draft-jones-jose-jws-json-
serialization-04.

Registered application/jws-js MIME type and JWS-JS typ header parameter
value.

Defined that the default action for header parameters that are not understood is
to ignore them unless specifically designated as "MUST be understood" or
included in the new crit (critical) header parameter list. This addressed issue
#6.

¢ Changed term "JWS Secured Input" to "JWS Signing Input".
¢ Changed from using the term "byte" to "octet" when referring to 8 bit values.
¢ Changed member name from recipients to signatures in the JWS JSON

Serialization.
Added complete values using the JWS Compact Serialization for all examples.

Applied editorial improvements suggested by Jeff Hodges and Hannes
Tschofenig. Many of these simplified the terminology used.

Clarified statements of the form "This header parameter is OPTIONAL" to "Use of
this header parameter is OPTIONAL".

Added a Header Parameter Usage Location(s) field to the IANA JSON Web
Signature and Encryption Header Parameters registry.

Added seriesinfo information to Internet Draft references.

Updated references.

-06

-05

-04

-03

-02

Changed x5c (X.509 Certificate Chain) representation from being a single string
to being an array of strings, each containing a single base64 encoded DER
certificate value, representing elements of the certificate chain.

Applied changes made by the RFC Editor to RFC 6749's registry language to this
specification.

Added statement that "StringOrURI values are compared as case-sensitive
strings with no transformations or canonicalizations applied".
Indented artwork elements to better distinguish them from the body text.

Completed JSON Security Considerations section, including considerations about
rejecting input with duplicate member names.

Completed security considerations on the use of a SHA-1 hash when computing
x5t (x.509 certificate thumbprint) values.

Refer to the registries as the primary sources of defined values and then
secondarily reference the sections defining the initial contents of the registries.
Normatively reference XML DSIG 2.0 [W3C.CR-xmldsig-core2-20120124] for its
security considerations.

Added this language to Registration Templates: "This name is case sensitive.
Names that match other registered names in a case insensitive manner
SHOULD NOT be accepted."

Reference draft-jones-jose-jws-json-serialization instead of draft-jones-json-web-
signature-json-serialization.

¢ Described additional open issues.
e Applied editorial suggestions.

Added the cty (content type) header parameter for declaring type information
about the secured content, as opposed to the typ (type) header parameter,
which declares type information about this object.

e Added "Collision Resistant Namespace" to the terminology section.
e Reference ITU.X690.1994 for DER encoding.
o Added an example JWS using ECDSA P-521 SHA-512. This has particular

illustrative value because of the use of the 521 bit integers in the key and
signature values. This is also an example in which the payload is not a base64url
encoded JSON object.

Added an example x5c value.

No longer say "the UTF-8 representation of the JWS Secured Input (which is the
same as the ASCII representation)”. Just call it "the ASCIl representation of the
JWS Secured Input".

¢ Added Registration Template sections for defined registries.
¢ Added Registry Contents sections to populate registry values.
¢ Changed name of the JSON Web Signature and Encryption "typ" Values registry

to be the JSON Web Signature and Encryption Type Values registry, since it is
used for more than just values of the typ parameter.

Moved registries JSON Web Signature and Encryption Header Parameters and
JSON Web Signature and Encryption Type Values to the JWS specification.
Numerous editorial improvements.

Clarified that it is an error when a kid value is included and no matching key is
found.

Removed assumption that kid (key ID) can only refer to an asymmetric key.
Clarified that JWSs with duplicate Header Parameter Names MUST be rejected.
Clarified the relationship between typ header parameter values and MIME types.
Registered application/jws MIME type and "JWS" typ header parameter value.
Simplified WK terminology to get replace the "JWK Key Object" and "JWK
Container Object" terms with simply "JSON Web Key (JWK)" and "JSON Web Key
Set (JWK Set)" and to eliminate potential confusion between single keys and sets
of keys. As part of this change, the Header Parameter Name for a public key

value was changed from jpk (JSON Public Key) to jwk (JSON Web Key).

e Added suggestion on defining additional header parameters such as x5t#S256
in the future for certificate thumbprints using hash algorithms other than SHA-1.

¢ Specify RFC 2818 server identity validation, rather than RFC 6125 (paralleling the
same decision in the OAuth specs).

¢ Generalized language to refer to Message Authentication Codes (MACs) rather
than Hash-based Message Authentication Codes (HMACs) unless in a context
specific to HMAC algorithms.

¢ Reformatted to give each header parameter its own section heading.

-01

e Moved definition of Plaintext JWSs (using "alg":"none") here from the JWT
specification since this functionality is likely to be useful in more contexts that
just for JWTs.

e Added jpk and x5c header parameters for including JWK public keys and X.509
certificate chains directly in the header.

o Clarified that this specification is defining the JWS Compact Serialization.
Referenced the new JWS-JS spec, which defines the JWS JSON Serialization.

e Added text "New header parameters should be introduced sparingly since an
implementation that does not understand a parameter MUST reject the JWS".

o Clarified that the order of the creation and validation steps is not significant in
cases where there are no dependencies between the inputs and outputs of the
steps.

e Changed "no canonicalization is performed" to "no canonicalization need be
performed".

e Corrected the Magic Signatures reference.

e Made other editorial improvements suggested by JOSE working group
participants.

-00

¢ Created the initial IETF draft based upon draft-jones-json-web-signature-04 with
no normative changes.

o Changed terminology to no longer call both digital signatures and HMACs
"signatures".

Authors' Addresses TOC

Michael B. Jones
Microsoft
Email: mbj@microsoft.com
URL: http://self-issued.info/

John Bradley
Ping Identity
Email: veZjtb@veZjtb.com

Nat Sakimura
Nomura Research Institute

Email: n-sakimura@nri.co.jp

mailto:mbj@microsoft.com
http://self-issued.info/
mailto:ve7jtb@ve7jtb.com
mailto:n-sakimura@nri.co.jp

	JSON Web Signature (JWS) draft-ietf-jose-json-web-signature-14
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational Conventions
	2. Terminology
	3. JSON Web Signature (JWS) Overview
	3.1. Example JWS
	4. JWS Header
	4.1. Reserved Header Parameter Names
	4.1.1. "alg" (Algorithm) Header Parameter
	4.1.2. "jku" (JWK Set URL) Header Parameter
	4.1.3. "jwk" (JSON Web Key) Header Parameter
	4.1.4. "x5u" (X.509 URL) Header Parameter
	4.1.5. "x5t" (X.509 Certificate Thumbprint) Header Parameter
	4.1.6. "x5c" (X.509 Certificate Chain) Header Parameter
	4.1.7. "kid" (Key ID) Header Parameter
	4.1.8. "typ" (Type) Header Parameter
	4.1.9. "cty" (Content Type) Header Parameter
	4.1.10. "crit" (Critical) Header Parameter
	4.2. Public Header Parameter Names
	4.3. Private Header Parameter Names
	5. Producing and Consuming JWSs
	5.1. Message Signing or MACing
	5.2. Message Signature or MAC Validation
	5.3. String Comparison Rules
	6. Key Identification
	7. Serializations
	7.1. JWS Compact Serialization
	7.2. JWS JSON Serialization
	8. IANA Considerations
	8.1. JSON Web Signature and Encryption Header Parameters Registry
	8.1.1. Registration Template
	8.1.2. Initial Registry Contents
	8.2. JSON Web Signature and Encryption Type Values Registry
	8.2.1. Registration Template
	8.2.2. Initial Registry Contents
	8.3. Media Type Registration
	8.3.1. Registry Contents
	9. Security Considerations
	9.1. Cryptographic Security Considerations
	9.2. JSON Security Considerations
	9.3. Unicode Comparison Security Considerations
	9.4. TLS Requirements
	10. References
	10.1. Normative References
	10.2. Informative References
	Appendix A. JWS Examples
	A.1. Example JWS using HMAC SHA-256
	A.1.1. Encoding
	A.1.2. Decoding
	A.1.3. Validating
	A.2. Example JWS using RSASSA-PKCS-v1_5 SHA-256
	A.2.1. Encoding
	A.2.2. Decoding
	A.2.3. Validating
	A.3. Example JWS using ECDSA P-256 SHA-256
	A.3.1. Encoding
	A.3.2. Decoding
	A.3.3. Validating
	A.4. Example JWS using ECDSA P-521 SHA-512
	A.4.1. Encoding
	A.4.2. Decoding
	A.4.3. Validating
	A.5. Example Plaintext JWS
	A.6. Example JWS Using JWS JSON Serialization
	A.6.1. JWS Per-Signature Protected Headers
	A.6.2. JWS Per-Signature Unprotected Headers
	A.6.3. Complete JWS Header Values
	A.6.4. Complete JWS JSON Serialization Representation
	Appendix B. "x5c" (X.509 Certificate Chain) Example
	Appendix C. Notes on implementing base64url encoding without padding
	Appendix D. Negative Test Case for "crit" Header Parameter
	Appendix E. Acknowledgements
	Appendix F. Document History
	Authors' Addresses

